1 //===- LazyValueInfo.cpp - Value constraint analysis ------------*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the interface for lazy computation of value constraint
11 // information.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "llvm/Analysis/LazyValueInfo.h"
16 #include "llvm/ADT/DenseSet.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/Analysis/AssumptionCache.h"
19 #include "llvm/Analysis/ConstantFolding.h"
20 #include "llvm/Analysis/InstructionSimplify.h"
21 #include "llvm/Analysis/TargetLibraryInfo.h"
22 #include "llvm/Analysis/ValueTracking.h"
23 #include "llvm/Analysis/ValueLattice.h"
24 #include "llvm/IR/AssemblyAnnotationWriter.h"
25 #include "llvm/IR/CFG.h"
26 #include "llvm/IR/ConstantRange.h"
27 #include "llvm/IR/Constants.h"
28 #include "llvm/IR/DataLayout.h"
29 #include "llvm/IR/Dominators.h"
30 #include "llvm/IR/Instructions.h"
31 #include "llvm/IR/IntrinsicInst.h"
32 #include "llvm/IR/Intrinsics.h"
33 #include "llvm/IR/LLVMContext.h"
34 #include "llvm/IR/PatternMatch.h"
35 #include "llvm/IR/ValueHandle.h"
36 #include "llvm/Support/Debug.h"
37 #include "llvm/Support/FormattedStream.h"
38 #include "llvm/Support/raw_ostream.h"
39 #include <map>
40 using namespace llvm;
41 using namespace PatternMatch;
42
43 #define DEBUG_TYPE "lazy-value-info"
44
45 // This is the number of worklist items we will process to try to discover an
46 // answer for a given value.
47 static const unsigned MaxProcessedPerValue = 500;
48
49 char LazyValueInfoWrapperPass::ID = 0;
50 INITIALIZE_PASS_BEGIN(LazyValueInfoWrapperPass, "lazy-value-info",
51 "Lazy Value Information Analysis", false, true)
52 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
53 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
54 INITIALIZE_PASS_END(LazyValueInfoWrapperPass, "lazy-value-info",
55 "Lazy Value Information Analysis", false, true)
56
57 namespace llvm {
createLazyValueInfoPass()58 FunctionPass *createLazyValueInfoPass() { return new LazyValueInfoWrapperPass(); }
59 }
60
61 AnalysisKey LazyValueAnalysis::Key;
62
63 /// Returns true if this lattice value represents at most one possible value.
64 /// This is as precise as any lattice value can get while still representing
65 /// reachable code.
hasSingleValue(const ValueLatticeElement & Val)66 static bool hasSingleValue(const ValueLatticeElement &Val) {
67 if (Val.isConstantRange() &&
68 Val.getConstantRange().isSingleElement())
69 // Integer constants are single element ranges
70 return true;
71 if (Val.isConstant())
72 // Non integer constants
73 return true;
74 return false;
75 }
76
77 /// Combine two sets of facts about the same value into a single set of
78 /// facts. Note that this method is not suitable for merging facts along
79 /// different paths in a CFG; that's what the mergeIn function is for. This
80 /// is for merging facts gathered about the same value at the same location
81 /// through two independent means.
82 /// Notes:
83 /// * This method does not promise to return the most precise possible lattice
84 /// value implied by A and B. It is allowed to return any lattice element
85 /// which is at least as strong as *either* A or B (unless our facts
86 /// conflict, see below).
87 /// * Due to unreachable code, the intersection of two lattice values could be
88 /// contradictory. If this happens, we return some valid lattice value so as
89 /// not confuse the rest of LVI. Ideally, we'd always return Undefined, but
90 /// we do not make this guarantee. TODO: This would be a useful enhancement.
intersect(const ValueLatticeElement & A,const ValueLatticeElement & B)91 static ValueLatticeElement intersect(const ValueLatticeElement &A,
92 const ValueLatticeElement &B) {
93 // Undefined is the strongest state. It means the value is known to be along
94 // an unreachable path.
95 if (A.isUndefined())
96 return A;
97 if (B.isUndefined())
98 return B;
99
100 // If we gave up for one, but got a useable fact from the other, use it.
101 if (A.isOverdefined())
102 return B;
103 if (B.isOverdefined())
104 return A;
105
106 // Can't get any more precise than constants.
107 if (hasSingleValue(A))
108 return A;
109 if (hasSingleValue(B))
110 return B;
111
112 // Could be either constant range or not constant here.
113 if (!A.isConstantRange() || !B.isConstantRange()) {
114 // TODO: Arbitrary choice, could be improved
115 return A;
116 }
117
118 // Intersect two constant ranges
119 ConstantRange Range =
120 A.getConstantRange().intersectWith(B.getConstantRange());
121 // Note: An empty range is implicitly converted to overdefined internally.
122 // TODO: We could instead use Undefined here since we've proven a conflict
123 // and thus know this path must be unreachable.
124 return ValueLatticeElement::getRange(std::move(Range));
125 }
126
127 //===----------------------------------------------------------------------===//
128 // LazyValueInfoCache Decl
129 //===----------------------------------------------------------------------===//
130
131 namespace {
132 /// A callback value handle updates the cache when values are erased.
133 class LazyValueInfoCache;
134 struct LVIValueHandle final : public CallbackVH {
135 // Needs to access getValPtr(), which is protected.
136 friend struct DenseMapInfo<LVIValueHandle>;
137
138 LazyValueInfoCache *Parent;
139
LVIValueHandle__anonc035c0260111::LVIValueHandle140 LVIValueHandle(Value *V, LazyValueInfoCache *P)
141 : CallbackVH(V), Parent(P) { }
142
143 void deleted() override;
allUsesReplacedWith__anonc035c0260111::LVIValueHandle144 void allUsesReplacedWith(Value *V) override {
145 deleted();
146 }
147 };
148 } // end anonymous namespace
149
150 namespace {
151 /// This is the cache kept by LazyValueInfo which
152 /// maintains information about queries across the clients' queries.
153 class LazyValueInfoCache {
154 /// This is all of the cached block information for exactly one Value*.
155 /// The entries are sorted by the BasicBlock* of the
156 /// entries, allowing us to do a lookup with a binary search.
157 /// Over-defined lattice values are recorded in OverDefinedCache to reduce
158 /// memory overhead.
159 struct ValueCacheEntryTy {
ValueCacheEntryTy__anonc035c0260211::LazyValueInfoCache::ValueCacheEntryTy160 ValueCacheEntryTy(Value *V, LazyValueInfoCache *P) : Handle(V, P) {}
161 LVIValueHandle Handle;
162 SmallDenseMap<PoisoningVH<BasicBlock>, ValueLatticeElement, 4> BlockVals;
163 };
164
165 /// This tracks, on a per-block basis, the set of values that are
166 /// over-defined at the end of that block.
167 typedef DenseMap<PoisoningVH<BasicBlock>, SmallPtrSet<Value *, 4>>
168 OverDefinedCacheTy;
169 /// Keep track of all blocks that we have ever seen, so we
170 /// don't spend time removing unused blocks from our caches.
171 DenseSet<PoisoningVH<BasicBlock> > SeenBlocks;
172
173 /// This is all of the cached information for all values,
174 /// mapped from Value* to key information.
175 DenseMap<Value *, std::unique_ptr<ValueCacheEntryTy>> ValueCache;
176 OverDefinedCacheTy OverDefinedCache;
177
178
179 public:
insertResult(Value * Val,BasicBlock * BB,const ValueLatticeElement & Result)180 void insertResult(Value *Val, BasicBlock *BB,
181 const ValueLatticeElement &Result) {
182 SeenBlocks.insert(BB);
183
184 // Insert over-defined values into their own cache to reduce memory
185 // overhead.
186 if (Result.isOverdefined())
187 OverDefinedCache[BB].insert(Val);
188 else {
189 auto It = ValueCache.find_as(Val);
190 if (It == ValueCache.end()) {
191 ValueCache[Val] = make_unique<ValueCacheEntryTy>(Val, this);
192 It = ValueCache.find_as(Val);
193 assert(It != ValueCache.end() && "Val was just added to the map!");
194 }
195 It->second->BlockVals[BB] = Result;
196 }
197 }
198
isOverdefined(Value * V,BasicBlock * BB) const199 bool isOverdefined(Value *V, BasicBlock *BB) const {
200 auto ODI = OverDefinedCache.find(BB);
201
202 if (ODI == OverDefinedCache.end())
203 return false;
204
205 return ODI->second.count(V);
206 }
207
hasCachedValueInfo(Value * V,BasicBlock * BB) const208 bool hasCachedValueInfo(Value *V, BasicBlock *BB) const {
209 if (isOverdefined(V, BB))
210 return true;
211
212 auto I = ValueCache.find_as(V);
213 if (I == ValueCache.end())
214 return false;
215
216 return I->second->BlockVals.count(BB);
217 }
218
getCachedValueInfo(Value * V,BasicBlock * BB) const219 ValueLatticeElement getCachedValueInfo(Value *V, BasicBlock *BB) const {
220 if (isOverdefined(V, BB))
221 return ValueLatticeElement::getOverdefined();
222
223 auto I = ValueCache.find_as(V);
224 if (I == ValueCache.end())
225 return ValueLatticeElement();
226 auto BBI = I->second->BlockVals.find(BB);
227 if (BBI == I->second->BlockVals.end())
228 return ValueLatticeElement();
229 return BBI->second;
230 }
231
232 /// clear - Empty the cache.
clear()233 void clear() {
234 SeenBlocks.clear();
235 ValueCache.clear();
236 OverDefinedCache.clear();
237 }
238
239 /// Inform the cache that a given value has been deleted.
240 void eraseValue(Value *V);
241
242 /// This is part of the update interface to inform the cache
243 /// that a block has been deleted.
244 void eraseBlock(BasicBlock *BB);
245
246 /// Updates the cache to remove any influence an overdefined value in
247 /// OldSucc might have (unless also overdefined in NewSucc). This just
248 /// flushes elements from the cache and does not add any.
249 void threadEdgeImpl(BasicBlock *OldSucc,BasicBlock *NewSucc);
250
251 friend struct LVIValueHandle;
252 };
253 }
254
eraseValue(Value * V)255 void LazyValueInfoCache::eraseValue(Value *V) {
256 for (auto I = OverDefinedCache.begin(), E = OverDefinedCache.end(); I != E;) {
257 // Copy and increment the iterator immediately so we can erase behind
258 // ourselves.
259 auto Iter = I++;
260 SmallPtrSetImpl<Value *> &ValueSet = Iter->second;
261 ValueSet.erase(V);
262 if (ValueSet.empty())
263 OverDefinedCache.erase(Iter);
264 }
265
266 ValueCache.erase(V);
267 }
268
deleted()269 void LVIValueHandle::deleted() {
270 // This erasure deallocates *this, so it MUST happen after we're done
271 // using any and all members of *this.
272 Parent->eraseValue(*this);
273 }
274
eraseBlock(BasicBlock * BB)275 void LazyValueInfoCache::eraseBlock(BasicBlock *BB) {
276 // Shortcut if we have never seen this block.
