1 #include "llvm/ADT/APFloat.h"
2 #include "llvm/ADT/STLExtras.h"
3 #include "llvm/IR/BasicBlock.h"
4 #include "llvm/IR/Constants.h"
5 #include "llvm/IR/DerivedTypes.h"
6 #include "llvm/IR/Function.h"
7 #include "llvm/IR/Instructions.h"
8 #include "llvm/IR/IRBuilder.h"
9 #include "llvm/IR/LLVMContext.h"
10 #include "llvm/IR/Module.h"
11 #include "llvm/IR/Type.h"
12 #include "llvm/IR/Verifier.h"
13 #include "llvm/Support/TargetSelect.h"
14 #include "llvm/Target/TargetMachine.h"
15 #include "KaleidoscopeJIT.h"
16 #include <algorithm>
17 #include <cassert>
18 #include <cctype>
19 #include <cstdint>
20 #include <cstdio>
21 #include <cstdlib>
22 #include <map>
23 #include <memory>
24 #include <string>
25 #include <utility>
26 #include <vector>
27 
28 using namespace llvm;
29 using namespace llvm::orc;
30 
31 //===----------------------------------------------------------------------===//
32 // Lexer
33 //===----------------------------------------------------------------------===//
34 
35 // The lexer returns tokens [0-255] if it is an unknown character, otherwise one
36 // of these for known things.
37 enum Token {
38   tok_eof = -1,
39 
40   // commands
41   tok_def = -2,
42   tok_extern = -3,
43 
44   // primary
45   tok_identifier = -4,
46   tok_number = -5,
47 
48   // control
49   tok_if = -6,
50   tok_then = -7,
51   tok_else = -8,
52   tok_for = -9,
53   tok_in = -10,
54 
55   // operators
56   tok_binary = -11,
57   tok_unary = -12,
58 
59   // var definition
60   tok_var = -13
61 };
62 
63 static std::string IdentifierStr; // Filled in if tok_identifier
64 static double NumVal;             // Filled in if tok_number
65 
66 /// gettok - Return the next token from standard input.
gettok()67 static int gettok() {
68   static int LastChar = ' ';
69 
70   // Skip any whitespace.
71   while (isspace(LastChar))
72     LastChar = getchar();
73 
74   if (isalpha(LastChar)) { // identifier: [a-zA-Z][a-zA-Z0-9]*
75     IdentifierStr = LastChar;
76     while (isalnum((LastChar = getchar())))
77       IdentifierStr += LastChar;
78 
79     if (IdentifierStr == "def")
80       return tok_def;
81     if (IdentifierStr == "extern")
82       return tok_extern;
83     if (IdentifierStr == "if")
84       return tok_if;
85     if (IdentifierStr == "then")
86       return tok_then;
87     if (IdentifierStr == "else")
88       return tok_else;
89     if (IdentifierStr == "for")
90       return tok_for;
91     if (IdentifierStr == "in")
92       return tok_in;
93     if (IdentifierStr == "binary")
94       return tok_binary;
95     if (IdentifierStr == "unary")
96       return tok_unary;
97     if (IdentifierStr == "var")
98       return tok_var;
99     return tok_identifier;
100   }
101 
102   if (isdigit(LastChar) || LastChar == '.') { // Number: [0-9.]+
103     std::string NumStr;
104     do {
105       NumStr += LastChar;
106       LastChar = getchar();
107     } while (isdigit(LastChar) || LastChar == '.');
108 
109     NumVal = strtod(NumStr.c_str(), nullptr);
110     return tok_number;
111   }
112 
113   if (LastChar == '#') {
114     // Comment until end of line.
115     do
116       LastChar = getchar();
117     while (LastChar != EOF && LastChar != '\n' && LastChar != '\r');
118 
119     if (LastChar != EOF)
120       return gettok();
121   }
122 
123   // Check for end of file.  Don't eat the EOF.
124   if (LastChar == EOF)
125     return tok_eof;
126 
127   // Otherwise, just return the character as its ascii value.
128   int ThisChar = LastChar;
129   LastChar = getchar();
130   return ThisChar;
131 }
132 
133 //===----------------------------------------------------------------------===//
134 // Abstract Syntax Tree (aka Parse Tree)
135 //===----------------------------------------------------------------------===//
136 
137 namespace {
138 
139 /// ExprAST - Base class for all expression nodes.
140 class ExprAST {
141 public:
142   virtual ~ExprAST() = default;
143 
144   virtual Value *codegen() = 0;
145 };
146 
147 /// NumberExprAST - Expression class for numeric literals like "1.0".
148 class NumberExprAST : public ExprAST {
149   double Val;
150 
151 public:
NumberExprAST(double Val)152   NumberExprAST(double Val) : Val(Val) {}
153 
154   Value *codegen() override;
155 };
156 
157 /// VariableExprAST - Expression class for referencing a variable, like "a".
158 class VariableExprAST : public ExprAST {
159   std::string Name;
160 
161 public:
VariableExprAST(const std::string & Name)162   VariableExprAST(const std::string &Name) : Name(Name) {}
163 
164   Value *codegen() override;
getName() const165   const std::string &getName() const { return Name; }
166 };
167 
168 /// UnaryExprAST - Expression class for a unary operator.
169 class UnaryExprAST : public ExprAST {
170   char Opcode;
171   std::unique_ptr<ExprAST> Operand;
172 
173 public:
UnaryExprAST(char Opcode,std::unique_ptr<ExprAST> Operand)174   UnaryExprAST(char Opcode, std::unique_ptr<ExprAST> Operand)
175       : Opcode(Opcode), Operand(std::move(Operand)) {}
176 
177   Value *codegen() override;
178 };
179 
180 /// BinaryExprAST - Expression class for a binary operator.
