1 //===- FastISel.h - Definition of the FastISel class ------------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 /// 10 /// \file 11 /// This file defines the FastISel class. 12 /// 13 //===----------------------------------------------------------------------===// 14 15 #ifndef LLVM_CODEGEN_FASTISEL_H 16 #define LLVM_CODEGEN_FASTISEL_H 17 18 #include "llvm/ADT/DenseMap.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/ADT/StringRef.h" 21 #include "llvm/CodeGen/MachineBasicBlock.h" 22 #include "llvm/CodeGen/TargetLowering.h" 23 #include "llvm/IR/Attributes.h" 24 #include "llvm/IR/CallSite.h" 25 #include "llvm/IR/CallingConv.h" 26 #include "llvm/IR/DebugLoc.h" 27 #include "llvm/IR/DerivedTypes.h" 28 #include "llvm/IR/InstrTypes.h" 29 #include "llvm/IR/IntrinsicInst.h" 30 #include "llvm/Support/MachineValueType.h" 31 #include <algorithm> 32 #include <cstdint> 33 #include <utility> 34 35 namespace llvm { 36 37 class AllocaInst; 38 class BasicBlock; 39 class CallInst; 40 class Constant; 41 class ConstantFP; 42 class DataLayout; 43 class FunctionLoweringInfo; 44 class LoadInst; 45 class MachineConstantPool; 46 class MachineFrameInfo; 47 class MachineFunction; 48 class MachineInstr; 49 class MachineMemOperand; 50 class MachineOperand; 51 class MachineRegisterInfo; 52 class MCContext; 53 class MCInstrDesc; 54 class MCSymbol; 55 class TargetInstrInfo; 56 class TargetLibraryInfo; 57 class TargetMachine; 58 class TargetRegisterClass; 59 class TargetRegisterInfo; 60 class Type; 61 class User; 62 class Value; 63 64 /// This is a fast-path instruction selection class that generates poor 65 /// code and doesn't support illegal types or non-trivial lowering, but runs 66 /// quickly. 67 class FastISel { 68 public: 69 using ArgListEntry = TargetLoweringBase::ArgListEntry; 70 using ArgListTy = TargetLoweringBase::ArgListTy; 71 struct CallLoweringInfo { 72 Type *RetTy = nullptr; 73 bool RetSExt : 1; 74 bool RetZExt : 1; 75 bool IsVarArg : 1; 76 bool IsInReg : 1; 77 bool DoesNotReturn : 1; 78 bool IsReturnValueUsed : 1; 79 bool IsPatchPoint : 1; 80 81 // IsTailCall Should be modified by implementations of FastLowerCall 82 // that perform tail call conversions. 83 bool IsTailCall = false; 84 85 unsigned NumFixedArgs = -1; 86 CallingConv::ID CallConv = CallingConv::C; 87 const Value *Callee = nullptr; 88 MCSymbol *Symbol = nullptr; 89 ArgListTy Args; 90 ImmutableCallSite *CS = nullptr; 91 MachineInstr *Call = nullptr; 92 unsigned ResultReg = 0; 93 unsigned NumResultRegs = 0; 94 95 SmallVector<Value *, 16> OutVals; 96 SmallVector<ISD::ArgFlagsTy, 16> OutFlags; 97 SmallVector<unsigned, 16> OutRegs; 98 SmallVector<ISD::InputArg, 4> Ins; 99 SmallVector<unsigned, 4> InRegs; 100 CallLoweringInfoCallLoweringInfo101 CallLoweringInfo() 102 : RetSExt(false), RetZExt(false), IsVarArg(false), IsInReg(false), 103 DoesNotReturn(false), IsReturnValueUsed(true), IsPatchPoint(false) {} 104 setCalleeCallLoweringInfo105 CallLoweringInfo &setCallee(Type *ResultTy, FunctionType *FuncTy, 106 const Value *Target, ArgListTy &&ArgsList, 107 ImmutableCallSite &Call) { 108 RetTy = ResultTy; 109 Callee = Target; 110 111 IsInReg = Call.hasRetAttr(Attribute::InReg); 112 DoesNotReturn = Call.doesNotReturn(); 113 IsVarArg = FuncTy->isVarArg(); 114 IsReturnValueUsed = !Call.getInstruction()->use_empty(); 115 RetSExt = Call.hasRetAttr(Attribute::SExt); 116 RetZExt = Call.hasRetAttr(Attribute::ZExt); 117 118 CallConv = Call.getCallingConv(); 119 Args = std::move(ArgsList); 120 NumFixedArgs = FuncTy->getNumParams(); 121 122 CS = &Call; 123 124 return *this; 125 } 126 127 CallLoweringInfo &setCallee(Type *ResultTy, FunctionType *FuncTy, 128 MCSymbol *Target, ArgListTy &&ArgsList, 129 ImmutableCallSite &Call, 130 unsigned FixedArgs = ~0U) { 131 RetTy = ResultTy; 132 Callee = Call.getCalledValue(); 133 Symbol = Target; 134 135 IsInReg = Call.hasRetAttr(Attribute::InReg); 136 DoesNotReturn = Call.doesNotReturn(); 137 IsVarArg = FuncTy->isVarArg(); 138 IsReturnValueUsed = !Call.getInstruction()->use_empty(); 139 RetSExt = Call.hasRetAttr(Attribute::SExt); 140 RetZExt = Call.hasRetAttr(Attribute::ZExt); 141 142 CallConv = Call.getCallingConv(); 143 Args = std::move(ArgsList); 144 NumFixedArgs = (FixedArgs == ~0U) ? FuncTy->getNumParams() : FixedArgs; 145 146 CS = &Call; 147 148 return *this; 149 } 150 151 CallLoweringInfo &setCallee(CallingConv::ID CC, Type *ResultTy, 152 const Value *Target, ArgListTy &&ArgsList, 153 unsigned FixedArgs = ~0U) { 154 RetTy = ResultTy; 155 Callee = Target; 156 CallConv = CC; 157 Args = std::move(ArgsList); 158 NumFixedArgs = (FixedArgs == ~0U) ? Args.size() : FixedArgs; 159 return *this; 160 } 161 162 CallLoweringInfo &setCallee(const DataLayout &DL, MCContext &Ctx, 163 CallingConv::ID CC, Type *ResultTy, 164 StringRef Target, ArgListTy &&ArgsList, 165 unsigned FixedArgs = ~0U); 166 167 CallLoweringInfo &setCallee(CallingConv::ID CC, Type *ResultTy, 168 MCSymbol *Target, ArgListTy &&ArgsList, 169 unsigned FixedArgs = ~0U) { 170 RetTy = ResultTy; 171 Symbol = Target; 172 CallConv = CC; 173 Args = std::move(ArgsList); 174 NumFixedArgs = (FixedArgs == ~0U) ? Args.size() : FixedArgs; 175 return *this; 176 } 177 178 CallLoweringInfo &setTailCall(bool Value = true) { 179 IsTailCall = Value; 180 return *this; 181 } 182 183 CallLoweringInfo &setIsPatchPoint(bool Value = true) { 184 IsPatchPoint = Value; 185 return *this; 186 } 187 getArgsCallLoweringInfo188 ArgListTy &getArgs() { return Args; } 189 clearOutsCallLoweringInfo190 void clearOuts() { 191 OutVals.clear(); 192 OutFlags.clear(); 193 OutRegs.clear(); 194 } 195 clearInsCallLoweringInfo196 void clearIns() { 197 Ins.clear(); 198 InRegs.clear(); 199 } 200 }; 201 202 protected: 203 DenseMap<const Value *, unsigned> LocalValueMap; 204 FunctionLoweringInfo &FuncInfo; 205 MachineFunction *MF; 206 MachineRegisterInfo &MRI; 207 MachineFrameInfo &MFI; 208 MachineConstantPool &MCP; 209 DebugLoc DbgLoc; 210 const TargetMachine &TM; 211 const DataLayout &DL; 212 const TargetInstrInfo &TII; 213 const TargetLowering &TLI; 214 const TargetRegisterInfo &TRI; 215 const TargetLibraryInfo *LibInfo; 216 bool SkipTargetIndependentISel; 217 218 /// The position of the last instruction for materializing constants 219 /// for use in the current block. It resets to EmitStartPt when it makes sense 220 /// (for example, it's usually profitable to avoid function calls between the 221 /// definition and the use) 222 MachineInstr *LastLocalValue; 223 224 /// The top most instruction in the current block that is allowed for 225 /// emitting local variables. LastLocalValue resets to EmitStartPt when it 226 /// makes sense (for example, on function calls) 227 MachineInstr *EmitStartPt; 228 229 /// Last local value flush point. On a subsequent flush, no local value will 230 /// sink past this point. 231 MachineBasicBlock::iterator LastFlushPoint; 232 233 public: 234 virtual ~FastISel(); 235 236 /// Return the position of the last instruction emitted for 237 /// materializing constants for use in the current block. getLastLocalValue()238 MachineInstr *getLastLocalValue() { return LastLocalValue; } 239 240 /// Update the position of the last instruction emitted for 241 /// materializing constants for use in the current block. setLastLocalValue(MachineInstr * I)242 void setLastLocalValue(MachineInstr *I) { 243 EmitStartPt = I; 244 LastLocalValue = I; 245 } 246 247 /// Set the current block to which generated machine instructions will 248 /// be appended. 249 void startNewBlock(); 250 251 /// Flush the local value map and sink local values if possible. 