1 //===-- examples/ParallelJIT/ParallelJIT.cpp - Exercise threaded-safe JIT -===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Parallel JIT
11 //
12 // This test program creates two LLVM functions then calls them from three
13 // separate threads.  It requires the pthreads library.
14 // The three threads are created and then block waiting on a condition variable.
15 // Once all threads are blocked on the conditional variable, the main thread
16 // wakes them up. This complicated work is performed so that all three threads
17 // call into the JIT at the same time (or the best possible approximation of the
18 // same time). This test had assertion errors until I got the locking right.
19 //
20 //===----------------------------------------------------------------------===//
21 
22 #include "llvm/ADT/APInt.h"
23 #include "llvm/ADT/STLExtras.h"
24 #include "llvm/ExecutionEngine/ExecutionEngine.h"
25 #include "llvm/ExecutionEngine/GenericValue.h"
26 #include "llvm/IR/Argument.h"
27 #include "llvm/IR/BasicBlock.h"
28 #include "llvm/IR/Constants.h"
29 #include "llvm/IR/DerivedTypes.h"
30 #include "llvm/IR/Function.h"
31 #include "llvm/IR/InstrTypes.h"
32 #include "llvm/IR/Instruction.h"
33 #include "llvm/IR/Instructions.h"
34 #include "llvm/IR/LLVMContext.h"
35 #include "llvm/IR/Module.h"
36 #include "llvm/IR/Type.h"
37 #include "llvm/Support/Casting.h"
38 #include "llvm/Support/TargetSelect.h"
39 #include <algorithm>
40 #include <cassert>
41 #include <cstddef>
42 #include <cstdint>
43 #include <iostream>
44 #include <memory>
45 #include <vector>
46 #include <pthread.h>
47 
48 using namespace llvm;
49 
createAdd1(Module * M)50 static Function* createAdd1(Module *M) {
51   // Create the add1 function entry and insert this entry into module M.  The
52   // function will have a return type of "int" and take an argument of "int".
53   // The '0' terminates the list of argument types.
54   Function *Add1F =
55     cast<Function>(M->getOrInsertFunction("add1",
56                                           Type::getInt32Ty(M->getContext()),
57                                           Type::getInt32Ty(M->getContext())));
58 
59   // Add a basic block to the function. As before, it automatically inserts
60   // because of the last argument.
61   BasicBlock *BB = BasicBlock::Create(M->getContext(), "EntryBlock", Add1F);
62 
63   // Get pointers to the constant `1'.
64   Value *One = ConstantInt::get(Type::getInt32Ty(M->getContext()), 1);
65 
66   // Get pointers to the integer argument of the add1 function...
67   assert(Add1F->arg_begin() != Add1F->arg_end()); // Make sure there's an arg
68   Argument *ArgX = &*Add1F->arg_begin();          // Get the arg
69   ArgX->setName("AnArg");            // Give it a nice symbolic name for fun.
70 
71   // Create the add instruction, inserting it into the end of BB.
72   Instruction *Add = BinaryOperator::CreateAdd(One, ArgX, "addresult", BB);
73 
74   // Create the return instruction and add it to the basic block
75   ReturnInst::Create(M->getContext(), Add, BB);
76 
77   // Now, function add1 is ready.
78   return Add1F;
79 }
80 
CreateFibFunction(Module * M)81 static Function *CreateFibFunction(Module *M) {
82   // Create the fib function and insert it into module M.  This function is said
83   // to return an int and take an int parameter.
84   Function *FibF =
85     cast<Function>(M->getOrInsertFunction("fib",
86                                           Type::getInt32Ty(M->getContext()),
87                                           Type::getInt32Ty(M->getContext())));
88 
89   // Add a basic block to the function.
90   BasicBlock *BB = BasicBlock::Create(M->getContext(), "EntryBlock", FibF);
91 
92   // Get pointers to the constants.
93   Value *One = ConstantInt::get(Type::getInt32Ty(M->getContext()), 1);
94   Value *Two = ConstantInt::get(Type::getInt32Ty(M->getContext()), 2);
95 
96   // Get pointer to the integer argument of the add1 function...
