1 //===- CFLAndersAliasAnalysis.cpp - Unification-based Alias Analysis ------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements a CFL-based, summary-based alias analysis algorithm. It
11 // differs from CFLSteensAliasAnalysis in its inclusion-based nature while
12 // CFLSteensAliasAnalysis is unification-based. This pass has worse performance
13 // than CFLSteensAliasAnalysis (the worst case complexity of
14 // CFLAndersAliasAnalysis is cubic, while the worst case complexity of
15 // CFLSteensAliasAnalysis is almost linear), but it is able to yield more
16 // precise analysis result. The precision of this analysis is roughly the same
17 // as that of an one level context-sensitive Andersen's algorithm.
18 //
19 // The algorithm used here is based on recursive state machine matching scheme
20 // proposed in "Demand-driven alias analysis for C" by Xin Zheng and Radu
21 // Rugina. The general idea is to extend the traditional transitive closure
22 // algorithm to perform CFL matching along the way: instead of recording
23 // "whether X is reachable from Y", we keep track of "whether X is reachable
24 // from Y at state Z", where the "state" field indicates where we are in the CFL
25 // matching process. To understand the matching better, it is advisable to have
26 // the state machine shown in Figure 3 of the paper available when reading the
27 // codes: all we do here is to selectively expand the transitive closure by
28 // discarding edges that are not recognized by the state machine.
29 //
30 // There are two differences between our current implementation and the one
31 // described in the paper:
32 // - Our algorithm eagerly computes all alias pairs after the CFLGraph is built,
33 // while in the paper the authors did the computation in a demand-driven
34 // fashion. We did not implement the demand-driven algorithm due to the
35 // additional coding complexity and higher memory profile, but if we found it
36 // necessary we may switch to it eventually.
37 // - In the paper the authors use a state machine that does not distinguish
38 // value reads from value writes. For example, if Y is reachable from X at state
39 // S3, it may be the case that X is written into Y, or it may be the case that
40 // there's a third value Z that writes into both X and Y. To make that
41 // distinction (which is crucial in building function summary as well as
42 // retrieving mod-ref info), we choose to duplicate some of the states in the
43 // paper's proposed state machine. The duplication does not change the set the
44 // machine accepts. Given a pair of reachable values, it only provides more
45 // detailed information on which value is being written into and which is being
46 // read from.
47 //
48 //===----------------------------------------------------------------------===//
49
50 // N.B. AliasAnalysis as a whole is phrased as a FunctionPass at the moment, and
51 // CFLAndersAA is interprocedural. This is *technically* A Bad Thing, because
52 // FunctionPasses are only allowed to inspect the Function that they're being
53 // run on. Realistically, this likely isn't a problem until we allow
54 // FunctionPasses to run concurrently.
55
56 #include "llvm/Analysis/CFLAndersAliasAnalysis.h"
57 #include "AliasAnalysisSummary.h"
58 #include "CFLGraph.h"
59 #include "llvm/ADT/DenseMap.h"
60 #include "llvm/ADT/DenseMapInfo.h"
61 #include "llvm/ADT/DenseSet.h"
62 #include "llvm/ADT/None.h"
63 #include "llvm/ADT/Optional.h"
64 #include "llvm/ADT/STLExtras.h"
65 #include "llvm/ADT/SmallVector.h"
66 #include "llvm/ADT/iterator_range.h"
67 #include "llvm/Analysis/AliasAnalysis.h"
68 #include "llvm/Analysis/MemoryLocation.h"
69 #include "llvm/IR/Argument.h"
70 #include "llvm/IR/Function.h"
71 #include "llvm/IR/PassManager.h"
72 #include "llvm/IR/Type.h"
73 #include "llvm/Pass.h"
74 #include "llvm/Support/Casting.h"
75 #include "llvm/Support/Compiler.h"
76 #include "llvm/Support/Debug.h"
77 #include "llvm/Support/raw_ostream.h"
78 #include <algorithm>
79 #include <bitset>
80 #include <cassert>
81 #include <cstddef>
82 #include <cstdint>
83 #include <functional>
84 #include <utility>
85 #include <vector>
86
87 using namespace llvm;
88 using namespace llvm::cflaa;
89
90 #define DEBUG_TYPE "cfl-anders-aa"
91
CFLAndersAAResult(const TargetLibraryInfo & TLI)92 CFLAndersAAResult::CFLAndersAAResult(const TargetLibraryInfo &TLI) : TLI(TLI) {}
CFLAndersAAResult(CFLAndersAAResult && RHS)93 CFLAndersAAResult::CFLAndersAAResult(CFLAndersAAResult &&RHS)
94 : AAResultBase(std::move(RHS)), TLI(RHS.TLI) {}
95 CFLAndersAAResult::~CFLAndersAAResult() = default;
96
97 namespace {
98
99 enum class MatchState : uint8_t {
100 // The following state represents S1 in the paper.
101 FlowFromReadOnly = 0,
102 // The following two states together represent S2 in the paper.
103 // The 'NoReadWrite' suffix indicates that there exists an alias path that
104 // does not contain assignment and reverse assignment edges.
105 // The 'ReadOnly' suffix indicates that there exists an alias path that
106 // contains reverse assignment edges only.
107 FlowFromMemAliasNoReadWrite,
108 FlowFromMemAliasReadOnly,
109 // The following two states together represent S3 in the paper.
110 // The 'WriteOnly' suffix indicates that there exists an alias path that
111 // contains assignment edges only.