252 void finishBasicBlock(); 253 254 /// Return current debug location information. getCurDebugLoc()255 DebugLoc getCurDebugLoc() const { return DbgLoc; } 256 257 /// Do "fast" instruction selection for function arguments and append 258 /// the machine instructions to the current block. Returns true when 259 /// successful. 260 bool lowerArguments(); 261 262 /// Do "fast" instruction selection for the given LLVM IR instruction 263 /// and append the generated machine instructions to the current block. 264 /// Returns true if selection was successful. 265 bool selectInstruction(const Instruction *I); 266 267 /// Do "fast" instruction selection for the given LLVM IR operator 268 /// (Instruction or ConstantExpr), and append generated machine instructions 269 /// to the current block. Return true if selection was successful. 270 bool selectOperator(const User *I, unsigned Opcode); 271 272 /// Create a virtual register and arrange for it to be assigned the 273 /// value for the given LLVM value. 274 unsigned getRegForValue(const Value *V); 275 276 /// Look up the value to see if its value is already cached in a 277 /// register. It may be defined by instructions across blocks or defined 278 /// locally. 279 unsigned lookUpRegForValue(const Value *V); 280 281 /// This is a wrapper around getRegForValue that also takes care of 282 /// truncating or sign-extending the given getelementptr index value. 283 std::pair<unsigned, bool> getRegForGEPIndex(const Value *Idx); 284 285 /// We're checking to see if we can fold \p LI into \p FoldInst. Note 286 /// that we could have a sequence where multiple LLVM IR instructions are 287 /// folded into the same machineinstr. For example we could have: 288 /// 289 /// A: x = load i32 *P 290 /// B: y = icmp A, 42 291 /// C: br y, ... 292 /// 293 /// In this scenario, \p LI is "A", and \p FoldInst is "C". We know about "B" 294 /// (and any other folded instructions) because it is between A and C. 295 /// 296 /// If we succeed folding, return true. 297 bool tryToFoldLoad(const LoadInst *LI, const Instruction *FoldInst); 298 299 /// The specified machine instr operand is a vreg, and that vreg is 300 /// being provided by the specified load instruction. If possible, try to 301 /// fold the load as an operand to the instruction, returning true if 302 /// possible. 303 /// 304 /// This method should be implemented by targets. tryToFoldLoadIntoMI(MachineInstr *,unsigned,const LoadInst *)305 virtual bool tryToFoldLoadIntoMI(MachineInstr * /*MI*/, unsigned /*OpNo*/, 306 const LoadInst * /*LI*/) { 307 return false; 308 } 309 310 /// Reset InsertPt to prepare for inserting instructions into the 311 /// current block. 312 void recomputeInsertPt(); 313 314 /// Remove all dead instructions between the I and E. 315 void removeDeadCode(MachineBasicBlock::iterator I, 316 MachineBasicBlock::iterator E); 317 318 struct SavePoint { 319 MachineBasicBlock::iterator InsertPt; 320 DebugLoc DL; 321 }; 322 323 /// Prepare InsertPt to begin inserting instructions into the local 324 /// value area and return the old insert position. 325 SavePoint enterLocalValueArea(); 326 327 /// Reset InsertPt to the given old insert position. 328 void leaveLocalValueArea(SavePoint Old); 329 330 protected: 331 explicit FastISel(FunctionLoweringInfo &FuncInfo, 332 const TargetLibraryInfo *LibInfo, 333 bool SkipTargetIndependentISel = false); 334 335 /// This method is called by target-independent code when the normal 336 /// FastISel process fails to select an instruction. This gives targets a 337 /// chance to emit code for anything that doesn't fit into FastISel's 338 /// framework. It returns true if it was successful. 339 virtual bool fastSelectInstruction(const Instruction *I) = 0; 340 341 /// This method is called by target-independent code to do target- 342 /// specific argument lowering. It returns true if it was successful. 343 virtual bool fastLowerArguments(); 344 345 /// This method is called by target-independent code to do target- 346 /// specific call lowering. It returns true if it was successful. 