277 DenseSet<PoisoningVH<BasicBlock> >::iterator I = SeenBlocks.find(BB);
278 if (I == SeenBlocks.end())
279 return;
280 SeenBlocks.erase(I);
281
282 auto ODI = OverDefinedCache.find(BB);
283 if (ODI != OverDefinedCache.end())
284 OverDefinedCache.erase(ODI);
285
286 for (auto &I : ValueCache)
287 I.second->BlockVals.erase(BB);
288 }
289
threadEdgeImpl(BasicBlock * OldSucc,BasicBlock * NewSucc)290 void LazyValueInfoCache::threadEdgeImpl(BasicBlock *OldSucc,
291 BasicBlock *NewSucc) {
292 // When an edge in the graph has been threaded, values that we could not
293 // determine a value for before (i.e. were marked overdefined) may be
294 // possible to solve now. We do NOT try to proactively update these values.
295 // Instead, we clear their entries from the cache, and allow lazy updating to
296 // recompute them when needed.
297
298 // The updating process is fairly simple: we need to drop cached info
299 // for all values that were marked overdefined in OldSucc, and for those same
300 // values in any successor of OldSucc (except NewSucc) in which they were
301 // also marked overdefined.
302 std::vector<BasicBlock*> worklist;
303 worklist.push_back(OldSucc);
304
305 auto I = OverDefinedCache.find(OldSucc);
306 if (I == OverDefinedCache.end())
307 return; // Nothing to process here.
308 SmallVector<Value *, 4> ValsToClear(I->second.begin(), I->second.end());
309
310 // Use a worklist to perform a depth-first search of OldSucc's successors.
311 // NOTE: We do not need a visited list since any blocks we have already
312 // visited will have had their overdefined markers cleared already, and we
313 // thus won't loop to their successors.
314 while (!worklist.empty()) {
315 BasicBlock *ToUpdate = worklist.back();
316 worklist.pop_back();
317
318 // Skip blocks only accessible through NewSucc.
319 if (ToUpdate == NewSucc) continue;
320
321 // If a value was marked overdefined in OldSucc, and is here too...
322 auto OI = OverDefinedCache.find(ToUpdate);
323 if (OI == OverDefinedCache.end())
324 continue;
325 SmallPtrSetImpl<Value *> &ValueSet = OI->second;
326
327 bool changed = false;
328 for (Value *V : ValsToClear) {
329 if (!ValueSet.erase(V))
330 continue;
331
332 // If we removed anything, then we potentially need to update
333 // blocks successors too.
334 changed = true;
335
336 if (ValueSet.empty()) {
337 OverDefinedCache.erase(OI);
338 break;
339 }
340 }
341
342 if (!changed) continue;
343
344 worklist.insert(worklist.end(), succ_begin(ToUpdate), succ_end(ToUpdate));
345 }
346 }
347
348
349 namespace {
350 /// An assembly annotator class to print LazyValueCache information in
351 /// comments.
352 class LazyValueInfoImpl;
353 class LazyValueInfoAnnotatedWriter : public AssemblyAnnotationWriter {
354 LazyValueInfoImpl *LVIImpl;
355 // While analyzing which blocks we can solve values for, we need the dominator
356 // information. Since this is an optional parameter in LVI, we require this
357 // DomTreeAnalysis pass in the printer pass, and pass the dominator
358 // tree to the LazyValueInfoAnnotatedWriter.
359 DominatorTree &DT;
360
361 public:
LazyValueInfoAnnotatedWriter(LazyValueInfoImpl * L,DominatorTree & DTree)362 LazyValueInfoAnnotatedWriter(LazyValueInfoImpl *L, DominatorTree &DTree)
363 : LVIImpl(L), DT(DTree) {}
364
365 virtual void emitBasicBlockStartAnnot(const BasicBlock *BB,
366 formatted_raw_ostream &OS);
367
368 virtual void emitInstructionAnnot(const Instruction *I,
369 formatted_raw_ostream &OS);
370 };
371 }
372 namespace {
373 // The actual implementation of the lazy analysis and update. Note that the
374 // inheritance from LazyValueInfoCache is intended to be temporary while
375 // splitting the code and then transitioning to a has-a relationship.
376 class LazyValueInfoImpl {
377
378 /// Cached results from previous queries
379 LazyValueInfoCache TheCache;
380
381 /// This stack holds the state of the value solver during a query.
382 /// It basically emulates the callstack of the naive
383 /// recursive value lookup process.
384 SmallVector<std::pair<BasicBlock*, Value*>, 8> BlockValueStack;
385
386 /// Keeps track of which block-value pairs are in BlockValueStack.
387 DenseSet<std::pair<BasicBlock*, Value*> > BlockValueSet;
388
389 /// Push BV onto BlockValueStack unless it's already in there.
390 /// Returns true on success.
pushBlockValue(const std::pair<BasicBlock *,Value * > & BV)391 bool pushBlockValue(const std::pair<BasicBlock *, Value *> &BV) {
392 if (!BlockValueSet.insert(BV).second)
393 return false; // It's already in the stack.
394
395 LLVM_DEBUG(dbgs() << "PUSH: " << *BV.second << " in "
396 << BV.first->getName() << "\n");
397 BlockValueStack.push_back(BV);
398 return true;
399 }
400
401 AssumptionCache *AC; ///< A pointer to the cache of @llvm.assume calls.
402 const DataLayout &DL; ///< A mandatory DataLayout
403 DominatorTree *DT; ///< An optional DT pointer.
404 DominatorTree *DisabledDT; ///< Stores DT if it's disabled.
405
406 ValueLatticeElement getBlockValue(Value *Val, BasicBlock *BB);
407 bool getEdgeValue(Value *V, BasicBlock *F, BasicBlock *T,
408 ValueLatticeElement &Result, Instruction *CxtI = nullptr);
409 bool hasBlockValue(Value *Val, BasicBlock *BB);
410
411 // These methods process one work item and may add more. A false value
412 // returned means that the work item was not completely processed and must
413 // be revisited after going through the new items.
414 bool solveBlockValue(Value *Val, BasicBlock *BB);
415 bool solveBlockValueImpl(ValueLatticeElement &Res, Value *Val,
416 BasicBlock *BB);
417 bool solveBlockValueNonLocal(ValueLatticeElement &BBLV, Value *Val,
418 BasicBlock *BB);
419 bool solveBlockValuePHINode(ValueLatticeElement &BBLV, PHINode *PN,
420 BasicBlock *BB);
421 bool solveBlockValueSelect(ValueLatticeElement &BBLV, SelectInst *S,
422 BasicBlock *BB);
423 bool solveBlockValueBinaryOp(ValueLatticeElement &BBLV, BinaryOperator *BBI,
424 BasicBlock *BB);
425 bool solveBlockValueCast(ValueLatticeElement &BBLV, CastInst *CI,
426 BasicBlock *BB);
427 void intersectAssumeOrGuardBlockValueConstantRange(Value *Val,
428 ValueLatticeElement &BBLV,
429 Instruction *BBI);
430
431 void solve();
432
433 public:
434 /// This is the query interface to determine the lattice
435 /// value for the specified Value* at the end of the specified block.
436 ValueLatticeElement getValueInBlock(Value *V, BasicBlock *BB,
437 Instruction *CxtI = nullptr);
438
439 /// This is the query interface to determine the lattice
440 /// value for the specified Value* at the specified instruction (generally
441 /// from an assume intrinsic).
442 ValueLatticeElement getValueAt(Value *V, Instruction *CxtI);
443
444 /// This is the query interface to determine the lattice
445 /// value for the specified Value* that is true on the specified edge.
446 ValueLatticeElement getValueOnEdge(Value *V, BasicBlock *FromBB,
447 BasicBlock *ToBB,
448 Instruction *CxtI = nullptr);
449
450 /// Complete flush all previously computed values
clear()451 void clear() {
452 TheCache.clear();
453 }
454
455 /// Printing the LazyValueInfo Analysis.
printLVI(Function & F,DominatorTree & DTree,raw_ostream & OS)456 void printLVI(Function &F, DominatorTree &DTree, raw_ostream &OS) {
457 LazyValueInfoAnnotatedWriter Writer(this, DTree);
458 F.print(OS, &Writer);
459 }
460
461 /// This is part of the update interface to inform the cache
462 /// that a block has been deleted.
eraseBlock(BasicBlock * BB)463 void eraseBlock(BasicBlock *BB) {
464 TheCache.eraseBlock(BB);
465 }
466
467 /// Disables use of the DominatorTree within LVI.
disableDT()468 void disableDT() {
469 if (DT) {
470 assert(!DisabledDT && "Both DT and DisabledDT are not nullptr!");
471 std::swap(DT, DisabledDT);
472 }
473 }
474
475 /// Enables use of the DominatorTree within LVI. Does nothing if the class
476 /// instance was initialized without a DT pointer.
enableDT()477 void enableDT() {
478 if (DisabledDT) {
479 assert(!DT && "Both DT and DisabledDT are not nullptr!");
480 std::swap(DT, DisabledDT);
481 }
482 }
483
484 /// This is the update interface to inform the cache that an edge from
485 /// PredBB to OldSucc has been threaded to be from PredBB to NewSucc.
486 void threadEdge(BasicBlock *PredBB,BasicBlock *OldSucc,BasicBlock *NewSucc);
487
LazyValueInfoImpl(AssumptionCache * AC,const DataLayout & DL,DominatorTree * DT=nullptr)488 LazyValueInfoImpl(AssumptionCache *AC, const DataLayout &DL,
489 DominatorTree *DT = nullptr)
490 : AC(AC), DL(DL), DT(DT), DisabledDT(nullptr) {}
491 };
492 } // end anonymous namespace
493
494
solve()495 void LazyValueInfoImpl::solve() {
496 SmallVector<std::pair<BasicBlock *, Value *>, 8> StartingStack(
497 BlockValueStack.begin(), BlockValueStack.end());
498
499 unsigned processedCount = 0;
500 while (!BlockValueStack.empty()) {
501 processedCount++;
502 // Abort if we have to process too many values to get a result for this one.
503 // Because of the design of the overdefined cache currently being per-block
504 // to avoid naming-related issues (IE it wants to try to give different
505 // results for the same name in different blocks), overdefined results don't
506 // get cached globally, which in turn means we will often try to rediscover
507 // the same overdefined result again and again. Once something like
508 // PredicateInfo is used in LVI or CVP, we should be able to make the
509 // overdefined cache global, and remove this throttle.
510 if (processedCount > MaxProcessedPerValue) {
511 LLVM_DEBUG(
512 dbgs() << "Giving up on stack because we are getting too deep\n");
513 // Fill in the original values
514 while (!StartingStack.empty()) {
515 std::pair<BasicBlock *, Value *> &e = StartingStack.back();
516 TheCache.insertResult(e.second, e.first,
517 ValueLatticeElement::getOverdefined());
518 StartingStack.pop_back();
519 }
520 BlockValueSet.clear();
521 BlockValueStack.clear();
522 return;
523 }
524 std::pair<BasicBlock *, Value *> e = BlockValueStack.back();
525 assert(BlockValueSet.count(e) && "Stack value should be in BlockValueSet!");
526
527 if (solveBlockValue(e.second, e.first)) {
528 // The work item was completely processed.
529 assert(BlockValueStack.back() == e && "Nothing should have been pushed!");
530 assert(TheCache.hasCachedValueInfo(e.second, e.first) &&
531 "Result should be in cache!");
532
533 LLVM_DEBUG(
534 dbgs() << "POP " << *e.second << " in " << e.first->getName() << " = "
535 << TheCache.getCachedValueInfo(e.second, e.first) << "\n");
536
537 BlockValueStack.pop_back();
538 BlockValueSet.erase(e);
539 } else {
540 // More work needs to be done before revisiting.
