1 //===- MustExecute.cpp - Printer for isGuaranteedToExecute ----------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9
10 #include "llvm/Analysis/MustExecute.h"
11 #include "llvm/Analysis/InstructionSimplify.h"
12 #include "llvm/Analysis/LoopInfo.h"
13 #include "llvm/Analysis/Passes.h"
14 #include "llvm/Analysis/ValueTracking.h"
15 #include "llvm/IR/AssemblyAnnotationWriter.h"
16 #include "llvm/IR/DataLayout.h"
17 #include "llvm/IR/InstIterator.h"
18 #include "llvm/IR/LLVMContext.h"
19 #include "llvm/IR/Module.h"
20 #include "llvm/Support/ErrorHandling.h"
21 #include "llvm/Support/FormattedStream.h"
22 #include "llvm/Support/raw_ostream.h"
23 using namespace llvm;
24
25 /// Computes loop safety information, checks loop body & header
26 /// for the possibility of may throw exception.
27 ///
computeLoopSafetyInfo(LoopSafetyInfo * SafetyInfo,Loop * CurLoop)28 void llvm::computeLoopSafetyInfo(LoopSafetyInfo *SafetyInfo, Loop *CurLoop) {
29 assert(CurLoop != nullptr && "CurLoop can't be null");
30 BasicBlock *Header = CurLoop->getHeader();
31 // Setting default safety values.
32 SafetyInfo->MayThrow = false;
33 SafetyInfo->HeaderMayThrow = false;
34 // Iterate over header and compute safety info.
35 SafetyInfo->HeaderMayThrow =
36 !isGuaranteedToTransferExecutionToSuccessor(Header);
37
38 SafetyInfo->MayThrow = SafetyInfo->HeaderMayThrow;
39 // Iterate over loop instructions and compute safety info.
40 // Skip header as it has been computed and stored in HeaderMayThrow.
41 // The first block in loopinfo.Blocks is guaranteed to be the header.
42 assert(Header == *CurLoop->getBlocks().begin() &&
43 "First block must be header");
44 for (Loop::block_iterator BB = std::next(CurLoop->block_begin()),
45 BBE = CurLoop->block_end();
46 (BB != BBE) && !SafetyInfo->MayThrow; ++BB)
47 SafetyInfo->MayThrow |=
48 !isGuaranteedToTransferExecutionToSuccessor(*BB);
49
50 // Compute funclet colors if we might sink/hoist in a function with a funclet
51 // personality routine.
52 Function *Fn = CurLoop->getHeader()->getParent();
53 if (Fn->hasPersonalityFn())
54 if (Constant *PersonalityFn = Fn->getPersonalityFn())
55 if (isScopedEHPersonality(classifyEHPersonality(PersonalityFn)))
56 SafetyInfo->BlockColors = colorEHFunclets(*Fn);
57 }
58
59 /// Return true if we can prove that the given ExitBlock is not reached on the
60 /// first iteration of the given loop. That is, the backedge of the loop must
61 /// be executed before the ExitBlock is executed in any dynamic execution trace.
CanProveNotTakenFirstIteration(BasicBlock * ExitBlock,const DominatorTree * DT,const Loop * CurLoop)62 static bool CanProveNotTakenFirstIteration(BasicBlock *ExitBlock,
63 const DominatorTree *DT,
64 const Loop *CurLoop) {
65 auto *CondExitBlock = ExitBlock->getSinglePredecessor();
66 if (!CondExitBlock)
67 // expect unique exits
68 return false;
69 assert(CurLoop->contains(CondExitBlock) && "meaning of exit block");
70 auto *BI = dyn_cast<BranchInst>(CondExitBlock->getTerminator());
71 if (!BI || !BI->isConditional())
72 return false;
73 // If condition is constant and false leads to ExitBlock then we always
74 // execute the true branch.
