1 //===- ImplicitNullChecks.cpp - Fold null checks into memory accesses -----===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass turns explicit null checks of the form
11 //
12 //   test %r10, %r10
13 //   je throw_npe
14 //   movl (%r10), %esi
15 //   ...
16 //
17 // to
18 //
19 //   faulting_load_op("movl (%r10), %esi", throw_npe)
20 //   ...
21 //
22 // With the help of a runtime that understands the .fault_maps section,
23 // faulting_load_op branches to throw_npe if executing movl (%r10), %esi incurs
24 // a page fault.
25 // Store and LoadStore are also supported.
26 //
27 //===----------------------------------------------------------------------===//
28 
29 #include "llvm/ADT/ArrayRef.h"
30 #include "llvm/ADT/None.h"
31 #include "llvm/ADT/Optional.h"
32 #include "llvm/ADT/STLExtras.h"
33 #include "llvm/ADT/SmallVector.h"
34 #include "llvm/ADT/Statistic.h"
35 #include "llvm/Analysis/AliasAnalysis.h"
36 #include "llvm/Analysis/MemoryLocation.h"
37 #include "llvm/CodeGen/FaultMaps.h"
38 #include "llvm/CodeGen/MachineBasicBlock.h"
39 #include "llvm/CodeGen/MachineFunction.h"
40 #include "llvm/CodeGen/MachineFunctionPass.h"
41 #include "llvm/CodeGen/MachineInstr.h"
42 #include "llvm/CodeGen/MachineInstrBuilder.h"
43 #include "llvm/CodeGen/MachineMemOperand.h"
44 #include "llvm/CodeGen/MachineOperand.h"
45 #include "llvm/CodeGen/MachineRegisterInfo.h"
46 #include "llvm/CodeGen/PseudoSourceValue.h"
47 #include "llvm/CodeGen/TargetInstrInfo.h"
48 #include "llvm/CodeGen/TargetOpcodes.h"
49 #include "llvm/CodeGen/TargetRegisterInfo.h"
50 #include "llvm/CodeGen/TargetSubtargetInfo.h"
51 #include "llvm/IR/BasicBlock.h"
52 #include "llvm/IR/DebugLoc.h"
53 #include "llvm/IR/LLVMContext.h"
54 #include "llvm/MC/MCInstrDesc.h"
55 #include "llvm/MC/MCRegisterInfo.h"
56 #include "llvm/Pass.h"
57 #include "llvm/Support/CommandLine.h"
58 #include <cassert>
59 #include <cstdint>
60 #include <iterator>
61 
62 using namespace llvm;
63 
64 static cl::opt<int> PageSize("imp-null-check-page-size",
65                              cl::desc("The page size of the target in bytes"),
66                              cl::init(4096), cl::Hidden);
67 
68 static cl::opt<unsigned> MaxInstsToConsider(
69     "imp-null-max-insts-to-consider",
70     cl::desc("The max number of instructions to consider hoisting loads over "
71              "(the algorithm is quadratic over this number)"),
72     cl::Hidden, cl::init(8));
73 
74 #define DEBUG_TYPE "implicit-null-checks"
75 
76 STATISTIC(NumImplicitNullChecks,
77           "Number of explicit null checks made implicit");
78 
79 namespace {
80 
81 class ImplicitNullChecks : public MachineFunctionPass {
82   /// Return true if \c computeDependence can process \p MI.
83   static bool canHandle(const MachineInstr *MI);
84 
85   /// Helper function for \c computeDependence.  Return true if \p A
86   /// and \p B do not have any dependences between them, and can be
87   /// re-ordered without changing program semantics.
88   bool canReorder(const MachineInstr *A, const MachineInstr *B);
89 
90   /// A data type for representing the result computed by \c
91   /// computeDependence.  States whether it is okay to reorder the
92   /// instruction passed to \c computeDependence with at most one
93   /// depednency.
94   struct DependenceResult {
95     /// Can we actually re-order \p MI with \p Insts (see \c
96     /// computeDependence).
