1 //===- DemandedBits.cpp - Determine demanded bits -------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass implements a demanded bits analysis. A demanded bit is one that
11 // contributes to a result; bits that are not demanded can be either zero or
12 // one without affecting control or data flow. For example in this sequence:
13 //
14 //   %1 = add i32 %x, %y
15 //   %2 = trunc i32 %1 to i16
16 //
17 // Only the lowest 16 bits of %1 are demanded; the rest are removed by the
18 // trunc.
19 //
20 //===----------------------------------------------------------------------===//
21 
22 #include "llvm/Analysis/DemandedBits.h"
23 #include "llvm/ADT/APInt.h"
24 #include "llvm/ADT/SmallPtrSet.h"
25 #include "llvm/ADT/SmallVector.h"
26 #include "llvm/ADT/StringExtras.h"
27 #include "llvm/Analysis/AssumptionCache.h"
28 #include "llvm/Analysis/ValueTracking.h"
29 #include "llvm/IR/BasicBlock.h"
30 #include "llvm/IR/Constants.h"
31 #include "llvm/IR/DataLayout.h"
32 #include "llvm/IR/DerivedTypes.h"
33 #include "llvm/IR/Dominators.h"
34 #include "llvm/IR/InstIterator.h"
35 #include "llvm/IR/InstrTypes.h"
36 #include "llvm/IR/Instruction.h"
37 #include "llvm/IR/IntrinsicInst.h"
38 #include "llvm/IR/Intrinsics.h"
39 #include "llvm/IR/Module.h"
40 #include "llvm/IR/Operator.h"
41 #include "llvm/IR/PassManager.h"
42 #include "llvm/IR/Type.h"
43 #include "llvm/IR/Use.h"
44 #include "llvm/Pass.h"
45 #include "llvm/Support/Casting.h"
46 #include "llvm/Support/Debug.h"
47 #include "llvm/Support/KnownBits.h"
48 #include "llvm/Support/raw_ostream.h"
49 #include <algorithm>
50 #include <cstdint>
51 
52 using namespace llvm;
53 
54 #define DEBUG_TYPE "demanded-bits"
55 
56 char DemandedBitsWrapperPass::ID = 0;
57 
58 INITIALIZE_PASS_BEGIN(DemandedBitsWrapperPass, "demanded-bits",
59                       "Demanded bits analysis", false, false)
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)60 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
61 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
62 INITIALIZE_PASS_END(DemandedBitsWrapperPass, "demanded-bits",
63                     "Demanded bits analysis", false, false)
64 
65 DemandedBitsWrapperPass::DemandedBitsWrapperPass() : FunctionPass(ID) {
66   initializeDemandedBitsWrapperPassPass(*PassRegistry::getPassRegistry());
67 }
68 
getAnalysisUsage(AnalysisUsage & AU) const69 void DemandedBitsWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
70   AU.setPreservesCFG();
71   AU.addRequired<AssumptionCacheTracker>();
72   AU.addRequired<DominatorTreeWrapperPass>();
73   AU.setPreservesAll();
74 }
75 
print(raw_ostream & OS,const Module * M) const76 void DemandedBitsWrapperPass::print(raw_ostream &OS, const Module *M) const {
77   DB->print(OS);
78 }
79 
isAlwaysLive(Instruction * I)80 static bool isAlwaysLive(Instruction *I) {
81   return isa<TerminatorInst>(I) || isa<DbgInfoIntrinsic>(I) ||
82       I->isEHPad() || I->mayHaveSideEffects();
83 }
84 
determineLiveOperandBits(const Instruction * UserI,const Instruction * I,unsigned OperandNo,const APInt & AOut,APInt & AB,KnownBits & Known,KnownBits & Known2)85 void DemandedBits::determineLiveOperandBits(
86     const Instruction *UserI, const Instruction *I, unsigned OperandNo,
87     const APInt &AOut, APInt &AB, KnownBits &Known, KnownBits &Known2) {
88   unsigned BitWidth = AB.getBitWidth();
89 
90   // We're called once per operand, but for some instructions, we need to
91   // compute known bits of both operands in order to determine the live bits of
92   // either (when both operands are instructions themselves). We don't,
93   // however, want to do this twice, so we cache the result in APInts that live
94   // in the caller. For the two-relevant-operands case, both operand values are
95   // provided here.