75 if (auto *Cond = dyn_cast<ConstantInt>(BI->getCondition()))
76 return BI->getSuccessor(Cond->getZExtValue() ? 1 : 0) == ExitBlock;
77 auto *Cond = dyn_cast<CmpInst>(BI->getCondition());
78 if (!Cond)
79 return false;
80 // todo: this would be a lot more powerful if we used scev, but all the
81 // plumbing is currently missing to pass a pointer in from the pass
82 // Check for cmp (phi [x, preheader] ...), y where (pred x, y is known
83 auto *LHS = dyn_cast<PHINode>(Cond->getOperand(0));
84 auto *RHS = Cond->getOperand(1);
85 if (!LHS || LHS->getParent() != CurLoop->getHeader())
86 return false;
87 auto DL = ExitBlock->getModule()->getDataLayout();
88 auto *IVStart = LHS->getIncomingValueForBlock(CurLoop->getLoopPreheader());
89 auto *SimpleValOrNull = SimplifyCmpInst(Cond->getPredicate(),
90 IVStart, RHS,
91 {DL, /*TLI*/ nullptr,
92 DT, /*AC*/ nullptr, BI});
93 auto *SimpleCst = dyn_cast_or_null<Constant>(SimpleValOrNull);
94 if (!SimpleCst)
95 return false;
96 if (ExitBlock == BI->getSuccessor(0))
97 return SimpleCst->isZeroValue();
98 assert(ExitBlock == BI->getSuccessor(1) && "implied by above");
99 return SimpleCst->isAllOnesValue();
100 }
101
102 /// Returns true if the instruction in a loop is guaranteed to execute at least
103 /// once.
isGuaranteedToExecute(const Instruction & Inst,const DominatorTree * DT,const Loop * CurLoop,const LoopSafetyInfo * SafetyInfo)104 bool llvm::isGuaranteedToExecute(const Instruction &Inst,
105 const DominatorTree *DT, const Loop *CurLoop,
106 const LoopSafetyInfo *SafetyInfo) {
107 // We have to check to make sure that the instruction dominates all
108 // of the exit blocks. If it doesn't, then there is a path out of the loop
109 // which does not execute this instruction, so we can't hoist it.
110
111 // If the instruction is in the header block for the loop (which is very
112 // common), it is always guaranteed to dominate the exit blocks. Since this
113 // is a common case, and can save some work, check it now.
114 if (Inst.getParent() == CurLoop->getHeader())
115 // If there's a throw in the header block, we can't guarantee we'll reach
116 // Inst unless we can prove that Inst comes before the potential implicit
117 // exit. At the moment, we use a (cheap) hack for the common case where
118 // the instruction of interest is the first one in the block.
119 return !SafetyInfo->HeaderMayThrow ||
120 Inst.getParent()->getFirstNonPHIOrDbg() == &Inst;
121
122 // Somewhere in this loop there is an instruction which may throw and make us
123 // exit the loop.
124 if (SafetyInfo->MayThrow)
125 return false;
126
127 // Note: There are two styles of reasoning intermixed below for
128 // implementation efficiency reasons. They are:
129 // 1) If we can prove that the instruction dominates all exit blocks, then we
130 // know the instruction must have executed on *some* iteration before we
131 // exit. We do not prove *which* iteration the instruction must execute on.
132 // 2) If we can prove that the instruction dominates the latch and all exits
133 // which might be taken on the first iteration, we know the instruction must
134 // execute on the first iteration. This second style allows a conditional
135 // exit before the instruction of interest which is provably not taken on the
136 // first iteration. This is a quite common case for range check like
137 // patterns. TODO: support loops with multiple latches.
138
139 const bool InstDominatesLatch =
140 CurLoop->getLoopLatch() != nullptr &&
141 DT->dominates(Inst.getParent(), CurLoop->getLoopLatch());
142
143 // Get the exit blocks for the current loop.
144 SmallVector<BasicBlock *, 8> ExitBlocks;
145 CurLoop->getExitBlocks(ExitBlocks);
146
147 // Verify that the block dominates each of the exit blocks of the loop.
148 for (BasicBlock *ExitBlock : ExitBlocks)
149 if (!DT->dominates(Inst.getParent(), ExitBlock))
150 if (!InstDominatesLatch ||
151 !CanProveNotTakenFirstIteration(ExitBlock, DT, CurLoop))
152 return false;
153
154 // As a degenerate case, if the loop is statically infinite then we haven't
155 // proven anything since there are no exit blocks.
156 if (ExitBlocks.empty())
157 return false;
158
159 // FIXME: In general, we have to prove that the loop isn't an infinite loop.
160 // See http::llvm.org/PR24078 . (The "ExitBlocks.empty()" check above is
161 // just a special case of this.)
