1 //===- ImplicitNullChecks.cpp - Fold null checks into memory accesses -----===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass turns explicit null checks of the form
11 //
12 // test %r10, %r10
13 // je throw_npe
14 // movl (%r10), %esi
15 // ...
16 //
17 // to
18 //
19 // faulting_load_op("movl (%r10), %esi", throw_npe)
20 // ...
21 //
22 // With the help of a runtime that understands the .fault_maps section,
23 // faulting_load_op branches to throw_npe if executing movl (%r10), %esi incurs
24 // a page fault.
25 // Store and LoadStore are also supported.
26 //
27 //===----------------------------------------------------------------------===//
28
29 #include "llvm/ADT/ArrayRef.h"
30 #include "llvm/ADT/None.h"
31 #include "llvm/ADT/Optional.h"
32 #include "llvm/ADT/STLExtras.h"
33 #include "llvm/ADT/SmallVector.h"
34 #include "llvm/ADT/Statistic.h"
35 #include "llvm/Analysis/AliasAnalysis.h"
36 #include "llvm/Analysis/MemoryLocation.h"
37 #include "llvm/CodeGen/FaultMaps.h"
38 #include "llvm/CodeGen/MachineBasicBlock.h"
39 #include "llvm/CodeGen/MachineFunction.h"
40 #include "llvm/CodeGen/MachineFunctionPass.h"
41 #include "llvm/CodeGen/MachineInstr.h"
42 #include "llvm/CodeGen/MachineInstrBuilder.h"
43 #include "llvm/CodeGen/MachineMemOperand.h"
44 #include "llvm/CodeGen/MachineOperand.h"
45 #include "llvm/CodeGen/MachineRegisterInfo.h"
46 #include "llvm/CodeGen/PseudoSourceValue.h"
47 #include "llvm/CodeGen/TargetInstrInfo.h"
48 #include "llvm/CodeGen/TargetOpcodes.h"
49 #include "llvm/CodeGen/TargetRegisterInfo.h"
50 #include "llvm/CodeGen/TargetSubtargetInfo.h"
51 #include "llvm/IR/BasicBlock.h"
52 #include "llvm/IR/DebugLoc.h"
53 #include "llvm/IR/LLVMContext.h"
54 #include "llvm/MC/MCInstrDesc.h"
55 #include "llvm/MC/MCRegisterInfo.h"
56 #include "llvm/Pass.h"
57 #include "llvm/Support/CommandLine.h"
58 #include <cassert>
59 #include <cstdint>
60 #include <iterator>
61
62 using namespace llvm;
63
64 static cl::opt<int> PageSize("imp-null-check-page-size",
65 cl::desc("The page size of the target in bytes"),
66 cl::init(4096), cl::Hidden);
67
68 static cl::opt<unsigned> MaxInstsToConsider(
69 "imp-null-max-insts-to-consider",
70 cl::desc("The max number of instructions to consider hoisting loads over "
71 "(the algorithm is quadratic over this number)"),
72 cl::Hidden, cl::init(8));
73
74 #define DEBUG_TYPE "implicit-null-checks"
75
76 STATISTIC(NumImplicitNullChecks,
77 "Number of explicit null checks made implicit");
78
79 namespace {
80
81 class ImplicitNullChecks : public MachineFunctionPass {
82 /// Return true if \c computeDependence can process \p MI.
83 static bool canHandle(const MachineInstr *MI);
84
85 /// Helper function for \c computeDependence. Return true if \p A
86 /// and \p B do not have any dependences between them, and can be
87 /// re-ordered without changing program semantics.
88 bool canReorder(const MachineInstr *A, const MachineInstr *B);
89
90 /// A data type for representing the result computed by \c
91 /// computeDependence. States whether it is okay to reorder the
92 /// instruction passed to \c computeDependence with at most one
93 /// depednency.
94 struct DependenceResult {
95 /// Can we actually re-order \p MI with \p Insts (see \c
96 /// computeDependence).