541 assert(BlockValueStack.back() != e && "Stack should have been pushed!");
542 }
543 }
544 }
545
hasBlockValue(Value * Val,BasicBlock * BB)546 bool LazyValueInfoImpl::hasBlockValue(Value *Val, BasicBlock *BB) {
547 // If already a constant, there is nothing to compute.
548 if (isa<Constant>(Val))
549 return true;
550
551 return TheCache.hasCachedValueInfo(Val, BB);
552 }
553
getBlockValue(Value * Val,BasicBlock * BB)554 ValueLatticeElement LazyValueInfoImpl::getBlockValue(Value *Val,
555 BasicBlock *BB) {
556 // If already a constant, there is nothing to compute.
557 if (Constant *VC = dyn_cast<Constant>(Val))
558 return ValueLatticeElement::get(VC);
559
560 return TheCache.getCachedValueInfo(Val, BB);
561 }
562
getFromRangeMetadata(Instruction * BBI)563 static ValueLatticeElement getFromRangeMetadata(Instruction *BBI) {
564 switch (BBI->getOpcode()) {
565 default: break;
566 case Instruction::Load:
567 case Instruction::Call:
568 case Instruction::Invoke:
569 if (MDNode *Ranges = BBI->getMetadata(LLVMContext::MD_range))
570 if (isa<IntegerType>(BBI->getType())) {
571 return ValueLatticeElement::getRange(
572 getConstantRangeFromMetadata(*Ranges));
573 }
574 break;
575 };
576 // Nothing known - will be intersected with other facts
577 return ValueLatticeElement::getOverdefined();
578 }
579
solveBlockValue(Value * Val,BasicBlock * BB)580 bool LazyValueInfoImpl::solveBlockValue(Value *Val, BasicBlock *BB) {
581 if (isa<Constant>(Val))
582 return true;
583
584 if (TheCache.hasCachedValueInfo(Val, BB)) {
585 // If we have a cached value, use that.
586 LLVM_DEBUG(dbgs() << " reuse BB '" << BB->getName() << "' val="
587 << TheCache.getCachedValueInfo(Val, BB) << '\n');
588
589 // Since we're reusing a cached value, we don't need to update the
590 // OverDefinedCache. The cache will have been properly updated whenever the
591 // cached value was inserted.
592 return true;
593 }
594
595 // Hold off inserting this value into the Cache in case we have to return
596 // false and come back later.
597 ValueLatticeElement Res;
598 if (!solveBlockValueImpl(Res, Val, BB))
599 // Work pushed, will revisit
600 return false;
601
602 TheCache.insertResult(Val, BB, Res);
603 return true;
604 }
605
solveBlockValueImpl(ValueLatticeElement & Res,Value * Val,BasicBlock * BB)606 bool LazyValueInfoImpl::solveBlockValueImpl(ValueLatticeElement &Res,
607 Value *Val, BasicBlock *BB) {
608
609 Instruction *BBI = dyn_cast<Instruction>(Val);
610 if (!BBI || BBI->getParent() != BB)
611 return solveBlockValueNonLocal(Res, Val, BB);
612
613 if (PHINode *PN = dyn_cast<PHINode>(BBI))
614 return solveBlockValuePHINode(Res, PN, BB);
615
616 if (auto *SI = dyn_cast<SelectInst>(BBI))
617 return solveBlockValueSelect(Res, SI, BB);
618
619 // If this value is a nonnull pointer, record it's range and bailout. Note
620 // that for all other pointer typed values, we terminate the search at the
621 // definition. We could easily extend this to look through geps, bitcasts,
622 // and the like to prove non-nullness, but it's not clear that's worth it
623 // compile time wise. The context-insensitive value walk done inside
624 // isKnownNonZero gets most of the profitable cases at much less expense.
625 // This does mean that we have a sensativity to where the defining
626 // instruction is placed, even if it could legally be hoisted much higher.
627 // That is unfortunate.
628 PointerType *PT = dyn_cast<PointerType>(BBI->getType());
629 if (PT && isKnownNonZero(BBI, DL)) {
630 Res = ValueLatticeElement::getNot(ConstantPointerNull::get(PT));
631 return true;
632 }
633 if (BBI->getType()->isIntegerTy()) {
634 if (auto *CI = dyn_cast<CastInst>(BBI))
635 return solveBlockValueCast(Res, CI, BB);
636
637 BinaryOperator *BO = dyn_cast<BinaryOperator>(BBI);
638 if (BO && isa<ConstantInt>(BO->getOperand(1)))
639 return solveBlockValueBinaryOp(Res, BO, BB);
640 }
641
642 LLVM_DEBUG(dbgs() << " compute BB '" << BB->getName()
643 << "' - unknown inst def found.\n");
644 Res = getFromRangeMetadata(BBI);
645 return true;
646 }
647
InstructionDereferencesPointer(Instruction * I,Value * Ptr)648 static bool InstructionDereferencesPointer(Instruction *I, Value *Ptr) {
649 if (LoadInst *L = dyn_cast<LoadInst>(I)) {
650 return L->getPointerAddressSpace() == 0 &&
651 GetUnderlyingObject(L->getPointerOperand(),
652 L->getModule()->getDataLayout()) == Ptr;
653 }
654 if (StoreInst *S = dyn_cast<StoreInst>(I)) {
655 return S->getPointerAddressSpace() == 0 &&
656 GetUnderlyingObject(S->getPointerOperand(),
657 S->getModule()->getDataLayout()) == Ptr;
658 }
659 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I)) {
660 if (MI->isVolatile()) return false;
661
662 // FIXME: check whether it has a valuerange that excludes zero?
663 ConstantInt *Len = dyn_cast<ConstantInt>(MI->getLength());
664 if (!Len || Len->isZero()) return false;
665
666 if (MI->getDestAddressSpace() == 0)
667 if (GetUnderlyingObject(MI->getRawDest(),
668 MI->getModule()->getDataLayout()) == Ptr)
669 return true;
670 if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI))
671 if (MTI->getSourceAddressSpace() == 0)
672 if (GetUnderlyingObject(MTI->getRawSource(),
673 MTI->getModule()->getDataLayout()) == Ptr)
674 return true;
675 }
676 return false;
677 }
678
679 /// Return true if the allocation associated with Val is ever dereferenced
680 /// within the given basic block. This establishes the fact Val is not null,
681 /// but does not imply that the memory at Val is dereferenceable. (Val may
682 /// point off the end of the dereferenceable part of the object.)
isObjectDereferencedInBlock(Value * Val,BasicBlock * BB)683 static bool isObjectDereferencedInBlock(Value *Val, BasicBlock *BB) {
684 assert(Val->getType()->isPointerTy());
685
686 const DataLayout &DL = BB->getModule()->getDataLayout();
687 Value *UnderlyingVal = GetUnderlyingObject(Val, DL);
688 // If 'GetUnderlyingObject' didn't converge, skip it. It won't converge
689 // inside InstructionDereferencesPointer either.
690 if (UnderlyingVal == GetUnderlyingObject(UnderlyingVal, DL, 1))
691 for (Instruction &I : *BB)
692 if (InstructionDereferencesPointer(&I, UnderlyingVal))
693 return true;
694 return false;
695 }
696
solveBlockValueNonLocal(ValueLatticeElement & BBLV,Value * Val,BasicBlock * BB)697 bool LazyValueInfoImpl::solveBlockValueNonLocal(ValueLatticeElement &BBLV,
698 Value *Val, BasicBlock *BB) {
699 ValueLatticeElement Result; // Start Undefined.
700
701 // If this is the entry block, we must be asking about an argument. The
702 // value is overdefined.
703 if (BB == &BB->getParent()->getEntryBlock()) {
704 assert(isa<Argument>(Val) && "Unknown live-in to the entry block");
705 // Before giving up, see if we can prove the pointer non-null local to
706 // this particular block.
707 PointerType *PTy = dyn_cast<PointerType>(Val->getType());
708 if (PTy &&
709 (isKnownNonZero(Val, DL) ||
710 (isObjectDereferencedInBlock(Val, BB) &&
711 !NullPointerIsDefined(BB->getParent(), PTy->getAddressSpace())))) {
712 Result = ValueLatticeElement::getNot(ConstantPointerNull::get(PTy));
713 } else {
714 Result = ValueLatticeElement::getOverdefined();
715 }
716 BBLV = Result;
717 return true;
718 }
719
720 // Loop over all of our predecessors, merging what we know from them into
721 // result. If we encounter an unexplored predecessor, we eagerly explore it
722 // in a depth first manner. In practice, this has the effect of discovering
723 // paths we can't analyze eagerly without spending compile times analyzing
724 // other paths. This heuristic benefits from the fact that predecessors are
725 // frequently arranged such that dominating ones come first and we quickly
726 // find a path to function entry. TODO: We should consider explicitly
727 // canonicalizing to make this true rather than relying on this happy
728 // accident.
729 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
730 ValueLatticeElement EdgeResult;
731 if (!getEdgeValue(Val, *PI, BB, EdgeResult))
732 // Explore that input, then return here
733 return false;
734
735 Result.mergeIn(EdgeResult, DL);
736
737 // If we hit overdefined, exit early. The BlockVals entry is already set
738 // to overdefined.
739 if (Result.isOverdefined()) {
740 LLVM_DEBUG(dbgs() << " compute BB '" << BB->getName()
741 << "' - overdefined because of pred (non local).\n");
742 // Before giving up, see if we can prove the pointer non-null local to
743 // this particular block.
744 PointerType *PTy = dyn_cast<PointerType>(Val->getType());
745 if (PTy && isObjectDereferencedInBlock(Val, BB) &&
746 !NullPointerIsDefined(BB->getParent(), PTy->getAddressSpace())) {
747 Result = ValueLatticeElement::getNot(ConstantPointerNull::get(PTy));
748 }
749
750 BBLV = Result;
751 return true;
752 }
753 }
754
755 // Return the merged value, which is more precise than 'overdefined'.
756 assert(!Result.isOverdefined());
757 BBLV = Result;
758 return true;
759 }
760
solveBlockValuePHINode(ValueLatticeElement & BBLV,PHINode * PN,BasicBlock * BB)761 bool LazyValueInfoImpl::solveBlockValuePHINode(ValueLatticeElement &BBLV,
762 PHINode *PN, BasicBlock *BB) {
763 ValueLatticeElement Result; // Start Undefined.
764
765 // Loop over all of our predecessors, merging what we know from them into
766 // result. See the comment about the chosen traversal order in
767 // solveBlockValueNonLocal; the same reasoning applies here.
768 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
769 BasicBlock *PhiBB = PN->getIncomingBlock(i);
770 Value *PhiVal = PN->getIncomingValue(i);
771 ValueLatticeElement EdgeResult;
772 // Note that we can provide PN as the context value to getEdgeValue, even
773 // though the results will be cached, because PN is the value being used as
774 // the cache key in the caller.
775 if (!getEdgeValue(PhiVal, PhiBB, BB, EdgeResult, PN))
776 // Explore that input, then return here
777 return false;
778
779 Result.mergeIn(EdgeResult, DL);
780
781 // If we hit overdefined, exit early. The BlockVals entry is already set
782 // to overdefined.
783 if (Result.isOverdefined()) {
784 LLVM_DEBUG(dbgs() << " compute BB '" << BB->getName()
785 << "' - overdefined because of pred (local).\n");
786
787 BBLV = Result;
788 return true;
789 }
790 }
791
792 // Return the merged value, which is more precise than 'overdefined'.