112 // The 'ReadWrite' suffix indicates that there exists an alias path that
113 // contains both assignment and reverse assignment edges. Note that if X and Y
114 // are reachable at 'ReadWrite' state, it does NOT mean X is both read from
115 // and written to Y. Instead, it means that a third value Z is written to both
116 // X and Y.
117 FlowToWriteOnly,
118 FlowToReadWrite,
119 // The following two states together represent S4 in the paper.
120 FlowToMemAliasWriteOnly,
121 FlowToMemAliasReadWrite,
122 };
123
124 using StateSet = std::bitset<7>;
125
126 const unsigned ReadOnlyStateMask =
127 (1U << static_cast<uint8_t>(MatchState::FlowFromReadOnly)) |
128 (1U << static_cast<uint8_t>(MatchState::FlowFromMemAliasReadOnly));
129 const unsigned WriteOnlyStateMask =
130 (1U << static_cast<uint8_t>(MatchState::FlowToWriteOnly)) |
131 (1U << static_cast<uint8_t>(MatchState::FlowToMemAliasWriteOnly));
132
133 // A pair that consists of a value and an offset
134 struct OffsetValue {
135 const Value *Val;
136 int64_t Offset;
137 };
138
operator ==(OffsetValue LHS,OffsetValue RHS)139 bool operator==(OffsetValue LHS, OffsetValue RHS) {
140 return LHS.Val == RHS.Val && LHS.Offset == RHS.Offset;
141 }
operator <(OffsetValue LHS,OffsetValue RHS)142 bool operator<(OffsetValue LHS, OffsetValue RHS) {
143 return std::less<const Value *>()(LHS.Val, RHS.Val) ||
144 (LHS.Val == RHS.Val && LHS.Offset < RHS.Offset);
145 }
146
147 // A pair that consists of an InstantiatedValue and an offset
148 struct OffsetInstantiatedValue {
149 InstantiatedValue IVal;
150 int64_t Offset;
151 };
152
operator ==(OffsetInstantiatedValue LHS,OffsetInstantiatedValue RHS)153 bool operator==(OffsetInstantiatedValue LHS, OffsetInstantiatedValue RHS) {
154 return LHS.IVal == RHS.IVal && LHS.Offset == RHS.Offset;
155 }
156
157 // We use ReachabilitySet to keep track of value aliases (The nonterminal "V" in
158 // the paper) during the analysis.
159 class ReachabilitySet {
160 using ValueStateMap = DenseMap<InstantiatedValue, StateSet>;
161 using ValueReachMap = DenseMap<InstantiatedValue, ValueStateMap>;
162
163 ValueReachMap ReachMap;
164
165 public:
166 using const_valuestate_iterator = ValueStateMap::const_iterator;
167 using const_value_iterator = ValueReachMap::const_iterator;
168
169 // Insert edge 'From->To' at state 'State'
insert(InstantiatedValue From,InstantiatedValue To,MatchState State)170 bool insert(InstantiatedValue From, InstantiatedValue To, MatchState State) {
171 assert(From != To);
172 auto &States = ReachMap[To][From];
173 auto Idx = static_cast<size_t>(State);
174 if (!States.test(Idx)) {
175 States.set(Idx);
176 return true;
177 }
178 return false;
179 }
180
181 // Return the set of all ('From', 'State') pair for a given node 'To'
182 iterator_range<const_valuestate_iterator>
reachableValueAliases(InstantiatedValue V) const183 reachableValueAliases(InstantiatedValue V) const {
184 auto Itr = ReachMap.find(V);
185 if (Itr == ReachMap.end())
186 return make_range<const_valuestate_iterator>(const_valuestate_iterator(),
187 const_valuestate_iterator());
188 return make_range<const_valuestate_iterator>(Itr->second.begin(),
189 Itr->second.end());
190 }
191
value_mappings() const192 iterator_range<const_value_iterator> value_mappings() const {
193 return make_range<const_value_iterator>(ReachMap.begin(), ReachMap.end());
194 }
195 };
196
197 // We use AliasMemSet to keep track of all memory aliases (the nonterminal "M"
198 // in the paper) during the analysis.
199 class AliasMemSet {
200 using MemSet = DenseSet<InstantiatedValue>;
201 using MemMapType = DenseMap<InstantiatedValue, MemSet>;
202
203 MemMapType MemMap;
204
205 public:
206 using const_mem_iterator = MemSet::const_iterator;
207
insert(InstantiatedValue LHS,InstantiatedValue RHS)208 bool insert(InstantiatedValue LHS, InstantiatedValue RHS) {
209 // Top-level values can never be memory aliases because one cannot take the
210 // addresses of them
211 assert(LHS.DerefLevel > 0 && RHS.DerefLevel > 0);
212 return MemMap[LHS].insert(RHS).second;
213 }
214
getMemoryAliases(InstantiatedValue V) const215 const MemSet *getMemoryAliases(InstantiatedValue V) const {
216 auto Itr = MemMap.find(V);
217 if (Itr == MemMap.end())
218 return nullptr;
219 return &Itr->second;
220 }
221 };
222
223 // We use AliasAttrMap to keep track of the AliasAttr of each node.