97     bool CanReorder;
98 
99     /// If non-None, then an instruction in \p Insts that also must be
100     /// hoisted.
101     Optional<ArrayRef<MachineInstr *>::iterator> PotentialDependence;
102 
DependenceResult__anonb08e59f50111::ImplicitNullChecks::DependenceResult103     /*implicit*/ DependenceResult(
104         bool CanReorder,
105         Optional<ArrayRef<MachineInstr *>::iterator> PotentialDependence)
106         : CanReorder(CanReorder), PotentialDependence(PotentialDependence) {
107       assert((!PotentialDependence || CanReorder) &&
108              "!CanReorder && PotentialDependence.hasValue() not allowed!");
109     }
110   };
111 
112   /// Compute a result for the following question: can \p MI be
113   /// re-ordered from after \p Insts to before it.
114   ///
115   /// \c canHandle should return true for all instructions in \p
116   /// Insts.
117   DependenceResult computeDependence(const MachineInstr *MI,
118                                      ArrayRef<MachineInstr *> Block);
119 
120   /// Represents one null check that can be made implicit.
121   class NullCheck {
122     // The memory operation the null check can be folded into.
123     MachineInstr *MemOperation;
124 
125     // The instruction actually doing the null check (Ptr != 0).
126     MachineInstr *CheckOperation;
127 
128     // The block the check resides in.
129     MachineBasicBlock *CheckBlock;
130 
131     // The block branched to if the pointer is non-null.
132     MachineBasicBlock *NotNullSucc;
133 
134     // The block branched to if the pointer is null.
135     MachineBasicBlock *NullSucc;
136 
137     // If this is non-null, then MemOperation has a dependency on this
138     // instruction; and it needs to be hoisted to execute before MemOperation.
139     MachineInstr *OnlyDependency;
140 
141   public:
NullCheck(MachineInstr * memOperation,MachineInstr * checkOperation,MachineBasicBlock * checkBlock,MachineBasicBlock * notNullSucc,MachineBasicBlock * nullSucc,MachineInstr * onlyDependency)142     explicit NullCheck(MachineInstr *memOperation, MachineInstr *checkOperation,
143                        MachineBasicBlock *checkBlock,
144                        MachineBasicBlock *notNullSucc,
145                        MachineBasicBlock *nullSucc,
146                        MachineInstr *onlyDependency)
147         : MemOperation(memOperation), CheckOperation(checkOperation),
148           CheckBlock(checkBlock), NotNullSucc(notNullSucc), NullSucc(nullSucc),
149           OnlyDependency(onlyDependency) {}
150 
getMemOperation() const151     MachineInstr *getMemOperation() const { return MemOperation; }
152 
getCheckOperation() const153     MachineInstr *getCheckOperation() const { return CheckOperation; }
154 
getCheckBlock() const155     MachineBasicBlock *getCheckBlock() const { return CheckBlock; }
156 
getNotNullSucc() const157     MachineBasicBlock *getNotNullSucc() const { return NotNullSucc; }
158 
getNullSucc() const159     MachineBasicBlock *getNullSucc() const { return NullSucc; }
160 
getOnlyDependency() const161     MachineInstr *getOnlyDependency() const { return OnlyDependency; }
162   };
163 
164   const TargetInstrInfo *TII = nullptr;
165   const TargetRegisterInfo *TRI = nullptr;
166   AliasAnalysis *AA = nullptr;
167   MachineFrameInfo *MFI = nullptr;
168 
169   bool analyzeBlockForNullChecks(MachineBasicBlock &MBB,
170                                  SmallVectorImpl<NullCheck> &NullCheckList);
171   MachineInstr *insertFaultingInstr(MachineInstr *MI, MachineBasicBlock *MBB,
172                                     MachineBasicBlock *HandlerMBB);
173   void rewriteNullChecks(ArrayRef<NullCheck> NullCheckList);
174 
175   enum AliasResult {
176     AR_NoAlias,
177     AR_MayAlias,
178     AR_WillAliasEverything
179   };
180 
181   /// Returns AR_NoAlias if \p MI memory operation does not alias with
182   /// \p PrevMI, AR_MayAlias if they may alias and AR_WillAliasEverything if
183   /// they may alias and any further memory operation may alias with \p PrevMI.
