1 //===-- examples/ParallelJIT/ParallelJIT.cpp - Exercise threaded-safe JIT -===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Parallel JIT
11 //
12 // This test program creates two LLVM functions then calls them from three
13 // separate threads. It requires the pthreads library.
14 // The three threads are created and then block waiting on a condition variable.
15 // Once all threads are blocked on the conditional variable, the main thread
16 // wakes them up. This complicated work is performed so that all three threads
17 // call into the JIT at the same time (or the best possible approximation of the
18 // same time). This test had assertion errors until I got the locking right.
19 //
20 //===----------------------------------------------------------------------===//
21
22 #include "llvm/ADT/APInt.h"
23 #include "llvm/ADT/STLExtras.h"
24 #include "llvm/ExecutionEngine/ExecutionEngine.h"
25 #include "llvm/ExecutionEngine/GenericValue.h"
26 #include "llvm/IR/Argument.h"
27 #include "llvm/IR/BasicBlock.h"
28 #include "llvm/IR/Constants.h"
29 #include "llvm/IR/DerivedTypes.h"
30 #include "llvm/IR/Function.h"
31 #include "llvm/IR/InstrTypes.h"
32 #include "llvm/IR/Instruction.h"
33 #include "llvm/IR/Instructions.h"
34 #include "llvm/IR/LLVMContext.h"
35 #include "llvm/IR/Module.h"
36 #include "llvm/IR/Type.h"
37 #include "llvm/Support/Casting.h"
38 #include "llvm/Support/TargetSelect.h"
39 #include <algorithm>
40 #include <cassert>
41 #include <cstddef>
42 #include <cstdint>
43 #include <iostream>
44 #include <memory>
45 #include <vector>
46 #include <pthread.h>
47
48 using namespace llvm;
49
createAdd1(Module * M)50 static Function* createAdd1(Module *M) {
51 // Create the add1 function entry and insert this entry into module M. The
52 // function will have a return type of "int" and take an argument of "int".
53 // The '0' terminates the list of argument types.
54 Function *Add1F =
55 cast<Function>(M->getOrInsertFunction("add1",
56 Type::getInt32Ty(M->getContext()),
57 Type::getInt32Ty(M->getContext())));
58
59 // Add a basic block to the function. As before, it automatically inserts
60 // because of the last argument.
61 BasicBlock *BB = BasicBlock::Create(M->getContext(), "EntryBlock", Add1F);
62
63 // Get pointers to the constant `1'.
64 Value *One = ConstantInt::get(Type::getInt32Ty(M->getContext()), 1);
65
66 // Get pointers to the integer argument of the add1 function...
67 assert(Add1F->arg_begin() != Add1F->arg_end()); // Make sure there's an arg
68 Argument *ArgX = &*Add1F->arg_begin(); // Get the arg
69 ArgX->setName("AnArg"); // Give it a nice symbolic name for fun.
70
71 // Create the add instruction, inserting it into the end of BB.
72 Instruction *Add = BinaryOperator::CreateAdd(One, ArgX, "addresult", BB);
73
74 // Create the return instruction and add it to the basic block
75 ReturnInst::Create(M->getContext(), Add, BB);
76
77 // Now, function add1 is ready.
78 return Add1F;
79 }
80
CreateFibFunction(Module * M)81 static Function *CreateFibFunction(Module *M) {
82 // Create the fib function and insert it into module M. This function is said
83 // to return an int and take an int parameter.
84 Function *FibF =
85 cast<Function>(M->getOrInsertFunction("fib",
86 Type::getInt32Ty(M->getContext()),
87 Type::getInt32Ty(M->getContext())));
88
89 // Add a basic block to the function.
90 BasicBlock *BB = BasicBlock::Create(M->getContext(), "EntryBlock", FibF);
91
92 // Get pointers to the constants.
93 Value *One = ConstantInt::get(Type::getInt32Ty(M->getContext()), 1);
94 Value *Two = ConstantInt::get(Type::getInt32Ty(M->getContext()), 2);
95
96 // Get pointer to the integer argument of the add1 function...