224 class AliasAttrMap {
225 using MapType = DenseMap<InstantiatedValue, AliasAttrs>;
226
227 MapType AttrMap;
228
229 public:
230 using const_iterator = MapType::const_iterator;
231
add(InstantiatedValue V,AliasAttrs Attr)232 bool add(InstantiatedValue V, AliasAttrs Attr) {
233 auto &OldAttr = AttrMap[V];
234 auto NewAttr = OldAttr | Attr;
235 if (OldAttr == NewAttr)
236 return false;
237 OldAttr = NewAttr;
238 return true;
239 }
240
getAttrs(InstantiatedValue V) const241 AliasAttrs getAttrs(InstantiatedValue V) const {
242 AliasAttrs Attr;
243 auto Itr = AttrMap.find(V);
244 if (Itr != AttrMap.end())
245 Attr = Itr->second;
246 return Attr;
247 }
248
mappings() const249 iterator_range<const_iterator> mappings() const {
250 return make_range<const_iterator>(AttrMap.begin(), AttrMap.end());
251 }
252 };
253
254 struct WorkListItem {
255 InstantiatedValue From;
256 InstantiatedValue To;
257 MatchState State;
258 };
259
260 struct ValueSummary {
261 struct Record {
262 InterfaceValue IValue;
263 unsigned DerefLevel;
264 };
265 SmallVector<Record, 4> FromRecords, ToRecords;
266 };
267
268 } // end anonymous namespace
269
270 namespace llvm {
271
272 // Specialize DenseMapInfo for OffsetValue.
273 template <> struct DenseMapInfo<OffsetValue> {
getEmptyKeyllvm::DenseMapInfo274 static OffsetValue getEmptyKey() {
275 return OffsetValue{DenseMapInfo<const Value *>::getEmptyKey(),
276 DenseMapInfo<int64_t>::getEmptyKey()};
277 }
278
getTombstoneKeyllvm::DenseMapInfo279 static OffsetValue getTombstoneKey() {
280 return OffsetValue{DenseMapInfo<const Value *>::getTombstoneKey(),
281 DenseMapInfo<int64_t>::getEmptyKey()};
282 }
283
getHashValuellvm::DenseMapInfo284 static unsigned getHashValue(const OffsetValue &OVal) {
285 return DenseMapInfo<std::pair<const Value *, int64_t>>::getHashValue(
286 std::make_pair(OVal.Val, OVal.Offset));
287 }
288
isEqualllvm::DenseMapInfo289 static bool isEqual(const OffsetValue &LHS, const OffsetValue &RHS) {
290 return LHS == RHS;
291 }
292 };
293
294 // Specialize DenseMapInfo for OffsetInstantiatedValue.
295 template <> struct DenseMapInfo<OffsetInstantiatedValue> {
getEmptyKeyllvm::DenseMapInfo296 static OffsetInstantiatedValue getEmptyKey() {
297 return OffsetInstantiatedValue{
298 DenseMapInfo<InstantiatedValue>::getEmptyKey(),
299 DenseMapInfo<int64_t>::getEmptyKey()};
300 }
301
getTombstoneKeyllvm::DenseMapInfo302 static OffsetInstantiatedValue getTombstoneKey() {
303 return OffsetInstantiatedValue{
304 DenseMapInfo<InstantiatedValue>::getTombstoneKey(),
305 DenseMapInfo<int64_t>::getEmptyKey()};
306 }
307
getHashValuellvm::DenseMapInfo308 static unsigned getHashValue(const OffsetInstantiatedValue &OVal) {
309 return DenseMapInfo<std::pair<InstantiatedValue, int64_t>>::getHashValue(
310 std::make_pair(OVal.IVal, OVal.Offset));
311 }
312
isEqualllvm::DenseMapInfo313 static bool isEqual(const OffsetInstantiatedValue &LHS,
314 const OffsetInstantiatedValue &RHS) {
315 return LHS == RHS;
316 }
317 };
318
319 } // end namespace llvm
320
321 class CFLAndersAAResult::FunctionInfo {
322 /// Map a value to other values that may alias it
323 /// Since the alias relation is symmetric, to save some space we assume values
324 /// are properly ordered: if a and b alias each other, and a < b, then b is in
325 /// AliasMap[a] but not vice versa.
326 DenseMap<const Value *, std::vector<OffsetValue>> AliasMap;
327
328 /// Map a value to its corresponding AliasAttrs
329 DenseMap<const Value *, AliasAttrs> AttrMap;
330
331 /// Summary of externally visible effects.