181 class BinaryExprAST : public ExprAST {
182   char Op;
183   std::unique_ptr<ExprAST> LHS, RHS;
184 
185 public:
BinaryExprAST(char Op,std::unique_ptr<ExprAST> LHS,std::unique_ptr<ExprAST> RHS)186   BinaryExprAST(char Op, std::unique_ptr<ExprAST> LHS,
187                 std::unique_ptr<ExprAST> RHS)
188       : Op(Op), LHS(std::move(LHS)), RHS(std::move(RHS)) {}
189 
190   Value *codegen() override;
191 };
192 
193 /// CallExprAST - Expression class for function calls.
194 class CallExprAST : public ExprAST {
195   std::string Callee;
196   std::vector<std::unique_ptr<ExprAST>> Args;
197 
198 public:
CallExprAST(const std::string & Callee,std::vector<std::unique_ptr<ExprAST>> Args)199   CallExprAST(const std::string &Callee,
200               std::vector<std::unique_ptr<ExprAST>> Args)
201       : Callee(Callee), Args(std::move(Args)) {}
202 
203   Value *codegen() override;
204 };
205 
206 /// IfExprAST - Expression class for if/then/else.
207 class IfExprAST : public ExprAST {
208   std::unique_ptr<ExprAST> Cond, Then, Else;
209 
210 public:
IfExprAST(std::unique_ptr<ExprAST> Cond,std::unique_ptr<ExprAST> Then,std::unique_ptr<ExprAST> Else)211   IfExprAST(std::unique_ptr<ExprAST> Cond, std::unique_ptr<ExprAST> Then,
212             std::unique_ptr<ExprAST> Else)
213       : Cond(std::move(Cond)), Then(std::move(Then)), Else(std::move(Else)) {}
214 
215   Value *codegen() override;
216 };
217 
218 /// ForExprAST - Expression class for for/in.
219 class ForExprAST : public ExprAST {
220   std::string VarName;
221   std::unique_ptr<ExprAST> Start, End, Step, Body;
222 
223 public:
ForExprAST(const std::string & VarName,std::unique_ptr<ExprAST> Start,std::unique_ptr<ExprAST> End,std::unique_ptr<ExprAST> Step,std::unique_ptr<ExprAST> Body)224   ForExprAST(const std::string &VarName, std::unique_ptr<ExprAST> Start,
225              std::unique_ptr<ExprAST> End, std::unique_ptr<ExprAST> Step,
226              std::unique_ptr<ExprAST> Body)
227       : VarName(VarName), Start(std::move(Start)), End(std::move(End)),
228         Step(std::move(Step)), Body(std::move(Body)) {}
229 
230   Value *codegen() override;
231 };
232 
233 /// VarExprAST - Expression class for var/in
234 class VarExprAST : public ExprAST {
235   std::vector<std::pair<std::string, std::unique_ptr<ExprAST>>> VarNames;
236   std::unique_ptr<ExprAST> Body;
237 
238 public:
VarExprAST(std::vector<std::pair<std::string,std::unique_ptr<ExprAST>>> VarNames,std::unique_ptr<ExprAST> Body)239   VarExprAST(
240       std::vector<std::pair<std::string, std::unique_ptr<ExprAST>>> VarNames,
241       std::unique_ptr<ExprAST> Body)
242       : VarNames(std::move(VarNames)), Body(std::move(Body)) {}
243 
244   Value *codegen() override;
245 };
246 
247 /// PrototypeAST - This class represents the "prototype" for a function,
248 /// which captures its name, and its argument names (thus implicitly the number
249 /// of arguments the function takes), as well as if it is an operator.
250 class PrototypeAST {
251   std::string Name;
252   std::vector<std::string> Args;
253   bool IsOperator;
254   unsigned Precedence; // Precedence if a binary op.
255 
256 public:
PrototypeAST(const std::string & Name,std::vector<std::string> Args,bool IsOperator=false,unsigned Prec=0)257   PrototypeAST(const std::string &Name, std::vector<std::string> Args,
258                bool IsOperator = false, unsigned Prec = 0)
259       : Name(Name), Args(std::move(Args)), IsOperator(IsOperator),
260         Precedence(Prec) {}
261 
262   Function *codegen();
getName() const263   const std::string &getName() const { return Name; }
264 
isUnaryOp() const265   bool isUnaryOp() const { return IsOperator && Args.size() == 1; }
isBinaryOp() const266   bool isBinaryOp() const { return IsOperator && Args.size() == 2; }
267 
getOperatorName() const268   char getOperatorName() const {
269     assert(isUnaryOp() || isBinaryOp());
270     return Name[Name.size() - 1];
271   }
272 
getBinaryPrecedence() const273   unsigned getBinaryPrecedence() const { return Precedence; }
274 };
275 
276 /// FunctionAST - This class represents a function definition itself.
277 class FunctionAST {
278   std::unique_ptr<PrototypeAST> Proto;
279   std::unique_ptr<ExprAST> Body;
280 
281 public:
FunctionAST(std::unique_ptr<PrototypeAST> Proto,std::unique_ptr<ExprAST> Body)282   FunctionAST(std::unique_ptr<PrototypeAST> Proto,
283               std::unique_ptr<ExprAST> Body)
284       : Proto(std::move(Proto)), Body(std::move(Body)) {}
285 
286   Function *codegen();
287 };
288 
289 } // end anonymous namespace
290 
291 //===----------------------------------------------------------------------===//
292 // Parser
293 //===----------------------------------------------------------------------===//
294 
295 /// CurTok/getNextToken - Provide a simple token buffer.  CurTok is the current
296 /// token the parser is looking at.  getNextToken reads another token from the
297 /// lexer and updates CurTok with its results.