97 Argument *ArgX = &*FibF->arg_begin(); // Get the arg.
98 ArgX->setName("AnArg"); // Give it a nice symbolic name for fun.
99
100 // Create the true_block.
101 BasicBlock *RetBB = BasicBlock::Create(M->getContext(), "return", FibF);
102 // Create an exit block.
103 BasicBlock* RecurseBB = BasicBlock::Create(M->getContext(), "recurse", FibF);
104
105 // Create the "if (arg < 2) goto exitbb"
106 Value *CondInst = new ICmpInst(*BB, ICmpInst::ICMP_SLE, ArgX, Two, "cond");
107 BranchInst::Create(RetBB, RecurseBB, CondInst, BB);
108
109 // Create: ret int 1
110 ReturnInst::Create(M->getContext(), One, RetBB);
111
112 // create fib(x-1)
113 Value *Sub = BinaryOperator::CreateSub(ArgX, One, "arg", RecurseBB);
114 Value *CallFibX1 = CallInst::Create(FibF, Sub, "fibx1", RecurseBB);
115
116 // create fib(x-2)
117 Sub = BinaryOperator::CreateSub(ArgX, Two, "arg", RecurseBB);
118 Value *CallFibX2 = CallInst::Create(FibF, Sub, "fibx2", RecurseBB);
119
120 // fib(x-1)+fib(x-2)
121 Value *Sum =
122 BinaryOperator::CreateAdd(CallFibX1, CallFibX2, "addresult", RecurseBB);
123
124 // Create the return instruction and add it to the basic block
125 ReturnInst::Create(M->getContext(), Sum, RecurseBB);
126
127 return FibF;
128 }
129
130 struct threadParams {
131 ExecutionEngine* EE;
132 Function* F;
133 int value;
134 };
135
136 // We block the subthreads just before they begin to execute:
137 // we want all of them to call into the JIT at the same time,
138 // to verify that the locking is working correctly.
139 class WaitForThreads
140 {
141 public:
WaitForThreads()142 WaitForThreads()
143 {
144 n = 0;
145 waitFor = 0;
146
147 int result = pthread_cond_init( &condition, nullptr );
148 (void)result;
149 assert( result == 0 );
150
151 result = pthread_mutex_init( &mutex, nullptr );
152 assert( result == 0 );
153 }
154
~WaitForThreads()155 ~WaitForThreads()
156 {
157 int result = pthread_cond_destroy( &condition );
158 (void)result;
159 assert( result == 0 );
160
161 result = pthread_mutex_destroy( &mutex );
162 assert( result == 0 );
163 }
164
165 // All threads will stop here until another thread calls releaseThreads
block()166 void block()
167 {
168 int result = pthread_mutex_lock( &mutex );
169 (void)result;
170 assert( result == 0 );
171 n ++;
172 //~ std::cout << "block() n " << n << " waitFor " << waitFor << std::endl;
173
174 assert( waitFor == 0 || n <= waitFor );
175 if ( waitFor > 0 && n == waitFor )
176 {
177 // There are enough threads blocked that we can release all of them
178 std::cout << "Unblocking threads from block()" << std::endl;
179 unblockThreads();
180 }
181 else
182 {
183 // We just need to wait until someone unblocks us
184 result = pthread_cond_wait( &condition, &mutex );
185 assert( result == 0 );
186 }
187
188 // unlock the mutex before returning
189 result = pthread_mutex_unlock( &mutex );
190 assert( result == 0 );
191 }
192
193 // If there are num or more threads blocked, it will signal them all
194 // Otherwise, this thread blocks until there are enough OTHER threads
195 // blocked
releaseThreads(size_t num)196 void releaseThreads( size_t num )
197 {
198 int result = pthread_mutex_lock( &mutex );
199 (void)result;
200 assert( result == 0 );
201
202 if ( n >= num ) {
203 std::cout << "Unblocking threads from releaseThreads()" << std::endl;
204 unblockThreads();
205 }
206 else
207 {
208 waitFor = num;
209 pthread_cond_wait( &condition, &mutex );
210 }
211
212 // unlock the mutex before returning