96   auto ComputeKnownBits =
97       [&](unsigned BitWidth, const Value *V1, const Value *V2) {
98         const DataLayout &DL = I->getModule()->getDataLayout();
99         Known = KnownBits(BitWidth);
100         computeKnownBits(V1, Known, DL, 0, &AC, UserI, &DT);
101 
102         if (V2) {
103           Known2 = KnownBits(BitWidth);
104           computeKnownBits(V2, Known2, DL, 0, &AC, UserI, &DT);
105         }
106       };
107 
108   switch (UserI->getOpcode()) {
109   default: break;
110   case Instruction::Call:
111   case Instruction::Invoke:
112     if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(UserI))
113       switch (II->getIntrinsicID()) {
114       default: break;
115       case Intrinsic::bswap:
116         // The alive bits of the input are the swapped alive bits of
117         // the output.
118         AB = AOut.byteSwap();
119         break;
120       case Intrinsic::bitreverse:
121         // The alive bits of the input are the reversed alive bits of
122         // the output.
123         AB = AOut.reverseBits();
124         break;
125       case Intrinsic::ctlz:
126         if (OperandNo == 0) {
127           // We need some output bits, so we need all bits of the
128           // input to the left of, and including, the leftmost bit
129           // known to be one.
130           ComputeKnownBits(BitWidth, I, nullptr);
131           AB = APInt::getHighBitsSet(BitWidth,
132                  std::min(BitWidth, Known.countMaxLeadingZeros()+1));
133         }
134         break;
135       case Intrinsic::cttz:
136         if (OperandNo == 0) {
137           // We need some output bits, so we need all bits of the
138           // input to the right of, and including, the rightmost bit
139           // known to be one.
140           ComputeKnownBits(BitWidth, I, nullptr);
141           AB = APInt::getLowBitsSet(BitWidth,
142                  std::min(BitWidth, Known.countMaxTrailingZeros()+1));
143         }
144         break;
145       }
146     break;
147   case Instruction::Add:
148   case Instruction::Sub:
149   case Instruction::Mul:
150     // Find the highest live output bit. We don't need any more input
151     // bits than that (adds, and thus subtracts, ripple only to the
152     // left).
153     AB = APInt::getLowBitsSet(BitWidth, AOut.getActiveBits());
154     break;
155   case Instruction::Shl:
156     if (OperandNo == 0)
157       if (auto *ShiftAmtC = dyn_cast<ConstantInt>(UserI->getOperand(1))) {
158         uint64_t ShiftAmt = ShiftAmtC->getLimitedValue(BitWidth - 1);
159         AB = AOut.lshr(ShiftAmt);
160 
161         // If the shift is nuw/nsw, then the high bits are not dead
162         // (because we've promised that they *must* be zero).
163         const ShlOperator *S = cast<ShlOperator>(UserI);
164         if (S->hasNoSignedWrap())
165           AB |= APInt::getHighBitsSet(BitWidth, ShiftAmt+1);
166         else if (S->hasNoUnsignedWrap())
167           AB |= APInt::getHighBitsSet(BitWidth, ShiftAmt);
168       }
169     break;
170   case Instruction::LShr:
171     if (OperandNo == 0)
172       if (auto *ShiftAmtC = dyn_cast<ConstantInt>(UserI->getOperand(1))) {
173         uint64_t ShiftAmt = ShiftAmtC->getLimitedValue(BitWidth - 1);
174         AB = AOut.shl(ShiftAmt);
175 
176         // If the shift is exact, then the low bits are not dead
177         // (they must be zero).
178         if (cast<LShrOperator>(UserI)->isExact())
179           AB |= APInt::getLowBitsSet(BitWidth, ShiftAmt);
180       }
181     break;
182   case Instruction::AShr:
183     if (OperandNo == 0)
184       if (auto *ShiftAmtC = dyn_cast<ConstantInt>(UserI->getOperand(1))) {
185         uint64_t ShiftAmt = ShiftAmtC->getLimitedValue(BitWidth - 1);
186         AB = AOut.shl(ShiftAmt);
187         // Because the high input bit is replicated into the
188         // high-order bits of the result, if we need any of those
189         // bits, then we must keep the highest input bit.
190         if ((AOut & APInt::getHighBitsSet(BitWidth, ShiftAmt))
191             .getBoolValue())
192           AB.setSignBit();
193 
194         // If the shift is exact, then the low bits are not dead
195         // (they must be zero).