298 static int CurTok;
getNextToken()299 static int getNextToken() { return CurTok = gettok(); }
300 
301 /// BinopPrecedence - This holds the precedence for each binary operator that is
302 /// defined.
303 static std::map<char, int> BinopPrecedence;
304 
305 /// GetTokPrecedence - Get the precedence of the pending binary operator token.
GetTokPrecedence()306 static int GetTokPrecedence() {
307   if (!isascii(CurTok))
308     return -1;
309 
310   // Make sure it's a declared binop.
311   int TokPrec = BinopPrecedence[CurTok];
312   if (TokPrec <= 0)
313     return -1;
314   return TokPrec;
315 }
316 
317 /// LogError* - These are little helper functions for error handling.
LogError(const char * Str)318 std::unique_ptr<ExprAST> LogError(const char *Str) {
319   fprintf(stderr, "Error: %s\n", Str);
320   return nullptr;
321 }
322 
LogErrorP(const char * Str)323 std::unique_ptr<PrototypeAST> LogErrorP(const char *Str) {
324   LogError(Str);
325   return nullptr;
326 }
327 
328 static std::unique_ptr<ExprAST> ParseExpression();
329 
330 /// numberexpr ::= number
ParseNumberExpr()331 static std::unique_ptr<ExprAST> ParseNumberExpr() {
332   auto Result = llvm::make_unique<NumberExprAST>(NumVal);
333   getNextToken(); // consume the number
334   return std::move(Result);
335 }
336 
337 /// parenexpr ::= '(' expression ')'
ParseParenExpr()338 static std::unique_ptr<ExprAST> ParseParenExpr() {
339   getNextToken(); // eat (.
340   auto V = ParseExpression();
341   if (!V)
342     return nullptr;
343 
344   if (CurTok != ')')
345     return LogError("expected ')'");
346   getNextToken(); // eat ).
347   return V;
348 }
349 
350 /// identifierexpr
351 ///   ::= identifier
352 ///   ::= identifier '(' expression* ')'
ParseIdentifierExpr()353 static std::unique_ptr<ExprAST> ParseIdentifierExpr() {
354   std::string IdName = IdentifierStr;
355 
356   getNextToken(); // eat identifier.
357 
358   if (CurTok != '(') // Simple variable ref.
359     return llvm::make_unique<VariableExprAST>(IdName);
360 
361   // Call.
362   getNextToken(); // eat (
363   std::vector<std::unique_ptr<ExprAST>> Args;
364   if (CurTok != ')') {
365     while (true) {
366       if (auto Arg = ParseExpression())
367         Args.push_back(std::move(Arg));
368       else
369         return nullptr;
370 
371       if (CurTok == ')')
372         break;
373 
374       if (CurTok != ',')
375         return LogError("Expected ')' or ',' in argument list");
376       getNextToken();
377     }
378   }
379 
380   // Eat the ')'.
381   getNextToken();
382 
383   return llvm::make_unique<CallExprAST>(IdName, std::move(Args));
384 }
385 
386 /// ifexpr ::= 'if' expression 'then' expression 'else' expression
ParseIfExpr()387 static std::unique_ptr<ExprAST> ParseIfExpr() {
388   getNextToken(); // eat the if.
389 
390   // condition.
391   auto Cond = ParseExpression();
392   if (!Cond)
393     return nullptr;
394 
395   if (CurTok != tok_then)
396     return LogError("expected then");
397   getNextToken(); // eat the then
398 
399   auto Then = ParseExpression();
400   if (!Then)
401     return nullptr;
402 
403   if (CurTok != tok_else)
404     return LogError("expected else");
405 
406   getNextToken();
407 
408   auto Else = ParseExpression();
409   if (!Else)
410     return nullptr;
411 
412   return llvm::make_unique<IfExprAST>(std::move(Cond), std::move(Then),
413                                       std::move(Else));
414 }
415 
416 /// forexpr ::= 'for' identifier '=' expr ',' expr (',' expr)? 'in' expression
ParseForExpr()417 static std::unique_ptr<ExprAST> ParseForExpr() {
418   getNextToken(); // eat the for.
419 
420   if (CurTok != tok_identifier)
421     return LogError("expected identifier after for");
422 
423   std::string IdName = IdentifierStr;
424   getNextToken(); // eat identifier.
425 
426   if (CurTok != '=')
427     return LogError("expected '=' after for");
428   getNextToken(); // eat '='.
429 
430   auto Start = ParseExpression();
431   if (!Start)
432     return nullptr;
433   if (CurTok != ',')
434     return LogError("expected ',' after for start value");
435   getNextToken();
436 
437   auto End = ParseExpression();
438   if (!End)
439     return nullptr;
440 
441   // The step value is optional.
442   std::unique_ptr<ExprAST> Step;
443   if (CurTok == ',') {
444     getNextToken();
445     Step = ParseExpression();
446     if (!Step)
447       return nullptr;
448   }
449 
450   if (CurTok != tok_in)
451     return LogError("expected 'in' after for");
452   getNextToken(); // eat 'in'.
453 
454   auto Body = ParseExpression();
455   if (!Body)
456     return nullptr;
457 
458   return llvm::make_unique<ForExprAST>(IdName, std::move(Start), std::move(End),
459                                        std::move(Step), std::move(Body));
460 }
461 
462 /// varexpr ::= 'var' identifier ('=' expression)?
463 //                    (',' identifier ('=' expression)?)* 'in' expression
ParseVarExpr()464 static std::unique_ptr<ExprAST> ParseVarExpr() {
465   getNextToken(); // eat the var.