184   AliasResult areMemoryOpsAliased(MachineInstr &MI, MachineInstr *PrevMI);
185 
186   enum SuitabilityResult {
187     SR_Suitable,
188     SR_Unsuitable,
189     SR_Impossible
190   };
191 
192   /// Return SR_Suitable if \p MI a memory operation that can be used to
193   /// implicitly null check the value in \p PointerReg, SR_Unsuitable if
194   /// \p MI cannot be used to null check and SR_Impossible if there is
195   /// no sense to continue lookup due to any other instruction will not be able
196   /// to be used. \p PrevInsts is the set of instruction seen since
197   /// the explicit null check on \p PointerReg.
198   SuitabilityResult isSuitableMemoryOp(MachineInstr &MI, unsigned PointerReg,
199                                        ArrayRef<MachineInstr *> PrevInsts);
200 
201   /// Return true if \p FaultingMI can be hoisted from after the
202   /// instructions in \p InstsSeenSoFar to before them.  Set \p Dependence to a
203   /// non-null value if we also need to (and legally can) hoist a depedency.
204   bool canHoistInst(MachineInstr *FaultingMI, unsigned PointerReg,
205                     ArrayRef<MachineInstr *> InstsSeenSoFar,
206                     MachineBasicBlock *NullSucc, MachineInstr *&Dependence);
207 
208 public:
209   static char ID;
210 
ImplicitNullChecks()211   ImplicitNullChecks() : MachineFunctionPass(ID) {
212     initializeImplicitNullChecksPass(*PassRegistry::getPassRegistry());
213   }
214 
215   bool runOnMachineFunction(MachineFunction &MF) override;
216 
getAnalysisUsage(AnalysisUsage & AU) const217   void getAnalysisUsage(AnalysisUsage &AU) const override {
218     AU.addRequired<AAResultsWrapperPass>();
219     MachineFunctionPass::getAnalysisUsage(AU);
220   }
221 
getRequiredProperties() const222   MachineFunctionProperties getRequiredProperties() const override {
223     return MachineFunctionProperties().set(
224         MachineFunctionProperties::Property::NoVRegs);
225   }
226 };
227 
228 } // end anonymous namespace
229 
canHandle(const MachineInstr * MI)230 bool ImplicitNullChecks::canHandle(const MachineInstr *MI) {
231   if (MI->isCall() || MI->hasUnmodeledSideEffects())
232     return false;
233   auto IsRegMask = [](const MachineOperand &MO) { return MO.isRegMask(); };
234   (void)IsRegMask;
235 
236   assert(!llvm::any_of(MI->operands(), IsRegMask) &&
237          "Calls were filtered out above!");
238 
239   auto IsUnordered = [](MachineMemOperand *MMO) { return MMO->isUnordered(); };
240   return llvm::all_of(MI->memoperands(), IsUnordered);
241 }
242 
243 ImplicitNullChecks::DependenceResult
computeDependence(const MachineInstr * MI,ArrayRef<MachineInstr * > Block)244 ImplicitNullChecks::computeDependence(const MachineInstr *MI,
245                                       ArrayRef<MachineInstr *> Block) {
246   assert(llvm::all_of(Block, canHandle) && "Check this first!");
247   assert(!is_contained(Block, MI) && "Block must be exclusive of MI!");
248 
249   Optional<ArrayRef<MachineInstr *>::iterator> Dep;
250 
251   for (auto I = Block.begin(), E = Block.end(); I != E; ++I) {
252     if (canReorder(*I, MI))
253       continue;
254 
255     if (Dep == None) {
256       // Found one possible dependency, keep track of it.
257       Dep = I;
258     } else {
259       // We found two dependencies, so bail out.