332 AliasSummary Summary;
333
334 Optional<AliasAttrs> getAttrs(const Value *) const;
335
336 public:
337 FunctionInfo(const Function &, const SmallVectorImpl<Value *> &,
338 const ReachabilitySet &, const AliasAttrMap &);
339
340 bool mayAlias(const Value *, LocationSize, const Value *, LocationSize) const;
getAliasSummary() const341 const AliasSummary &getAliasSummary() const { return Summary; }
342 };
343
hasReadOnlyState(StateSet Set)344 static bool hasReadOnlyState(StateSet Set) {
345 return (Set & StateSet(ReadOnlyStateMask)).any();
346 }
347
hasWriteOnlyState(StateSet Set)348 static bool hasWriteOnlyState(StateSet Set) {
349 return (Set & StateSet(WriteOnlyStateMask)).any();
350 }
351
352 static Optional<InterfaceValue>
getInterfaceValue(InstantiatedValue IValue,const SmallVectorImpl<Value * > & RetVals)353 getInterfaceValue(InstantiatedValue IValue,
354 const SmallVectorImpl<Value *> &RetVals) {
355 auto Val = IValue.Val;
356
357 Optional<unsigned> Index;
358 if (auto Arg = dyn_cast<Argument>(Val))
359 Index = Arg->getArgNo() + 1;
360 else if (is_contained(RetVals, Val))
361 Index = 0;
362
363 if (Index)
364 return InterfaceValue{*Index, IValue.DerefLevel};
365 return None;
366 }
367
populateAttrMap(DenseMap<const Value *,AliasAttrs> & AttrMap,const AliasAttrMap & AMap)368 static void populateAttrMap(DenseMap<const Value *, AliasAttrs> &AttrMap,
369 const AliasAttrMap &AMap) {
370 for (const auto &Mapping : AMap.mappings()) {
371 auto IVal = Mapping.first;
372
373 // Insert IVal into the map
374 auto &Attr = AttrMap[IVal.Val];
375 // AttrMap only cares about top-level values
376 if (IVal.DerefLevel == 0)
377 Attr |= Mapping.second;
378 }
379 }
380
381 static void
populateAliasMap(DenseMap<const Value *,std::vector<OffsetValue>> & AliasMap,const ReachabilitySet & ReachSet)382 populateAliasMap(DenseMap<const Value *, std::vector<OffsetValue>> &AliasMap,
383 const ReachabilitySet &ReachSet) {
384 for (const auto &OuterMapping : ReachSet.value_mappings()) {
385 // AliasMap only cares about top-level values
386 if (OuterMapping.first.DerefLevel > 0)
387 continue;
388
389 auto Val = OuterMapping.first.Val;
390 auto &AliasList = AliasMap[Val];
391 for (const auto &InnerMapping : OuterMapping.second) {
392 // Again, AliasMap only cares about top-level values
393 if (InnerMapping.first.DerefLevel == 0)
394 AliasList.push_back(OffsetValue{InnerMapping.first.Val, UnknownOffset});
395 }
396
397 // Sort AliasList for faster lookup
398 llvm::sort(AliasList.begin(), AliasList.end());
399 }
400 }
401
populateExternalRelations(SmallVectorImpl<ExternalRelation> & ExtRelations,const Function & Fn,const SmallVectorImpl<Value * > & RetVals,const ReachabilitySet & ReachSet)402 static void populateExternalRelations(
403 SmallVectorImpl<ExternalRelation> &ExtRelations, const Function &Fn,
404 const SmallVectorImpl<Value *> &RetVals, const ReachabilitySet &ReachSet) {
405 // If a function only returns one of its argument X, then X will be both an
406 // argument and a return value at the same time. This is an edge case that
407 // needs special handling here.
408 for (const auto &Arg : Fn.args()) {
409 if (is_contained(RetVals, &Arg)) {
410 auto ArgVal = InterfaceValue{Arg.getArgNo() + 1, 0};
411 auto RetVal = InterfaceValue{0, 0};
412 ExtRelations.push_back(ExternalRelation{ArgVal, RetVal, 0});
413 }
414 }
415
416 // Below is the core summary construction logic.
417 // A naive solution of adding only the value aliases that are parameters or
418 // return values in ReachSet to the summary won't work: It is possible that a
419 // parameter P is written into an intermediate value I, and the function
420 // subsequently returns *I. In that case, *I is does not value alias anything
421 // in ReachSet, and the naive solution will miss a summary edge from (P, 1) to
422 // (I, 1).
423 // To account for the aforementioned case, we need to check each non-parameter
424 // and non-return value for the possibility of acting as an intermediate.
425 // 'ValueMap' here records, for each value, which InterfaceValues read from or
426 // write into it. If both the read list and the write list of a given value
427 // are non-empty, we know that a particular value is an intermidate and we
428 // need to add summary edges from the writes to the reads.
429 DenseMap<Value *, ValueSummary> ValueMap;
430 for (const auto &OuterMapping : ReachSet.value_mappings()) {
431 if (auto Dst = getInterfaceValue(OuterMapping.first, RetVals)) {
432 for (const auto &InnerMapping : OuterMapping.second) {
433 // If Src is a param/return value, we get a same-level assignment.