466 
467   std::vector<std::pair<std::string, std::unique_ptr<ExprAST>>> VarNames;
468 
469   // At least one variable name is required.
470   if (CurTok != tok_identifier)
471     return LogError("expected identifier after var");
472 
473   while (true) {
474     std::string Name = IdentifierStr;
475     getNextToken(); // eat identifier.
476 
477     // Read the optional initializer.
478     std::unique_ptr<ExprAST> Init = nullptr;
479     if (CurTok == '=') {
480       getNextToken(); // eat the '='.
481 
482       Init = ParseExpression();
483       if (!Init)
484         return nullptr;
485     }
486 
487     VarNames.push_back(std::make_pair(Name, std::move(Init)));
488 
489     // End of var list, exit loop.
490     if (CurTok != ',')
491       break;
492     getNextToken(); // eat the ','.
493 
494     if (CurTok != tok_identifier)
495       return LogError("expected identifier list after var");
496   }
497 
498   // At this point, we have to have 'in'.
499   if (CurTok != tok_in)
500     return LogError("expected 'in' keyword after 'var'");
501   getNextToken(); // eat 'in'.
502 
503   auto Body = ParseExpression();
504   if (!Body)
505     return nullptr;
506 
507   return llvm::make_unique<VarExprAST>(std::move(VarNames), std::move(Body));
508 }
509 
510 /// primary
511 ///   ::= identifierexpr
512 ///   ::= numberexpr
513 ///   ::= parenexpr
514 ///   ::= ifexpr
515 ///   ::= forexpr
516 ///   ::= varexpr
ParsePrimary()517 static std::unique_ptr<ExprAST> ParsePrimary() {
518   switch (CurTok) {
519   default:
520     return LogError("unknown token when expecting an expression");
521   case tok_identifier:
522     return ParseIdentifierExpr();
523   case tok_number:
524     return ParseNumberExpr();
525   case '(':
526     return ParseParenExpr();
527   case tok_if:
528     return ParseIfExpr();
529   case tok_for:
530     return ParseForExpr();
531   case tok_var:
532     return ParseVarExpr();
533   }
534 }
535 
536 /// unary
537 ///   ::= primary
538 ///   ::= '!' unary
ParseUnary()539 static std::unique_ptr<ExprAST> ParseUnary() {
540   // If the current token is not an operator, it must be a primary expr.
541   if (!isascii(CurTok) || CurTok == '(' || CurTok == ',')
542     return ParsePrimary();
543 
544   // If this is a unary operator, read it.
545   int Opc = CurTok;
546   getNextToken();
547   if (auto Operand = ParseUnary())
548     return llvm::make_unique<UnaryExprAST>(Opc, std::move(Operand));
549   return nullptr;
550 }
551 
552 /// binoprhs
553 ///   ::= ('+' unary)*
ParseBinOpRHS(int ExprPrec,std::unique_ptr<ExprAST> LHS)554 static std::unique_ptr<ExprAST> ParseBinOpRHS(int ExprPrec,
555                                               std::unique_ptr<ExprAST> LHS) {
556   // If this is a binop, find its precedence.
557   while (true) {
558     int TokPrec = GetTokPrecedence();
559 
560     // If this is a binop that binds at least as tightly as the current binop,
561     // consume it, otherwise we are done.
562     if (TokPrec < ExprPrec)
563       return LHS;
564 
565     // Okay, we know this is a binop.
566     int BinOp = CurTok;
567     getNextToken(); // eat binop
568 
569     // Parse the unary expression after the binary operator.
570     auto RHS = ParseUnary();
571     if (!RHS)
572       return nullptr;
573 
574     // If BinOp binds less tightly with RHS than the operator after RHS, let
575     // the pending operator take RHS as its LHS.
576     int NextPrec = GetTokPrecedence();
577     if (TokPrec < NextPrec) {
578       RHS = ParseBinOpRHS(TokPrec + 1, std::move(RHS));
579       if (!RHS)
580         return nullptr;
581     }
582 
583     // Merge LHS/RHS.
584     LHS =
585         llvm::make_unique<BinaryExprAST>(BinOp, std::move(LHS), std::move(RHS));
586   }
587 }
588 
589 /// expression
590 ///   ::= unary binoprhs
591 ///
ParseExpression()592 static std::unique_ptr<ExprAST> ParseExpression() {
593   auto LHS = ParseUnary();
594   if (!LHS)
595     return nullptr;
596 
597   return ParseBinOpRHS(0, std::move(LHS));
598 }
599 
600 /// prototype
601 ///   ::= id '(' id* ')'
602 ///   ::= binary LETTER number? (id, id)
603 ///   ::= unary LETTER (id)
ParsePrototype()604 static std::unique_ptr<PrototypeAST> ParsePrototype() {
605   std::string FnName;
606 
607   unsigned Kind = 0; // 0 = identifier, 1 = unary, 2 = binary.
608   unsigned BinaryPrecedence = 30;
609 
610   switch (CurTok) {
611   default:
612     return LogErrorP("Expected function name in prototype");
613   case tok_identifier:
614     FnName = IdentifierStr;
615     Kind = 0;
616     getNextToken();
617     break;
618   case tok_unary:
619     getNextToken();
620     if (!isascii(CurTok))
621       return LogErrorP("Expected unary operator");
622     FnName = "unary";
623     FnName += (char)CurTok;
624     Kind = 1;
625     getNextToken();
626     break;
627   case tok_binary:
628     getNextToken();
629     if (!isascii(CurTok))
630       return LogErrorP("Expected binary operator");
631     FnName = "binary";
632     FnName += (char)CurTok;
633     Kind = 2;
634     getNextToken();
635 
636     // Read the precedence if present.
