1 #include "../include/KaleidoscopeJIT.h"
2 #include "llvm/ADT/APFloat.h"
3 #include "llvm/ADT/STLExtras.h"
4 #include "llvm/IR/BasicBlock.h"
5 #include "llvm/IR/Constants.h"
6 #include "llvm/IR/DerivedTypes.h"
7 #include "llvm/IR/Function.h"
8 #include "llvm/IR/IRBuilder.h"
9 #include "llvm/IR/Instructions.h"
10 #include "llvm/IR/LLVMContext.h"
11 #include "llvm/IR/LegacyPassManager.h"
12 #include "llvm/IR/Module.h"
13 #include "llvm/IR/Type.h"
14 #include "llvm/IR/Verifier.h"
15 #include "llvm/Support/TargetSelect.h"
16 #include "llvm/Target/TargetMachine.h"
17 #include "llvm/Transforms/InstCombine/InstCombine.h"
18 #include "llvm/Transforms/Scalar.h"
19 #include "llvm/Transforms/Scalar/GVN.h"
20 #include "llvm/Transforms/Utils.h"
21 #include <algorithm>
22 #include <cassert>
23 #include <cctype>
24 #include <cstdint>
25 #include <cstdio>
26 #include <cstdlib>
27 #include <map>
28 #include <memory>
29 #include <string>
30 #include <utility>
31 #include <vector>
32 
33 using namespace llvm;
34 using namespace llvm::orc;
35 
36 //===----------------------------------------------------------------------===//
37 // Lexer
38 //===----------------------------------------------------------------------===//
39 
40 // The lexer returns tokens [0-255] if it is an unknown character, otherwise one
41 // of these for known things.
42 enum Token {
43   tok_eof = -1,
44 
45   // commands
46   tok_def = -2,
47   tok_extern = -3,
48 
49   // primary
50   tok_identifier = -4,
51   tok_number = -5,
52 
53   // control
54   tok_if = -6,
55   tok_then = -7,
56   tok_else = -8,
57   tok_for = -9,
58   tok_in = -10,
59 
60   // operators
61   tok_binary = -11,
62   tok_unary = -12,
63 
64   // var definition
65   tok_var = -13
66 };
67 
68 static std::string IdentifierStr; // Filled in if tok_identifier
69 static double NumVal;             // Filled in if tok_number
70 
71 /// gettok - Return the next token from standard input.
gettok()72 static int gettok() {
73   static int LastChar = ' ';
74 
75   // Skip any whitespace.
76   while (isspace(LastChar))
77     LastChar = getchar();
78 
79   if (isalpha(LastChar)) { // identifier: [a-zA-Z][a-zA-Z0-9]*
80     IdentifierStr = LastChar;
81     while (isalnum((LastChar = getchar())))
82       IdentifierStr += LastChar;
83 
84     if (IdentifierStr == "def")
85       return tok_def;
86     if (IdentifierStr == "extern")
87       return tok_extern;
88     if (IdentifierStr == "if")
89       return tok_if;
90     if (IdentifierStr == "then")
91       return tok_then;
92     if (IdentifierStr == "else")
93       return tok_else;
94     if (IdentifierStr == "for")
95       return tok_for;
96     if (IdentifierStr == "in")
97       return tok_in;
98     if (IdentifierStr == "binary")
99       return tok_binary;
100     if (IdentifierStr == "unary")
101       return tok_unary;
102     if (IdentifierStr == "var")
103       return tok_var;
104     return tok_identifier;
105   }
106 
107   if (isdigit(LastChar) || LastChar == '.') { // Number: [0-9.]+
108     std::string NumStr;
109     do {
110       NumStr += LastChar;
111       LastChar = getchar();
112     } while (isdigit(LastChar) || LastChar == '.');
113 
114     NumVal = strtod(NumStr.c_str(), nullptr);
115     return tok_number;
116   }
117 
118   if (LastChar == '#') {
119     // Comment until end of line.
120     do
121       LastChar = getchar();
122     while (LastChar != EOF && LastChar != '\n' && LastChar != '\r');
123 
124     if (LastChar != EOF)
125       return gettok();
126   }
127 
128   // Check for end of file.  Don't eat the EOF.
129   if (LastChar == EOF)
130     return tok_eof;
131 
132   // Otherwise, just return the character as its ascii value.
133   int ThisChar = LastChar;
134   LastChar = getchar();
135   return ThisChar;
136 }
137 
138 //===----------------------------------------------------------------------===//
139 // Abstract Syntax Tree (aka Parse Tree)
140 //===----------------------------------------------------------------------===//
141 
142 namespace {
143 
144 /// ExprAST - Base class for all expression nodes.
145 class ExprAST {
146 public:
147   virtual ~ExprAST() = default;
148 
149   virtual Value *codegen() = 0;
150 };
151 
152 /// NumberExprAST - Expression class for numeric literals like "1.0".
153 class NumberExprAST : public ExprAST {
154   double Val;
155 
156 public:
NumberExprAST(double Val)157   NumberExprAST(double Val) : Val(Val) {}
158 
159   Value *codegen() override;
160 };
161 
162 /// VariableExprAST - Expression class for referencing a variable, like "a".
163 class VariableExprAST : public ExprAST {
164   std::string Name;
165 
166 public:
VariableExprAST(const std::string & Name)167   VariableExprAST(const std::string &Name) : Name(Name) {}
168 
169   Value *codegen() override;
getName() const170   const std::string &getName() const { return Name; }
171 };
172 
173 /// UnaryExprAST - Expression class for a unary operator.
174 class UnaryExprAST : public ExprAST {
175   char Opcode;
176   std::unique_ptr<ExprAST> Operand;
177 
178 public:
UnaryExprAST(char Opcode,std::unique_ptr<ExprAST> Operand)179   UnaryExprAST(char Opcode, std::unique_ptr<ExprAST> Operand)
180       : Opcode(Opcode), Operand(std::move(Operand)) {}
181 
182   Value *codegen() override;
183 };
184 
185 /// BinaryExprAST - Expression class for a binary operator.