213 result = pthread_mutex_unlock( &mutex );
214 assert( result == 0 );
215 }
216
217 private:
unblockThreads()218 void unblockThreads()
219 {
220 // Reset the counters to zero: this way, if any new threads
221 // enter while threads are exiting, they will block instead
222 // of triggering a new release of threads
223 n = 0;
224
225 // Reset waitFor to zero: this way, if waitFor threads enter
226 // while threads are exiting, they will block instead of
227 // triggering a new release of threads
228 waitFor = 0;
229
230 int result = pthread_cond_broadcast( &condition );
231 (void)result;
232 assert(result == 0);
233 }
234
235 size_t n;
236 size_t waitFor;
237 pthread_cond_t condition;
238 pthread_mutex_t mutex;
239 };
240
241 static WaitForThreads synchronize;
242
callFunc(void * param)243 void* callFunc( void* param )
244 {
245 struct threadParams* p = (struct threadParams*) param;
246
247 // Call the `foo' function with no arguments:
248 std::vector<GenericValue> Args(1);
249 Args[0].IntVal = APInt(32, p->value);
250
251 synchronize.block(); // wait until other threads are at this point
252 GenericValue gv = p->EE->runFunction(p->F, Args);
253
254 return (void*)(intptr_t)gv.IntVal.getZExtValue();
255 }
256
main()257 int main() {
258 InitializeNativeTarget();
259 LLVMContext Context;
260
261 // Create some module to put our function into it.
262 std::unique_ptr<Module> Owner = make_unique<Module>("test", Context);
263 Module *M = Owner.get();
264
265 Function* add1F = createAdd1( M );
266 Function* fibF = CreateFibFunction( M );
267
268 // Now we create the JIT.
269 ExecutionEngine* EE = EngineBuilder(std::move(Owner)).create();
270
271 //~ std::cout << "We just constructed this LLVM module:\n\n" << *M;
272 //~ std::cout << "\n\nRunning foo: " << std::flush;
273
274 // Create one thread for add1 and two threads for fib
275 struct threadParams add1 = { EE, add1F, 1000 };
276 struct threadParams fib1 = { EE, fibF, 39 };
277 struct threadParams fib2 = { EE, fibF, 42 };
278
279 pthread_t add1Thread;
280 int result = pthread_create( &add1Thread, nullptr, callFunc, &add1 );
281 if ( result != 0 ) {
282 std::cerr << "Could not create thread" << std::endl;
283 return 1;
284 }
285
286 pthread_t fibThread1;
287 result = pthread_create( &fibThread1, nullptr, callFunc, &fib1 );
288 if ( result != 0 ) {
289 std::cerr << "Could not create thread" << std::endl;
290 return 1;
291 }
292
293 pthread_t fibThread2;
294 result = pthread_create( &fibThread2, nullptr, callFunc, &fib2 );
295 if ( result != 0 ) {
296 std::cerr << "Could not create thread" << std::endl;
297 return 1;
298 }
299
300 synchronize.releaseThreads(3); // wait until other threads are at this point
301
302 void* returnValue;
303 result = pthread_join( add1Thread, &returnValue );
304 if ( result != 0 ) {
305 std::cerr << "Could not join thread" << std::endl;
306 return 1;
307 }
308 std::cout << "Add1 returned " << intptr_t(returnValue) << std::endl;
309
310 result = pthread_join( fibThread1, &returnValue );
311 if ( result != 0 ) {
312 std::cerr << "Could not join thread" << std::endl;
313 return 1;
314 }
315 std::cout << "Fib1 returned " << intptr_t(returnValue) << std::endl;
316
317 result = pthread_join( fibThread2, &returnValue );
318 if ( result != 0 ) {
319 std::cerr << "Could not join thread" << std::endl;
320 return 1;
321 }
322 std::cout << "Fib2 returned " << intptr_t(returnValue) << std::endl;
323
324 return 0;
325 }
326