434 if (auto Src = getInterfaceValue(InnerMapping.first, RetVals)) {
435 // This may happen if both Dst and Src are return values
436 if (*Dst == *Src)
437 continue;
438
439 if (hasReadOnlyState(InnerMapping.second))
440 ExtRelations.push_back(ExternalRelation{*Dst, *Src, UnknownOffset});
441 // No need to check for WriteOnly state, since ReachSet is symmetric
442 } else {
443 // If Src is not a param/return, add it to ValueMap
444 auto SrcIVal = InnerMapping.first;
445 if (hasReadOnlyState(InnerMapping.second))
446 ValueMap[SrcIVal.Val].FromRecords.push_back(
447 ValueSummary::Record{*Dst, SrcIVal.DerefLevel});
448 if (hasWriteOnlyState(InnerMapping.second))
449 ValueMap[SrcIVal.Val].ToRecords.push_back(
450 ValueSummary::Record{*Dst, SrcIVal.DerefLevel});
451 }
452 }
453 }
454 }
455
456 for (const auto &Mapping : ValueMap) {
457 for (const auto &FromRecord : Mapping.second.FromRecords) {
458 for (const auto &ToRecord : Mapping.second.ToRecords) {
459 auto ToLevel = ToRecord.DerefLevel;
460 auto FromLevel = FromRecord.DerefLevel;
461 // Same-level assignments should have already been processed by now
462 if (ToLevel == FromLevel)
463 continue;
464
465 auto SrcIndex = FromRecord.IValue.Index;
466 auto SrcLevel = FromRecord.IValue.DerefLevel;
467 auto DstIndex = ToRecord.IValue.Index;
468 auto DstLevel = ToRecord.IValue.DerefLevel;
469 if (ToLevel > FromLevel)
470 SrcLevel += ToLevel - FromLevel;
471 else
472 DstLevel += FromLevel - ToLevel;
473
474 ExtRelations.push_back(ExternalRelation{
475 InterfaceValue{SrcIndex, SrcLevel},
476 InterfaceValue{DstIndex, DstLevel}, UnknownOffset});
477 }
478 }
479 }
480
481 // Remove duplicates in ExtRelations
482 llvm::sort(ExtRelations.begin(), ExtRelations.end());
483 ExtRelations.erase(std::unique(ExtRelations.begin(), ExtRelations.end()),
484 ExtRelations.end());
485 }
486
populateExternalAttributes(SmallVectorImpl<ExternalAttribute> & ExtAttributes,const Function & Fn,const SmallVectorImpl<Value * > & RetVals,const AliasAttrMap & AMap)487 static void populateExternalAttributes(
488 SmallVectorImpl<ExternalAttribute> &ExtAttributes, const Function &Fn,
489 const SmallVectorImpl<Value *> &RetVals, const AliasAttrMap &AMap) {
490 for (const auto &Mapping : AMap.mappings()) {
491 if (auto IVal = getInterfaceValue(Mapping.first, RetVals)) {
492 auto Attr = getExternallyVisibleAttrs(Mapping.second);
493 if (Attr.any())
494 ExtAttributes.push_back(ExternalAttribute{*IVal, Attr});
495 }
496 }
497 }
498
FunctionInfo(const Function & Fn,const SmallVectorImpl<Value * > & RetVals,const ReachabilitySet & ReachSet,const AliasAttrMap & AMap)499 CFLAndersAAResult::FunctionInfo::FunctionInfo(
500 const Function &Fn, const SmallVectorImpl<Value *> &RetVals,
501 const ReachabilitySet &ReachSet, const AliasAttrMap &AMap) {
502 populateAttrMap(AttrMap, AMap);
503 populateExternalAttributes(Summary.RetParamAttributes, Fn, RetVals, AMap);
504 populateAliasMap(AliasMap, ReachSet);
505 populateExternalRelations(Summary.RetParamRelations, Fn, RetVals, ReachSet);
506 }
507
508 Optional<AliasAttrs>
getAttrs(const Value * V) const509 CFLAndersAAResult::FunctionInfo::getAttrs(const Value *V) const {
510 assert(V != nullptr);
511
512 auto Itr = AttrMap.find(V);
513 if (Itr != AttrMap.end())
514 return Itr->second;
515 return None;
516 }
517
mayAlias(const Value * LHS,LocationSize LHSSize,const Value * RHS,LocationSize RHSSize) const518 bool CFLAndersAAResult::FunctionInfo::mayAlias(const Value *LHS,
519 LocationSize LHSSize,
520 const Value *RHS,
521 LocationSize RHSSize) const {
522 assert(LHS && RHS);
523
524 // Check if we've seen LHS and RHS before. Sometimes LHS or RHS can be created
525 // after the analysis gets executed, and we want to be conservative in those
526 // cases.
527 auto MaybeAttrsA = getAttrs(LHS);
528 auto MaybeAttrsB = getAttrs(RHS);
529 if (!MaybeAttrsA || !MaybeAttrsB)
530 return true;
531
532 // Check AliasAttrs before AliasMap lookup since it's cheaper
533 auto AttrsA = *MaybeAttrsA;
534 auto AttrsB = *MaybeAttrsB;
535 if (hasUnknownOrCallerAttr(AttrsA))
536 return AttrsB.any();
537 if (hasUnknownOrCallerAttr(AttrsB))
538 return AttrsA.any();
539 if (isGlobalOrArgAttr(AttrsA))
540 return isGlobalOrArgAttr(AttrsB);
541 if (isGlobalOrArgAttr(AttrsB))
542 return isGlobalOrArgAttr(AttrsA);
543
544 // At this point both LHS and RHS should point to locally allocated objects
545
546 auto Itr = AliasMap.find(LHS);
547 if (Itr != AliasMap.end()) {
548
549 // Find out all (X, Offset) where X == RHS
550 auto Comparator = [](OffsetValue LHS, OffsetValue RHS) {
551 return std::less<const Value *>()(LHS.Val, RHS.Val);
552 };
553 #ifdef EXPENSIVE_CHECKS
554 assert(std::is_sorted(Itr->second.begin(), Itr->second.end(), Comparator));
555 #endif
556 auto RangePair = std::equal_range(Itr->second.begin(), Itr->second.end(),
557 OffsetValue{RHS, 0}, Comparator);
558
559 if (RangePair.first != RangePair.second) {
560 // Be conservative about UnknownSize
561 if (LHSSize == MemoryLocation::UnknownSize ||
562 RHSSize == MemoryLocation::UnknownSize)
563 return true;
564
565 for (const auto &OVal : make_range(RangePair)) {
566 // Be conservative about UnknownOffset
567 if (OVal.Offset == UnknownOffset)
568 return true;
569
570 // We know that LHS aliases (RHS + OVal.Offset) if the control flow
571 // reaches here. The may-alias query essentially becomes integer
572 // range-overlap queries over two ranges [OVal.Offset, OVal.Offset +
573 // LHSSize) and [0, RHSSize).