186 class BinaryExprAST : public ExprAST {
187   char Op;
188   std::unique_ptr<ExprAST> LHS, RHS;
189 
190 public:
BinaryExprAST(char Op,std::unique_ptr<ExprAST> LHS,std::unique_ptr<ExprAST> RHS)191   BinaryExprAST(char Op, std::unique_ptr<ExprAST> LHS,
192                 std::unique_ptr<ExprAST> RHS)
193       : Op(Op), LHS(std::move(LHS)), RHS(std::move(RHS)) {}
194 
195   Value *codegen() override;
196 };
197 
198 /// CallExprAST - Expression class for function calls.
199 class CallExprAST : public ExprAST {
200   std::string Callee;
201   std::vector<std::unique_ptr<ExprAST>> Args;
202 
203 public:
CallExprAST(const std::string & Callee,std::vector<std::unique_ptr<ExprAST>> Args)204   CallExprAST(const std::string &Callee,
205               std::vector<std::unique_ptr<ExprAST>> Args)
206       : Callee(Callee), Args(std::move(Args)) {}
207 
208   Value *codegen() override;
209 };
210 
211 /// IfExprAST - Expression class for if/then/else.
212 class IfExprAST : public ExprAST {
213   std::unique_ptr<ExprAST> Cond, Then, Else;
214 
215 public:
IfExprAST(std::unique_ptr<ExprAST> Cond,std::unique_ptr<ExprAST> Then,std::unique_ptr<ExprAST> Else)216   IfExprAST(std::unique_ptr<ExprAST> Cond, std::unique_ptr<ExprAST> Then,
217             std::unique_ptr<ExprAST> Else)
218       : Cond(std::move(Cond)), Then(std::move(Then)), Else(std::move(Else)) {}
219 
220   Value *codegen() override;
221 };
222 
223 /// ForExprAST - Expression class for for/in.
224 class ForExprAST : public ExprAST {
225   std::string VarName;
226   std::unique_ptr<ExprAST> Start, End, Step, Body;
227 
228 public:
ForExprAST(const std::string & VarName,std::unique_ptr<ExprAST> Start,std::unique_ptr<ExprAST> End,std::unique_ptr<ExprAST> Step,std::unique_ptr<ExprAST> Body)229   ForExprAST(const std::string &VarName, std::unique_ptr<ExprAST> Start,
230              std::unique_ptr<ExprAST> End, std::unique_ptr<ExprAST> Step,
231              std::unique_ptr<ExprAST> Body)
232       : VarName(VarName), Start(std::move(Start)), End(std::move(End)),
233         Step(std::move(Step)), Body(std::move(Body)) {}
234 
235   Value *codegen() override;
236 };
237 
238 /// VarExprAST - Expression class for var/in
239 class VarExprAST : public ExprAST {
240   std::vector<std::pair<std::string, std::unique_ptr<ExprAST>>> VarNames;
241   std::unique_ptr<ExprAST> Body;
242 
243 public:
VarExprAST(std::vector<std::pair<std::string,std::unique_ptr<ExprAST>>> VarNames,std::unique_ptr<ExprAST> Body)244   VarExprAST(
245       std::vector<std::pair<std::string, std::unique_ptr<ExprAST>>> VarNames,
246       std::unique_ptr<ExprAST> Body)
247       : VarNames(std::move(VarNames)), Body(std::move(Body)) {}
248 
249   Value *codegen() override;
250 };
251 
252 /// PrototypeAST - This class represents the "prototype" for a function,
253 /// which captures its name, and its argument names (thus implicitly the number
254 /// of arguments the function takes), as well as if it is an operator.
255 class PrototypeAST {
256   std::string Name;
257   std::vector<std::string> Args;
258   bool IsOperator;
259   unsigned Precedence; // Precedence if a binary op.
260 
261 public:
PrototypeAST(const std::string & Name,std::vector<std::string> Args,bool IsOperator=false,unsigned Prec=0)262   PrototypeAST(const std::string &Name, std::vector<std::string> Args,
263                bool IsOperator = false, unsigned Prec = 0)
264       : Name(Name), Args(std::move(Args)), IsOperator(IsOperator),
265         Precedence(Prec) {}
266 
267   Function *codegen();
getName() const268   const std::string &getName() const { return Name; }
269 
isUnaryOp() const270   bool isUnaryOp() const { return IsOperator && Args.size() == 1; }
isBinaryOp() const271   bool isBinaryOp() const { return IsOperator && Args.size() == 2; }
272 
getOperatorName() const273   char getOperatorName() const {
274     assert(isUnaryOp() || isBinaryOp());
275     return Name[Name.size() - 1];
276   }
277 
getBinaryPrecedence() const278   unsigned getBinaryPrecedence() const { return Precedence; }
279 };
280 
281 /// FunctionAST - This class represents a function definition itself.
282 class FunctionAST {
283   std::unique_ptr<PrototypeAST> Proto;
284   std::unique_ptr<ExprAST> Body;
285 
286 public:
FunctionAST(std::unique_ptr<PrototypeAST> Proto,std::unique_ptr<ExprAST> Body)287   FunctionAST(std::unique_ptr<PrototypeAST> Proto,
288               std::unique_ptr<ExprAST> Body)
289       : Proto(std::move(Proto)), Body(std::move(Body)) {}
290 
291   Function *codegen();
292 };
293 
294 } // end anonymous namespace
295 
296 //===----------------------------------------------------------------------===//
297 // Parser
298 //===----------------------------------------------------------------------===//
299 
300 /// CurTok/getNextToken - Provide a simple token buffer.  CurTok is the current
301 /// token the parser is looking at.  getNextToken reads another token from the
302 /// lexer and updates CurTok with its results.