260       return {false, None};
261     }
262   }
263 
264   return {true, Dep};
265 }
266 
canReorder(const MachineInstr * A,const MachineInstr * B)267 bool ImplicitNullChecks::canReorder(const MachineInstr *A,
268                                     const MachineInstr *B) {
269   assert(canHandle(A) && canHandle(B) && "Precondition!");
270 
271   // canHandle makes sure that we _can_ correctly analyze the dependencies
272   // between A and B here -- for instance, we should not be dealing with heap
273   // load-store dependencies here.
274 
275   for (auto MOA : A->operands()) {
276     if (!(MOA.isReg() && MOA.getReg()))
277       continue;
278 
279     unsigned RegA = MOA.getReg();
280     for (auto MOB : B->operands()) {
281       if (!(MOB.isReg() && MOB.getReg()))
282         continue;
283 
284       unsigned RegB = MOB.getReg();
285 
286       if (TRI->regsOverlap(RegA, RegB) && (MOA.isDef() || MOB.isDef()))
287         return false;
288     }
289   }
290 
291   return true;
292 }
293 
runOnMachineFunction(MachineFunction & MF)294 bool ImplicitNullChecks::runOnMachineFunction(MachineFunction &MF) {
295   TII = MF.getSubtarget().getInstrInfo();
296   TRI = MF.getRegInfo().getTargetRegisterInfo();
297   MFI = &MF.getFrameInfo();
298   AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
299 
300   SmallVector<NullCheck, 16> NullCheckList;
301 
302   for (auto &MBB : MF)
303     analyzeBlockForNullChecks(MBB, NullCheckList);
304 
305   if (!NullCheckList.empty())
306     rewriteNullChecks(NullCheckList);
307 
308   return !NullCheckList.empty();
309 }
310 
311 // Return true if any register aliasing \p Reg is live-in into \p MBB.
AnyAliasLiveIn(const TargetRegisterInfo * TRI,MachineBasicBlock * MBB,unsigned Reg)312 static bool AnyAliasLiveIn(const TargetRegisterInfo *TRI,
313                            MachineBasicBlock *MBB, unsigned Reg) {
314   for (MCRegAliasIterator AR(Reg, TRI, /*IncludeSelf*/ true); AR.isValid();
315        ++AR)
316     if (MBB->isLiveIn(*AR))
317       return true;
318   return false;
319 }
320 
321 ImplicitNullChecks::AliasResult
areMemoryOpsAliased(MachineInstr & MI,MachineInstr * PrevMI)322 ImplicitNullChecks::areMemoryOpsAliased(MachineInstr &MI,
323                                         MachineInstr *PrevMI) {
324   // If it is not memory access, skip the check.
325   if (!(PrevMI->mayStore() || PrevMI->mayLoad()))
326     return AR_NoAlias;
327   // Load-Load may alias
328   if (!(MI.mayStore() || PrevMI->mayStore()))
329     return AR_NoAlias;
330   // We lost info, conservatively alias. If it was store then no sense to
331   // continue because we won't be able to check against it further.
332   if (MI.memoperands_empty())
333     return MI.mayStore() ? AR_WillAliasEverything : AR_MayAlias;
334   if (PrevMI->memoperands_empty())
335     return PrevMI->mayStore() ? AR_WillAliasEverything : AR_MayAlias;
336 
337   for (MachineMemOperand *MMO1 : MI.memoperands()) {
338     // MMO1 should have a value due it comes from operation we'd like to use
339     // as implicit null check.