637     if (CurTok == tok_number) {
638       if (NumVal < 1 || NumVal > 100)
639         return LogErrorP("Invalid precedecnce: must be 1..100");
640       BinaryPrecedence = (unsigned)NumVal;
641       getNextToken();
642     }
643     break;
644   }
645 
646   if (CurTok != '(')
647     return LogErrorP("Expected '(' in prototype");
648 
649   std::vector<std::string> ArgNames;
650   while (getNextToken() == tok_identifier)
651     ArgNames.push_back(IdentifierStr);
652   if (CurTok != ')')
653     return LogErrorP("Expected ')' in prototype");
654 
655   // success.
656   getNextToken(); // eat ')'.
657 
658   // Verify right number of names for operator.
659   if (Kind && ArgNames.size() != Kind)
660     return LogErrorP("Invalid number of operands for operator");
661 
662   return llvm::make_unique<PrototypeAST>(FnName, ArgNames, Kind != 0,
663                                          BinaryPrecedence);
664 }
665 
666 /// definition ::= 'def' prototype expression
ParseDefinition()667 static std::unique_ptr<FunctionAST> ParseDefinition() {
668   getNextToken(); // eat def.
669   auto Proto = ParsePrototype();
670   if (!Proto)
671     return nullptr;
672 
673   if (auto E = ParseExpression())
674     return llvm::make_unique<FunctionAST>(std::move(Proto), std::move(E));
675   return nullptr;
676 }
677 
678 /// toplevelexpr ::= expression
ParseTopLevelExpr()679 static std::unique_ptr<FunctionAST> ParseTopLevelExpr() {
680   if (auto E = ParseExpression()) {
681     // Make an anonymous proto.
682     auto Proto = llvm::make_unique<PrototypeAST>("__anon_expr",
683                                                  std::vector<std::string>());
684     return llvm::make_unique<FunctionAST>(std::move(Proto), std::move(E));
685   }
686   return nullptr;
687 }
688 
689 /// external ::= 'extern' prototype
ParseExtern()690 static std::unique_ptr<PrototypeAST> ParseExtern() {
691   getNextToken(); // eat extern.
692   return ParsePrototype();
693 }
694 
695 //===----------------------------------------------------------------------===//
696 // Code Generation
697 //===----------------------------------------------------------------------===//
698 
699 static LLVMContext TheContext;
700 static IRBuilder<> Builder(TheContext);
701 static std::unique_ptr<Module> TheModule;
702 static std::map<std::string, AllocaInst *> NamedValues;
703 static std::unique_ptr<KaleidoscopeJIT> TheJIT;
704 static std::map<std::string, std::unique_ptr<PrototypeAST>> FunctionProtos;
705 
LogErrorV(const char * Str)706 Value *LogErrorV(const char *Str) {
707   LogError(Str);
708   return nullptr;
709 }
710 
getFunction(std::string Name)711 Function *getFunction(std::string Name) {
712   // First, see if the function has already been added to the current module.
713   if (auto *F = TheModule->getFunction(Name))
714     return F;
715 
716   // If not, check whether we can codegen the declaration from some existing
717   // prototype.
718   auto FI = FunctionProtos.find(Name);
719   if (FI != FunctionProtos.end())
720     return FI->second->codegen();
721 
722   // If no existing prototype exists, return null.
723   return nullptr;
724 }
725 
726 /// CreateEntryBlockAlloca - Create an alloca instruction in the entry block of
727 /// the function.  This is used for mutable variables etc.
CreateEntryBlockAlloca(Function * TheFunction,const std::string & VarName)728 static AllocaInst *CreateEntryBlockAlloca(Function *TheFunction,
729                                           const std::string &VarName) {
730   IRBuilder<> TmpB(&TheFunction->getEntryBlock(),
731                    TheFunction->getEntryBlock().begin());
732   return TmpB.CreateAlloca(Type::getDoubleTy(TheContext), nullptr, VarName);
733 }
734 
codegen()735 Value *NumberExprAST::codegen() {
736   return ConstantFP::get(TheContext, APFloat(Val));
737 }
738 
codegen()739 Value *VariableExprAST::codegen() {
740   // Look this variable up in the function.
741   Value *V = NamedValues[Name];
742   if (!V)
743     return LogErrorV("Unknown variable name");
744 
745   // Load the value.
746   return Builder.CreateLoad(V, Name.c_str());
747 }
748 
codegen()749 Value *UnaryExprAST::codegen() {
750   Value *OperandV = Operand->codegen();
751   if (!OperandV)
752     return nullptr;
753 
754   Function *F = getFunction(std::string("unary") + Opcode);
755   if (!F)
756     return LogErrorV("Unknown unary operator");
757 
758   return Builder.CreateCall(F, OperandV, "unop");
759 }
760 
codegen()761 Value *BinaryExprAST::codegen() {
762   // Special case '=' because we don't want to emit the LHS as an expression.
763   if (Op == '=') {
764     // Assignment requires the LHS to be an identifier.
765     // This assume we're building without RTTI because LLVM builds that way by
766     // default.  If you build LLVM with RTTI this can be changed to a
767     // dynamic_cast for automatic error checking.
768     VariableExprAST *LHSE = static_cast<VariableExprAST *>(LHS.get());
769     if (!LHSE)
770       return LogErrorV("destination of '=' must be a variable");
771     // Codegen the RHS.
772     Value *Val = RHS->codegen();
773     if (!Val)
774       return nullptr;
775 
776     // Look up the name.