347 virtual bool fastLowerCall(CallLoweringInfo &CLI); 348 349 /// This method is called by target-independent code to do target- 350 /// specific intrinsic lowering. It returns true if it was successful. 351 virtual bool fastLowerIntrinsicCall(const IntrinsicInst *II); 352 353 /// This method is called by target-independent code to request that an 354 /// instruction with the given type and opcode be emitted. 355 virtual unsigned fastEmit_(MVT VT, MVT RetVT, unsigned Opcode); 356 357 /// This method is called by target-independent code to request that an 358 /// instruction with the given type, opcode, and register operand be emitted. 359 virtual unsigned fastEmit_r(MVT VT, MVT RetVT, unsigned Opcode, unsigned Op0, 360 bool Op0IsKill); 361 362 /// This method is called by target-independent code to request that an 363 /// instruction with the given type, opcode, and register operands be emitted. 364 virtual unsigned fastEmit_rr(MVT VT, MVT RetVT, unsigned Opcode, unsigned Op0, 365 bool Op0IsKill, unsigned Op1, bool Op1IsKill); 366 367 /// This method is called by target-independent code to request that an 368 /// instruction with the given type, opcode, and register and immediate 369 /// operands be emitted. 370 virtual unsigned fastEmit_ri(MVT VT, MVT RetVT, unsigned Opcode, unsigned Op0, 371 bool Op0IsKill, uint64_t Imm); 372 373 /// This method is a wrapper of fastEmit_ri. 374 /// 375 /// It first tries to emit an instruction with an immediate operand using 376 /// fastEmit_ri. If that fails, it materializes the immediate into a register 377 /// and try fastEmit_rr instead. 378 unsigned fastEmit_ri_(MVT VT, unsigned Opcode, unsigned Op0, bool Op0IsKill, 379 uint64_t Imm, MVT ImmType); 380 381 /// This method is called by target-independent code to request that an 382 /// instruction with the given type, opcode, and immediate operand be emitted. 383 virtual unsigned fastEmit_i(MVT VT, MVT RetVT, unsigned Opcode, uint64_t Imm); 384 385 /// This method is called by target-independent code to request that an 386 /// instruction with the given type, opcode, and floating-point immediate 387 /// operand be emitted. 388 virtual unsigned fastEmit_f(MVT VT, MVT RetVT, unsigned Opcode, 389 const ConstantFP *FPImm); 390 391 /// Emit a MachineInstr with no operands and a result register in the 392 /// given register class. 393 unsigned fastEmitInst_(unsigned MachineInstOpcode, 394 const TargetRegisterClass *RC); 395 396 /// Emit a MachineInstr with one register operand and a result register 397 /// in the given register class. 398 unsigned fastEmitInst_r(unsigned MachineInstOpcode, 399 const TargetRegisterClass *RC, unsigned Op0, 400 bool Op0IsKill); 401 402 /// Emit a MachineInstr with two register operands and a result 403 /// register in the given register class. 404 unsigned fastEmitInst_rr(unsigned MachineInstOpcode, 405 const TargetRegisterClass *RC, unsigned Op0, 406 bool Op0IsKill, unsigned Op1, bool Op1IsKill); 407 408 /// Emit a MachineInstr with three register operands and a result 409 /// register in the given register class. 410 unsigned fastEmitInst_rrr(unsigned MachineInstOpcode, 411 const TargetRegisterClass *RC, unsigned Op0, 412 bool Op0IsKill, unsigned Op1, bool Op1IsKill, 413 unsigned Op2, bool Op2IsKill); 414 415 /// Emit a MachineInstr with a register operand, an immediate, and a 416 /// result register in the given register class. 417 unsigned fastEmitInst_ri(unsigned MachineInstOpcode, 418 const TargetRegisterClass *RC, unsigned Op0, 419 bool Op0IsKill, uint64_t Imm); 420 421 /// Emit a MachineInstr with one register operand and two immediate 422 /// operands. 423 unsigned fastEmitInst_rii(unsigned MachineInstOpcode, 424 const TargetRegisterClass *RC, unsigned Op0, 425 bool Op0IsKill, uint64_t Imm1, uint64_t Imm2); 426 427 /// Emit a MachineInstr with a floating point immediate, and a result 428 /// register in the given register class. 