97 bool CanReorder;
98
99 /// If non-None, then an instruction in \p Insts that also must be
100 /// hoisted.
101 Optional<ArrayRef<MachineInstr *>::iterator> PotentialDependence;
102
DependenceResult__anonb08e59f50111::ImplicitNullChecks::DependenceResult103 /*implicit*/ DependenceResult(
104 bool CanReorder,
105 Optional<ArrayRef<MachineInstr *>::iterator> PotentialDependence)
106 : CanReorder(CanReorder), PotentialDependence(PotentialDependence) {
107 assert((!PotentialDependence || CanReorder) &&
108 "!CanReorder && PotentialDependence.hasValue() not allowed!");
109 }
110 };
111
112 /// Compute a result for the following question: can \p MI be
113 /// re-ordered from after \p Insts to before it.
114 ///
115 /// \c canHandle should return true for all instructions in \p
116 /// Insts.
117 DependenceResult computeDependence(const MachineInstr *MI,
118 ArrayRef<MachineInstr *> Block);
119
120 /// Represents one null check that can be made implicit.
121 class NullCheck {
122 // The memory operation the null check can be folded into.
123 MachineInstr *MemOperation;
124
125 // The instruction actually doing the null check (Ptr != 0).
126 MachineInstr *CheckOperation;
127
128 // The block the check resides in.
129 MachineBasicBlock *CheckBlock;
130
131 // The block branched to if the pointer is non-null.
132 MachineBasicBlock *NotNullSucc;
133
134 // The block branched to if the pointer is null.
135 MachineBasicBlock *NullSucc;
136
137 // If this is non-null, then MemOperation has a dependency on this
138 // instruction; and it needs to be hoisted to execute before MemOperation.
139 MachineInstr *OnlyDependency;
140
141 public:
NullCheck(MachineInstr * memOperation,MachineInstr * checkOperation,MachineBasicBlock * checkBlock,MachineBasicBlock * notNullSucc,MachineBasicBlock * nullSucc,MachineInstr * onlyDependency)142 explicit NullCheck(MachineInstr *memOperation, MachineInstr *checkOperation,
143 MachineBasicBlock *checkBlock,
144 MachineBasicBlock *notNullSucc,
145 MachineBasicBlock *nullSucc,
146 MachineInstr *onlyDependency)
147 : MemOperation(memOperation), CheckOperation(checkOperation),
148 CheckBlock(checkBlock), NotNullSucc(notNullSucc), NullSucc(nullSucc),
149 OnlyDependency(onlyDependency) {}
150
getMemOperation() const151 MachineInstr *getMemOperation() const { return MemOperation; }
152
getCheckOperation() const153 MachineInstr *getCheckOperation() const { return CheckOperation; }
154
getCheckBlock() const155 MachineBasicBlock *getCheckBlock() const { return CheckBlock; }
156
getNotNullSucc() const157 MachineBasicBlock *getNotNullSucc() const { return NotNullSucc; }
158
getNullSucc() const159 MachineBasicBlock *getNullSucc() const { return NullSucc; }
160
getOnlyDependency() const161 MachineInstr *getOnlyDependency() const { return OnlyDependency; }
162 };
163
164 const TargetInstrInfo *TII = nullptr;
165 const TargetRegisterInfo *TRI = nullptr;
166 AliasAnalysis *AA = nullptr;
167 MachineFrameInfo *MFI = nullptr;
168
169 bool analyzeBlockForNullChecks(MachineBasicBlock &MBB,
170 SmallVectorImpl<NullCheck> &NullCheckList);
171 MachineInstr *insertFaultingInstr(MachineInstr *MI, MachineBasicBlock *MBB,
172 MachineBasicBlock *HandlerMBB);
173 void rewriteNullChecks(ArrayRef<NullCheck> NullCheckList);
174
175 enum AliasResult {
176 AR_NoAlias,
177 AR_MayAlias,
178 AR_WillAliasEverything
179 };
180
181 /// Returns AR_NoAlias if \p MI memory operation does not alias with
182 /// \p PrevMI, AR_MayAlias if they may alias and AR_WillAliasEverything if
183 /// they may alias and any further memory operation may alias with \p PrevMI.