574
575 // Try to be conservative on super large offsets
576 if (LLVM_UNLIKELY(LHSSize > INT64_MAX || RHSSize > INT64_MAX))
577 return true;
578
579 auto LHSStart = OVal.Offset;
580 // FIXME: Do we need to guard against integer overflow?
581 auto LHSEnd = OVal.Offset + static_cast<int64_t>(LHSSize);
582 auto RHSStart = 0;
583 auto RHSEnd = static_cast<int64_t>(RHSSize);
584 if (LHSEnd > RHSStart && LHSStart < RHSEnd)
585 return true;
586 }
587 }
588 }
589
590 return false;
591 }
592
propagate(InstantiatedValue From,InstantiatedValue To,MatchState State,ReachabilitySet & ReachSet,std::vector<WorkListItem> & WorkList)593 static void propagate(InstantiatedValue From, InstantiatedValue To,
594 MatchState State, ReachabilitySet &ReachSet,
595 std::vector<WorkListItem> &WorkList) {
596 if (From == To)
597 return;
598 if (ReachSet.insert(From, To, State))
599 WorkList.push_back(WorkListItem{From, To, State});
600 }
601
initializeWorkList(std::vector<WorkListItem> & WorkList,ReachabilitySet & ReachSet,const CFLGraph & Graph)602 static void initializeWorkList(std::vector<WorkListItem> &WorkList,
603 ReachabilitySet &ReachSet,
604 const CFLGraph &Graph) {
605 for (const auto &Mapping : Graph.value_mappings()) {
606 auto Val = Mapping.first;
607 auto &ValueInfo = Mapping.second;
608 assert(ValueInfo.getNumLevels() > 0);
609
610 // Insert all immediate assignment neighbors to the worklist
611 for (unsigned I = 0, E = ValueInfo.getNumLevels(); I < E; ++I) {
612 auto Src = InstantiatedValue{Val, I};
613 // If there's an assignment edge from X to Y, it means Y is reachable from
614 // X at S2 and X is reachable from Y at S1
615 for (auto &Edge : ValueInfo.getNodeInfoAtLevel(I).Edges) {
616 propagate(Edge.Other, Src, MatchState::FlowFromReadOnly, ReachSet,
617 WorkList);
618 propagate(Src, Edge.Other, MatchState::FlowToWriteOnly, ReachSet,
619 WorkList);
620 }
621 }
622 }
623 }
624
getNodeBelow(const CFLGraph & Graph,InstantiatedValue V)625 static Optional<InstantiatedValue> getNodeBelow(const CFLGraph &Graph,
626 InstantiatedValue V) {
627 auto NodeBelow = InstantiatedValue{V.Val, V.DerefLevel + 1};
628 if (Graph.getNode(NodeBelow))
629 return NodeBelow;
630 return None;
631 }
632
processWorkListItem(const WorkListItem & Item,const CFLGraph & Graph,ReachabilitySet & ReachSet,AliasMemSet & MemSet,std::vector<WorkListItem> & WorkList)633 static void processWorkListItem(const WorkListItem &Item, const CFLGraph &Graph,
634 ReachabilitySet &ReachSet, AliasMemSet &MemSet,
635 std::vector<WorkListItem> &WorkList) {
636 auto FromNode = Item.From;
637 auto ToNode = Item.To;
638
639 auto NodeInfo = Graph.getNode(ToNode);
640 assert(NodeInfo != nullptr);
641
642 // TODO: propagate field offsets
643
644 // FIXME: Here is a neat trick we can do: since both ReachSet and MemSet holds
645 // relations that are symmetric, we could actually cut the storage by half by
646 // sorting FromNode and ToNode before insertion happens.
647
648 // The newly added value alias pair may potentially generate more memory
649 // alias pairs. Check for them here.
650 auto FromNodeBelow = getNodeBelow(Graph, FromNode);
651 auto ToNodeBelow = getNodeBelow(Graph, ToNode);
652 if (FromNodeBelow && ToNodeBelow &&
653 MemSet.insert(*FromNodeBelow, *ToNodeBelow)) {
654 propagate(*FromNodeBelow, *ToNodeBelow,
655 MatchState::FlowFromMemAliasNoReadWrite, ReachSet, WorkList);
656 for (const auto &Mapping : ReachSet.reachableValueAliases(*FromNodeBelow)) {
657 auto Src = Mapping.first;
658 auto MemAliasPropagate = [&](MatchState FromState, MatchState ToState) {
659 if (Mapping.second.test(static_cast<size_t>(FromState)))
660 propagate(Src, *ToNodeBelow, ToState, ReachSet, WorkList);
661 };
662
663 MemAliasPropagate(MatchState::FlowFromReadOnly,
664 MatchState::FlowFromMemAliasReadOnly);
665 MemAliasPropagate(MatchState::FlowToWriteOnly,
666 MatchState::FlowToMemAliasWriteOnly);
667 MemAliasPropagate(MatchState::FlowToReadWrite,
668 MatchState::FlowToMemAliasReadWrite);
669 }
670 }
671
672 // This is the core of the state machine walking algorithm. We expand ReachSet
673 // based on which state we are at (which in turn dictates what edges we
674 // should examine)
675 // From a high-level point of view, the state machine here guarantees two
676 // properties:
677 // - If *X and *Y are memory aliases, then X and Y are value aliases
678 // - If Y is an alias of X, then reverse assignment edges (if there is any)
679 // should precede any assignment edges on the path from X to Y.