429 unsigned fastEmitInst_f(unsigned MachineInstOpcode, 430 const TargetRegisterClass *RC, 431 const ConstantFP *FPImm); 432 433 /// Emit a MachineInstr with two register operands, an immediate, and a 434 /// result register in the given register class. 435 unsigned fastEmitInst_rri(unsigned MachineInstOpcode, 436 const TargetRegisterClass *RC, unsigned Op0, 437 bool Op0IsKill, unsigned Op1, bool Op1IsKill, 438 uint64_t Imm); 439 440 /// Emit a MachineInstr with a single immediate operand, and a result 441 /// register in the given register class. 442 unsigned fastEmitInst_i(unsigned MachineInstOpcode, 443 const TargetRegisterClass *RC, uint64_t Imm); 444 445 /// Emit a MachineInstr for an extract_subreg from a specified index of 446 /// a superregister to a specified type. 447 unsigned fastEmitInst_extractsubreg(MVT RetVT, unsigned Op0, bool Op0IsKill, 448 uint32_t Idx); 449 450 /// Emit MachineInstrs to compute the value of Op with all but the 451 /// least significant bit set to zero. 452 unsigned fastEmitZExtFromI1(MVT VT, unsigned Op0, bool Op0IsKill); 453 454 /// Emit an unconditional branch to the given block, unless it is the 455 /// immediate (fall-through) successor, and update the CFG. 456 void fastEmitBranch(MachineBasicBlock *MSucc, const DebugLoc &DbgLoc); 457 458 /// Emit an unconditional branch to \p FalseMBB, obtains the branch weight 459 /// and adds TrueMBB and FalseMBB to the successor list. 460 void finishCondBranch(const BasicBlock *BranchBB, MachineBasicBlock *TrueMBB, 461 MachineBasicBlock *FalseMBB); 462 463 /// Update the value map to include the new mapping for this 464 /// instruction, or insert an extra copy to get the result in a previous 465 /// determined register. 466 /// 467 /// NOTE: This is only necessary because we might select a block that uses a 468 /// value before we select the block that defines the value. It might be 469 /// possible to fix this by selecting blocks in reverse postorder. 470 void updateValueMap(const Value *I, unsigned Reg, unsigned NumRegs = 1); 471 472 unsigned createResultReg(const TargetRegisterClass *RC); 473 474 /// Try to constrain Op so that it is usable by argument OpNum of the 475 /// provided MCInstrDesc. If this fails, create a new virtual register in the 476 /// correct class and COPY the value there. 477 unsigned constrainOperandRegClass(const MCInstrDesc &II, unsigned Op, 478 unsigned OpNum); 479 480 /// Emit a constant in a register using target-specific logic, such as 481 /// constant pool loads. fastMaterializeConstant(const Constant * C)482 virtual unsigned fastMaterializeConstant(const Constant *C) { return 0; } 483 484 /// Emit an alloca address in a register using target-specific logic. fastMaterializeAlloca(const AllocaInst * C)485 virtual unsigned fastMaterializeAlloca(const AllocaInst *C) { return 0; } 486 487 /// Emit the floating-point constant +0.0 in a register using target- 488 /// specific logic. fastMaterializeFloatZero(const ConstantFP * CF)489 virtual unsigned fastMaterializeFloatZero(const ConstantFP *CF) { 490 return 0; 491 } 492 493 /// Check if \c Add is an add that can be safely folded into \c GEP. 494 /// 495 /// \c Add can be folded into \c GEP if: 496 /// - \c Add is an add, 497 /// - \c Add's size matches \c GEP's, 498 /// - \c Add is in the same basic block as \c GEP, and 499 /// - \c Add has a constant operand. 500 bool canFoldAddIntoGEP(const User *GEP, const Value *Add); 501 502 /// Test whether the given value has exactly one use. 503 bool hasTrivialKill(const Value *V); 504 505 /// Create a machine mem operand from the given instruction. 