340     assert(MMO1->getValue() && "MMO1 should have a Value!");
341     for (MachineMemOperand *MMO2 : PrevMI->memoperands()) {
342       if (const PseudoSourceValue *PSV = MMO2->getPseudoValue()) {
343         if (PSV->mayAlias(MFI))
344           return AR_MayAlias;
345         continue;
346       }
347       llvm::AliasResult AAResult = AA->alias(
348           MemoryLocation(MMO1->getValue(), MemoryLocation::UnknownSize,
349                          MMO1->getAAInfo()),
350           MemoryLocation(MMO2->getValue(), MemoryLocation::UnknownSize,
351                          MMO2->getAAInfo()));
352       if (AAResult != NoAlias)
353         return AR_MayAlias;
354     }
355   }
356   return AR_NoAlias;
357 }
358 
359 ImplicitNullChecks::SuitabilityResult
isSuitableMemoryOp(MachineInstr & MI,unsigned PointerReg,ArrayRef<MachineInstr * > PrevInsts)360 ImplicitNullChecks::isSuitableMemoryOp(MachineInstr &MI, unsigned PointerReg,
361                                        ArrayRef<MachineInstr *> PrevInsts) {
362   int64_t Offset;
363   unsigned BaseReg;
364 
365   if (!TII->getMemOpBaseRegImmOfs(MI, BaseReg, Offset, TRI) ||
366       BaseReg != PointerReg)
367     return SR_Unsuitable;
368 
369   // We want the mem access to be issued at a sane offset from PointerReg,
370   // so that if PointerReg is null then the access reliably page faults.
371   if (!((MI.mayLoad() || MI.mayStore()) && !MI.isPredicable() &&
372         -PageSize < Offset && Offset < PageSize))
373     return SR_Unsuitable;
374 
375   // Finally, check whether the current memory access aliases with previous one.
376   for (auto *PrevMI : PrevInsts) {
377     AliasResult AR = areMemoryOpsAliased(MI, PrevMI);
378     if (AR == AR_WillAliasEverything)
379       return SR_Impossible;
380     if (AR == AR_MayAlias)
381       return SR_Unsuitable;
382   }
383   return SR_Suitable;
384 }
385 
canHoistInst(MachineInstr * FaultingMI,unsigned PointerReg,ArrayRef<MachineInstr * > InstsSeenSoFar,MachineBasicBlock * NullSucc,MachineInstr * & Dependence)386 bool ImplicitNullChecks::canHoistInst(MachineInstr *FaultingMI,
387                                       unsigned PointerReg,
388                                       ArrayRef<MachineInstr *> InstsSeenSoFar,
389                                       MachineBasicBlock *NullSucc,
390                                       MachineInstr *&Dependence) {
391   auto DepResult = computeDependence(FaultingMI, InstsSeenSoFar);
392   if (!DepResult.CanReorder)
393     return false;
394 
395   if (!DepResult.PotentialDependence) {
396     Dependence = nullptr;
397     return true;
398   }
399 
400   auto DependenceItr = *DepResult.PotentialDependence;
401   auto *DependenceMI = *DependenceItr;
402 
403   // We don't want to reason about speculating loads.  Note -- at this point
404   // we should have already filtered out all of the other non-speculatable
405   // things, like calls and stores.
406   // We also do not want to hoist stores because it might change the memory
407   // while the FaultingMI may result in faulting.
408   assert(canHandle(DependenceMI) && "Should never have reached here!");
409   if (DependenceMI->mayLoadOrStore())
410     return false;
411 
412   for (auto &DependenceMO : DependenceMI->operands()) {
413     if (!(DependenceMO.isReg() && DependenceMO.getReg()))
414       continue;
415 
416     // Make sure that we won't clobber any live ins to the sibling block by
417     // hoisting Dependency.  For instance, we can't hoist INST to before the
418     // null check (even if it safe, and does not violate any dependencies in
419     // the non_null_block) if %rdx is live in to _null_block.
420     //
421     //    test %rcx, %rcx
422     //    je _null_block
423     //  _non_null_block:
424     //    %rdx = INST
425     //    ...
426     //
427     // This restriction does not apply to the faulting load inst because in
428     // case the pointer loaded from is in the null page, the load will not
429     // semantically execute, and affect machine state.  That is, if the load
430     // was loading into %rax and it faults, the value of %rax should stay the
431     // same as it would have been had the load not have executed and we'd have
432     // branched to NullSucc directly.
433     if (AnyAliasLiveIn(TRI, NullSucc, DependenceMO.getReg()))
434       return false;
435 
436     // The Dependency can't be re-defining the base register -- then we won't
437     // get the memory operation on the address we want.  This is already
438     // checked in \c IsSuitableMemoryOp.