680 auto NextAssignState = [&](MatchState State) {
681 for (const auto &AssignEdge : NodeInfo->Edges)
682 propagate(FromNode, AssignEdge.Other, State, ReachSet, WorkList);
683 };
684 auto NextRevAssignState = [&](MatchState State) {
685 for (const auto &RevAssignEdge : NodeInfo->ReverseEdges)
686 propagate(FromNode, RevAssignEdge.Other, State, ReachSet, WorkList);
687 };
688 auto NextMemState = [&](MatchState State) {
689 if (auto AliasSet = MemSet.getMemoryAliases(ToNode)) {
690 for (const auto &MemAlias : *AliasSet)
691 propagate(FromNode, MemAlias, State, ReachSet, WorkList);
692 }
693 };
694
695 switch (Item.State) {
696 case MatchState::FlowFromReadOnly:
697 NextRevAssignState(MatchState::FlowFromReadOnly);
698 NextAssignState(MatchState::FlowToReadWrite);
699 NextMemState(MatchState::FlowFromMemAliasReadOnly);
700 break;
701
702 case MatchState::FlowFromMemAliasNoReadWrite:
703 NextRevAssignState(MatchState::FlowFromReadOnly);
704 NextAssignState(MatchState::FlowToWriteOnly);
705 break;
706
707 case MatchState::FlowFromMemAliasReadOnly:
708 NextRevAssignState(MatchState::FlowFromReadOnly);
709 NextAssignState(MatchState::FlowToReadWrite);
710 break;
711
712 case MatchState::FlowToWriteOnly:
713 NextAssignState(MatchState::FlowToWriteOnly);
714 NextMemState(MatchState::FlowToMemAliasWriteOnly);
715 break;
716
717 case MatchState::FlowToReadWrite:
718 NextAssignState(MatchState::FlowToReadWrite);
719 NextMemState(MatchState::FlowToMemAliasReadWrite);
720 break;
721
722 case MatchState::FlowToMemAliasWriteOnly:
723 NextAssignState(MatchState::FlowToWriteOnly);
724 break;
725
726 case MatchState::FlowToMemAliasReadWrite:
727 NextAssignState(MatchState::FlowToReadWrite);
728 break;
729 }
730 }
731
buildAttrMap(const CFLGraph & Graph,const ReachabilitySet & ReachSet)732 static AliasAttrMap buildAttrMap(const CFLGraph &Graph,
733 const ReachabilitySet &ReachSet) {
734 AliasAttrMap AttrMap;
735 std::vector<InstantiatedValue> WorkList, NextList;
736
737 // Initialize each node with its original AliasAttrs in CFLGraph
738 for (const auto &Mapping : Graph.value_mappings()) {
739 auto Val = Mapping.first;
740 auto &ValueInfo = Mapping.second;
741 for (unsigned I = 0, E = ValueInfo.getNumLevels(); I < E; ++I) {
742 auto Node = InstantiatedValue{Val, I};
743 AttrMap.add(Node, ValueInfo.getNodeInfoAtLevel(I).Attr);
744 WorkList.push_back(Node);
745 }
746 }
747
748 while (!WorkList.empty()) {
749 for (const auto &Dst : WorkList) {
750 auto DstAttr = AttrMap.getAttrs(Dst);
751 if (DstAttr.none())
752 continue;
753
754 // Propagate attr on the same level
755 for (const auto &Mapping : ReachSet.reachableValueAliases(Dst)) {
756 auto Src = Mapping.first;
757 if (AttrMap.add(Src, DstAttr))
758 NextList.push_back(Src);
759 }
760
761 // Propagate attr to the levels below
762 auto DstBelow = getNodeBelow(Graph, Dst);
763 while (DstBelow) {
764 if (AttrMap.add(*DstBelow, DstAttr)) {
765 NextList.push_back(*DstBelow);
766 break;
767 }
768 DstBelow = getNodeBelow(Graph, *DstBelow);
769 }
770 }
771 WorkList.swap(NextList);
772 NextList.clear();
773 }
774
775 return AttrMap;
776 }
777
778 CFLAndersAAResult::FunctionInfo
buildInfoFrom(const Function & Fn)779 CFLAndersAAResult::buildInfoFrom(const Function &Fn) {
780 CFLGraphBuilder<CFLAndersAAResult> GraphBuilder(
781 *this, TLI,
782 // Cast away the constness here due to GraphBuilder's API requirement
783 const_cast<Function &>(Fn));
784 auto &Graph = GraphBuilder.getCFLGraph();
785
786 ReachabilitySet ReachSet;
787 AliasMemSet MemSet;
788
789 std::vector<WorkListItem> WorkList, NextList;
790 initializeWorkList(WorkList, ReachSet, Graph);
791 // TODO: make sure we don't stop before the fix point is reached
792 while (!WorkList.empty()) {
793 for (const auto &Item : WorkList)
794 processWorkListItem(Item, Graph, ReachSet, MemSet, NextList);
795
796 NextList.swap(WorkList);
797 NextList.clear();
798 }
799
800 // Now that we have all the reachability info, propagate AliasAttrs according
801 // to it
802 auto IValueAttrMap = buildAttrMap(Graph, ReachSet);
803
804 return FunctionInfo(Fn, GraphBuilder.getReturnValues(), ReachSet,
805 std::move(IValueAttrMap));
806 }
807
scan(const Function & Fn)808 void CFLAndersAAResult::scan(const Function &Fn) {