97   Argument *ArgX = &*FibF->arg_begin(); // Get the arg.
98   ArgX->setName("AnArg");            // Give it a nice symbolic name for fun.
99 
100   // Create the true_block.
101   BasicBlock *RetBB = BasicBlock::Create(M->getContext(), "return", FibF);
102   // Create an exit block.
103   BasicBlock* RecurseBB = BasicBlock::Create(M->getContext(), "recurse", FibF);
104 
105   // Create the "if (arg < 2) goto exitbb"
106   Value *CondInst = new ICmpInst(*BB, ICmpInst::ICMP_SLE, ArgX, Two, "cond");
107   BranchInst::Create(RetBB, RecurseBB, CondInst, BB);
108 
109   // Create: ret int 1
110   ReturnInst::Create(M->getContext(), One, RetBB);
111 
112   // create fib(x-1)
113   Value *Sub = BinaryOperator::CreateSub(ArgX, One, "arg", RecurseBB);
114   Value *CallFibX1 = CallInst::Create(FibF, Sub, "fibx1", RecurseBB);
115 
116   // create fib(x-2)
117   Sub = BinaryOperator::CreateSub(ArgX, Two, "arg", RecurseBB);
118   Value *CallFibX2 = CallInst::Create(FibF, Sub, "fibx2", RecurseBB);
119 
120   // fib(x-1)+fib(x-2)
121   Value *Sum =
122     BinaryOperator::CreateAdd(CallFibX1, CallFibX2, "addresult", RecurseBB);
123 
124   // Create the return instruction and add it to the basic block
125   ReturnInst::Create(M->getContext(), Sum, RecurseBB);
126 
127   return FibF;
128 }
129 
130 struct threadParams {
131   ExecutionEngine* EE;
132   Function* F;
133   int value;
134 };
135 
136 // We block the subthreads just before they begin to execute:
137 // we want all of them to call into the JIT at the same time,
138 // to verify that the locking is working correctly.
139 class WaitForThreads
140 {
141 public:
WaitForThreads()142   WaitForThreads()
143   {
144     n = 0;
145     waitFor = 0;
146 
147     int result = pthread_cond_init( &condition, nullptr );
148     (void)result;
149     assert( result == 0 );
150 
151     result = pthread_mutex_init( &mutex, nullptr );
152     assert( result == 0 );
153   }
154 
~WaitForThreads()155   ~WaitForThreads()
156   {
157     int result = pthread_cond_destroy( &condition );
158     (void)result;
159     assert( result == 0 );
160 
161     result = pthread_mutex_destroy( &mutex );
162     assert( result == 0 );
163   }
164 
165   // All threads will stop here until another thread calls releaseThreads
block()166   void block()
167   {
168     int result = pthread_mutex_lock( &mutex );
169     (void)result;
170     assert( result == 0 );
171     n ++;
172     //~ std::cout << "block() n " << n << " waitFor " << waitFor << std::endl;
173 
174     assert( waitFor == 0 || n <= waitFor );
175     if ( waitFor > 0 && n == waitFor )
176     {
177       // There are enough threads blocked that we can release all of them
178       std::cout << "Unblocking threads from block()" << std::endl;
179       unblockThreads();
180     }
181     else
182     {
183       // We just need to wait until someone unblocks us
184       result = pthread_cond_wait( &condition, &mutex );
185       assert( result == 0 );
186     }
187 
188     // unlock the mutex before returning
189     result = pthread_mutex_unlock( &mutex );
190     assert( result == 0 );
191   }
192 
193   // If there are num or more threads blocked, it will signal them all
194   // Otherwise, this thread blocks until there are enough OTHER threads
195   // blocked
releaseThreads(size_t num)196   void releaseThreads( size_t num )
197   {
198     int result = pthread_mutex_lock( &mutex );
199     (void)result;
200     assert( result == 0 );
201 
202     if ( n >= num ) {
203       std::cout << "Unblocking threads from releaseThreads()" << std::endl;
204       unblockThreads();
205     }
206     else
207     {
208       waitFor = num;
209       pthread_cond_wait( &condition, &mutex );
210     }
211 
212     // unlock the mutex before returning