777     Value *Variable = NamedValues[LHSE->getName()];
778     if (!Variable)
779       return LogErrorV("Unknown variable name");
780 
781     Builder.CreateStore(Val, Variable);
782     return Val;
783   }
784 
785   Value *L = LHS->codegen();
786   Value *R = RHS->codegen();
787   if (!L || !R)
788     return nullptr;
789 
790   switch (Op) {
791   case '+':
792     return Builder.CreateFAdd(L, R, "addtmp");
793   case '-':
794     return Builder.CreateFSub(L, R, "subtmp");
795   case '*':
796     return Builder.CreateFMul(L, R, "multmp");
797   case '<':
798     L = Builder.CreateFCmpULT(L, R, "cmptmp");
799     // Convert bool 0/1 to double 0.0 or 1.0
800     return Builder.CreateUIToFP(L, Type::getDoubleTy(TheContext), "booltmp");
801   default:
802     break;
803   }
804 
805   // If it wasn't a builtin binary operator, it must be a user defined one. Emit
806   // a call to it.
807   Function *F = getFunction(std::string("binary") + Op);
808   assert(F && "binary operator not found!");
809 
810   Value *Ops[] = {L, R};
811   return Builder.CreateCall(F, Ops, "binop");
812 }
813 
codegen()814 Value *CallExprAST::codegen() {
815   // Look up the name in the global module table.
816   Function *CalleeF = getFunction(Callee);
817   if (!CalleeF)
818     return LogErrorV("Unknown function referenced");
819 
820   // If argument mismatch error.
821   if (CalleeF->arg_size() != Args.size())
822     return LogErrorV("Incorrect # arguments passed");
823 
824   std::vector<Value *> ArgsV;
825   for (unsigned i = 0, e = Args.size(); i != e; ++i) {
826     ArgsV.push_back(Args[i]->codegen());
827     if (!ArgsV.back())
828       return nullptr;
829   }
830 
831   return Builder.CreateCall(CalleeF, ArgsV, "calltmp");
832 }
833 
codegen()834 Value *IfExprAST::codegen() {
835   Value *CondV = Cond->codegen();
836   if (!CondV)
837     return nullptr;
838 
839   // Convert condition to a bool by comparing equal to 0.0.
840   CondV = Builder.CreateFCmpONE(
841       CondV, ConstantFP::get(TheContext, APFloat(0.0)), "ifcond");
842 
843   Function *TheFunction = Builder.GetInsertBlock()->getParent();
844 
845   // Create blocks for the then and else cases.  Insert the 'then' block at the
846   // end of the function.
847   BasicBlock *ThenBB = BasicBlock::Create(TheContext, "then", TheFunction);
848   BasicBlock *ElseBB = BasicBlock::Create(TheContext, "else");
849   BasicBlock *MergeBB = BasicBlock::Create(TheContext, "ifcont");
850 
851   Builder.CreateCondBr(CondV, ThenBB, ElseBB);
852 
853   // Emit then value.
854   Builder.SetInsertPoint(ThenBB);
855 
856   Value *ThenV = Then->codegen();
857   if (!ThenV)
858     return nullptr;
859 
860   Builder.CreateBr(MergeBB);
861   // Codegen of 'Then' can change the current block, update ThenBB for the PHI.
862   ThenBB = Builder.GetInsertBlock();
863 
864   // Emit else block.
865   TheFunction->getBasicBlockList().push_back(ElseBB);
866   Builder.SetInsertPoint(ElseBB);
867 
868   Value *ElseV = Else->codegen();
869   if (!ElseV)
870     return nullptr;
871 
872   Builder.CreateBr(MergeBB);
873   // Codegen of 'Else' can change the current block, update ElseBB for the PHI.
874   ElseBB = Builder.GetInsertBlock();
875 
876   // Emit merge block.
877   TheFunction->getBasicBlockList().push_back(MergeBB);
878   Builder.SetInsertPoint(MergeBB);
879   PHINode *PN = Builder.CreatePHI(Type::getDoubleTy(TheContext), 2, "iftmp");
880 
881   PN->addIncoming(ThenV, ThenBB);
882   PN->addIncoming(ElseV, ElseBB);
883   return PN;
884 }
885 
886 // Output for-loop as:
887 //   var = alloca double
888 //   ...
889 //   start = startexpr
890 //   store start -> var
891 //   goto loop
892 // loop:
893 //   ...
894 //   bodyexpr
895 //   ...
896 // loopend:
897 //   step = stepexpr
898 //   endcond = endexpr
899 //
900 //   curvar = load var
901 //   nextvar = curvar + step
902 //   store nextvar -> var
903 //   br endcond, loop, endloop
904 // outloop:
codegen()905 Value *ForExprAST::codegen() {
906   Function *TheFunction = Builder.GetInsertBlock()->getParent();
907 
908   // Create an alloca for the variable in the entry block.
909   AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, VarName);
910 
911   // Emit the start code first, without 'variable' in scope.
912   Value *StartVal = Start->codegen();
913   if (!StartVal)
914     return nullptr;
915 
916   // Store the value into the alloca.
917   Builder.CreateStore(StartVal, Alloca);
918 
919   // Make the new basic block for the loop header, inserting after current
920   // block.
921   BasicBlock *LoopBB = BasicBlock::Create(TheContext, "loop", TheFunction);
922 
923   // Insert an explicit fall through from the current block to the LoopBB.
924   Builder.CreateBr(LoopBB);
925 
926   // Start insertion in LoopBB.
927   Builder.SetInsertPoint(LoopBB);
928 
929   // Within the loop, the variable is defined equal to the PHI node.  If it
930   // shadows an existing variable, we have to restore it, so save it now.