793 assert(!Result.isOverdefined() && "Possible PHI in entry block?");
794 BBLV = Result;
795 return true;
796 }
797
798 static ValueLatticeElement getValueFromCondition(Value *Val, Value *Cond,
799 bool isTrueDest = true);
800
801 // If we can determine a constraint on the value given conditions assumed by
802 // the program, intersect those constraints with BBLV
intersectAssumeOrGuardBlockValueConstantRange(Value * Val,ValueLatticeElement & BBLV,Instruction * BBI)803 void LazyValueInfoImpl::intersectAssumeOrGuardBlockValueConstantRange(
804 Value *Val, ValueLatticeElement &BBLV, Instruction *BBI) {
805 BBI = BBI ? BBI : dyn_cast<Instruction>(Val);
806 if (!BBI)
807 return;
808
809 for (auto &AssumeVH : AC->assumptionsFor(Val)) {
810 if (!AssumeVH)
811 continue;
812 auto *I = cast<CallInst>(AssumeVH);
813 if (!isValidAssumeForContext(I, BBI, DT))
814 continue;
815
816 BBLV = intersect(BBLV, getValueFromCondition(Val, I->getArgOperand(0)));
817 }
818
819 // If guards are not used in the module, don't spend time looking for them
820 auto *GuardDecl = BBI->getModule()->getFunction(
821 Intrinsic::getName(Intrinsic::experimental_guard));
822 if (!GuardDecl || GuardDecl->use_empty())
823 return;
824
825 for (Instruction &I : make_range(BBI->getIterator().getReverse(),
826 BBI->getParent()->rend())) {
827 Value *Cond = nullptr;
828 if (match(&I, m_Intrinsic<Intrinsic::experimental_guard>(m_Value(Cond))))
829 BBLV = intersect(BBLV, getValueFromCondition(Val, Cond));
830 }
831 }
832
solveBlockValueSelect(ValueLatticeElement & BBLV,SelectInst * SI,BasicBlock * BB)833 bool LazyValueInfoImpl::solveBlockValueSelect(ValueLatticeElement &BBLV,
834 SelectInst *SI, BasicBlock *BB) {
835
836 // Recurse on our inputs if needed
837 if (!hasBlockValue(SI->getTrueValue(), BB)) {
838 if (pushBlockValue(std::make_pair(BB, SI->getTrueValue())))
839 return false;
840 BBLV = ValueLatticeElement::getOverdefined();
841 return true;
842 }
843 ValueLatticeElement TrueVal = getBlockValue(SI->getTrueValue(), BB);
844 // If we hit overdefined, don't ask more queries. We want to avoid poisoning
845 // extra slots in the table if we can.
846 if (TrueVal.isOverdefined()) {
847 BBLV = ValueLatticeElement::getOverdefined();
848 return true;
849 }
850
851 if (!hasBlockValue(SI->getFalseValue(), BB)) {
852 if (pushBlockValue(std::make_pair(BB, SI->getFalseValue())))
853 return false;
854 BBLV = ValueLatticeElement::getOverdefined();
855 return true;
856 }
857 ValueLatticeElement FalseVal = getBlockValue(SI->getFalseValue(), BB);
858 // If we hit overdefined, don't ask more queries. We want to avoid poisoning
859 // extra slots in the table if we can.
860 if (FalseVal.isOverdefined()) {
861 BBLV = ValueLatticeElement::getOverdefined();
862 return true;
863 }
864
865 if (TrueVal.isConstantRange() && FalseVal.isConstantRange()) {
866 const ConstantRange &TrueCR = TrueVal.getConstantRange();
867 const ConstantRange &FalseCR = FalseVal.getConstantRange();
868 Value *LHS = nullptr;
869 Value *RHS = nullptr;
870 SelectPatternResult SPR = matchSelectPattern(SI, LHS, RHS);
871 // Is this a min specifically of our two inputs? (Avoid the risk of
872 // ValueTracking getting smarter looking back past our immediate inputs.)
873 if (SelectPatternResult::isMinOrMax(SPR.Flavor) &&
874 LHS == SI->getTrueValue() && RHS == SI->getFalseValue()) {
875 ConstantRange ResultCR = [&]() {
876 switch (SPR.Flavor) {
877 default:
878 llvm_unreachable("unexpected minmax type!");
879 case SPF_SMIN: /// Signed minimum
880 return TrueCR.smin(FalseCR);
881 case SPF_UMIN: /// Unsigned minimum
882 return TrueCR.umin(FalseCR);
883 case SPF_SMAX: /// Signed maximum
884 return TrueCR.smax(FalseCR);
885 case SPF_UMAX: /// Unsigned maximum
886 return TrueCR.umax(FalseCR);
887 };
888 }();
889 BBLV = ValueLatticeElement::getRange(ResultCR);
890 return true;
891 }
892
893 // TODO: ABS, NABS from the SelectPatternResult
894 }
895
896 // Can we constrain the facts about the true and false values by using the
897 // condition itself? This shows up with idioms like e.g. select(a > 5, a, 5).
898 // TODO: We could potentially refine an overdefined true value above.
899 Value *Cond = SI->getCondition();
900 TrueVal = intersect(TrueVal,
901 getValueFromCondition(SI->getTrueValue(), Cond, true));
902 FalseVal = intersect(FalseVal,
903 getValueFromCondition(SI->getFalseValue(), Cond, false));
904
905 // Handle clamp idioms such as:
906 // %24 = constantrange<0, 17>
907 // %39 = icmp eq i32 %24, 0
908 // %40 = add i32 %24, -1
909 // %siv.next = select i1 %39, i32 16, i32 %40
910 // %siv.next = constantrange<0, 17> not <-1, 17>
911 // In general, this can handle any clamp idiom which tests the edge
912 // condition via an equality or inequality.
913 if (auto *ICI = dyn_cast<ICmpInst>(Cond)) {
914 ICmpInst::Predicate Pred = ICI->getPredicate();
915 Value *A = ICI->getOperand(0);
916 if (ConstantInt *CIBase = dyn_cast<ConstantInt>(ICI->getOperand(1))) {
917 auto addConstants = [](ConstantInt *A, ConstantInt *B) {
918 assert(A->getType() == B->getType());
919 return ConstantInt::get(A->getType(), A->getValue() + B->getValue());
920 };
921 // See if either input is A + C2, subject to the constraint from the
922 // condition that A != C when that input is used. We can assume that
923 // that input doesn't include C + C2.
924 ConstantInt *CIAdded;
925 switch (Pred) {
926 default: break;
927 case ICmpInst::ICMP_EQ:
928 if (match(SI->getFalseValue(), m_Add(m_Specific(A),
929 m_ConstantInt(CIAdded)))) {
930 auto ResNot = addConstants(CIBase, CIAdded);
931 FalseVal = intersect(FalseVal,
932 ValueLatticeElement::getNot(ResNot));
933 }
934 break;
935 case ICmpInst::ICMP_NE:
936 if (match(SI->getTrueValue(), m_Add(m_Specific(A),
937 m_ConstantInt(CIAdded)))) {
938 auto ResNot = addConstants(CIBase, CIAdded);
939 TrueVal = intersect(TrueVal,
940 ValueLatticeElement::getNot(ResNot));
941 }
942 break;
943 };
944 }
945 }
946
947 ValueLatticeElement Result; // Start Undefined.
948 Result.mergeIn(TrueVal, DL);
949 Result.mergeIn(FalseVal, DL);
950 BBLV = Result;
951 return true;
952 }
953
solveBlockValueCast(ValueLatticeElement & BBLV,CastInst * CI,BasicBlock * BB)954 bool LazyValueInfoImpl::solveBlockValueCast(ValueLatticeElement &BBLV,
955 CastInst *CI,
956 BasicBlock *BB) {
957 if (!CI->getOperand(0)->getType()->isSized()) {
958 // Without knowing how wide the input is, we can't analyze it in any useful
959 // way.
960 BBLV = ValueLatticeElement::getOverdefined();
961 return true;
962 }
963
964 // Filter out casts we don't know how to reason about before attempting to
965 // recurse on our operand. This can cut a long search short if we know we're
966 // not going to be able to get any useful information anways.
967 switch (CI->getOpcode()) {
968 case Instruction::Trunc:
969 case Instruction::SExt:
970 case Instruction::ZExt:
971 case Instruction::BitCast:
972 break;
973 default:
974 // Unhandled instructions are overdefined.
975 LLVM_DEBUG(dbgs() << " compute BB '" << BB->getName()
976 << "' - overdefined (unknown cast).\n");
977 BBLV = ValueLatticeElement::getOverdefined();
978 return true;
979 }
980
981 // Figure out the range of the LHS. If that fails, we still apply the
982 // transfer rule on the full set since we may be able to locally infer
983 // interesting facts.
984 if (!hasBlockValue(CI->getOperand(0), BB))
985 if (pushBlockValue(std::make_pair(BB, CI->getOperand(0))))
986 // More work to do before applying this transfer rule.
987 return false;
988
989 const unsigned OperandBitWidth =
990 DL.getTypeSizeInBits(CI->getOperand(0)->getType());
991 ConstantRange LHSRange = ConstantRange(OperandBitWidth);
992 if (hasBlockValue(CI->getOperand(0), BB)) {
993 ValueLatticeElement LHSVal = getBlockValue(CI->getOperand(0), BB);
994 intersectAssumeOrGuardBlockValueConstantRange(CI->getOperand(0), LHSVal,
995 CI);
996 if (LHSVal.isConstantRange())
997 LHSRange = LHSVal.getConstantRange();
998 }
999
1000 const unsigned ResultBitWidth = CI->getType()->getIntegerBitWidth();
1001
1002 // NOTE: We're currently limited by the set of operations that ConstantRange
1003 // can evaluate symbolically. Enhancing that set will allows us to analyze
1004 // more definitions.
1005 BBLV = ValueLatticeElement::getRange(LHSRange.castOp(CI->getOpcode(),
1006 ResultBitWidth));
1007 return true;
1008 }
1009
solveBlockValueBinaryOp(ValueLatticeElement & BBLV,BinaryOperator * BO,BasicBlock * BB)1010 bool LazyValueInfoImpl::solveBlockValueBinaryOp(ValueLatticeElement &BBLV,
1011 BinaryOperator *BO,
1012 BasicBlock *BB) {
1013
1014 assert(BO->getOperand(0)->getType()->isSized() &&
1015 "all operands to binary operators are sized");
1016
1017 // Filter out operators we don't know how to reason about before attempting to
1018 // recurse on our operand(s). This can cut a long search short if we know
1019 // we're not going to be able to get any useful information anyways.
1020 switch (BO->getOpcode()) {
1021 case Instruction::Add:
1022 case Instruction::Sub:
1023 case Instruction::Mul:
1024 case Instruction::UDiv:
1025 case Instruction::Shl:
1026 case Instruction::LShr:
1027 case Instruction::AShr:
1028 case Instruction::And:
1029 case Instruction::Or:
1030 // continue into the code below
1031 break;
1032 default:
1033 // Unhandled instructions are overdefined.
