1 //===- IVUsers.cpp - Induction Variable Users -------------------*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements bookkeeping for "interesting" users of expressions
11 // computed from induction variables.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "llvm/Analysis/IVUsers.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/Analysis/AssumptionCache.h"
18 #include "llvm/Analysis/CodeMetrics.h"
19 #include "llvm/Analysis/LoopAnalysisManager.h"
20 #include "llvm/Analysis/LoopPass.h"
21 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
22 #include "llvm/Analysis/ValueTracking.h"
23 #include "llvm/Config/llvm-config.h"
24 #include "llvm/IR/Constants.h"
25 #include "llvm/IR/DataLayout.h"
26 #include "llvm/IR/DerivedTypes.h"
27 #include "llvm/IR/Dominators.h"
28 #include "llvm/IR/Instructions.h"
29 #include "llvm/IR/Module.h"
30 #include "llvm/IR/Type.h"
31 #include "llvm/Support/Debug.h"
32 #include "llvm/Support/raw_ostream.h"
33 #include <algorithm>
34 using namespace llvm;
35
36 #define DEBUG_TYPE "iv-users"
37
38 AnalysisKey IVUsersAnalysis::Key;
39
run(Loop & L,LoopAnalysisManager & AM,LoopStandardAnalysisResults & AR)40 IVUsers IVUsersAnalysis::run(Loop &L, LoopAnalysisManager &AM,
41 LoopStandardAnalysisResults &AR) {
42 return IVUsers(&L, &AR.AC, &AR.LI, &AR.DT, &AR.SE);
43 }
44
45 char IVUsersWrapperPass::ID = 0;
46 INITIALIZE_PASS_BEGIN(IVUsersWrapperPass, "iv-users",
47 "Induction Variable Users", false, true)
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)48 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
49 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
50 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
51 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
52 INITIALIZE_PASS_END(IVUsersWrapperPass, "iv-users", "Induction Variable Users",
53 false, true)
54
55 Pass *llvm::createIVUsersPass() { return new IVUsersWrapperPass(); }
56
57 /// isInteresting - Test whether the given expression is "interesting" when
58 /// used by the given expression, within the context of analyzing the
59 /// given loop.
isInteresting(const SCEV * S,const Instruction * I,const Loop * L,ScalarEvolution * SE,LoopInfo * LI)60 static bool isInteresting(const SCEV *S, const Instruction *I, const Loop *L,
61 ScalarEvolution *SE, LoopInfo *LI) {
62 // An addrec is interesting if it's affine or if it has an interesting start.
63 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
64 // Keep things simple. Don't touch loop-variant strides unless they're
65 // only used outside the loop and we can simplify them.
66 if (AR->getLoop() == L)
67 return AR->isAffine() ||
68 (!L->contains(I) &&
69 SE->getSCEVAtScope(AR, LI->getLoopFor(I->getParent())) != AR);
70 // Otherwise recurse to see if the start value is interesting, and that
71 // the step value is not interesting, since we don't yet know how to
72 // do effective SCEV expansions for addrecs with interesting steps.
73 return isInteresting(AR->getStart(), I, L, SE, LI) &&
74 !isInteresting(AR->getStepRecurrence(*SE), I, L, SE, LI);
75 }
76
77 // An add is interesting if exactly one of its operands is interesting.
78 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
79 bool AnyInterestingYet = false;
80 for (const auto *Op : Add->operands())
81 if (isInteresting(Op, I, L, SE, LI)) {
82 if (AnyInterestingYet)
83 return false;
84 AnyInterestingYet = true;
85 }
86 return AnyInterestingYet;
87 }
88
89 // Nothing else is interesting here.
90 return false;
91 }
92
93 /// Return true if all loop headers that dominate this block are in simplified
94 /// form.
isSimplifiedLoopNest(BasicBlock * BB,const DominatorTree * DT,const LoopInfo * LI,SmallPtrSetImpl<Loop * > & SimpleLoopNests)95 static bool isSimplifiedLoopNest(BasicBlock *BB, const DominatorTree *DT,
96 const LoopInfo *LI,
97 SmallPtrSetImpl<Loop*> &SimpleLoopNests) {
98 Loop *NearestLoop = nullptr;
99 for (DomTreeNode *Rung = DT->getNode(BB);
100 Rung; Rung = Rung->getIDom()) {
101 BasicBlock *DomBB = Rung->getBlock();
102 Loop *DomLoop = LI->getLoopFor(DomBB);
103 if (DomLoop && DomLoop->getHeader() == DomBB) {
104 // If the domtree walk reaches a loop with no preheader, return false.
105 if (!DomLoop->isLoopSimplifyForm())
106 return false;
107 // If we have already checked this loop nest, stop checking.