439     assert(!(DependenceMO.isDef() &&
440              TRI->regsOverlap(DependenceMO.getReg(), PointerReg)) &&
441            "Should have been checked before!");
442   }
443 
444   auto DepDepResult =
445       computeDependence(DependenceMI, {InstsSeenSoFar.begin(), DependenceItr});
446 
447   if (!DepDepResult.CanReorder || DepDepResult.PotentialDependence)
448     return false;
449 
450   Dependence = DependenceMI;
451   return true;
452 }
453 
454 /// Analyze MBB to check if its terminating branch can be turned into an
455 /// implicit null check.  If yes, append a description of the said null check to
456 /// NullCheckList and return true, else return false.
analyzeBlockForNullChecks(MachineBasicBlock & MBB,SmallVectorImpl<NullCheck> & NullCheckList)457 bool ImplicitNullChecks::analyzeBlockForNullChecks(
458     MachineBasicBlock &MBB, SmallVectorImpl<NullCheck> &NullCheckList) {
459   using MachineBranchPredicate = TargetInstrInfo::MachineBranchPredicate;
460 
461   MDNode *BranchMD = nullptr;
462   if (auto *BB = MBB.getBasicBlock())
463     BranchMD = BB->getTerminator()->getMetadata(LLVMContext::MD_make_implicit);
464 
465   if (!BranchMD)
466     return false;
467 
468   MachineBranchPredicate MBP;
469 
470   if (TII->analyzeBranchPredicate(MBB, MBP, true))
471     return false;
472 
473   // Is the predicate comparing an integer to zero?
474   if (!(MBP.LHS.isReg() && MBP.RHS.isImm() && MBP.RHS.getImm() == 0 &&
475         (MBP.Predicate == MachineBranchPredicate::PRED_NE ||
476          MBP.Predicate == MachineBranchPredicate::PRED_EQ)))
477     return false;
478 
479   // If we cannot erase the test instruction itself, then making the null check
480   // implicit does not buy us much.
481   if (!MBP.SingleUseCondition)
482     return false;
483 
484   MachineBasicBlock *NotNullSucc, *NullSucc;
485 
486   if (MBP.Predicate == MachineBranchPredicate::PRED_NE) {
487     NotNullSucc = MBP.TrueDest;
488     NullSucc = MBP.FalseDest;
489   } else {
490     NotNullSucc = MBP.FalseDest;
491     NullSucc = MBP.TrueDest;
492   }
493 
494   // We handle the simplest case for now.  We can potentially do better by using
495   // the machine dominator tree.
496   if (NotNullSucc->pred_size() != 1)
497     return false;
498 
499   // To prevent the invalid transformation of the following code:
500   //
501   //   mov %rax, %rcx
502   //   test %rax, %rax
503   //   %rax = ...
504   //   je throw_npe
505   //   mov(%rcx), %r9
506   //   mov(%rax), %r10
507   //
508   // into:
509   //
510   //   mov %rax, %rcx
511   //   %rax = ....
512   //   faulting_load_op("movl (%rax), %r10", throw_npe)
513   //   mov(%rcx), %r9
514   //
515   // we must ensure that there are no instructions between the 'test' and
516   // conditional jump that modify %rax.
517   const unsigned PointerReg = MBP.LHS.getReg();
518 
519   assert(MBP.ConditionDef->getParent() ==  &MBB && "Should be in basic block");
520 
521   for (auto I = MBB.rbegin(); MBP.ConditionDef != &*I; ++I)
522     if (I->modifiesRegister(PointerReg, TRI))
523       return false;
524 
525   // Starting with a code fragment like:
526   //
527   //   test %rax, %rax
528   //   jne LblNotNull
529   //
530   //  LblNull:
531   //   callq throw_NullPointerException
532   //
533   //  LblNotNull:
534   //   Inst0
535   //   Inst1
536   //   ...
537   //   Def = Load (%rax + <offset>)
538   //   ...