1034 LLVM_DEBUG(dbgs() << " compute BB '" << BB->getName()
1035 << "' - overdefined (unknown binary operator).\n");
1036 BBLV = ValueLatticeElement::getOverdefined();
1037 return true;
1038 };
1039
1040 // Figure out the range of the LHS. If that fails, use a conservative range,
1041 // but apply the transfer rule anyways. This lets us pick up facts from
1042 // expressions like "and i32 (call i32 @foo()), 32"
1043 if (!hasBlockValue(BO->getOperand(0), BB))
1044 if (pushBlockValue(std::make_pair(BB, BO->getOperand(0))))
1045 // More work to do before applying this transfer rule.
1046 return false;
1047
1048 const unsigned OperandBitWidth =
1049 DL.getTypeSizeInBits(BO->getOperand(0)->getType());
1050 ConstantRange LHSRange = ConstantRange(OperandBitWidth);
1051 if (hasBlockValue(BO->getOperand(0), BB)) {
1052 ValueLatticeElement LHSVal = getBlockValue(BO->getOperand(0), BB);
1053 intersectAssumeOrGuardBlockValueConstantRange(BO->getOperand(0), LHSVal,
1054 BO);
1055 if (LHSVal.isConstantRange())
1056 LHSRange = LHSVal.getConstantRange();
1057 }
1058
1059 ConstantInt *RHS = cast<ConstantInt>(BO->getOperand(1));
1060 ConstantRange RHSRange = ConstantRange(RHS->getValue());
1061
1062 // NOTE: We're currently limited by the set of operations that ConstantRange
1063 // can evaluate symbolically. Enhancing that set will allows us to analyze
1064 // more definitions.
1065 Instruction::BinaryOps BinOp = BO->getOpcode();
1066 BBLV = ValueLatticeElement::getRange(LHSRange.binaryOp(BinOp, RHSRange));
1067 return true;
1068 }
1069
getValueFromICmpCondition(Value * Val,ICmpInst * ICI,bool isTrueDest)1070 static ValueLatticeElement getValueFromICmpCondition(Value *Val, ICmpInst *ICI,
1071 bool isTrueDest) {
1072 Value *LHS = ICI->getOperand(0);
1073 Value *RHS = ICI->getOperand(1);
1074 CmpInst::Predicate Predicate = ICI->getPredicate();
1075
1076 if (isa<Constant>(RHS)) {
1077 if (ICI->isEquality() && LHS == Val) {
1078 // We know that V has the RHS constant if this is a true SETEQ or
1079 // false SETNE.
1080 if (isTrueDest == (Predicate == ICmpInst::ICMP_EQ))
1081 return ValueLatticeElement::get(cast<Constant>(RHS));
1082 else
1083 return ValueLatticeElement::getNot(cast<Constant>(RHS));
1084 }
1085 }
1086
1087 if (!Val->getType()->isIntegerTy())
1088 return ValueLatticeElement::getOverdefined();
1089
1090 // Use ConstantRange::makeAllowedICmpRegion in order to determine the possible
1091 // range of Val guaranteed by the condition. Recognize comparisons in the from
1092 // of:
1093 // icmp <pred> Val, ...
1094 // icmp <pred> (add Val, Offset), ...
1095 // The latter is the range checking idiom that InstCombine produces. Subtract
1096 // the offset from the allowed range for RHS in this case.
1097
1098 // Val or (add Val, Offset) can be on either hand of the comparison
1099 if (LHS != Val && !match(LHS, m_Add(m_Specific(Val), m_ConstantInt()))) {
1100 std::swap(LHS, RHS);
1101 Predicate = CmpInst::getSwappedPredicate(Predicate);
1102 }
1103
1104 ConstantInt *Offset = nullptr;
1105 if (LHS != Val)
1106 match(LHS, m_Add(m_Specific(Val), m_ConstantInt(Offset)));
1107
1108 if (LHS == Val || Offset) {
1109 // Calculate the range of values that are allowed by the comparison
1110 ConstantRange RHSRange(RHS->getType()->getIntegerBitWidth(),
1111 /*isFullSet=*/true);
1112 if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS))
1113 RHSRange = ConstantRange(CI->getValue());
1114 else if (Instruction *I = dyn_cast<Instruction>(RHS))
1115 if (auto *Ranges = I->getMetadata(LLVMContext::MD_range))
1116 RHSRange = getConstantRangeFromMetadata(*Ranges);
1117
1118 // If we're interested in the false dest, invert the condition
1119 CmpInst::Predicate Pred =
1120 isTrueDest ? Predicate : CmpInst::getInversePredicate(Predicate);
1121 ConstantRange TrueValues =
1122 ConstantRange::makeAllowedICmpRegion(Pred, RHSRange);
1123
1124 if (Offset) // Apply the offset from above.
1125 TrueValues = TrueValues.subtract(Offset->getValue());
1126
1127 return ValueLatticeElement::getRange(std::move(TrueValues));
1128 }
1129
1130 return ValueLatticeElement::getOverdefined();
1131 }
1132
1133 static ValueLatticeElement
1134 getValueFromCondition(Value *Val, Value *Cond, bool isTrueDest,
1135 DenseMap<Value*, ValueLatticeElement> &Visited);
1136
1137 static ValueLatticeElement
getValueFromConditionImpl(Value * Val,Value * Cond,bool isTrueDest,DenseMap<Value *,ValueLatticeElement> & Visited)1138 getValueFromConditionImpl(Value *Val, Value *Cond, bool isTrueDest,
1139 DenseMap<Value*, ValueLatticeElement> &Visited) {
1140 if (ICmpInst *ICI = dyn_cast<ICmpInst>(Cond))
1141 return getValueFromICmpCondition(Val, ICI, isTrueDest);
1142
1143 // Handle conditions in the form of (cond1 && cond2), we know that on the
1144 // true dest path both of the conditions hold. Similarly for conditions of
1145 // the form (cond1 || cond2), we know that on the false dest path neither
1146 // condition holds.
1147 BinaryOperator *BO = dyn_cast<BinaryOperator>(Cond);
1148 if (!BO || (isTrueDest && BO->getOpcode() != BinaryOperator::And) ||
1149 (!isTrueDest && BO->getOpcode() != BinaryOperator::Or))
1150 return ValueLatticeElement::getOverdefined();
1151
1152 // Prevent infinite recursion if Cond references itself as in this example:
1153 // Cond: "%tmp4 = and i1 %tmp4, undef"
1154 // BL: "%tmp4 = and i1 %tmp4, undef"
1155 // BR: "i1 undef"
1156 Value *BL = BO->getOperand(0);
1157 Value *BR = BO->getOperand(1);
1158 if (BL == Cond || BR == Cond)
1159 return ValueLatticeElement::getOverdefined();
1160
1161 return intersect(getValueFromCondition(Val, BL, isTrueDest, Visited),
1162 getValueFromCondition(Val, BR, isTrueDest, Visited));
1163 }
1164
1165 static ValueLatticeElement
getValueFromCondition(Value * Val,Value * Cond,bool isTrueDest,DenseMap<Value *,ValueLatticeElement> & Visited)1166 getValueFromCondition(Value *Val, Value *Cond, bool isTrueDest,
1167 DenseMap<Value*, ValueLatticeElement> &Visited) {
1168 auto I = Visited.find(Cond);
1169 if (I != Visited.end())
1170 return I->second;
1171
1172 auto Result = getValueFromConditionImpl(Val, Cond, isTrueDest, Visited);
1173 Visited[Cond] = Result;
1174 return Result;
1175 }
1176
getValueFromCondition(Value * Val,Value * Cond,bool isTrueDest)1177 ValueLatticeElement getValueFromCondition(Value *Val, Value *Cond,
1178 bool isTrueDest) {
1179 assert(Cond && "precondition");
1180 DenseMap<Value*, ValueLatticeElement> Visited;
1181 return getValueFromCondition(Val, Cond, isTrueDest, Visited);
1182 }
1183
1184 // Return true if Usr has Op as an operand, otherwise false.
usesOperand(User * Usr,Value * Op)1185 static bool usesOperand(User *Usr, Value *Op) {
1186 return find(Usr->operands(), Op) != Usr->op_end();
1187 }
1188
1189 // Return true if the instruction type of Val is supported by
1190 // constantFoldUser(). Currently CastInst and BinaryOperator only. Call this
1191 // before calling constantFoldUser() to find out if it's even worth attempting
1192 // to call it.
isOperationFoldable(User * Usr)1193 static bool isOperationFoldable(User *Usr) {
1194 return isa<CastInst>(Usr) || isa<BinaryOperator>(Usr);
1195 }
1196
1197 // Check if Usr can be simplified to an integer constant when the value of one
1198 // of its operands Op is an integer constant OpConstVal. If so, return it as an
1199 // lattice value range with a single element or otherwise return an overdefined
1200 // lattice value.
constantFoldUser(User * Usr,Value * Op,const APInt & OpConstVal,const DataLayout & DL)1201 static ValueLatticeElement constantFoldUser(User *Usr, Value *Op,
1202 const APInt &OpConstVal,
1203 const DataLayout &DL) {
1204 assert(isOperationFoldable(Usr) && "Precondition");
1205 Constant* OpConst = Constant::getIntegerValue(Op->getType(), OpConstVal);
1206 // Check if Usr can be simplified to a constant.
1207 if (auto *CI = dyn_cast<CastInst>(Usr)) {
1208 assert(CI->getOperand(0) == Op && "Operand 0 isn't Op");
1209 if (auto *C = dyn_cast_or_null<ConstantInt>(
1210 SimplifyCastInst(CI->getOpcode(), OpConst,
1211 CI->getDestTy(), DL))) {
1212 return ValueLatticeElement::getRange(ConstantRange(C->getValue()));
1213 }
1214 } else if (auto *BO = dyn_cast<BinaryOperator>(Usr)) {
1215 bool Op0Match = BO->getOperand(0) == Op;
1216 bool Op1Match = BO->getOperand(1) == Op;
1217 assert((Op0Match || Op1Match) &&
1218 "Operand 0 nor Operand 1 isn't a match");
1219 Value *LHS = Op0Match ? OpConst : BO->getOperand(0);
1220 Value *RHS = Op1Match ? OpConst : BO->getOperand(1);
1221 if (auto *C = dyn_cast_or_null<ConstantInt>(
1222 SimplifyBinOp(BO->getOpcode(), LHS, RHS, DL))) {
1223 return ValueLatticeElement::getRange(ConstantRange(C->getValue()));
1224 }
1225 }
1226 return ValueLatticeElement::getOverdefined();
1227 }
1228
1229 /// Compute the value of Val on the edge BBFrom -> BBTo. Returns false if
1230 /// Val is not constrained on the edge. Result is unspecified if return value
1231 /// is false.
getEdgeValueLocal(Value * Val,BasicBlock * BBFrom,BasicBlock * BBTo,ValueLatticeElement & Result)1232 static bool getEdgeValueLocal(Value *Val, BasicBlock *BBFrom,
1233 BasicBlock *BBTo, ValueLatticeElement &Result) {
1234 // TODO: Handle more complex conditionals. If (v == 0 || v2 < 1) is false, we
1235 // know that v != 0.
1236 if (BranchInst *BI = dyn_cast<BranchInst>(BBFrom->getTerminator())) {
1237 // If this is a conditional branch and only one successor goes to BBTo, then
1238 // we may be able to infer something from the condition.
1239 if (BI->isConditional() &&
1240 BI->getSuccessor(0) != BI->getSuccessor(1)) {
1241 bool isTrueDest = BI->getSuccessor(0) == BBTo;
1242 assert(BI->getSuccessor(!isTrueDest) == BBTo &&
1243 "BBTo isn't a successor of BBFrom");
1244 Value *Condition = BI->getCondition();
1245
1246 // If V is the condition of the branch itself, then we know exactly what
1247 // it is.