184 AliasResult areMemoryOpsAliased(MachineInstr &MI, MachineInstr *PrevMI);
185
186 enum SuitabilityResult {
187 SR_Suitable,
188 SR_Unsuitable,
189 SR_Impossible
190 };
191
192 /// Return SR_Suitable if \p MI a memory operation that can be used to
193 /// implicitly null check the value in \p PointerReg, SR_Unsuitable if
194 /// \p MI cannot be used to null check and SR_Impossible if there is
195 /// no sense to continue lookup due to any other instruction will not be able
196 /// to be used. \p PrevInsts is the set of instruction seen since
197 /// the explicit null check on \p PointerReg.
198 SuitabilityResult isSuitableMemoryOp(MachineInstr &MI, unsigned PointerReg,
199 ArrayRef<MachineInstr *> PrevInsts);
200
201 /// Return true if \p FaultingMI can be hoisted from after the
202 /// instructions in \p InstsSeenSoFar to before them. Set \p Dependence to a
203 /// non-null value if we also need to (and legally can) hoist a depedency.
204 bool canHoistInst(MachineInstr *FaultingMI, unsigned PointerReg,
205 ArrayRef<MachineInstr *> InstsSeenSoFar,
206 MachineBasicBlock *NullSucc, MachineInstr *&Dependence);
207
208 public:
209 static char ID;
210
ImplicitNullChecks()211 ImplicitNullChecks() : MachineFunctionPass(ID) {
212 initializeImplicitNullChecksPass(*PassRegistry::getPassRegistry());
213 }
214
215 bool runOnMachineFunction(MachineFunction &MF) override;
216
getAnalysisUsage(AnalysisUsage & AU) const217 void getAnalysisUsage(AnalysisUsage &AU) const override {
218 AU.addRequired<AAResultsWrapperPass>();
219 MachineFunctionPass::getAnalysisUsage(AU);
220 }
221
getRequiredProperties() const222 MachineFunctionProperties getRequiredProperties() const override {
223 return MachineFunctionProperties().set(
224 MachineFunctionProperties::Property::NoVRegs);
225 }
226 };
227
228 } // end anonymous namespace
229
canHandle(const MachineInstr * MI)230 bool ImplicitNullChecks::canHandle(const MachineInstr *MI) {
231 if (MI->isCall() || MI->hasUnmodeledSideEffects())
232 return false;
233 auto IsRegMask = [](const MachineOperand &MO) { return MO.isRegMask(); };
234 (void)IsRegMask;
235
236 assert(!llvm::any_of(MI->operands(), IsRegMask) &&
237 "Calls were filtered out above!");
238
239 auto IsUnordered = [](MachineMemOperand *MMO) { return MMO->isUnordered(); };
240 return llvm::all_of(MI->memoperands(), IsUnordered);
241 }
242
243 ImplicitNullChecks::DependenceResult
computeDependence(const MachineInstr * MI,ArrayRef<MachineInstr * > Block)244 ImplicitNullChecks::computeDependence(const MachineInstr *MI,
245 ArrayRef<MachineInstr *> Block) {
246 assert(llvm::all_of(Block, canHandle) && "Check this first!");
247 assert(!is_contained(Block, MI) && "Block must be exclusive of MI!");
248
249 Optional<ArrayRef<MachineInstr *>::iterator> Dep;
250
251 for (auto I = Block.begin(), E = Block.end(); I != E; ++I) {
252 if (canReorder(*I, MI))
253 continue;
254
255 if (Dep == None) {
256 // Found one possible dependency, keep track of it.
257 Dep = I;
258 } else {
259 // We found two dependencies, so bail out.