162 return true;
163 }
164
165
166 namespace {
167 struct MustExecutePrinter : public FunctionPass {
168
169 static char ID; // Pass identification, replacement for typeid
MustExecutePrinter__anon7f5155590111::MustExecutePrinter170 MustExecutePrinter() : FunctionPass(ID) {
171 initializeMustExecutePrinterPass(*PassRegistry::getPassRegistry());
172 }
getAnalysisUsage__anon7f5155590111::MustExecutePrinter173 void getAnalysisUsage(AnalysisUsage &AU) const override {
174 AU.setPreservesAll();
175 AU.addRequired<DominatorTreeWrapperPass>();
176 AU.addRequired<LoopInfoWrapperPass>();
177 }
178 bool runOnFunction(Function &F) override;
179 };
180 }
181
182 char MustExecutePrinter::ID = 0;
183 INITIALIZE_PASS_BEGIN(MustExecutePrinter, "print-mustexecute",
184 "Instructions which execute on loop entry", false, true)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)185 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
186 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
187 INITIALIZE_PASS_END(MustExecutePrinter, "print-mustexecute",
188 "Instructions which execute on loop entry", false, true)
189
190 FunctionPass *llvm::createMustExecutePrinter() {
191 return new MustExecutePrinter();
192 }
193
isMustExecuteIn(const Instruction & I,Loop * L,DominatorTree * DT)194 static bool isMustExecuteIn(const Instruction &I, Loop *L, DominatorTree *DT) {
195 // TODO: merge these two routines. For the moment, we display the best
196 // result obtained by *either* implementation. This is a bit unfair since no
197 // caller actually gets the full power at the moment.
198 LoopSafetyInfo LSI;
199 computeLoopSafetyInfo(&LSI, L);
200 return isGuaranteedToExecute(I, DT, L, &LSI) ||
201 isGuaranteedToExecuteForEveryIteration(&I, L);
202 }
203
204 namespace {
205 /// An assembly annotator class to print must execute information in
206 /// comments.
207 class MustExecuteAnnotatedWriter : public AssemblyAnnotationWriter {
208 DenseMap<const Value*, SmallVector<Loop*, 4> > MustExec;
209
210 public:
MustExecuteAnnotatedWriter(const Function & F,DominatorTree & DT,LoopInfo & LI)211 MustExecuteAnnotatedWriter(const Function &F,
212 DominatorTree &DT, LoopInfo &LI) {
213 for (auto &I: instructions(F)) {
214 Loop *L = LI.getLoopFor(I.getParent());
215 while (L) {
216 if (isMustExecuteIn(I, L, &DT)) {
217 MustExec[&I].push_back(L);
218 }
219 L = L->getParentLoop();
220 };
221 }
222 }
MustExecuteAnnotatedWriter(const Module & M,DominatorTree & DT,LoopInfo & LI)223 MustExecuteAnnotatedWriter(const Module &M,
224 DominatorTree &DT, LoopInfo &LI) {
225 for (auto &F : M)
226 for (auto &I: instructions(F)) {
227 Loop *L = LI.getLoopFor(I.getParent());
228 while (L) {
229 if (isMustExecuteIn(I, L, &DT)) {
230 MustExec[&I].push_back(L);
231 }
232 L = L->getParentLoop();
233 };
234 }
235 }
236
237
printInfoComment(const Value & V,formatted_raw_ostream & OS)238 void printInfoComment(const Value &V, formatted_raw_ostream &OS) override {
239 if (!MustExec.count(&V))
240 return;
241
242 const auto &Loops = MustExec.lookup(&V);
243 const auto NumLoops = Loops.size();
244 if (NumLoops > 1)
245 OS << " ; (mustexec in " << NumLoops << " loops: ";
246 else
247 OS << " ; (mustexec in: ";
248
249 bool first = true;
250 for (const Loop *L : Loops) {
251 if (!first)
252 OS << ", ";
253 first = false;
254 OS << L->getHeader()->getName();
255 }
256 OS << ")";
257 }
258 };
259 } // namespace
260
runOnFunction(Function & F)261 bool MustExecutePrinter::runOnFunction(Function &F) {
262 auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
263 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
264
265 MustExecuteAnnotatedWriter Writer(F, DT, LI);
266 F.print(dbgs(), &Writer);
267
268 return false;
269 }
270