108 if (SimpleLoopNests.count(DomLoop))
109 break;
110 // If we have not already checked this loop nest, remember the loop
111 // header nearest to BB. The nearest loop may not contain BB.
112 if (!NearestLoop)
113 NearestLoop = DomLoop;
114 }
115 }
116 if (NearestLoop)
117 SimpleLoopNests.insert(NearestLoop);
118 return true;
119 }
120
121 /// IVUseShouldUsePostIncValue - We have discovered a "User" of an IV expression
122 /// and now we need to decide whether the user should use the preinc or post-inc
123 /// value. If this user should use the post-inc version of the IV, return true.
124 ///
125 /// Choosing wrong here can break dominance properties (if we choose to use the
126 /// post-inc value when we cannot) or it can end up adding extra live-ranges to
127 /// the loop, resulting in reg-reg copies (if we use the pre-inc value when we
128 /// should use the post-inc value).
IVUseShouldUsePostIncValue(Instruction * User,Value * Operand,const Loop * L,DominatorTree * DT)129 static bool IVUseShouldUsePostIncValue(Instruction *User, Value *Operand,
130 const Loop *L, DominatorTree *DT) {
131 // If the user is in the loop, use the preinc value.
132 if (L->contains(User))
133 return false;
134
135 BasicBlock *LatchBlock = L->getLoopLatch();
136 if (!LatchBlock)
137 return false;
138
139 // Ok, the user is outside of the loop. If it is dominated by the latch
140 // block, use the post-inc value.
141 if (DT->dominates(LatchBlock, User->getParent()))
142 return true;
143
144 // There is one case we have to be careful of: PHI nodes. These little guys
145 // can live in blocks that are not dominated by the latch block, but (since
146 // their uses occur in the predecessor block, not the block the PHI lives in)
147 // should still use the post-inc value. Check for this case now.
148 PHINode *PN = dyn_cast<PHINode>(User);
149 if (!PN || !Operand)
150 return false; // not a phi, not dominated by latch block.
151
152 // Look at all of the uses of Operand by the PHI node. If any use corresponds
153 // to a block that is not dominated by the latch block, give up and use the
154 // preincremented value.
155 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
156 if (PN->getIncomingValue(i) == Operand &&
157 !DT->dominates(LatchBlock, PN->getIncomingBlock(i)))
158 return false;
159
160 // Okay, all uses of Operand by PN are in predecessor blocks that really are
161 // dominated by the latch block. Use the post-incremented value.
162 return true;
163 }
164
165 /// AddUsersImpl - Inspect the specified instruction. If it is a
166 /// reducible SCEV, recursively add its users to the IVUsesByStride set and
167 /// return true. Otherwise, return false.
AddUsersImpl(Instruction * I,SmallPtrSetImpl<Loop * > & SimpleLoopNests)168 bool IVUsers::AddUsersImpl(Instruction *I,
169 SmallPtrSetImpl<Loop*> &SimpleLoopNests) {
170 const DataLayout &DL = I->getModule()->getDataLayout();
171
172 // Add this IV user to the Processed set before returning false to ensure that
173 // all IV users are members of the set. See IVUsers::isIVUserOrOperand.
174 if (!Processed.insert(I).second)
175 return true; // Instruction already handled.
176
177 if (!SE->isSCEVable(I->getType()))
178 return false; // Void and FP expressions cannot be reduced.
179
180 // IVUsers is used by LSR which assumes that all SCEV expressions are safe to
181 // pass to SCEVExpander. Expressions are not safe to expand if they represent
182 // operations that are not safe to speculate, namely integer division.
183 if (!isa<PHINode>(I) && !isSafeToSpeculativelyExecute(I))
184 return false;
185
186 // LSR is not APInt clean, do not touch integers bigger than 64-bits.
187 // Also avoid creating IVs of non-native types. For example, we don't want a
188 // 64-bit IV in 32-bit code just because the loop has one 64-bit cast.
189 uint64_t Width = SE->getTypeSizeInBits(I->getType());
190 if (Width > 64 || !DL.isLegalInteger(Width))
191 return false;
192
193 // Don't attempt to promote ephemeral values to indvars. They will be removed
194 // later anyway.
195 if (EphValues.count(I))
196 return false;
197
198 // Get the symbolic expression for this instruction.
199 const SCEV *ISE = SE->getSCEV(I);
200
201 // If we've come to an uninteresting expression, stop the traversal and
202 // call this a user.
203 if (!isInteresting(ISE, I, L, SE, LI))
204 return false;
205
206 SmallPtrSet<Instruction *, 4> UniqueUsers;
207 for (Use &U : I->uses()) {
208 Instruction *User = cast<Instruction>(U.getUser());
209 if (!UniqueUsers.insert(User).second)
210 continue;
211
212 // Do not infinitely recurse on PHI nodes.