260 return {false, None};
261 }
262 }
263
264 return {true, Dep};
265 }
266
canReorder(const MachineInstr * A,const MachineInstr * B)267 bool ImplicitNullChecks::canReorder(const MachineInstr *A,
268 const MachineInstr *B) {
269 assert(canHandle(A) && canHandle(B) && "Precondition!");
270
271 // canHandle makes sure that we _can_ correctly analyze the dependencies
272 // between A and B here -- for instance, we should not be dealing with heap
273 // load-store dependencies here.
274
275 for (auto MOA : A->operands()) {
276 if (!(MOA.isReg() && MOA.getReg()))
277 continue;
278
279 unsigned RegA = MOA.getReg();
280 for (auto MOB : B->operands()) {
281 if (!(MOB.isReg() && MOB.getReg()))
282 continue;
283
284 unsigned RegB = MOB.getReg();
285
286 if (TRI->regsOverlap(RegA, RegB) && (MOA.isDef() || MOB.isDef()))
287 return false;
288 }
289 }
290
291 return true;
292 }
293
runOnMachineFunction(MachineFunction & MF)294 bool ImplicitNullChecks::runOnMachineFunction(MachineFunction &MF) {
295 TII = MF.getSubtarget().getInstrInfo();
296 TRI = MF.getRegInfo().getTargetRegisterInfo();
297 MFI = &MF.getFrameInfo();
298 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
299
300 SmallVector<NullCheck, 16> NullCheckList;
301
302 for (auto &MBB : MF)
303 analyzeBlockForNullChecks(MBB, NullCheckList);
304
305 if (!NullCheckList.empty())
306 rewriteNullChecks(NullCheckList);
307
308 return !NullCheckList.empty();
309 }
310
311 // Return true if any register aliasing \p Reg is live-in into \p MBB.
AnyAliasLiveIn(const TargetRegisterInfo * TRI,MachineBasicBlock * MBB,unsigned Reg)312 static bool AnyAliasLiveIn(const TargetRegisterInfo *TRI,
313 MachineBasicBlock *MBB, unsigned Reg) {
314 for (MCRegAliasIterator AR(Reg, TRI, /*IncludeSelf*/ true); AR.isValid();
315 ++AR)
316 if (MBB->isLiveIn(*AR))
317 return true;
318 return false;
319 }
320
321 ImplicitNullChecks::AliasResult
areMemoryOpsAliased(MachineInstr & MI,MachineInstr * PrevMI)322 ImplicitNullChecks::areMemoryOpsAliased(MachineInstr &MI,
323 MachineInstr *PrevMI) {
324 // If it is not memory access, skip the check.
325 if (!(PrevMI->mayStore() || PrevMI->mayLoad()))
326 return AR_NoAlias;
327 // Load-Load may alias
328 if (!(MI.mayStore() || PrevMI->mayStore()))
329 return AR_NoAlias;
330 // We lost info, conservatively alias. If it was store then no sense to
331 // continue because we won't be able to check against it further.
332 if (MI.memoperands_empty())
333 return MI.mayStore() ? AR_WillAliasEverything : AR_MayAlias;
334 if (PrevMI->memoperands_empty())
335 return PrevMI->mayStore() ? AR_WillAliasEverything : AR_MayAlias;
336
337 for (MachineMemOperand *MMO1 : MI.memoperands()) {
338 // MMO1 should have a value due it comes from operation we'd like to use
339 // as implicit null check.