809 auto InsertPair = Cache.insert(std::make_pair(&Fn, Optional<FunctionInfo>()));
810 (void)InsertPair;
811 assert(InsertPair.second &&
812 "Trying to scan a function that has already been cached");
813
814 // Note that we can't do Cache[Fn] = buildSetsFrom(Fn) here: the function call
815 // may get evaluated after operator[], potentially triggering a DenseMap
816 // resize and invalidating the reference returned by operator[]
817 auto FunInfo = buildInfoFrom(Fn);
818 Cache[&Fn] = std::move(FunInfo);
819 Handles.emplace_front(const_cast<Function *>(&Fn), this);
820 }
821
evict(const Function * Fn)822 void CFLAndersAAResult::evict(const Function *Fn) { Cache.erase(Fn); }
823
824 const Optional<CFLAndersAAResult::FunctionInfo> &
ensureCached(const Function & Fn)825 CFLAndersAAResult::ensureCached(const Function &Fn) {
826 auto Iter = Cache.find(&Fn);
827 if (Iter == Cache.end()) {
828 scan(Fn);
829 Iter = Cache.find(&Fn);
830 assert(Iter != Cache.end());
831 assert(Iter->second.hasValue());
832 }
833 return Iter->second;
834 }
835
getAliasSummary(const Function & Fn)836 const AliasSummary *CFLAndersAAResult::getAliasSummary(const Function &Fn) {
837 auto &FunInfo = ensureCached(Fn);
838 if (FunInfo.hasValue())
839 return &FunInfo->getAliasSummary();
840 else
841 return nullptr;
842 }
843
query(const MemoryLocation & LocA,const MemoryLocation & LocB)844 AliasResult CFLAndersAAResult::query(const MemoryLocation &LocA,
845 const MemoryLocation &LocB) {
846 auto *ValA = LocA.Ptr;
847 auto *ValB = LocB.Ptr;
848
849 if (!ValA->getType()->isPointerTy() || !ValB->getType()->isPointerTy())
850 return NoAlias;
851
852 auto *Fn = parentFunctionOfValue(ValA);
853 if (!Fn) {
854 Fn = parentFunctionOfValue(ValB);
855 if (!Fn) {
856 // The only times this is known to happen are when globals + InlineAsm are
857 // involved
858 LLVM_DEBUG(
859 dbgs()
860 << "CFLAndersAA: could not extract parent function information.\n");
861 return MayAlias;
862 }
863 } else {
864 assert(!parentFunctionOfValue(ValB) || parentFunctionOfValue(ValB) == Fn);
865 }
866
867 assert(Fn != nullptr);
868 auto &FunInfo = ensureCached(*Fn);
869
870 // AliasMap lookup
871 if (FunInfo->mayAlias(ValA, LocA.Size, ValB, LocB.Size))
872 return MayAlias;
873 return NoAlias;
874 }
875
alias(const MemoryLocation & LocA,const MemoryLocation & LocB)876 AliasResult CFLAndersAAResult::alias(const MemoryLocation &LocA,
877 const MemoryLocation &LocB) {
878 if (LocA.Ptr == LocB.Ptr)
879 return MustAlias;
880
881 // Comparisons between global variables and other constants should be
882 // handled by BasicAA.
883 // CFLAndersAA may report NoAlias when comparing a GlobalValue and
884 // ConstantExpr, but every query needs to have at least one Value tied to a
885 // Function, and neither GlobalValues nor ConstantExprs are.
886 if (isa<Constant>(LocA.Ptr) && isa<Constant>(LocB.Ptr))
887 return AAResultBase::alias(LocA, LocB);
888
889 AliasResult QueryResult = query(LocA, LocB);
890 if (QueryResult == MayAlias)
891 return AAResultBase::alias(LocA, LocB);
892
893 return QueryResult;
894 }
895
896 AnalysisKey CFLAndersAA::Key;
897
run(Function & F,FunctionAnalysisManager & AM)898 CFLAndersAAResult CFLAndersAA::run(Function &F, FunctionAnalysisManager &AM) {
899 return CFLAndersAAResult(AM.getResult<TargetLibraryAnalysis>(F));
900 }
901
902 char CFLAndersAAWrapperPass::ID = 0;
903 INITIALIZE_PASS(CFLAndersAAWrapperPass, "cfl-anders-aa",
904 "Inclusion-Based CFL Alias Analysis", false, true)
905
createCFLAndersAAWrapperPass()906 ImmutablePass *llvm::createCFLAndersAAWrapperPass() {
907 return new CFLAndersAAWrapperPass();
908 }
909
CFLAndersAAWrapperPass()910 CFLAndersAAWrapperPass::CFLAndersAAWrapperPass() : ImmutablePass(ID) {
911 initializeCFLAndersAAWrapperPassPass(*PassRegistry::getPassRegistry());
912 }
913
initializePass()914 void CFLAndersAAWrapperPass::initializePass() {
915 auto &TLIWP = getAnalysis<TargetLibraryInfoWrapperPass>();
916 Result.reset(new CFLAndersAAResult(TLIWP.getTLI()));
917 }
918
getAnalysisUsage(AnalysisUsage & AU) const919 void CFLAndersAAWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
920 AU.setPreservesAll();
921 AU.addRequired<TargetLibraryInfoWrapperPass>();
922 }
923