931   AllocaInst *OldVal = NamedValues[VarName];
932   NamedValues[VarName] = Alloca;
933 
934   // Emit the body of the loop.  This, like any other expr, can change the
935   // current BB.  Note that we ignore the value computed by the body, but don't
936   // allow an error.
937   if (!Body->codegen())
938     return nullptr;
939 
940   // Emit the step value.
941   Value *StepVal = nullptr;
942   if (Step) {
943     StepVal = Step->codegen();
944     if (!StepVal)
945       return nullptr;
946   } else {
947     // If not specified, use 1.0.
948     StepVal = ConstantFP::get(TheContext, APFloat(1.0));
949   }
950 
951   // Compute the end condition.
952   Value *EndCond = End->codegen();
953   if (!EndCond)
954     return nullptr;
955 
956   // Reload, increment, and restore the alloca.  This handles the case where
957   // the body of the loop mutates the variable.
958   Value *CurVar = Builder.CreateLoad(Alloca, VarName.c_str());
959   Value *NextVar = Builder.CreateFAdd(CurVar, StepVal, "nextvar");
960   Builder.CreateStore(NextVar, Alloca);
961 
962   // Convert condition to a bool by comparing equal to 0.0.
963   EndCond = Builder.CreateFCmpONE(
964       EndCond, ConstantFP::get(TheContext, APFloat(0.0)), "loopcond");
965 
966   // Create the "after loop" block and insert it.
967   BasicBlock *AfterBB =
968       BasicBlock::Create(TheContext, "afterloop", TheFunction);
969 
970   // Insert the conditional branch into the end of LoopEndBB.
971   Builder.CreateCondBr(EndCond, LoopBB, AfterBB);
972 
973   // Any new code will be inserted in AfterBB.
974   Builder.SetInsertPoint(AfterBB);
975 
976   // Restore the unshadowed variable.
977   if (OldVal)
978     NamedValues[VarName] = OldVal;
979   else
980     NamedValues.erase(VarName);
981 
982   // for expr always returns 0.0.
983   return Constant::getNullValue(Type::getDoubleTy(TheContext));
984 }
985 
codegen()986 Value *VarExprAST::codegen() {
987   std::vector<AllocaInst *> OldBindings;
988 
989   Function *TheFunction = Builder.GetInsertBlock()->getParent();
990 
991   // Register all variables and emit their initializer.
992   for (unsigned i = 0, e = VarNames.size(); i != e; ++i) {
993     const std::string &VarName = VarNames[i].first;
994     ExprAST *Init = VarNames[i].second.get();
995 
996     // Emit the initializer before adding the variable to scope, this prevents
997     // the initializer from referencing the variable itself, and permits stuff
998     // like this:
999     //  var a = 1 in
1000     //    var a = a in ...   # refers to outer 'a'.
1001     Value *InitVal;
1002     if (Init) {
1003       InitVal = Init->codegen();
1004       if (!InitVal)
1005         return nullptr;
1006     } else { // If not specified, use 0.0.
1007       InitVal = ConstantFP::get(TheContext, APFloat(0.0));
1008     }
1009 
1010     AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, VarName);
1011     Builder.CreateStore(InitVal, Alloca);
1012 
1013     // Remember the old variable binding so that we can restore the binding when
1014     // we unrecurse.
1015     OldBindings.push_back(NamedValues[VarName]);
1016 
1017     // Remember this binding.
1018     NamedValues[VarName] = Alloca;
1019   }
1020 
1021   // Codegen the body, now that all vars are in scope.
1022   Value *BodyVal = Body->codegen();
1023   if (!BodyVal)
1024     return nullptr;
1025 
1026   // Pop all our variables from scope.
1027   for (unsigned i = 0, e = VarNames.size(); i != e; ++i)
1028     NamedValues[VarNames[i].first] = OldBindings[i];
1029 
1030   // Return the body computation.
1031   return BodyVal;
1032 }
1033 
codegen()1034 Function *PrototypeAST::codegen() {
1035   // Make the function type:  double(double,double) etc.
1036   std::vector<Type *> Doubles(Args.size(), Type::getDoubleTy(TheContext));
1037   FunctionType *FT =
1038       FunctionType::get(Type::getDoubleTy(TheContext), Doubles, false);
1039 
1040   Function *F =
1041       Function::Create(FT, Function::ExternalLinkage, Name, TheModule.get());
1042 
1043   // Set names for all arguments.
1044   unsigned Idx = 0;
1045   for (auto &Arg : F->args())
1046     Arg.setName(Args[Idx++]);
1047 
1048   return F;
1049 }
1050 
codegen()1051 Function *FunctionAST::codegen() {
1052   // Transfer ownership of the prototype to the FunctionProtos map, but keep a
1053   // reference to it for use below.
1054   auto &P = *Proto;
1055   FunctionProtos[Proto->getName()] = std::move(Proto);
1056   Function *TheFunction = getFunction(P.getName());
1057   if (!TheFunction)
1058     return nullptr;
1059 
1060   // If this is an operator, install it.
1061   if (P.isBinaryOp())
1062     BinopPrecedence[P.getOperatorName()] = P.getBinaryPrecedence();
1063 
1064   // Create a new basic block to start insertion into.
1065   BasicBlock *BB = BasicBlock::Create(TheContext, "entry", TheFunction);
1066   Builder.SetInsertPoint(BB);
1067 
1068   // Record the function arguments in the NamedValues map.
1069   NamedValues.clear();
1070   for (auto &Arg : TheFunction->args()) {
1071     // Create an alloca for this variable.
1072     AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, Arg.getName());
1073 
1074     // Store the initial value into the alloca.