303 static int CurTok;
getNextToken()304 static int getNextToken() { return CurTok = gettok(); }
305 
306 /// BinopPrecedence - This holds the precedence for each binary operator that is
307 /// defined.
308 static std::map<char, int> BinopPrecedence;
309 
310 /// GetTokPrecedence - Get the precedence of the pending binary operator token.
GetTokPrecedence()311 static int GetTokPrecedence() {
312   if (!isascii(CurTok))
313     return -1;
314 
315   // Make sure it's a declared binop.
316   int TokPrec = BinopPrecedence[CurTok];
317   if (TokPrec <= 0)
318     return -1;
319   return TokPrec;
320 }
321 
322 /// LogError* - These are little helper functions for error handling.
LogError(const char * Str)323 std::unique_ptr<ExprAST> LogError(const char *Str) {
324   fprintf(stderr, "Error: %s\n", Str);
325   return nullptr;
326 }
327 
LogErrorP(const char * Str)328 std::unique_ptr<PrototypeAST> LogErrorP(const char *Str) {
329   LogError(Str);
330   return nullptr;
331 }
332 
333 static std::unique_ptr<ExprAST> ParseExpression();
334 
335 /// numberexpr ::= number
ParseNumberExpr()336 static std::unique_ptr<ExprAST> ParseNumberExpr() {
337   auto Result = llvm::make_unique<NumberExprAST>(NumVal);
338   getNextToken(); // consume the number
339   return std::move(Result);
340 }
341 
342 /// parenexpr ::= '(' expression ')'
ParseParenExpr()343 static std::unique_ptr<ExprAST> ParseParenExpr() {
344   getNextToken(); // eat (.
345   auto V = ParseExpression();
346   if (!V)
347     return nullptr;
348 
349   if (CurTok != ')')
350     return LogError("expected ')'");
351   getNextToken(); // eat ).
352   return V;
353 }
354 
355 /// identifierexpr
356 ///   ::= identifier
357 ///   ::= identifier '(' expression* ')'
ParseIdentifierExpr()358 static std::unique_ptr<ExprAST> ParseIdentifierExpr() {
359   std::string IdName = IdentifierStr;
360 
361   getNextToken(); // eat identifier.
362 
363   if (CurTok != '(') // Simple variable ref.
364     return llvm::make_unique<VariableExprAST>(IdName);
365 
366   // Call.
367   getNextToken(); // eat (
368   std::vector<std::unique_ptr<ExprAST>> Args;
369   if (CurTok != ')') {
370     while (true) {
371       if (auto Arg = ParseExpression())
372         Args.push_back(std::move(Arg));
373       else
374         return nullptr;
375 
376       if (CurTok == ')')
377         break;
378 
379       if (CurTok != ',')
380         return LogError("Expected ')' or ',' in argument list");
381       getNextToken();
382     }
383   }
384 
385   // Eat the ')'.
386   getNextToken();
387 
388   return llvm::make_unique<CallExprAST>(IdName, std::move(Args));
389 }
390 
391 /// ifexpr ::= 'if' expression 'then' expression 'else' expression
ParseIfExpr()392 static std::unique_ptr<ExprAST> ParseIfExpr() {
393   getNextToken(); // eat the if.
394 
395   // condition.
396   auto Cond = ParseExpression();
397   if (!Cond)
398     return nullptr;
399 
400   if (CurTok != tok_then)
401     return LogError("expected then");
402   getNextToken(); // eat the then
403 
404   auto Then = ParseExpression();
405   if (!Then)
406     return nullptr;
407 
408   if (CurTok != tok_else)
409     return LogError("expected else");
410 
411   getNextToken();
412 
413   auto Else = ParseExpression();
414   if (!Else)
415     return nullptr;
416 
417   return llvm::make_unique<IfExprAST>(std::move(Cond), std::move(Then),
418                                       std::move(Else));
419 }
420 
421 /// forexpr ::= 'for' identifier '=' expr ',' expr (',' expr)? 'in' expression
ParseForExpr()422 static std::unique_ptr<ExprAST> ParseForExpr() {
423   getNextToken(); // eat the for.
424 
425   if (CurTok != tok_identifier)
426     return LogError("expected identifier after for");
427 
428   std::string IdName = IdentifierStr;
429   getNextToken(); // eat identifier.
430 
431   if (CurTok != '=')
432     return LogError("expected '=' after for");
433   getNextToken(); // eat '='.
434 
435   auto Start = ParseExpression();
436   if (!Start)
437     return nullptr;
438   if (CurTok != ',')
439     return LogError("expected ',' after for start value");
440   getNextToken();
441 
442   auto End = ParseExpression();
443   if (!End)
444     return nullptr;
445 
446   // The step value is optional.
447   std::unique_ptr<ExprAST> Step;
448   if (CurTok == ',') {
449     getNextToken();
450     Step = ParseExpression();
451     if (!Step)
452       return nullptr;
453   }
454 
455   if (CurTok != tok_in)
456     return LogError("expected 'in' after for");
457   getNextToken(); // eat 'in'.
458 
459   auto Body = ParseExpression();
460   if (!Body)
461     return nullptr;
462 
463   return llvm::make_unique<ForExprAST>(IdName, std::move(Start), std::move(End),
464                                        std::move(Step), std::move(Body));
465 }
466 
467 /// varexpr ::= 'var' identifier ('=' expression)?
468 //                    (',' identifier ('=' expression)?)* 'in' expression
ParseVarExpr()469 static std::unique_ptr<ExprAST> ParseVarExpr() {
470   getNextToken(); // eat the var.
471 
472   std::vector<std::pair<std::string, std::unique_ptr<ExprAST>>> VarNames;
473 
474   // At least one variable name is required.