539   //
540   //
541   // we want to end up with
542   //
543   //   Def = FaultingLoad (%rax + <offset>), LblNull
544   //   jmp LblNotNull ;; explicit or fallthrough
545   //
546   //  LblNotNull:
547   //   Inst0
548   //   Inst1
549   //   ...
550   //
551   //  LblNull:
552   //   callq throw_NullPointerException
553   //
554   //
555   // To see why this is legal, consider the two possibilities:
556   //
557   //  1. %rax is null: since we constrain <offset> to be less than PageSize, the
558   //     load instruction dereferences the null page, causing a segmentation
559   //     fault.
560   //
561   //  2. %rax is not null: in this case we know that the load cannot fault, as
562   //     otherwise the load would've faulted in the original program too and the
563   //     original program would've been undefined.
564   //
565   // This reasoning cannot be extended to justify hoisting through arbitrary
566   // control flow.  For instance, in the example below (in pseudo-C)
567   //
568   //    if (ptr == null) { throw_npe(); unreachable; }
569   //    if (some_cond) { return 42; }
570   //    v = ptr->field;  // LD
571   //    ...
572   //
573   // we cannot (without code duplication) use the load marked "LD" to null check
574   // ptr -- clause (2) above does not apply in this case.  In the above program
575   // the safety of ptr->field can be dependent on some_cond; and, for instance,
576   // ptr could be some non-null invalid reference that never gets loaded from
577   // because some_cond is always true.
578 
579   SmallVector<MachineInstr *, 8> InstsSeenSoFar;
580 
581   for (auto &MI : *NotNullSucc) {
582     if (!canHandle(&MI) || InstsSeenSoFar.size() >= MaxInstsToConsider)
583       return false;
584 
585     MachineInstr *Dependence;
586     SuitabilityResult SR = isSuitableMemoryOp(MI, PointerReg, InstsSeenSoFar);
587     if (SR == SR_Impossible)
588       return false;
589     if (SR == SR_Suitable &&
590         canHoistInst(&MI, PointerReg, InstsSeenSoFar, NullSucc, Dependence)) {
591       NullCheckList.emplace_back(&MI, MBP.ConditionDef, &MBB, NotNullSucc,
592                                  NullSucc, Dependence);
593       return true;
594     }
595 
596     // If MI re-defines the PointerReg then we cannot move further.
597     if (llvm::any_of(MI.operands(), [&](MachineOperand &MO) {
598           return MO.isReg() && MO.getReg() && MO.isDef() &&
599                  TRI->regsOverlap(MO.getReg(), PointerReg);
600         }))
601       return false;
602     InstsSeenSoFar.push_back(&MI);
603   }
604 
605   return false;
606 }
607 
608 /// Wrap a machine instruction, MI, into a FAULTING machine instruction.
609 /// The FAULTING instruction does the same load/store as MI
610 /// (defining the same register), and branches to HandlerMBB if the mem access
611 /// faults.  The FAULTING instruction is inserted at the end of MBB.
insertFaultingInstr(MachineInstr * MI,MachineBasicBlock * MBB,MachineBasicBlock * HandlerMBB)612 MachineInstr *ImplicitNullChecks::insertFaultingInstr(
613     MachineInstr *MI, MachineBasicBlock *MBB, MachineBasicBlock *HandlerMBB) {
614   const unsigned NoRegister = 0; // Guaranteed to be the NoRegister value for
615                                  // all targets.