1248 if (Condition == Val) {
1249 Result = ValueLatticeElement::get(ConstantInt::get(
1250 Type::getInt1Ty(Val->getContext()), isTrueDest));
1251 return true;
1252 }
1253
1254 // If the condition of the branch is an equality comparison, we may be
1255 // able to infer the value.
1256 Result = getValueFromCondition(Val, Condition, isTrueDest);
1257 if (!Result.isOverdefined())
1258 return true;
1259
1260 if (User *Usr = dyn_cast<User>(Val)) {
1261 assert(Result.isOverdefined() && "Result isn't overdefined");
1262 // Check with isOperationFoldable() first to avoid linearly iterating
1263 // over the operands unnecessarily which can be expensive for
1264 // instructions with many operands.
1265 if (isa<IntegerType>(Usr->getType()) && isOperationFoldable(Usr)) {
1266 const DataLayout &DL = BBTo->getModule()->getDataLayout();
1267 if (usesOperand(Usr, Condition)) {
1268 // If Val has Condition as an operand and Val can be folded into a
1269 // constant with either Condition == true or Condition == false,
1270 // propagate the constant.
1271 // eg.
1272 // ; %Val is true on the edge to %then.
1273 // %Val = and i1 %Condition, true.
1274 // br %Condition, label %then, label %else
1275 APInt ConditionVal(1, isTrueDest ? 1 : 0);
1276 Result = constantFoldUser(Usr, Condition, ConditionVal, DL);
1277 } else {
1278 // If one of Val's operand has an inferred value, we may be able to
1279 // infer the value of Val.
1280 // eg.
1281 // ; %Val is 94 on the edge to %then.
1282 // %Val = add i8 %Op, 1
1283 // %Condition = icmp eq i8 %Op, 93
1284 // br i1 %Condition, label %then, label %else
1285 for (unsigned i = 0; i < Usr->getNumOperands(); ++i) {
1286 Value *Op = Usr->getOperand(i);
1287 ValueLatticeElement OpLatticeVal =
1288 getValueFromCondition(Op, Condition, isTrueDest);
1289 if (Optional<APInt> OpConst = OpLatticeVal.asConstantInteger()) {
1290 Result = constantFoldUser(Usr, Op, OpConst.getValue(), DL);
1291 break;
1292 }
1293 }
1294 }
1295 }
1296 }
1297 if (!Result.isOverdefined())
1298 return true;
1299 }
1300 }
1301
1302 // If the edge was formed by a switch on the value, then we may know exactly
1303 // what it is.
1304 if (SwitchInst *SI = dyn_cast<SwitchInst>(BBFrom->getTerminator())) {
1305 Value *Condition = SI->getCondition();
1306 if (!isa<IntegerType>(Val->getType()))
1307 return false;
1308 bool ValUsesConditionAndMayBeFoldable = false;
1309 if (Condition != Val) {
1310 // Check if Val has Condition as an operand.
1311 if (User *Usr = dyn_cast<User>(Val))
1312 ValUsesConditionAndMayBeFoldable = isOperationFoldable(Usr) &&
1313 usesOperand(Usr, Condition);
1314 if (!ValUsesConditionAndMayBeFoldable)
1315 return false;
1316 }
1317 assert((Condition == Val || ValUsesConditionAndMayBeFoldable) &&
1318 "Condition != Val nor Val doesn't use Condition");
1319
1320 bool DefaultCase = SI->getDefaultDest() == BBTo;
1321 unsigned BitWidth = Val->getType()->getIntegerBitWidth();
1322 ConstantRange EdgesVals(BitWidth, DefaultCase/*isFullSet*/);
1323
1324 for (auto Case : SI->cases()) {
1325 APInt CaseValue = Case.getCaseValue()->getValue();
1326 ConstantRange EdgeVal(CaseValue);
1327 if (ValUsesConditionAndMayBeFoldable) {
1328 User *Usr = cast<User>(Val);
1329 const DataLayout &DL = BBTo->getModule()->getDataLayout();
1330 ValueLatticeElement EdgeLatticeVal =
1331 constantFoldUser(Usr, Condition, CaseValue, DL);
1332 if (EdgeLatticeVal.isOverdefined())
1333 return false;
1334 EdgeVal = EdgeLatticeVal.getConstantRange();
1335 }
1336 if (DefaultCase) {
1337 // It is possible that the default destination is the destination of
1338 // some cases. We cannot perform difference for those cases.
1339 // We know Condition != CaseValue in BBTo. In some cases we can use
1340 // this to infer Val == f(Condition) is != f(CaseValue). For now, we
1341 // only do this when f is identity (i.e. Val == Condition), but we
1342 // should be able to do this for any injective f.
1343 if (Case.getCaseSuccessor() != BBTo && Condition == Val)
1344 EdgesVals = EdgesVals.difference(EdgeVal);
1345 } else if (Case.getCaseSuccessor() == BBTo)
1346 EdgesVals = EdgesVals.unionWith(EdgeVal);
1347 }
1348 Result = ValueLatticeElement::getRange(std::move(EdgesVals));
1349 return true;
1350 }
1351 return false;
1352 }
1353
1354 /// Compute the value of Val on the edge BBFrom -> BBTo or the value at
1355 /// the basic block if the edge does not constrain Val.
getEdgeValue(Value * Val,BasicBlock * BBFrom,BasicBlock * BBTo,ValueLatticeElement & Result,Instruction * CxtI)1356 bool LazyValueInfoImpl::getEdgeValue(Value *Val, BasicBlock *BBFrom,
1357 BasicBlock *BBTo,
1358 ValueLatticeElement &Result,
1359 Instruction *CxtI) {
1360 // If already a constant, there is nothing to compute.
1361 if (Constant *VC = dyn_cast<Constant>(Val)) {
1362 Result = ValueLatticeElement::get(VC);
1363 return true;
1364 }
1365
1366 ValueLatticeElement LocalResult;
1367 if (!getEdgeValueLocal(Val, BBFrom, BBTo, LocalResult))
1368 // If we couldn't constrain the value on the edge, LocalResult doesn't
1369 // provide any information.
1370 LocalResult = ValueLatticeElement::getOverdefined();
1371
1372 if (hasSingleValue(LocalResult)) {
1373 // Can't get any more precise here
1374 Result = LocalResult;
1375 return true;
1376 }
1377
1378 if (!hasBlockValue(Val, BBFrom)) {
1379 if (pushBlockValue(std::make_pair(BBFrom, Val)))
1380 return false;
1381 // No new information.
1382 Result = LocalResult;
1383 return true;
1384 }
1385
1386 // Try to intersect ranges of the BB and the constraint on the edge.
1387 ValueLatticeElement InBlock = getBlockValue(Val, BBFrom);
1388 intersectAssumeOrGuardBlockValueConstantRange(Val, InBlock,
1389 BBFrom->getTerminator());
1390 // We can use the context instruction (generically the ultimate instruction
1391 // the calling pass is trying to simplify) here, even though the result of
1392 // this function is generally cached when called from the solve* functions
1393 // (and that cached result might be used with queries using a different
1394 // context instruction), because when this function is called from the solve*
1395 // functions, the context instruction is not provided. When called from
1396 // LazyValueInfoImpl::getValueOnEdge, the context instruction is provided,
1397 // but then the result is not cached.
1398 intersectAssumeOrGuardBlockValueConstantRange(Val, InBlock, CxtI);
1399
1400 Result = intersect(LocalResult, InBlock);
1401 return true;
1402 }
1403
getValueInBlock(Value * V,BasicBlock * BB,Instruction * CxtI)1404 ValueLatticeElement LazyValueInfoImpl::getValueInBlock(Value *V, BasicBlock *BB,
1405 Instruction *CxtI) {
1406 LLVM_DEBUG(dbgs() << "LVI Getting block end value " << *V << " at '"
1407 << BB->getName() << "'\n");
1408
1409 assert(BlockValueStack.empty() && BlockValueSet.empty());
1410 if (!hasBlockValue(V, BB)) {
1411 pushBlockValue(std::make_pair(BB, V));
1412 solve();
1413 }
1414 ValueLatticeElement Result = getBlockValue(V, BB);
1415 intersectAssumeOrGuardBlockValueConstantRange(V, Result, CxtI);
1416
1417 LLVM_DEBUG(dbgs() << " Result = " << Result << "\n");
1418 return Result;
1419 }
1420
getValueAt(Value * V,Instruction * CxtI)1421 ValueLatticeElement LazyValueInfoImpl::getValueAt(Value *V, Instruction *CxtI) {
1422 LLVM_DEBUG(dbgs() << "LVI Getting value " << *V << " at '" << CxtI->getName()
1423 << "'\n");
1424
1425 if (auto *C = dyn_cast<Constant>(V))
1426 return ValueLatticeElement::get(C);
1427
1428 ValueLatticeElement Result = ValueLatticeElement::getOverdefined();
1429 if (auto *I = dyn_cast<Instruction>(V))
1430 Result = getFromRangeMetadata(I);
1431 intersectAssumeOrGuardBlockValueConstantRange(V, Result, CxtI);
1432
1433 LLVM_DEBUG(dbgs() << " Result = " << Result << "\n");
1434 return Result;
1435 }
1436
1437 ValueLatticeElement LazyValueInfoImpl::
getValueOnEdge(Value * V,BasicBlock * FromBB,BasicBlock * ToBB,Instruction * CxtI)1438 getValueOnEdge(Value *V, BasicBlock *FromBB, BasicBlock *ToBB,
1439 Instruction *CxtI) {
1440 LLVM_DEBUG(dbgs() << "LVI Getting edge value " << *V << " from '"
1441 << FromBB->getName() << "' to '" << ToBB->getName()
1442 << "'\n");
1443
1444 ValueLatticeElement Result;
1445 if (!getEdgeValue(V, FromBB, ToBB, Result, CxtI)) {
1446 solve();
1447 bool WasFastQuery = getEdgeValue(V, FromBB, ToBB, Result, CxtI);
1448 (void)WasFastQuery;
1449 assert(WasFastQuery && "More work to do after problem solved?");
1450 }
1451
1452 LLVM_DEBUG(dbgs() << " Result = " << Result << "\n");
1453 return Result;
1454 }
1455
threadEdge(BasicBlock * PredBB,BasicBlock * OldSucc,BasicBlock * NewSucc)1456 void LazyValueInfoImpl::threadEdge(BasicBlock *PredBB, BasicBlock *OldSucc,
1457 BasicBlock *NewSucc) {
1458 TheCache.threadEdgeImpl(OldSucc, NewSucc);
1459 }
1460
1461 //===----------------------------------------------------------------------===//
1462 // LazyValueInfo Impl
1463 //===----------------------------------------------------------------------===//
1464
1465 /// This lazily constructs the LazyValueInfoImpl.
getImpl(void * & PImpl,AssumptionCache * AC,const DataLayout * DL,DominatorTree * DT=nullptr)1466 static LazyValueInfoImpl &getImpl(void *&PImpl, AssumptionCache *AC,
1467 const DataLayout *DL,
1468 DominatorTree *DT = nullptr) {
1469 if (!PImpl) {
1470 assert(DL && "getCache() called with a null DataLayout");
1471 PImpl = new LazyValueInfoImpl(AC, *DL, DT);
1472 }
1473 return *static_cast<LazyValueInfoImpl*>(PImpl);
1474 }
1475
runOnFunction(Function & F)1476 bool LazyValueInfoWrapperPass::runOnFunction(Function &F) {
1477 Info.AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
1478 const DataLayout &DL = F.getParent()->getDataLayout();
1479
1480 DominatorTreeWrapperPass *DTWP =
1481 getAnalysisIfAvailable<DominatorTreeWrapperPass>();
1482 Info.DT = DTWP ? &DTWP->getDomTree() : nullptr;
1483 Info.TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
1484
1485 if (Info.PImpl)
1486 getImpl(Info.PImpl, Info.AC, &DL, Info.DT).clear();
1487
1488 // Fully lazy.