475   if (CurTok != tok_identifier)
476     return LogError("expected identifier after var");
477 
478   while (true) {
479     std::string Name = IdentifierStr;
480     getNextToken(); // eat identifier.
481 
482     // Read the optional initializer.
483     std::unique_ptr<ExprAST> Init = nullptr;
484     if (CurTok == '=') {
485       getNextToken(); // eat the '='.
486 
487       Init = ParseExpression();
488       if (!Init)
489         return nullptr;
490     }
491 
492     VarNames.push_back(std::make_pair(Name, std::move(Init)));
493 
494     // End of var list, exit loop.
495     if (CurTok != ',')
496       break;
497     getNextToken(); // eat the ','.
498 
499     if (CurTok != tok_identifier)
500       return LogError("expected identifier list after var");
501   }
502 
503   // At this point, we have to have 'in'.
504   if (CurTok != tok_in)
505     return LogError("expected 'in' keyword after 'var'");
506   getNextToken(); // eat 'in'.
507 
508   auto Body = ParseExpression();
509   if (!Body)
510     return nullptr;
511 
512   return llvm::make_unique<VarExprAST>(std::move(VarNames), std::move(Body));
513 }
514 
515 /// primary
516 ///   ::= identifierexpr
517 ///   ::= numberexpr
518 ///   ::= parenexpr
519 ///   ::= ifexpr
520 ///   ::= forexpr
521 ///   ::= varexpr
ParsePrimary()522 static std::unique_ptr<ExprAST> ParsePrimary() {
523   switch (CurTok) {
524   default:
525     return LogError("unknown token when expecting an expression");
526   case tok_identifier:
527     return ParseIdentifierExpr();
528   case tok_number:
529     return ParseNumberExpr();
530   case '(':
531     return ParseParenExpr();
532   case tok_if:
533     return ParseIfExpr();
534   case tok_for:
535     return ParseForExpr();
536   case tok_var:
537     return ParseVarExpr();
538   }
539 }
540 
541 /// unary
542 ///   ::= primary
543 ///   ::= '!' unary
ParseUnary()544 static std::unique_ptr<ExprAST> ParseUnary() {
545   // If the current token is not an operator, it must be a primary expr.
546   if (!isascii(CurTok) || CurTok == '(' || CurTok == ',')
547     return ParsePrimary();
548 
549   // If this is a unary operator, read it.
550   int Opc = CurTok;
551   getNextToken();
552   if (auto Operand = ParseUnary())
553     return llvm::make_unique<UnaryExprAST>(Opc, std::move(Operand));
554   return nullptr;
555 }
556 
557 /// binoprhs
558 ///   ::= ('+' unary)*
ParseBinOpRHS(int ExprPrec,std::unique_ptr<ExprAST> LHS)559 static std::unique_ptr<ExprAST> ParseBinOpRHS(int ExprPrec,
560                                               std::unique_ptr<ExprAST> LHS) {
561   // If this is a binop, find its precedence.
562   while (true) {
563     int TokPrec = GetTokPrecedence();
564 
565     // If this is a binop that binds at least as tightly as the current binop,
566     // consume it, otherwise we are done.
567     if (TokPrec < ExprPrec)
568       return LHS;
569 
570     // Okay, we know this is a binop.
571     int BinOp = CurTok;
572     getNextToken(); // eat binop
573 
574     // Parse the unary expression after the binary operator.
575     auto RHS = ParseUnary();
576     if (!RHS)
577       return nullptr;
578 
579     // If BinOp binds less tightly with RHS than the operator after RHS, let
580     // the pending operator take RHS as its LHS.
581     int NextPrec = GetTokPrecedence();
582     if (TokPrec < NextPrec) {
583       RHS = ParseBinOpRHS(TokPrec + 1, std::move(RHS));
584       if (!RHS)
585         return nullptr;
586     }
587 
588     // Merge LHS/RHS.
589     LHS =
590         llvm::make_unique<BinaryExprAST>(BinOp, std::move(LHS), std::move(RHS));
591   }
592 }
593 
594 /// expression
595 ///   ::= unary binoprhs
596 ///
ParseExpression()597 static std::unique_ptr<ExprAST> ParseExpression() {
598   auto LHS = ParseUnary();
599   if (!LHS)
600     return nullptr;
601 
602   return ParseBinOpRHS(0, std::move(LHS));
603 }
604 
605 /// prototype
606 ///   ::= id '(' id* ')'
607 ///   ::= binary LETTER number? (id, id)
608 ///   ::= unary LETTER (id)
ParsePrototype()609 static std::unique_ptr<PrototypeAST> ParsePrototype() {
610   std::string FnName;
611 
612   unsigned Kind = 0; // 0 = identifier, 1 = unary, 2 = binary.
613   unsigned BinaryPrecedence = 30;
614 
615   switch (CurTok) {
616   default:
617     return LogErrorP("Expected function name in prototype");
618   case tok_identifier:
619     FnName = IdentifierStr;
620     Kind = 0;
621     getNextToken();
622     break;
623   case tok_unary:
624     getNextToken();
625     if (!isascii(CurTok))
626       return LogErrorP("Expected unary operator");
627     FnName = "unary";
628     FnName += (char)CurTok;
629     Kind = 1;
630     getNextToken();
631     break;
632   case tok_binary:
633     getNextToken();
634     if (!isascii(CurTok))
635       return LogErrorP("Expected binary operator");
636     FnName = "binary";
637     FnName += (char)CurTok;
638     Kind = 2;
639     getNextToken();
640 
641     // Read the precedence if present.
642     if (CurTok == tok_number) {
643       if (NumVal < 1 || NumVal > 100)
644         return LogErrorP("Invalid precedence: must be 1..100");
645       BinaryPrecedence = (unsigned)NumVal;
646       getNextToken();
647     }
648     break;
649   }
650 
651   if (CurTok != '(')
652     return LogErrorP("Expected '(' in prototype");
653 
654   std::vector<std::string> ArgNames;
655   while (getNextToken() == tok_identifier)
656     ArgNames.push_back(IdentifierStr);
657   if (CurTok != ')')
658     return LogErrorP("Expected ')' in prototype");
659 
660   // success.