340 assert(MMO1->getValue() && "MMO1 should have a Value!");
341 for (MachineMemOperand *MMO2 : PrevMI->memoperands()) {
342 if (const PseudoSourceValue *PSV = MMO2->getPseudoValue()) {
343 if (PSV->mayAlias(MFI))
344 return AR_MayAlias;
345 continue;
346 }
347 llvm::AliasResult AAResult = AA->alias(
348 MemoryLocation(MMO1->getValue(), MemoryLocation::UnknownSize,
349 MMO1->getAAInfo()),
350 MemoryLocation(MMO2->getValue(), MemoryLocation::UnknownSize,
351 MMO2->getAAInfo()));
352 if (AAResult != NoAlias)
353 return AR_MayAlias;
354 }
355 }
356 return AR_NoAlias;
357 }
358
359 ImplicitNullChecks::SuitabilityResult
isSuitableMemoryOp(MachineInstr & MI,unsigned PointerReg,ArrayRef<MachineInstr * > PrevInsts)360 ImplicitNullChecks::isSuitableMemoryOp(MachineInstr &MI, unsigned PointerReg,
361 ArrayRef<MachineInstr *> PrevInsts) {
362 int64_t Offset;
363 unsigned BaseReg;
364
365 if (!TII->getMemOpBaseRegImmOfs(MI, BaseReg, Offset, TRI) ||
366 BaseReg != PointerReg)
367 return SR_Unsuitable;
368
369 // We want the mem access to be issued at a sane offset from PointerReg,
370 // so that if PointerReg is null then the access reliably page faults.
371 if (!((MI.mayLoad() || MI.mayStore()) && !MI.isPredicable() &&
372 -PageSize < Offset && Offset < PageSize))
373 return SR_Unsuitable;
374
375 // Finally, check whether the current memory access aliases with previous one.
376 for (auto *PrevMI : PrevInsts) {
377 AliasResult AR = areMemoryOpsAliased(MI, PrevMI);
378 if (AR == AR_WillAliasEverything)
379 return SR_Impossible;
380 if (AR == AR_MayAlias)
381 return SR_Unsuitable;
382 }
383 return SR_Suitable;
384 }
385
canHoistInst(MachineInstr * FaultingMI,unsigned PointerReg,ArrayRef<MachineInstr * > InstsSeenSoFar,MachineBasicBlock * NullSucc,MachineInstr * & Dependence)386 bool ImplicitNullChecks::canHoistInst(MachineInstr *FaultingMI,
387 unsigned PointerReg,
388 ArrayRef<MachineInstr *> InstsSeenSoFar,
389 MachineBasicBlock *NullSucc,
390 MachineInstr *&Dependence) {
391 auto DepResult = computeDependence(FaultingMI, InstsSeenSoFar);
392 if (!DepResult.CanReorder)
393 return false;
394
395 if (!DepResult.PotentialDependence) {
396 Dependence = nullptr;
397 return true;
398 }
399
400 auto DependenceItr = *DepResult.PotentialDependence;
401 auto *DependenceMI = *DependenceItr;
402
403 // We don't want to reason about speculating loads. Note -- at this point
404 // we should have already filtered out all of the other non-speculatable
405 // things, like calls and stores.
406 // We also do not want to hoist stores because it might change the memory
407 // while the FaultingMI may result in faulting.
408 assert(canHandle(DependenceMI) && "Should never have reached here!");
409 if (DependenceMI->mayLoadOrStore())
410 return false;
411
412 for (auto &DependenceMO : DependenceMI->operands()) {
413 if (!(DependenceMO.isReg() && DependenceMO.getReg()))
414 continue;
415
416 // Make sure that we won't clobber any live ins to the sibling block by
417 // hoisting Dependency. For instance, we can't hoist INST to before the
418 // null check (even if it safe, and does not violate any dependencies in
419 // the non_null_block) if %rdx is live in to _null_block.
420 //
421 // test %rcx, %rcx
422 // je _null_block
423 // _non_null_block:
424 // %rdx = INST
425 // ...
426 //
427 // This restriction does not apply to the faulting load inst because in
428 // case the pointer loaded from is in the null page, the load will not
429 // semantically execute, and affect machine state. That is, if the load
430 // was loading into %rax and it faults, the value of %rax should stay the
431 // same as it would have been had the load not have executed and we'd have
432 // branched to NullSucc directly.