1489 return false;
1490 }
1491
getAnalysisUsage(AnalysisUsage & AU) const1492 void LazyValueInfoWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
1493 AU.setPreservesAll();
1494 AU.addRequired<AssumptionCacheTracker>();
1495 AU.addRequired<TargetLibraryInfoWrapperPass>();
1496 }
1497
getLVI()1498 LazyValueInfo &LazyValueInfoWrapperPass::getLVI() { return Info; }
1499
~LazyValueInfo()1500 LazyValueInfo::~LazyValueInfo() { releaseMemory(); }
1501
releaseMemory()1502 void LazyValueInfo::releaseMemory() {
1503 // If the cache was allocated, free it.
1504 if (PImpl) {
1505 delete &getImpl(PImpl, AC, nullptr);
1506 PImpl = nullptr;
1507 }
1508 }
1509
invalidate(Function & F,const PreservedAnalyses & PA,FunctionAnalysisManager::Invalidator & Inv)1510 bool LazyValueInfo::invalidate(Function &F, const PreservedAnalyses &PA,
1511 FunctionAnalysisManager::Invalidator &Inv) {
1512 // We need to invalidate if we have either failed to preserve this analyses
1513 // result directly or if any of its dependencies have been invalidated.
1514 auto PAC = PA.getChecker<LazyValueAnalysis>();
1515 if (!(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>()) ||
1516 (DT && Inv.invalidate<DominatorTreeAnalysis>(F, PA)))
1517 return true;
1518
1519 return false;
1520 }
1521
releaseMemory()1522 void LazyValueInfoWrapperPass::releaseMemory() { Info.releaseMemory(); }
1523
run(Function & F,FunctionAnalysisManager & FAM)1524 LazyValueInfo LazyValueAnalysis::run(Function &F,
1525 FunctionAnalysisManager &FAM) {
1526 auto &AC = FAM.getResult<AssumptionAnalysis>(F);
1527 auto &TLI = FAM.getResult<TargetLibraryAnalysis>(F);
1528 auto *DT = FAM.getCachedResult<DominatorTreeAnalysis>(F);
1529
1530 return LazyValueInfo(&AC, &F.getParent()->getDataLayout(), &TLI, DT);
1531 }
1532
1533 /// Returns true if we can statically tell that this value will never be a
1534 /// "useful" constant. In practice, this means we've got something like an
1535 /// alloca or a malloc call for which a comparison against a constant can
1536 /// only be guarding dead code. Note that we are potentially giving up some
1537 /// precision in dead code (a constant result) in favour of avoiding a
1538 /// expensive search for a easily answered common query.
isKnownNonConstant(Value * V)1539 static bool isKnownNonConstant(Value *V) {
1540 V = V->stripPointerCasts();
1541 // The return val of alloc cannot be a Constant.
1542 if (isa<AllocaInst>(V))
1543 return true;
1544 return false;
1545 }
1546
getConstant(Value * V,BasicBlock * BB,Instruction * CxtI)1547 Constant *LazyValueInfo::getConstant(Value *V, BasicBlock *BB,
1548 Instruction *CxtI) {
1549 // Bail out early if V is known not to be a Constant.
1550 if (isKnownNonConstant(V))
1551 return nullptr;
1552
1553 const DataLayout &DL = BB->getModule()->getDataLayout();
1554 ValueLatticeElement Result =
1555 getImpl(PImpl, AC, &DL, DT).getValueInBlock(V, BB, CxtI);
1556
1557 if (Result.isConstant())
1558 return Result.getConstant();
1559 if (Result.isConstantRange()) {
1560 const ConstantRange &CR = Result.getConstantRange();
1561 if (const APInt *SingleVal = CR.getSingleElement())
1562 return ConstantInt::get(V->getContext(), *SingleVal);
1563 }
1564 return nullptr;
1565 }
1566
getConstantRange(Value * V,BasicBlock * BB,Instruction * CxtI)1567 ConstantRange LazyValueInfo::getConstantRange(Value *V, BasicBlock *BB,
1568 Instruction *CxtI) {
1569 assert(V->getType()->isIntegerTy());
1570 unsigned Width = V->getType()->getIntegerBitWidth();
1571 const DataLayout &DL = BB->getModule()->getDataLayout();
1572 ValueLatticeElement Result =
1573 getImpl(PImpl, AC, &DL, DT).getValueInBlock(V, BB, CxtI);
1574 if (Result.isUndefined())
1575 return ConstantRange(Width, /*isFullSet=*/false);
1576 if (Result.isConstantRange())
1577 return Result.getConstantRange();
1578 // We represent ConstantInt constants as constant ranges but other kinds
1579 // of integer constants, i.e. ConstantExpr will be tagged as constants
1580 assert(!(Result.isConstant() && isa<ConstantInt>(Result.getConstant())) &&
1581 "ConstantInt value must be represented as constantrange");
1582 return ConstantRange(Width, /*isFullSet=*/true);
1583 }
1584
1585 /// Determine whether the specified value is known to be a
1586 /// constant on the specified edge. Return null if not.
getConstantOnEdge(Value * V,BasicBlock * FromBB,BasicBlock * ToBB,Instruction * CxtI)1587 Constant *LazyValueInfo::getConstantOnEdge(Value *V, BasicBlock *FromBB,
1588 BasicBlock *ToBB,
1589 Instruction *CxtI) {
1590 const DataLayout &DL = FromBB->getModule()->getDataLayout();
1591 ValueLatticeElement Result =
1592 getImpl(PImpl, AC, &DL, DT).getValueOnEdge(V, FromBB, ToBB, CxtI);
1593
1594 if (Result.isConstant())
1595 return Result.getConstant();
1596 if (Result.isConstantRange()) {
1597 const ConstantRange &CR = Result.getConstantRange();
1598 if (const APInt *SingleVal = CR.getSingleElement())
1599 return ConstantInt::get(V->getContext(), *SingleVal);
1600 }
1601 return nullptr;
1602 }
1603
getConstantRangeOnEdge(Value * V,BasicBlock * FromBB,BasicBlock * ToBB,Instruction * CxtI)1604 ConstantRange LazyValueInfo::getConstantRangeOnEdge(Value *V,
1605 BasicBlock *FromBB,
1606 BasicBlock *ToBB,
1607 Instruction *CxtI) {
1608 unsigned Width = V->getType()->getIntegerBitWidth();
1609 const DataLayout &DL = FromBB->getModule()->getDataLayout();
1610 ValueLatticeElement Result =
1611 getImpl(PImpl, AC, &DL, DT).getValueOnEdge(V, FromBB, ToBB, CxtI);
1612
1613 if (Result.isUndefined())
1614 return ConstantRange(Width, /*isFullSet=*/false);
1615 if (Result.isConstantRange())
1616 return Result.getConstantRange();
1617 // We represent ConstantInt constants as constant ranges but other kinds
1618 // of integer constants, i.e. ConstantExpr will be tagged as constants
1619 assert(!(Result.isConstant() && isa<ConstantInt>(Result.getConstant())) &&
1620 "ConstantInt value must be represented as constantrange");
1621 return ConstantRange(Width, /*isFullSet=*/true);
1622 }
1623
1624 static LazyValueInfo::Tristate
getPredicateResult(unsigned Pred,Constant * C,const ValueLatticeElement & Val,const DataLayout & DL,TargetLibraryInfo * TLI)1625 getPredicateResult(unsigned Pred, Constant *C, const ValueLatticeElement &Val,
1626 const DataLayout &DL, TargetLibraryInfo *TLI) {
1627 // If we know the value is a constant, evaluate the conditional.
1628 Constant *Res = nullptr;
1629 if (Val.isConstant()) {
1630 Res = ConstantFoldCompareInstOperands(Pred, Val.getConstant(), C, DL, TLI);
1631 if (ConstantInt *ResCI = dyn_cast<ConstantInt>(Res))
1632 return ResCI->isZero() ? LazyValueInfo::False : LazyValueInfo::True;
1633 return LazyValueInfo::Unknown;
1634 }
1635
1636 if (Val.isConstantRange()) {
1637 ConstantInt *CI = dyn_cast<ConstantInt>(C);
1638 if (!CI) return LazyValueInfo::Unknown;
1639
1640 const ConstantRange &CR = Val.getConstantRange();
1641 if (Pred == ICmpInst::ICMP_EQ) {
1642 if (!CR.contains(CI->getValue()))
1643 return LazyValueInfo::False;
1644
1645 if (CR.isSingleElement())
1646 return LazyValueInfo::True;
1647 } else if (Pred == ICmpInst::ICMP_NE) {
1648 if (!CR.contains(CI->getValue()))
1649 return LazyValueInfo::True;
1650
1651 if (CR.isSingleElement())
1652 return LazyValueInfo::False;
1653 } else {
1654 // Handle more complex predicates.
1655 ConstantRange TrueValues = ConstantRange::makeExactICmpRegion(
1656 (ICmpInst::Predicate)Pred, CI->getValue());
1657 if (TrueValues.contains(CR))
1658 return LazyValueInfo::True;
1659 if (TrueValues.inverse().contains(CR))
1660 return LazyValueInfo::False;
1661 }
1662 return LazyValueInfo::Unknown;
1663 }
1664
1665 if (Val.isNotConstant()) {
1666 // If this is an equality comparison, we can try to fold it knowing that
1667 // "V != C1".
1668 if (Pred == ICmpInst::ICMP_EQ) {
1669 // !C1 == C -> false iff C1 == C.
1670 Res = ConstantFoldCompareInstOperands(ICmpInst::ICMP_NE,
1671 Val.getNotConstant(), C, DL,
1672 TLI);
1673 if (Res->isNullValue())
1674 return LazyValueInfo::False;
1675 } else if (Pred == ICmpInst::ICMP_NE) {
1676 // !C1 != C -> true iff C1 == C.
1677 Res = ConstantFoldCompareInstOperands(ICmpInst::ICMP_NE,
1678 Val.getNotConstant(), C, DL,
1679 TLI);
1680 if (Res->isNullValue())
1681 return LazyValueInfo::True;
1682 }
1683 return LazyValueInfo::Unknown;
1684 }
1685
1686 return LazyValueInfo::Unknown;
1687 }
1688
1689 /// Determine whether the specified value comparison with a constant is known to
1690 /// be true or false on the specified CFG edge. Pred is a CmpInst predicate.