661   getNextToken(); // eat ')'.
662 
663   // Verify right number of names for operator.
664   if (Kind && ArgNames.size() != Kind)
665     return LogErrorP("Invalid number of operands for operator");
666 
667   return llvm::make_unique<PrototypeAST>(FnName, ArgNames, Kind != 0,
668                                          BinaryPrecedence);
669 }
670 
671 /// definition ::= 'def' prototype expression
ParseDefinition()672 static std::unique_ptr<FunctionAST> ParseDefinition() {
673   getNextToken(); // eat def.
674   auto Proto = ParsePrototype();
675   if (!Proto)
676     return nullptr;
677 
678   if (auto E = ParseExpression())
679     return llvm::make_unique<FunctionAST>(std::move(Proto), std::move(E));
680   return nullptr;
681 }
682 
683 /// toplevelexpr ::= expression
ParseTopLevelExpr()684 static std::unique_ptr<FunctionAST> ParseTopLevelExpr() {
685   if (auto E = ParseExpression()) {
686     // Make an anonymous proto.
687     auto Proto = llvm::make_unique<PrototypeAST>("__anon_expr",
688                                                  std::vector<std::string>());
689     return llvm::make_unique<FunctionAST>(std::move(Proto), std::move(E));
690   }
691   return nullptr;
692 }
693 
694 /// external ::= 'extern' prototype
ParseExtern()695 static std::unique_ptr<PrototypeAST> ParseExtern() {
696   getNextToken(); // eat extern.
697   return ParsePrototype();
698 }
699 
700 //===----------------------------------------------------------------------===//
701 // Code Generation
702 //===----------------------------------------------------------------------===//
703 
704 static LLVMContext TheContext;
705 static IRBuilder<> Builder(TheContext);
706 static std::unique_ptr<Module> TheModule;
707 static std::map<std::string, AllocaInst *> NamedValues;
708 static std::unique_ptr<legacy::FunctionPassManager> TheFPM;
709 static std::unique_ptr<KaleidoscopeJIT> TheJIT;
710 static std::map<std::string, std::unique_ptr<PrototypeAST>> FunctionProtos;
711 
LogErrorV(const char * Str)712 Value *LogErrorV(const char *Str) {
713   LogError(Str);
714   return nullptr;
715 }
716 
getFunction(std::string Name)717 Function *getFunction(std::string Name) {
718   // First, see if the function has already been added to the current module.
719   if (auto *F = TheModule->getFunction(Name))
720     return F;
721 
722   // If not, check whether we can codegen the declaration from some existing
723   // prototype.
724   auto FI = FunctionProtos.find(Name);
725   if (FI != FunctionProtos.end())
726     return FI->second->codegen();
727 
728   // If no existing prototype exists, return null.
729   return nullptr;
730 }
731 
732 /// CreateEntryBlockAlloca - Create an alloca instruction in the entry block of
733 /// the function.  This is used for mutable variables etc.
CreateEntryBlockAlloca(Function * TheFunction,const std::string & VarName)734 static AllocaInst *CreateEntryBlockAlloca(Function *TheFunction,
735                                           const std::string &VarName) {
736   IRBuilder<> TmpB(&TheFunction->getEntryBlock(),
737                    TheFunction->getEntryBlock().begin());
738   return TmpB.CreateAlloca(Type::getDoubleTy(TheContext), nullptr, VarName);
739 }
740 
codegen()741 Value *NumberExprAST::codegen() {
742   return ConstantFP::get(TheContext, APFloat(Val));
743 }
744 
codegen()745 Value *VariableExprAST::codegen() {
746   // Look this variable up in the function.
747   Value *V = NamedValues[Name];
748   if (!V)
749     return LogErrorV("Unknown variable name");
750 
751   // Load the value.
752   return Builder.CreateLoad(V, Name.c_str());
753 }
754 
codegen()755 Value *UnaryExprAST::codegen() {
756   Value *OperandV = Operand->codegen();
757   if (!OperandV)
758     return nullptr;
759 
760   Function *F = getFunction(std::string("unary") + Opcode);
761   if (!F)
762     return LogErrorV("Unknown unary operator");
763 
764   return Builder.CreateCall(F, OperandV, "unop");
765 }
766 
codegen()767 Value *BinaryExprAST::codegen() {
768   // Special case '=' because we don't want to emit the LHS as an expression.
769   if (Op == '=') {
770     // Assignment requires the LHS to be an identifier.
771     // This assume we're building without RTTI because LLVM builds that way by
772     // default.  If you build LLVM with RTTI this can be changed to a
773     // dynamic_cast for automatic error checking.
774     VariableExprAST *LHSE = static_cast<VariableExprAST *>(LHS.get());
775     if (!LHSE)
776       return LogErrorV("destination of '=' must be a variable");
777     // Codegen the RHS.
778     Value *Val = RHS->codegen();
779     if (!Val)
780       return nullptr;
781 
782     // Look up the name.
783     Value *Variable = NamedValues[LHSE->getName()];
784     if (!Variable)
785       return LogErrorV("Unknown variable name");
786 
787     Builder.CreateStore(Val, Variable);
788     return Val;
789   }
790 
791   Value *L = LHS->codegen();
792   Value *R = RHS->codegen();
793   if (!L || !R)
794     return nullptr;
795 
796   switch (Op) {
797   case '+':
798     return Builder.CreateFAdd(L, R, "addtmp");
799   case '-':
800     return Builder.CreateFSub(L, R, "subtmp");
801   case '*':
802     return Builder.CreateFMul(L, R, "multmp");
803   case '<':
804     L = Builder.CreateFCmpULT(L, R, "cmptmp");
805     // Convert bool 0/1 to double 0.0 or 1.0
806     return Builder.CreateUIToFP(L, Type::getDoubleTy(TheContext), "booltmp");
807   default:
808     break;
809   }
810 
811   // If it wasn't a builtin binary operator, it must be a user defined one. Emit
812   // a call to it.