433 if (AnyAliasLiveIn(TRI, NullSucc, DependenceMO.getReg()))
434 return false;
435
436 // The Dependency can't be re-defining the base register -- then we won't
437 // get the memory operation on the address we want. This is already
438 // checked in \c IsSuitableMemoryOp.
439 assert(!(DependenceMO.isDef() &&
440 TRI->regsOverlap(DependenceMO.getReg(), PointerReg)) &&
441 "Should have been checked before!");
442 }
443
444 auto DepDepResult =
445 computeDependence(DependenceMI, {InstsSeenSoFar.begin(), DependenceItr});
446
447 if (!DepDepResult.CanReorder || DepDepResult.PotentialDependence)
448 return false;
449
450 Dependence = DependenceMI;
451 return true;
452 }
453
454 /// Analyze MBB to check if its terminating branch can be turned into an
455 /// implicit null check. If yes, append a description of the said null check to
456 /// NullCheckList and return true, else return false.
analyzeBlockForNullChecks(MachineBasicBlock & MBB,SmallVectorImpl<NullCheck> & NullCheckList)457 bool ImplicitNullChecks::analyzeBlockForNullChecks(
458 MachineBasicBlock &MBB, SmallVectorImpl<NullCheck> &NullCheckList) {
459 using MachineBranchPredicate = TargetInstrInfo::MachineBranchPredicate;
460
461 MDNode *BranchMD = nullptr;
462 if (auto *BB = MBB.getBasicBlock())
463 BranchMD = BB->getTerminator()->getMetadata(LLVMContext::MD_make_implicit);
464
465 if (!BranchMD)
466 return false;
467
468 MachineBranchPredicate MBP;
469
470 if (TII->analyzeBranchPredicate(MBB, MBP, true))
471 return false;
472
473 // Is the predicate comparing an integer to zero?
474 if (!(MBP.LHS.isReg() && MBP.RHS.isImm() && MBP.RHS.getImm() == 0 &&
475 (MBP.Predicate == MachineBranchPredicate::PRED_NE ||
476 MBP.Predicate == MachineBranchPredicate::PRED_EQ)))
477 return false;
478
479 // If we cannot erase the test instruction itself, then making the null check
480 // implicit does not buy us much.
481 if (!MBP.SingleUseCondition)
482 return false;
483
484 MachineBasicBlock *NotNullSucc, *NullSucc;
485
486 if (MBP.Predicate == MachineBranchPredicate::PRED_NE) {
487 NotNullSucc = MBP.TrueDest;
488 NullSucc = MBP.FalseDest;
489 } else {
490 NotNullSucc = MBP.FalseDest;
491 NullSucc = MBP.TrueDest;
492 }
493
494 // We handle the simplest case for now. We can potentially do better by using
495 // the machine dominator tree.
496 if (NotNullSucc->pred_size() != 1)
497 return false;
498
499 // To prevent the invalid transformation of the following code:
500 //
501 // mov %rax, %rcx
502 // test %rax, %rax
503 // %rax = ...
504 // je throw_npe
505 // mov(%rcx), %r9
506 // mov(%rax), %r10
507 //
508 // into:
509 //
510 // mov %rax, %rcx
511 // %rax = ....
512 // faulting_load_op("movl (%rax), %r10", throw_npe)
513 // mov(%rcx), %r9
514 //
515 // we must ensure that there are no instructions between the 'test' and
516 // conditional jump that modify %rax.
517 const unsigned PointerReg = MBP.LHS.getReg();
518
519 assert(MBP.ConditionDef->getParent() == &MBB && "Should be in basic block");
520
521 for (auto I = MBB.rbegin(); MBP.ConditionDef != &*I; ++I)
522 if (I->modifiesRegister(PointerReg, TRI))
523 return false;
524
525 // Starting with a code fragment like:
526 //
527 // test %rax, %rax
528 // jne LblNotNull
529 //
530 // LblNull:
531 // callq throw_NullPointerException
532 //
533 // LblNotNull:
534 // Inst0
535 // Inst1
536 // ...