1691 LazyValueInfo::Tristate
getPredicateOnEdge(unsigned Pred,Value * V,Constant * C,BasicBlock * FromBB,BasicBlock * ToBB,Instruction * CxtI)1692 LazyValueInfo::getPredicateOnEdge(unsigned Pred, Value *V, Constant *C,
1693 BasicBlock *FromBB, BasicBlock *ToBB,
1694 Instruction *CxtI) {
1695 const DataLayout &DL = FromBB->getModule()->getDataLayout();
1696 ValueLatticeElement Result =
1697 getImpl(PImpl, AC, &DL, DT).getValueOnEdge(V, FromBB, ToBB, CxtI);
1698
1699 return getPredicateResult(Pred, C, Result, DL, TLI);
1700 }
1701
1702 LazyValueInfo::Tristate
getPredicateAt(unsigned Pred,Value * V,Constant * C,Instruction * CxtI)1703 LazyValueInfo::getPredicateAt(unsigned Pred, Value *V, Constant *C,
1704 Instruction *CxtI) {
1705 // Is or is not NonNull are common predicates being queried. If
1706 // isKnownNonZero can tell us the result of the predicate, we can
1707 // return it quickly. But this is only a fastpath, and falling
1708 // through would still be correct.
1709 const DataLayout &DL = CxtI->getModule()->getDataLayout();
1710 if (V->getType()->isPointerTy() && C->isNullValue() &&
1711 isKnownNonZero(V->stripPointerCasts(), DL)) {
1712 if (Pred == ICmpInst::ICMP_EQ)
1713 return LazyValueInfo::False;
1714 else if (Pred == ICmpInst::ICMP_NE)
1715 return LazyValueInfo::True;
1716 }
1717 ValueLatticeElement Result = getImpl(PImpl, AC, &DL, DT).getValueAt(V, CxtI);
1718 Tristate Ret = getPredicateResult(Pred, C, Result, DL, TLI);
1719 if (Ret != Unknown)
1720 return Ret;
1721
1722 // Note: The following bit of code is somewhat distinct from the rest of LVI;
1723 // LVI as a whole tries to compute a lattice value which is conservatively
1724 // correct at a given location. In this case, we have a predicate which we
1725 // weren't able to prove about the merged result, and we're pushing that
1726 // predicate back along each incoming edge to see if we can prove it
1727 // separately for each input. As a motivating example, consider:
1728 // bb1:
1729 // %v1 = ... ; constantrange<1, 5>
1730 // br label %merge
1731 // bb2:
1732 // %v2 = ... ; constantrange<10, 20>
1733 // br label %merge
1734 // merge:
1735 // %phi = phi [%v1, %v2] ; constantrange<1,20>
1736 // %pred = icmp eq i32 %phi, 8
1737 // We can't tell from the lattice value for '%phi' that '%pred' is false
1738 // along each path, but by checking the predicate over each input separately,
1739 // we can.
1740 // We limit the search to one step backwards from the current BB and value.
1741 // We could consider extending this to search further backwards through the
1742 // CFG and/or value graph, but there are non-obvious compile time vs quality
1743 // tradeoffs.
1744 if (CxtI) {
1745 BasicBlock *BB = CxtI->getParent();
1746
1747 // Function entry or an unreachable block. Bail to avoid confusing
1748 // analysis below.
1749 pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
1750 if (PI == PE)
1751 return Unknown;
1752
1753 // If V is a PHI node in the same block as the context, we need to ask
1754 // questions about the predicate as applied to the incoming value along
1755 // each edge. This is useful for eliminating cases where the predicate is
1756 // known along all incoming edges.
1757 if (auto *PHI = dyn_cast<PHINode>(V))
1758 if (PHI->getParent() == BB) {
1759 Tristate Baseline = Unknown;
1760 for (unsigned i = 0, e = PHI->getNumIncomingValues(); i < e; i++) {
1761 Value *Incoming = PHI->getIncomingValue(i);
1762 BasicBlock *PredBB = PHI->getIncomingBlock(i);
1763 // Note that PredBB may be BB itself.
1764 Tristate Result = getPredicateOnEdge(Pred, Incoming, C, PredBB, BB,
1765 CxtI);
1766
1767 // Keep going as long as we've seen a consistent known result for
1768 // all inputs.
1769 Baseline = (i == 0) ? Result /* First iteration */
1770 : (Baseline == Result ? Baseline : Unknown); /* All others */
1771 if (Baseline == Unknown)
1772 break;
1773 }
1774 if (Baseline != Unknown)
1775 return Baseline;
1776 }
1777
1778 // For a comparison where the V is outside this block, it's possible
1779 // that we've branched on it before. Look to see if the value is known
1780 // on all incoming edges.
1781 if (!isa<Instruction>(V) ||
1782 cast<Instruction>(V)->getParent() != BB) {
1783 // For predecessor edge, determine if the comparison is true or false
1784 // on that edge. If they're all true or all false, we can conclude
1785 // the value of the comparison in this block.
1786 Tristate Baseline = getPredicateOnEdge(Pred, V, C, *PI, BB, CxtI);
1787 if (Baseline != Unknown) {
1788 // Check that all remaining incoming values match the first one.
1789 while (++PI != PE) {
1790 Tristate Ret = getPredicateOnEdge(Pred, V, C, *PI, BB, CxtI);
1791 if (Ret != Baseline) break;
1792 }
1793 // If we terminated early, then one of the values didn't match.
1794 if (PI == PE) {
1795 return Baseline;
1796 }
1797 }
1798 }
1799 }
1800 return Unknown;
1801 }
1802
threadEdge(BasicBlock * PredBB,BasicBlock * OldSucc,BasicBlock * NewSucc)1803 void LazyValueInfo::threadEdge(BasicBlock *PredBB, BasicBlock *OldSucc,
1804 BasicBlock *NewSucc) {
1805 if (PImpl) {
1806 const DataLayout &DL = PredBB->getModule()->getDataLayout();
1807 getImpl(PImpl, AC, &DL, DT).threadEdge(PredBB, OldSucc, NewSucc);
1808 }
1809 }
1810
eraseBlock(BasicBlock * BB)1811 void LazyValueInfo::eraseBlock(BasicBlock *BB) {
1812 if (PImpl) {
1813 const DataLayout &DL = BB->getModule()->getDataLayout();
1814 getImpl(PImpl, AC, &DL, DT).eraseBlock(BB);
1815 }
1816 }
1817
1818
printLVI(Function & F,DominatorTree & DTree,raw_ostream & OS)1819 void LazyValueInfo::printLVI(Function &F, DominatorTree &DTree, raw_ostream &OS) {
1820 if (PImpl) {
1821 getImpl(PImpl, AC, DL, DT).printLVI(F, DTree, OS);
1822 }
1823 }
1824
disableDT()1825 void LazyValueInfo::disableDT() {
1826 if (PImpl)
1827 getImpl(PImpl, AC, DL, DT).disableDT();
1828 }
1829
enableDT()1830 void LazyValueInfo::enableDT() {
1831 if (PImpl)
1832 getImpl(PImpl, AC, DL, DT).enableDT();
1833 }
1834
1835 // Print the LVI for the function arguments at the start of each basic block.
emitBasicBlockStartAnnot(const BasicBlock * BB,formatted_raw_ostream & OS)1836 void LazyValueInfoAnnotatedWriter::emitBasicBlockStartAnnot(
1837 const BasicBlock *BB, formatted_raw_ostream &OS) {
1838 // Find if there are latticevalues defined for arguments of the function.
1839 auto *F = BB->getParent();
1840 for (auto &Arg : F->args()) {
1841 ValueLatticeElement Result = LVIImpl->getValueInBlock(
1842 const_cast<Argument *>(&Arg), const_cast<BasicBlock *>(BB));
1843 if (Result.isUndefined())
1844 continue;
1845 OS << "; LatticeVal for: '" << Arg << "' is: " << Result << "\n";
1846 }
1847 }
1848
1849 // This function prints the LVI analysis for the instruction I at the beginning
1850 // of various basic blocks. It relies on calculated values that are stored in
1851 // the LazyValueInfoCache, and in the absence of cached values, recalculate the
1852 // LazyValueInfo for `I`, and print that info.
emitInstructionAnnot(const Instruction * I,formatted_raw_ostream & OS)1853 void LazyValueInfoAnnotatedWriter::emitInstructionAnnot(
1854 const Instruction *I, formatted_raw_ostream &OS) {
1855
1856 auto *ParentBB = I->getParent();
1857 SmallPtrSet<const BasicBlock*, 16> BlocksContainingLVI;
1858 // We can generate (solve) LVI values only for blocks that are dominated by
1859 // the I's parent. However, to avoid generating LVI for all dominating blocks,
1860 // that contain redundant/uninteresting information, we print LVI for
1861 // blocks that may use this LVI information (such as immediate successor
1862 // blocks, and blocks that contain uses of `I`).
1863 auto printResult = [&](const BasicBlock *BB) {
1864 if (!BlocksContainingLVI.insert(BB).second)
1865 return;
1866 ValueLatticeElement Result = LVIImpl->getValueInBlock(
1867 const_cast<Instruction *>(I), const_cast<BasicBlock *>(BB));
1868 OS << "; LatticeVal for: '" << *I << "' in BB: '";
1869 BB->printAsOperand(OS, false);
1870 OS << "' is: " << Result << "\n";
1871 };
1872
1873 printResult(ParentBB);
1874 // Print the LVI analysis results for the immediate successor blocks, that
1875 // are dominated by `ParentBB`.
1876 for (auto *BBSucc : successors(ParentBB))
1877 if (DT.dominates(ParentBB, BBSucc))
1878 printResult(BBSucc);
1879
1880 // Print LVI in blocks where `I` is used.
1881 for (auto *U : I->users())
1882 if (auto *UseI = dyn_cast<Instruction>(U))
1883 if (!isa<PHINode>(UseI) || DT.dominates(ParentBB, UseI->getParent()))
1884 printResult(UseI->getParent());
1885
1886 }
1887
1888 namespace {
1889 // Printer class for LazyValueInfo results.
1890 class LazyValueInfoPrinter : public FunctionPass {
1891 public:
1892 static char ID; // Pass identification, replacement for typeid
LazyValueInfoPrinter()1893 LazyValueInfoPrinter() : FunctionPass(ID) {
1894 initializeLazyValueInfoPrinterPass(*PassRegistry::getPassRegistry());
1895 }
1896
getAnalysisUsage(AnalysisUsage & AU) const1897 void getAnalysisUsage(AnalysisUsage &AU) const override {
1898 AU.setPreservesAll();
1899 AU.addRequired<LazyValueInfoWrapperPass>();
1900 AU.addRequired<DominatorTreeWrapperPass>();
1901 }
1902
1903 // Get the mandatory dominator tree analysis and pass this in to the
1904 // LVIPrinter. We cannot rely on the LVI's DT, since it's optional.
runOnFunction(Function & F)1905 bool runOnFunction(Function &F) override {
1906 dbgs() << "LVI for function '" << F.getName() << "':\n";
1907 auto &LVI = getAnalysis<LazyValueInfoWrapperPass>().getLVI();
1908 auto &DTree = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1909 LVI.printLVI(F, DTree, dbgs());
1910 return false;
1911 }
1912 };
1913 }
1914
1915 char LazyValueInfoPrinter::ID = 0;
1916 INITIALIZE_PASS_BEGIN(LazyValueInfoPrinter, "print-lazy-value-info",
1917 "Lazy Value Info Printer Pass", false, false)
1918 INITIALIZE_PASS_DEPENDENCY(LazyValueInfoWrapperPass)
1919 INITIALIZE_PASS_END(LazyValueInfoPrinter, "print-lazy-value-info",
1920 "Lazy Value Info Printer Pass", false, false)
1921