506 MachineMemOperand *createMachineMemOperandFor(const Instruction *I) const; 507 508 CmpInst::Predicate optimizeCmpPredicate(const CmpInst *CI) const; 509 510 bool lowerCallTo(const CallInst *CI, MCSymbol *Symbol, unsigned NumArgs); 511 bool lowerCallTo(const CallInst *CI, const char *SymName, 512 unsigned NumArgs); 513 bool lowerCallTo(CallLoweringInfo &CLI); 514 isCommutativeIntrinsic(IntrinsicInst const * II)515 bool isCommutativeIntrinsic(IntrinsicInst const *II) { 516 switch (II->getIntrinsicID()) { 517 case Intrinsic::sadd_with_overflow: 518 case Intrinsic::uadd_with_overflow: 519 case Intrinsic::smul_with_overflow: 520 case Intrinsic::umul_with_overflow: 521 return true; 522 default: 523 return false; 524 } 525 } 526 527 bool lowerCall(const CallInst *I); 528 /// Select and emit code for a binary operator instruction, which has 529 /// an opcode which directly corresponds to the given ISD opcode. 530 bool selectBinaryOp(const User *I, unsigned ISDOpcode); 531 bool selectFNeg(const User *I); 532 bool selectGetElementPtr(const User *I); 533 bool selectStackmap(const CallInst *I); 534 bool selectPatchpoint(const CallInst *I); 535 bool selectCall(const User *I); 536 bool selectIntrinsicCall(const IntrinsicInst *II); 537 bool selectBitCast(const User *I); 538 bool selectCast(const User *I, unsigned Opcode); 539 bool selectExtractValue(const User *U); 540 bool selectInsertValue(const User *I); 541 bool selectXRayCustomEvent(const CallInst *II); 542 bool selectXRayTypedEvent(const CallInst *II); 543 544 private: 545 /// Handle PHI nodes in successor blocks. 546 /// 547 /// Emit code to ensure constants are copied into registers when needed. 548 /// Remember the virtual registers that need to be added to the Machine PHI 549 /// nodes as input. We cannot just directly add them, because expansion might 550 /// result in multiple MBB's for one BB. As such, the start of the BB might 551 /// correspond to a different MBB than the end. 552 bool handlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB); 553 554 /// Helper for materializeRegForValue to materialize a constant in a 555 /// target-independent way. 556 unsigned materializeConstant(const Value *V, MVT VT); 557 558 /// Helper for getRegForVale. This function is called when the value 559 /// isn't already available in a register and must be materialized with new 560 /// instructions. 561 unsigned materializeRegForValue(const Value *V, MVT VT); 562 563 /// Clears LocalValueMap and moves the area for the new local variables 564 /// to the beginning of the block. It helps to avoid spilling cached variables 565 /// across heavy instructions like calls. 566 void flushLocalValueMap(); 567 568 /// Removes dead local value instructions after SavedLastLocalvalue. 569 void removeDeadLocalValueCode(MachineInstr *SavedLastLocalValue); 570 571 struct InstOrderMap { 572 DenseMap<MachineInstr *, unsigned> Orders; 573 MachineInstr *FirstTerminator = nullptr; 574 unsigned FirstTerminatorOrder = std::numeric_limits<unsigned>::max(); 575 576 void initialize(MachineBasicBlock *MBB, 577 MachineBasicBlock::iterator LastFlushPoint); 578 }; 579 580 /// Sinks the local value materialization instruction LocalMI to its first use 581 /// in the basic block, or deletes it if it is not used. 582 void sinkLocalValueMaterialization(MachineInstr &LocalMI, unsigned DefReg, 583 InstOrderMap &OrderMap); 584 585 /// Insertion point before trying to select the current instruction. 586 MachineBasicBlock::iterator SavedInsertPt; 587 588 /// Add a stackmap or patchpoint intrinsic call's live variable 589 /// operands to a stackmap or patchpoint machine instruction. 590 bool addStackMapLiveVars(SmallVectorImpl<MachineOperand> &Ops, 591 const CallInst *CI, unsigned StartIdx); 592 bool lowerCallOperands(const CallInst *CI, unsigned ArgIdx, unsigned NumArgs, 593 const Value *Callee, bool ForceRetVoidTy, 594 CallLoweringInfo &CLI); 595 }; 596 597 } // end namespace llvm 598 599 #endif // LLVM_CODEGEN_FASTISEL_H 600