1075     Builder.CreateStore(&Arg, Alloca);
1076 
1077     // Add arguments to variable symbol table.
1078     NamedValues[Arg.getName()] = Alloca;
1079   }
1080 
1081   if (Value *RetVal = Body->codegen()) {
1082     // Finish off the function.
1083     Builder.CreateRet(RetVal);
1084 
1085     // Validate the generated code, checking for consistency.
1086     verifyFunction(*TheFunction);
1087 
1088     return TheFunction;
1089   }
1090 
1091   // Error reading body, remove function.
1092   TheFunction->eraseFromParent();
1093 
1094   if (P.isBinaryOp())
1095     BinopPrecedence.erase(P.getOperatorName());
1096   return nullptr;
1097 }
1098 
1099 //===----------------------------------------------------------------------===//
1100 // Top-Level parsing and JIT Driver
1101 //===----------------------------------------------------------------------===//
1102 
InitializeModule()1103 static void InitializeModule() {
1104   // Open a new module.
1105   TheModule = llvm::make_unique<Module>("my cool jit", TheContext);
1106   TheModule->setDataLayout(TheJIT->getTargetMachine().createDataLayout());
1107 }
1108 
HandleDefinition()1109 static void HandleDefinition() {
1110   if (auto FnAST = ParseDefinition()) {
1111     if (auto *FnIR = FnAST->codegen()) {
1112       fprintf(stderr, "Read function definition:");
1113       FnIR->print(errs());
1114       fprintf(stderr, "\n");
1115       TheJIT->addModule(std::move(TheModule));
1116       InitializeModule();
1117     }
1118   } else {
1119     // Skip token for error recovery.
1120     getNextToken();
1121   }
1122 }
1123 
HandleExtern()1124 static void HandleExtern() {
1125   if (auto ProtoAST = ParseExtern()) {
1126     if (auto *FnIR = ProtoAST->codegen()) {
1127       fprintf(stderr, "Read extern: ");
1128       FnIR->print(errs());
1129       fprintf(stderr, "\n");
1130       FunctionProtos[ProtoAST->getName()] = std::move(ProtoAST);
1131     }
1132   } else {
1133     // Skip token for error recovery.
1134     getNextToken();
1135   }
1136 }
1137 
HandleTopLevelExpression()1138 static void HandleTopLevelExpression() {
1139   // Evaluate a top-level expression into an anonymous function.
1140   if (auto FnAST = ParseTopLevelExpr()) {
1141     if (FnAST->codegen()) {
1142       // JIT the module containing the anonymous expression, keeping a handle so
1143       // we can free it later.
1144       auto H = TheJIT->addModule(std::move(TheModule));
1145       InitializeModule();
1146 
1147       // Search the JIT for the __anon_expr symbol.
1148       auto ExprSymbol = TheJIT->findSymbol("__anon_expr");
1149       assert(ExprSymbol && "Function not found");
1150 
1151       // Get the symbol's address and cast it to the right type (takes no
1152       // arguments, returns a double) so we can call it as a native function.
1153       double (*FP)() = (double (*)())(intptr_t)cantFail(ExprSymbol.getAddress());
1154       fprintf(stderr, "Evaluated to %f\n", FP());
1155 
1156       // Delete the anonymous expression module from the JIT.
1157       TheJIT->removeModule(H);
1158     }
1159   } else {
1160     // Skip token for error recovery.
1161     getNextToken();
1162   }
1163 }
1164 
1165 /// top ::= definition | external | expression | ';'
MainLoop()1166 static void MainLoop() {
1167   while (true) {
1168     fprintf(stderr, "ready> ");
1169     switch (CurTok) {
1170     case tok_eof:
1171       return;
1172     case ';': // ignore top-level semicolons.
1173       getNextToken();
1174       break;
1175     case tok_def:
1176       HandleDefinition();
1177       break;
1178     case tok_extern:
1179       HandleExtern();
1180       break;
1181     default:
1182       HandleTopLevelExpression();
1183       break;
1184     }
1185   }
1186 }
1187 
1188 //===----------------------------------------------------------------------===//
1189 // "Library" functions that can be "extern'd" from user code.
1190 //===----------------------------------------------------------------------===//
1191 
1192 /// putchard - putchar that takes a double and returns 0.
putchard(double X)1193 extern "C" double putchard(double X) {
1194   fputc((char)X, stderr);
1195   return 0;
1196 }
1197 
1198 /// printd - printf that takes a double prints it as "%f\n", returning 0.
printd(double X)1199 extern "C" double printd(double X) {
1200   fprintf(stderr, "%f\n", X);
1201   return 0;
1202 }
1203 
1204 //===----------------------------------------------------------------------===//
1205 // Main driver code.
1206 //===----------------------------------------------------------------------===//
1207 
main()1208 int main() {
1209   InitializeNativeTarget();
1210   InitializeNativeTargetAsmPrinter();
1211   InitializeNativeTargetAsmParser();
1212 
1213   // Install standard binary operators.
1214   // 1 is lowest precedence.
1215   BinopPrecedence['='] = 2;
1216   BinopPrecedence['<'] = 10;
1217   BinopPrecedence['+'] = 20;
1218   BinopPrecedence['-'] = 20;
1219   BinopPrecedence['*'] = 40; // highest.
1220 
1221   // Prime the first token.
1222   fprintf(stderr, "ready> ");
1223   getNextToken();
1224 
1225   TheJIT = llvm::make_unique<KaleidoscopeJIT>();
1226 
1227   InitializeModule();
1228 
1229   // Run the main "interpreter loop" now.
1230   MainLoop();
1231 
1232   return 0;
1233 }
1234