213 if (isa<PHINode>(User) && Processed.count(User))
214 continue;
215
216 // Only consider IVUsers that are dominated by simplified loop
217 // headers. Otherwise, SCEVExpander will crash.
218 BasicBlock *UseBB = User->getParent();
219 // A phi's use is live out of its predecessor block.
220 if (PHINode *PHI = dyn_cast<PHINode>(User)) {
221 unsigned OperandNo = U.getOperandNo();
222 unsigned ValNo = PHINode::getIncomingValueNumForOperand(OperandNo);
223 UseBB = PHI->getIncomingBlock(ValNo);
224 }
225 if (!isSimplifiedLoopNest(UseBB, DT, LI, SimpleLoopNests))
226 return false;
227
228 // Descend recursively, but not into PHI nodes outside the current loop.
229 // It's important to see the entire expression outside the loop to get
230 // choices that depend on addressing mode use right, although we won't
231 // consider references outside the loop in all cases.
232 // If User is already in Processed, we don't want to recurse into it again,
233 // but do want to record a second reference in the same instruction.
234 bool AddUserToIVUsers = false;
235 if (LI->getLoopFor(User->getParent()) != L) {
236 if (isa<PHINode>(User) || Processed.count(User) ||
237 !AddUsersImpl(User, SimpleLoopNests)) {
238 LLVM_DEBUG(dbgs() << "FOUND USER in other loop: " << *User << '\n'
239 << " OF SCEV: " << *ISE << '\n');
240 AddUserToIVUsers = true;
241 }
242 } else if (Processed.count(User) || !AddUsersImpl(User, SimpleLoopNests)) {
243 LLVM_DEBUG(dbgs() << "FOUND USER: " << *User << '\n'
244 << " OF SCEV: " << *ISE << '\n');
245 AddUserToIVUsers = true;
246 }
247
248 if (AddUserToIVUsers) {
249 // Okay, we found a user that we cannot reduce.
250 IVStrideUse &NewUse = AddUser(User, I);
251 // Autodetect the post-inc loop set, populating NewUse.PostIncLoops.
252 // The regular return value here is discarded; instead of recording
253 // it, we just recompute it when we need it.
254 const SCEV *OriginalISE = ISE;
255
256 auto NormalizePred = [&](const SCEVAddRecExpr *AR) {
257 auto *L = AR->getLoop();
258 bool Result = IVUseShouldUsePostIncValue(User, I, L, DT);
259 if (Result)
260 NewUse.PostIncLoops.insert(L);
261 return Result;
262 };
263
264 ISE = normalizeForPostIncUseIf(ISE, NormalizePred, *SE);
265
266 // PostIncNormalization effectively simplifies the expression under
267 // pre-increment assumptions. Those assumptions (no wrapping) might not
268 // hold for the post-inc value. Catch such cases by making sure the
269 // transformation is invertible.
270 if (OriginalISE != ISE) {
271 const SCEV *DenormalizedISE =
272 denormalizeForPostIncUse(ISE, NewUse.PostIncLoops, *SE);
273
274 // If we normalized the expression, but denormalization doesn't give the
275 // original one, discard this user.
276 if (OriginalISE != DenormalizedISE) {
277 LLVM_DEBUG(dbgs()
278 << " DISCARDING (NORMALIZATION ISN'T INVERTIBLE): "
279 << *ISE << '\n');
280 IVUses.pop_back();
281 return false;
282 }
283 }
284 LLVM_DEBUG(if (SE->getSCEV(I) != ISE) dbgs()
285 << " NORMALIZED TO: " << *ISE << '\n');
286 }
287 }
288 return true;
289 }
290
AddUsersIfInteresting(Instruction * I)291 bool IVUsers::AddUsersIfInteresting(Instruction *I) {
292 // SCEVExpander can only handle users that are dominated by simplified loop
293 // entries. Keep track of all loops that are only dominated by other simple
294 // loops so we don't traverse the domtree for each user.
295 SmallPtrSet<Loop*,16> SimpleLoopNests;
296
297 return AddUsersImpl(I, SimpleLoopNests);
298 }
299
AddUser(Instruction * User,Value * Operand)300 IVStrideUse &IVUsers::AddUser(Instruction *User, Value *Operand) {
301 IVUses.push_back(new IVStrideUse(this, User, Operand));
302 return IVUses.back();
303 }
304
IVUsers(Loop * L,AssumptionCache * AC,LoopInfo * LI,DominatorTree * DT,ScalarEvolution * SE)305 IVUsers::IVUsers(Loop *L, AssumptionCache *AC, LoopInfo *LI, DominatorTree *DT,
306 ScalarEvolution *SE)
307 : L(L), AC(AC), LI(LI), DT(DT), SE(SE), IVUses() {
308 // Collect ephemeral values so that AddUsersIfInteresting skips them.