813   Function *F = getFunction(std::string("binary") + Op);
814   assert(F && "binary operator not found!");
815 
816   Value *Ops[] = {L, R};
817   return Builder.CreateCall(F, Ops, "binop");
818 }
819 
codegen()820 Value *CallExprAST::codegen() {
821   // Look up the name in the global module table.
822   Function *CalleeF = getFunction(Callee);
823   if (!CalleeF)
824     return LogErrorV("Unknown function referenced");
825 
826   // If argument mismatch error.
827   if (CalleeF->arg_size() != Args.size())
828     return LogErrorV("Incorrect # arguments passed");
829 
830   std::vector<Value *> ArgsV;
831   for (unsigned i = 0, e = Args.size(); i != e; ++i) {
832     ArgsV.push_back(Args[i]->codegen());
833     if (!ArgsV.back())
834       return nullptr;
835   }
836 
837   return Builder.CreateCall(CalleeF, ArgsV, "calltmp");
838 }
839 
codegen()840 Value *IfExprAST::codegen() {
841   Value *CondV = Cond->codegen();
842   if (!CondV)
843     return nullptr;
844 
845   // Convert condition to a bool by comparing non-equal to 0.0.
846   CondV = Builder.CreateFCmpONE(
847       CondV, ConstantFP::get(TheContext, APFloat(0.0)), "ifcond");
848 
849   Function *TheFunction = Builder.GetInsertBlock()->getParent();
850 
851   // Create blocks for the then and else cases.  Insert the 'then' block at the
852   // end of the function.
853   BasicBlock *ThenBB = BasicBlock::Create(TheContext, "then", TheFunction);
854   BasicBlock *ElseBB = BasicBlock::Create(TheContext, "else");
855   BasicBlock *MergeBB = BasicBlock::Create(TheContext, "ifcont");
856 
857   Builder.CreateCondBr(CondV, ThenBB, ElseBB);
858 
859   // Emit then value.
860   Builder.SetInsertPoint(ThenBB);
861 
862   Value *ThenV = Then->codegen();
863   if (!ThenV)
864     return nullptr;
865 
866   Builder.CreateBr(MergeBB);
867   // Codegen of 'Then' can change the current block, update ThenBB for the PHI.
868   ThenBB = Builder.GetInsertBlock();
869 
870   // Emit else block.
871   TheFunction->getBasicBlockList().push_back(ElseBB);
872   Builder.SetInsertPoint(ElseBB);
873 
874   Value *ElseV = Else->codegen();
875   if (!ElseV)
876     return nullptr;
877 
878   Builder.CreateBr(MergeBB);
879   // Codegen of 'Else' can change the current block, update ElseBB for the PHI.
880   ElseBB = Builder.GetInsertBlock();
881 
882   // Emit merge block.
883   TheFunction->getBasicBlockList().push_back(MergeBB);
884   Builder.SetInsertPoint(MergeBB);
885   PHINode *PN = Builder.CreatePHI(Type::getDoubleTy(TheContext), 2, "iftmp");
886 
887   PN->addIncoming(ThenV, ThenBB);
888   PN->addIncoming(ElseV, ElseBB);
889   return PN;
890 }
891 
892 // Output for-loop as:
893 //   var = alloca double
894 //   ...
895 //   start = startexpr
896 //   store start -> var
897 //   goto loop
898 // loop:
899 //   ...
900 //   bodyexpr
901 //   ...
902 // loopend:
903 //   step = stepexpr
904 //   endcond = endexpr
905 //
906 //   curvar = load var
907 //   nextvar = curvar + step
908 //   store nextvar -> var
909 //   br endcond, loop, endloop
910 // outloop:
codegen()911 Value *ForExprAST::codegen() {
912   Function *TheFunction = Builder.GetInsertBlock()->getParent();
913 
914   // Create an alloca for the variable in the entry block.
915   AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, VarName);
916 
917   // Emit the start code first, without 'variable' in scope.
918   Value *StartVal = Start->codegen();
919   if (!StartVal)
920     return nullptr;
921 
922   // Store the value into the alloca.
923   Builder.CreateStore(StartVal, Alloca);
924 
925   // Make the new basic block for the loop header, inserting after current
926   // block.
927   BasicBlock *LoopBB = BasicBlock::Create(TheContext, "loop", TheFunction);
928 
929   // Insert an explicit fall through from the current block to the LoopBB.
930   Builder.CreateBr(LoopBB);
931 
932   // Start insertion in LoopBB.
933   Builder.SetInsertPoint(LoopBB);
934 
935   // Within the loop, the variable is defined equal to the PHI node.  If it
936   // shadows an existing variable, we have to restore it, so save it now.
937   AllocaInst *OldVal = NamedValues[VarName];
938   NamedValues[VarName] = Alloca;
939 
940   // Emit the body of the loop.  This, like any other expr, can change the
941   // current BB.  Note that we ignore the value computed by the body, but don't
942   // allow an error.
943   if (!Body->codegen())
944     return nullptr;
945 
946   // Emit the step value.
947   Value *StepVal = nullptr;
948   if (Step) {
949     StepVal = Step->codegen();
950     if (!StepVal)
951       return nullptr;
952   } else {
953     // If not specified, use 1.0.
954     StepVal = ConstantFP::get(TheContext, APFloat(1.0));
955   }
956 
957   // Compute the end condition.