196         if (cast<AShrOperator>(UserI)->isExact())
197           AB |= APInt::getLowBitsSet(BitWidth, ShiftAmt);
198       }
199     break;
200   case Instruction::And:
201     AB = AOut;
202 
203     // For bits that are known zero, the corresponding bits in the
204     // other operand are dead (unless they're both zero, in which
205     // case they can't both be dead, so just mark the LHS bits as
206     // dead).
207     if (OperandNo == 0) {
208       ComputeKnownBits(BitWidth, I, UserI->getOperand(1));
209       AB &= ~Known2.Zero;
210     } else {
211       if (!isa<Instruction>(UserI->getOperand(0)))
212         ComputeKnownBits(BitWidth, UserI->getOperand(0), I);
213       AB &= ~(Known.Zero & ~Known2.Zero);
214     }
215     break;
216   case Instruction::Or:
217     AB = AOut;
218 
219     // For bits that are known one, the corresponding bits in the
220     // other operand are dead (unless they're both one, in which
221     // case they can't both be dead, so just mark the LHS bits as
222     // dead).
223     if (OperandNo == 0) {
224       ComputeKnownBits(BitWidth, I, UserI->getOperand(1));
225       AB &= ~Known2.One;
226     } else {
227       if (!isa<Instruction>(UserI->getOperand(0)))
228         ComputeKnownBits(BitWidth, UserI->getOperand(0), I);
229       AB &= ~(Known.One & ~Known2.One);
230     }
231     break;
232   case Instruction::Xor:
233   case Instruction::PHI:
234     AB = AOut;
235     break;
236   case Instruction::Trunc:
237     AB = AOut.zext(BitWidth);
238     break;
239   case Instruction::ZExt:
240     AB = AOut.trunc(BitWidth);
241     break;
242   case Instruction::SExt:
243     AB = AOut.trunc(BitWidth);
244     // Because the high input bit is replicated into the
245     // high-order bits of the result, if we need any of those
246     // bits, then we must keep the highest input bit.
247     if ((AOut & APInt::getHighBitsSet(AOut.getBitWidth(),
248                                       AOut.getBitWidth() - BitWidth))
249         .getBoolValue())
250       AB.setSignBit();
251     break;
252   case Instruction::Select:
253     if (OperandNo != 0)
254       AB = AOut;
255     break;
256   }
257 }
258 
runOnFunction(Function & F)259 bool DemandedBitsWrapperPass::runOnFunction(Function &F) {
260   auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
261   auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
262   DB.emplace(F, AC, DT);
263   return false;
264 }
265 
releaseMemory()266 void DemandedBitsWrapperPass::releaseMemory() {
267   DB.reset();
268 }
269 
performAnalysis()270 void DemandedBits::performAnalysis() {
271   if (Analyzed)
272     // Analysis already completed for this function.
273     return;
274   Analyzed = true;
275 
276   Visited.clear();
277   AliveBits.clear();
278 
279   SmallVector<Instruction*, 128> Worklist;
280 
281   // Collect the set of "root" instructions that are known live.
282   for (Instruction &I : instructions(F)) {
283     if (!isAlwaysLive(&I))
284       continue;
285 
286     LLVM_DEBUG(dbgs() << "DemandedBits: Root: " << I << "\n");
287     // For integer-valued instructions, set up an initial empty set of alive
288     // bits and add the instruction to the work list. For other instructions
289     // add their operands to the work list (for integer values operands, mark
290     // all bits as live).
291     if (IntegerType *IT = dyn_cast<IntegerType>(I.getType())) {
292       if (AliveBits.try_emplace(&I, IT->getBitWidth(), 0).second)
293         Worklist.push_back(&I);
294 
295       continue;
296     }
297 
298     // Non-integer-typed instructions...
299     for (Use &OI : I.operands()) {
300       if (Instruction *J = dyn_cast<Instruction>(OI)) {
301         if (IntegerType *IT = dyn_cast<IntegerType>(J->getType()))
302           AliveBits[J] = APInt::getAllOnesValue(IT->getBitWidth());
303         Worklist.push_back(J);
304       }
305     }
306     // To save memory, we don't add I to the Visited set here. Instead, we
307     // check isAlwaysLive on every instruction when searching for dead
308     // instructions later (we need to check isAlwaysLive for the
309     // integer-typed instructions anyway).