213     result = pthread_mutex_unlock( &mutex );
214     assert( result == 0 );
215   }
216 
217 private:
unblockThreads()218   void unblockThreads()
219   {
220     // Reset the counters to zero: this way, if any new threads
221     // enter while threads are exiting, they will block instead
222     // of triggering a new release of threads
223     n = 0;
224 
225     // Reset waitFor to zero: this way, if waitFor threads enter
226     // while threads are exiting, they will block instead of
227     // triggering a new release of threads
228     waitFor = 0;
229 
230     int result = pthread_cond_broadcast( &condition );
231     (void)result;
232     assert(result == 0);
233   }
234 
235   size_t n;
236   size_t waitFor;
237   pthread_cond_t condition;
238   pthread_mutex_t mutex;
239 };
240 
241 static WaitForThreads synchronize;
242 
callFunc(void * param)243 void* callFunc( void* param )
244 {
245   struct threadParams* p = (struct threadParams*) param;
246 
247   // Call the `foo' function with no arguments:
248   std::vector<GenericValue> Args(1);
249   Args[0].IntVal = APInt(32, p->value);
250 
251   synchronize.block(); // wait until other threads are at this point
252   GenericValue gv = p->EE->runFunction(p->F, Args);
253 
254   return (void*)(intptr_t)gv.IntVal.getZExtValue();
255 }
256 
main()257 int main() {
258   InitializeNativeTarget();
259   LLVMContext Context;
260 
261   // Create some module to put our function into it.
262   std::unique_ptr<Module> Owner = make_unique<Module>("test", Context);
263   Module *M = Owner.get();
264 
265   Function* add1F = createAdd1( M );
266   Function* fibF = CreateFibFunction( M );
267 
268   // Now we create the JIT.
269   ExecutionEngine* EE = EngineBuilder(std::move(Owner)).create();
270 
271   //~ std::cout << "We just constructed this LLVM module:\n\n" << *M;
272   //~ std::cout << "\n\nRunning foo: " << std::flush;
273 
274   // Create one thread for add1 and two threads for fib
275   struct threadParams add1 = { EE, add1F, 1000 };
276   struct threadParams fib1 = { EE, fibF, 39 };
277   struct threadParams fib2 = { EE, fibF, 42 };
278 
279   pthread_t add1Thread;
280   int result = pthread_create( &add1Thread, nullptr, callFunc, &add1 );
281   if ( result != 0 ) {
282           std::cerr << "Could not create thread" << std::endl;
283           return 1;
284   }
285 
286   pthread_t fibThread1;
287   result = pthread_create( &fibThread1, nullptr, callFunc, &fib1 );
288   if ( result != 0 ) {
289           std::cerr << "Could not create thread" << std::endl;
290           return 1;
291   }
292 
293   pthread_t fibThread2;
294   result = pthread_create( &fibThread2, nullptr, callFunc, &fib2 );
295   if ( result != 0 ) {
296           std::cerr << "Could not create thread" << std::endl;
297           return 1;
298   }
299 
300   synchronize.releaseThreads(3); // wait until other threads are at this point
301 
302   void* returnValue;
303   result = pthread_join( add1Thread, &returnValue );
304   if ( result != 0 ) {
305           std::cerr << "Could not join thread" << std::endl;
306           return 1;
307   }
308   std::cout << "Add1 returned " << intptr_t(returnValue) << std::endl;
309 
310   result = pthread_join( fibThread1, &returnValue );
311   if ( result != 0 ) {
312           std::cerr << "Could not join thread" << std::endl;
313           return 1;
314   }
315   std::cout << "Fib1 returned " << intptr_t(returnValue) << std::endl;
316 
317   result = pthread_join( fibThread2, &returnValue );
318   if ( result != 0 ) {
319           std::cerr << "Could not join thread" << std::endl;
320           return 1;
321   }
322   std::cout << "Fib2 returned " << intptr_t(returnValue) << std::endl;
323 
324   return 0;
325 }
326