958   Value *EndCond = End->codegen();
959   if (!EndCond)
960     return nullptr;
961 
962   // Reload, increment, and restore the alloca.  This handles the case where
963   // the body of the loop mutates the variable.
964   Value *CurVar = Builder.CreateLoad(Alloca, VarName.c_str());
965   Value *NextVar = Builder.CreateFAdd(CurVar, StepVal, "nextvar");
966   Builder.CreateStore(NextVar, Alloca);
967 
968   // Convert condition to a bool by comparing non-equal to 0.0.
969   EndCond = Builder.CreateFCmpONE(
970       EndCond, ConstantFP::get(TheContext, APFloat(0.0)), "loopcond");
971 
972   // Create the "after loop" block and insert it.
973   BasicBlock *AfterBB =
974       BasicBlock::Create(TheContext, "afterloop", TheFunction);
975 
976   // Insert the conditional branch into the end of LoopEndBB.
977   Builder.CreateCondBr(EndCond, LoopBB, AfterBB);
978 
979   // Any new code will be inserted in AfterBB.
980   Builder.SetInsertPoint(AfterBB);
981 
982   // Restore the unshadowed variable.
983   if (OldVal)
984     NamedValues[VarName] = OldVal;
985   else
986     NamedValues.erase(VarName);
987 
988   // for expr always returns 0.0.
989   return Constant::getNullValue(Type::getDoubleTy(TheContext));
990 }
991 
codegen()992 Value *VarExprAST::codegen() {
993   std::vector<AllocaInst *> OldBindings;
994 
995   Function *TheFunction = Builder.GetInsertBlock()->getParent();
996 
997   // Register all variables and emit their initializer.
998   for (unsigned i = 0, e = VarNames.size(); i != e; ++i) {
999     const std::string &VarName = VarNames[i].first;
1000     ExprAST *Init = VarNames[i].second.get();
1001 
1002     // Emit the initializer before adding the variable to scope, this prevents
1003     // the initializer from referencing the variable itself, and permits stuff
1004     // like this:
1005     //  var a = 1 in
1006     //    var a = a in ...   # refers to outer 'a'.
1007     Value *InitVal;
1008     if (Init) {
1009       InitVal = Init->codegen();
1010       if (!InitVal)
1011         return nullptr;
1012     } else { // If not specified, use 0.0.
1013       InitVal = ConstantFP::get(TheContext, APFloat(0.0));
1014     }
1015 
1016     AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, VarName);
1017     Builder.CreateStore(InitVal, Alloca);
1018 
1019     // Remember the old variable binding so that we can restore the binding when
1020     // we unrecurse.
1021     OldBindings.push_back(NamedValues[VarName]);
1022 
1023     // Remember this binding.
1024     NamedValues[VarName] = Alloca;
1025   }
1026 
1027   // Codegen the body, now that all vars are in scope.
1028   Value *BodyVal = Body->codegen();
1029   if (!BodyVal)
1030     return nullptr;
1031 
1032   // Pop all our variables from scope.
1033   for (unsigned i = 0, e = VarNames.size(); i != e; ++i)
1034     NamedValues[VarNames[i].first] = OldBindings[i];
1035 
1036   // Return the body computation.
1037   return BodyVal;
1038 }
1039 
codegen()1040 Function *PrototypeAST::codegen() {
1041   // Make the function type:  double(double,double) etc.
1042   std::vector<Type *> Doubles(Args.size(), Type::getDoubleTy(TheContext));
1043   FunctionType *FT =
1044       FunctionType::get(Type::getDoubleTy(TheContext), Doubles, false);
1045 
1046   Function *F =
1047       Function::Create(FT, Function::ExternalLinkage, Name, TheModule.get());
1048 
1049   // Set names for all arguments.
1050   unsigned Idx = 0;
1051   for (auto &Arg : F->args())
1052     Arg.setName(Args[Idx++]);
1053 
1054   return F;
1055 }
1056 
codegen()1057 Function *FunctionAST::codegen() {
1058   // Transfer ownership of the prototype to the FunctionProtos map, but keep a
1059   // reference to it for use below.
1060   auto &P = *Proto;
1061   FunctionProtos[Proto->getName()] = std::move(Proto);
1062   Function *TheFunction = getFunction(P.getName());
1063   if (!TheFunction)
1064     return nullptr;
1065 
1066   // If this is an operator, install it.
1067   if (P.isBinaryOp())
1068     BinopPrecedence[P.getOperatorName()] = P.getBinaryPrecedence();
1069 
1070   // Create a new basic block to start insertion into.
1071   BasicBlock *BB = BasicBlock::Create(TheContext, "entry", TheFunction);
1072   Builder.SetInsertPoint(BB);
1073 
1074   // Record the function arguments in the NamedValues map.
1075   NamedValues.clear();
1076   for (auto &Arg : TheFunction->args()) {
1077     // Create an alloca for this variable.
1078     AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, Arg.getName());
1079 
1080     // Store the initial value into the alloca.
1081     Builder.CreateStore(&Arg, Alloca);
1082 
1083     // Add arguments to variable symbol table.
1084     NamedValues[Arg.getName()] = Alloca;
1085   }
1086 
1087   if (Value *RetVal = Body->codegen()) {
1088     // Finish off the function.
1089     Builder.CreateRet(RetVal);
1090 
1091     // Validate the generated code, checking for consistency.
1092     verifyFunction(*TheFunction);
1093 
1094     // Run the optimizer on the function.
1095     TheFPM->run(*TheFunction);
1096 
1097     return TheFunction;
1098   }
1099 
1100   // Error reading body, remove function.
1101   TheFunction->eraseFromParent();
1102 
1103   if (P.isBinaryOp())
1104     BinopPrecedence.erase(P.getOperatorName());
1105   return nullptr;
1106 }
1107 
1108 //===----------------------------------------------------------------------===//
1109 // Top-Level parsing and JIT Driver
1110 //===----------------------------------------------------------------------===//
1111 
InitializeModuleAndPassManager()1112 static void InitializeModuleAndPassManager() {
1113   // Open a new module.