310   }
311 
312   // Propagate liveness backwards to operands.
313   while (!Worklist.empty()) {
314     Instruction *UserI = Worklist.pop_back_val();
315 
316     LLVM_DEBUG(dbgs() << "DemandedBits: Visiting: " << *UserI);
317     APInt AOut;
318     if (UserI->getType()->isIntegerTy()) {
319       AOut = AliveBits[UserI];
320       LLVM_DEBUG(dbgs() << " Alive Out: " << AOut);
321     }
322     LLVM_DEBUG(dbgs() << "\n");
323 
324     if (!UserI->getType()->isIntegerTy())
325       Visited.insert(UserI);
326 
327     KnownBits Known, Known2;
328     // Compute the set of alive bits for each operand. These are anded into the
329     // existing set, if any, and if that changes the set of alive bits, the
330     // operand is added to the work-list.
331     for (Use &OI : UserI->operands()) {
332       if (Instruction *I = dyn_cast<Instruction>(OI)) {
333         if (IntegerType *IT = dyn_cast<IntegerType>(I->getType())) {
334           unsigned BitWidth = IT->getBitWidth();
335           APInt AB = APInt::getAllOnesValue(BitWidth);
336           if (UserI->getType()->isIntegerTy() && !AOut &&
337               !isAlwaysLive(UserI)) {
338             AB = APInt(BitWidth, 0);
339           } else {
340             // If all bits of the output are dead, then all bits of the input
341             // Bits of each operand that are used to compute alive bits of the
342             // output are alive, all others are dead.
343             determineLiveOperandBits(UserI, I, OI.getOperandNo(), AOut, AB,
344                                      Known, Known2);
345           }
346 
347           // If we've added to the set of alive bits (or the operand has not
348           // been previously visited), then re-queue the operand to be visited
349           // again.
350           APInt ABPrev(BitWidth, 0);
351           auto ABI = AliveBits.find(I);
352           if (ABI != AliveBits.end())
353             ABPrev = ABI->second;
354 
355           APInt ABNew = AB | ABPrev;
356           if (ABNew != ABPrev || ABI == AliveBits.end()) {
357             AliveBits[I] = std::move(ABNew);
358             Worklist.push_back(I);
359           }
360         } else if (!Visited.count(I)) {
361           Worklist.push_back(I);
362         }
363       }
364     }
365   }
366 }
367 
getDemandedBits(Instruction * I)368 APInt DemandedBits::getDemandedBits(Instruction *I) {
369   performAnalysis();
370 
371   const DataLayout &DL = I->getModule()->getDataLayout();
372   auto Found = AliveBits.find(I);
373   if (Found != AliveBits.end())
374     return Found->second;
375   return APInt::getAllOnesValue(DL.getTypeSizeInBits(I->getType()));
376 }
377 
isInstructionDead(Instruction * I)378 bool DemandedBits::isInstructionDead(Instruction *I) {
379   performAnalysis();
380 
381   return !Visited.count(I) && AliveBits.find(I) == AliveBits.end() &&
382     !isAlwaysLive(I);
383 }
384 
print(raw_ostream & OS)385 void DemandedBits::print(raw_ostream &OS) {
386   performAnalysis();
387   for (auto &KV : AliveBits) {
388     OS << "DemandedBits: 0x" << Twine::utohexstr(KV.second.getLimitedValue())
389        << " for " << *KV.first << '\n';
390   }
391 }
392 
createDemandedBitsWrapperPass()393 FunctionPass *llvm::createDemandedBitsWrapperPass() {
394   return new DemandedBitsWrapperPass();
395 }
396 
397 AnalysisKey DemandedBitsAnalysis::Key;
398 
run(Function & F,FunctionAnalysisManager & AM)399 DemandedBits DemandedBitsAnalysis::run(Function &F,
400                                              FunctionAnalysisManager &AM) {
401   auto &AC = AM.getResult<AssumptionAnalysis>(F);
402   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
403   return DemandedBits(F, AC, DT);
404 }
405 
run(Function & F,FunctionAnalysisManager & AM)406 PreservedAnalyses DemandedBitsPrinterPass::run(Function &F,
407                                                FunctionAnalysisManager &AM) {
408   AM.getResult<DemandedBitsAnalysis>(F).print(OS);
409   return PreservedAnalyses::all();
410 }
411