616 
617   DebugLoc DL;
618   unsigned NumDefs = MI->getDesc().getNumDefs();
619   assert(NumDefs <= 1 && "other cases unhandled!");
620 
621   unsigned DefReg = NoRegister;
622   if (NumDefs != 0) {
623     DefReg = MI->getOperand(0).getReg();
624     assert(NumDefs == 1 && "expected exactly one def!");
625   }
626 
627   FaultMaps::FaultKind FK;
628   if (MI->mayLoad())
629     FK =
630         MI->mayStore() ? FaultMaps::FaultingLoadStore : FaultMaps::FaultingLoad;
631   else
632     FK = FaultMaps::FaultingStore;
633 
634   auto MIB = BuildMI(MBB, DL, TII->get(TargetOpcode::FAULTING_OP), DefReg)
635                  .addImm(FK)
636                  .addMBB(HandlerMBB)
637                  .addImm(MI->getOpcode());
638 
639   for (auto &MO : MI->uses()) {
640     if (MO.isReg()) {
641       MachineOperand NewMO = MO;
642       if (MO.isUse()) {
643         NewMO.setIsKill(false);
644       } else {
645         assert(MO.isDef() && "Expected def or use");
646         NewMO.setIsDead(false);
647       }
648       MIB.add(NewMO);
649     } else {
650       MIB.add(MO);
651     }
652   }
653 
654   MIB.setMemRefs(MI->memoperands_begin(), MI->memoperands_end());
655 
656   return MIB;
657 }
658 
659 /// Rewrite the null checks in NullCheckList into implicit null checks.
rewriteNullChecks(ArrayRef<ImplicitNullChecks::NullCheck> NullCheckList)660 void ImplicitNullChecks::rewriteNullChecks(
661     ArrayRef<ImplicitNullChecks::NullCheck> NullCheckList) {
662   DebugLoc DL;
663 
664   for (auto &NC : NullCheckList) {
665     // Remove the conditional branch dependent on the null check.
666     unsigned BranchesRemoved = TII->removeBranch(*NC.getCheckBlock());
667     (void)BranchesRemoved;
668     assert(BranchesRemoved > 0 && "expected at least one branch!");
669 
670     if (auto *DepMI = NC.getOnlyDependency()) {
671       DepMI->removeFromParent();
672       NC.getCheckBlock()->insert(NC.getCheckBlock()->end(), DepMI);
673     }
674 
675     // Insert a faulting instruction where the conditional branch was
676     // originally. We check earlier ensures that this bit of code motion
677     // is legal.  We do not touch the successors list for any basic block
678     // since we haven't changed control flow, we've just made it implicit.
679     MachineInstr *FaultingInstr = insertFaultingInstr(
680         NC.getMemOperation(), NC.getCheckBlock(), NC.getNullSucc());
681     // Now the values defined by MemOperation, if any, are live-in of
682     // the block of MemOperation.
683     // The original operation may define implicit-defs alongside
684     // the value.
685     MachineBasicBlock *MBB = NC.getMemOperation()->getParent();
686     for (const MachineOperand &MO : FaultingInstr->operands()) {
687       if (!MO.isReg() || !MO.isDef())
688         continue;
689       unsigned Reg = MO.getReg();
690       if (!Reg || MBB->isLiveIn(Reg))
691         continue;
692       MBB->addLiveIn(Reg);
693     }
694 
695     if (auto *DepMI = NC.getOnlyDependency()) {
696       for (auto &MO : DepMI->operands()) {
697         if (!MO.isReg() || !MO.getReg() || !MO.isDef())
698           continue;
699         if (!NC.getNotNullSucc()->isLiveIn(MO.getReg()))
700           NC.getNotNullSucc()->addLiveIn(MO.getReg());
701       }
702     }
703 
704     NC.getMemOperation()->eraseFromParent();
705     NC.getCheckOperation()->eraseFromParent();
706 
707     // Insert an *unconditional* branch to not-null successor.
708     TII->insertBranch(*NC.getCheckBlock(), NC.getNotNullSucc(), nullptr,
709                       /*Cond=*/None, DL);
710 
711     NumImplicitNullChecks++;
712   }
713 }
714 
715 char ImplicitNullChecks::ID = 0;
716 
717 char &llvm::ImplicitNullChecksID = ImplicitNullChecks::ID;
718 
719 INITIALIZE_PASS_BEGIN(ImplicitNullChecks, DEBUG_TYPE,
720                       "Implicit null checks", false, false)
721 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
722 INITIALIZE_PASS_END(ImplicitNullChecks, DEBUG_TYPE,
723                     "Implicit null checks", false, false)
724