1114   TheModule = llvm::make_unique<Module>("my cool jit", TheContext);
1115   TheModule->setDataLayout(TheJIT->getTargetMachine().createDataLayout());
1116 
1117   // Create a new pass manager attached to it.
1118   TheFPM = llvm::make_unique<legacy::FunctionPassManager>(TheModule.get());
1119 
1120   // Promote allocas to registers.
1121   TheFPM->add(createPromoteMemoryToRegisterPass());
1122   // Do simple "peephole" optimizations and bit-twiddling optzns.
1123   TheFPM->add(createInstructionCombiningPass());
1124   // Reassociate expressions.
1125   TheFPM->add(createReassociatePass());
1126   // Eliminate Common SubExpressions.
1127   TheFPM->add(createGVNPass());
1128   // Simplify the control flow graph (deleting unreachable blocks, etc).
1129   TheFPM->add(createCFGSimplificationPass());
1130 
1131   TheFPM->doInitialization();
1132 }
1133 
HandleDefinition()1134 static void HandleDefinition() {
1135   if (auto FnAST = ParseDefinition()) {
1136     if (auto *FnIR = FnAST->codegen()) {
1137       fprintf(stderr, "Read function definition:");
1138       FnIR->print(errs());
1139       fprintf(stderr, "\n");
1140       TheJIT->addModule(std::move(TheModule));
1141       InitializeModuleAndPassManager();
1142     }
1143   } else {
1144     // Skip token for error recovery.
1145     getNextToken();
1146   }
1147 }
1148 
HandleExtern()1149 static void HandleExtern() {
1150   if (auto ProtoAST = ParseExtern()) {
1151     if (auto *FnIR = ProtoAST->codegen()) {
1152       fprintf(stderr, "Read extern: ");
1153       FnIR->print(errs());
1154       fprintf(stderr, "\n");
1155       FunctionProtos[ProtoAST->getName()] = std::move(ProtoAST);
1156     }
1157   } else {
1158     // Skip token for error recovery.
1159     getNextToken();
1160   }
1161 }
1162 
HandleTopLevelExpression()1163 static void HandleTopLevelExpression() {
1164   // Evaluate a top-level expression into an anonymous function.
1165   if (auto FnAST = ParseTopLevelExpr()) {
1166     if (FnAST->codegen()) {
1167       // JIT the module containing the anonymous expression, keeping a handle so
1168       // we can free it later.
1169       auto H = TheJIT->addModule(std::move(TheModule));
1170       InitializeModuleAndPassManager();
1171 
1172       // Search the JIT for the __anon_expr symbol.
1173       auto ExprSymbol = TheJIT->findSymbol("__anon_expr");
1174       assert(ExprSymbol && "Function not found");
1175 
1176       // Get the symbol's address and cast it to the right type (takes no
1177       // arguments, returns a double) so we can call it as a native function.
1178       double (*FP)() = (double (*)())(intptr_t)cantFail(ExprSymbol.getAddress());
1179       fprintf(stderr, "Evaluated to %f\n", FP());
1180 
1181       // Delete the anonymous expression module from the JIT.
1182       TheJIT->removeModule(H);
1183     }
1184   } else {
1185     // Skip token for error recovery.
1186     getNextToken();
1187   }
1188 }
1189 
1190 /// top ::= definition | external | expression | ';'
MainLoop()1191 static void MainLoop() {
1192   while (true) {
1193     fprintf(stderr, "ready> ");
1194     switch (CurTok) {
1195     case tok_eof:
1196       return;
1197     case ';': // ignore top-level semicolons.
1198       getNextToken();
1199       break;
1200     case tok_def:
1201       HandleDefinition();
1202       break;
1203     case tok_extern:
1204       HandleExtern();
1205       break;
1206     default:
1207       HandleTopLevelExpression();
1208       break;
1209     }
1210   }
1211 }
1212 
1213 //===----------------------------------------------------------------------===//
1214 // "Library" functions that can be "extern'd" from user code.
1215 //===----------------------------------------------------------------------===//
1216 
1217 #ifdef _WIN32
1218 #define DLLEXPORT __declspec(dllexport)
1219 #else
1220 #define DLLEXPORT
1221 #endif
1222 
1223 /// putchard - putchar that takes a double and returns 0.
putchard(double X)1224 extern "C" DLLEXPORT double putchard(double X) {
1225   fputc((char)X, stderr);
1226   return 0;
1227 }
1228 
1229 /// printd - printf that takes a double prints it as "%f\n", returning 0.
printd(double X)1230 extern "C" DLLEXPORT double printd(double X) {
1231   fprintf(stderr, "%f\n", X);
1232   return 0;
1233 }
1234 
1235 //===----------------------------------------------------------------------===//
1236 // Main driver code.
1237 //===----------------------------------------------------------------------===//
1238 
main()1239 int main() {
1240   InitializeNativeTarget();
1241   InitializeNativeTargetAsmPrinter();
1242   InitializeNativeTargetAsmParser();
1243 
1244   // Install standard binary operators.
1245   // 1 is lowest precedence.
1246   BinopPrecedence['='] = 2;
1247   BinopPrecedence['<'] = 10;
1248   BinopPrecedence['+'] = 20;
1249   BinopPrecedence['-'] = 20;
1250   BinopPrecedence['*'] = 40; // highest.
1251 
1252   // Prime the first token.
1253   fprintf(stderr, "ready> ");
1254   getNextToken();
1255 
1256   TheJIT = llvm::make_unique<KaleidoscopeJIT>();
1257 
1258   InitializeModuleAndPassManager();
1259 
1260   // Run the main "interpreter loop" now.
1261   MainLoop();
1262 
1263   return 0;
1264 }
1265