309 EphValues.clear();
310 CodeMetrics::collectEphemeralValues(L, AC, EphValues);
311
312 // Find all uses of induction variables in this loop, and categorize
313 // them by stride. Start by finding all of the PHI nodes in the header for
314 // this loop. If they are induction variables, inspect their uses.
315 for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I)
316 (void)AddUsersIfInteresting(&*I);
317 }
318
print(raw_ostream & OS,const Module * M) const319 void IVUsers::print(raw_ostream &OS, const Module *M) const {
320 OS << "IV Users for loop ";
321 L->getHeader()->printAsOperand(OS, false);
322 if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
323 OS << " with backedge-taken count " << *SE->getBackedgeTakenCount(L);
324 }
325 OS << ":\n";
326
327 for (const IVStrideUse &IVUse : IVUses) {
328 OS << " ";
329 IVUse.getOperandValToReplace()->printAsOperand(OS, false);
330 OS << " = " << *getReplacementExpr(IVUse);
331 for (auto PostIncLoop : IVUse.PostIncLoops) {
332 OS << " (post-inc with loop ";
333 PostIncLoop->getHeader()->printAsOperand(OS, false);
334 OS << ")";
335 }
336 OS << " in ";
337 if (IVUse.getUser())
338 IVUse.getUser()->print(OS);
339 else
340 OS << "Printing <null> User";
341 OS << '\n';
342 }
343 }
344
345 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
dump() const346 LLVM_DUMP_METHOD void IVUsers::dump() const { print(dbgs()); }
347 #endif
348
releaseMemory()349 void IVUsers::releaseMemory() {
350 Processed.clear();
351 IVUses.clear();
352 }
353
IVUsersWrapperPass()354 IVUsersWrapperPass::IVUsersWrapperPass() : LoopPass(ID) {
355 initializeIVUsersWrapperPassPass(*PassRegistry::getPassRegistry());
356 }
357
getAnalysisUsage(AnalysisUsage & AU) const358 void IVUsersWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
359 AU.addRequired<AssumptionCacheTracker>();
360 AU.addRequired<LoopInfoWrapperPass>();
361 AU.addRequired<DominatorTreeWrapperPass>();
362 AU.addRequired<ScalarEvolutionWrapperPass>();
363 AU.setPreservesAll();
364 }
365
runOnLoop(Loop * L,LPPassManager & LPM)366 bool IVUsersWrapperPass::runOnLoop(Loop *L, LPPassManager &LPM) {
367 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(
368 *L->getHeader()->getParent());
369 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
370 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
371 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
372
373 IU.reset(new IVUsers(L, AC, LI, DT, SE));
374 return false;
375 }
376
print(raw_ostream & OS,const Module * M) const377 void IVUsersWrapperPass::print(raw_ostream &OS, const Module *M) const {
378 IU->print(OS, M);
379 }
380
releaseMemory()381 void IVUsersWrapperPass::releaseMemory() { IU->releaseMemory(); }
382
383 /// getReplacementExpr - Return a SCEV expression which computes the
384 /// value of the OperandValToReplace.
getReplacementExpr(const IVStrideUse & IU) const385 const SCEV *IVUsers::getReplacementExpr(const IVStrideUse &IU) const {
386 return SE->getSCEV(IU.getOperandValToReplace());
387 }
388
389 /// getExpr - Return the expression for the use.
getExpr(const IVStrideUse & IU) const390 const SCEV *IVUsers::getExpr(const IVStrideUse &IU) const {
391 return normalizeForPostIncUse(getReplacementExpr(IU), IU.getPostIncLoops(),
392 *SE);
393 }
394
findAddRecForLoop(const SCEV * S,const Loop * L)395 static const SCEVAddRecExpr *findAddRecForLoop(const SCEV *S, const Loop *L) {
396 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
397 if (AR->getLoop() == L)
398 return AR;
399 return findAddRecForLoop(AR->getStart(), L);
400 }
401
402 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
403 for (const auto *Op : Add->operands())
404 if (const SCEVAddRecExpr *AR = findAddRecForLoop(Op, L))
405 return AR;
406 return nullptr;
407 }
408
409 return nullptr;
410 }
411
getStride(const IVStrideUse & IU,const Loop * L) const412 const SCEV *IVUsers::getStride(const IVStrideUse &IU, const Loop *L) const {
413 if (const SCEVAddRecExpr *AR = findAddRecForLoop(getExpr(IU), L))
414 return AR->getStepRecurrence(*SE);
415 return nullptr;
416 }
417
transformToPostInc(const Loop * L)418 void IVStrideUse::transformToPostInc(const Loop *L) {
419 PostIncLoops.insert(L);
420 }
421
deleted()422 void IVStrideUse::deleted() {
423 // Remove this user from the list.
424 Parent->Processed.erase(this->getUser());
425 Parent->IVUses.erase(this);
426 // this now dangles!
427 }
428