537 // Def = Load (%rax + <offset>)
538 // ...
539 //
540 //
541 // we want to end up with
542 //
543 // Def = FaultingLoad (%rax + <offset>), LblNull
544 // jmp LblNotNull ;; explicit or fallthrough
545 //
546 // LblNotNull:
547 // Inst0
548 // Inst1
549 // ...
550 //
551 // LblNull:
552 // callq throw_NullPointerException
553 //
554 //
555 // To see why this is legal, consider the two possibilities:
556 //
557 // 1. %rax is null: since we constrain <offset> to be less than PageSize, the
558 // load instruction dereferences the null page, causing a segmentation
559 // fault.
560 //
561 // 2. %rax is not null: in this case we know that the load cannot fault, as
562 // otherwise the load would've faulted in the original program too and the
563 // original program would've been undefined.
564 //
565 // This reasoning cannot be extended to justify hoisting through arbitrary
566 // control flow. For instance, in the example below (in pseudo-C)
567 //
568 // if (ptr == null) { throw_npe(); unreachable; }
569 // if (some_cond) { return 42; }
570 // v = ptr->field; // LD
571 // ...
572 //
573 // we cannot (without code duplication) use the load marked "LD" to null check
574 // ptr -- clause (2) above does not apply in this case. In the above program
575 // the safety of ptr->field can be dependent on some_cond; and, for instance,
576 // ptr could be some non-null invalid reference that never gets loaded from
577 // because some_cond is always true.
578
579 SmallVector<MachineInstr *, 8> InstsSeenSoFar;
580
581 for (auto &MI : *NotNullSucc) {
582 if (!canHandle(&MI) || InstsSeenSoFar.size() >= MaxInstsToConsider)
583 return false;
584
585 MachineInstr *Dependence;
586 SuitabilityResult SR = isSuitableMemoryOp(MI, PointerReg, InstsSeenSoFar);
587 if (SR == SR_Impossible)
588 return false;
589 if (SR == SR_Suitable &&
590 canHoistInst(&MI, PointerReg, InstsSeenSoFar, NullSucc, Dependence)) {
591 NullCheckList.emplace_back(&MI, MBP.ConditionDef, &MBB, NotNullSucc,
592 NullSucc, Dependence);
593 return true;
594 }
595
596 // If MI re-defines the PointerReg then we cannot move further.
597 if (llvm::any_of(MI.operands(), [&](MachineOperand &MO) {
598 return MO.isReg() && MO.getReg() && MO.isDef() &&
599 TRI->regsOverlap(MO.getReg(), PointerReg);
600 }))
601 return false;
602 InstsSeenSoFar.push_back(&MI);
603 }
604
605 return false;
606 }
607
608 /// Wrap a machine instruction, MI, into a FAULTING machine instruction.
609 /// The FAULTING instruction does the same load/store as MI
610 /// (defining the same register), and branches to HandlerMBB if the mem access
611 /// faults. The FAULTING instruction is inserted at the end of MBB.
insertFaultingInstr(MachineInstr * MI,MachineBasicBlock * MBB,MachineBasicBlock * HandlerMBB)612 MachineInstr *ImplicitNullChecks::insertFaultingInstr(
613 MachineInstr *MI, MachineBasicBlock *MBB, MachineBasicBlock *HandlerMBB) {
614 const unsigned NoRegister = 0; // Guaranteed to be the NoRegister value for
615 // all targets.
616
617 DebugLoc DL;
618 unsigned NumDefs = MI->getDesc().getNumDefs();
619 assert(NumDefs <= 1 && "other cases unhandled!");
620
621 unsigned DefReg = NoRegister;
622 if (NumDefs != 0) {
623 DefReg = MI->getOperand(0).getReg();
624 assert(NumDefs == 1 && "expected exactly one def!");
625 }
626
627 FaultMaps::FaultKind FK;
628 if (MI->mayLoad())
629 FK =
630 MI->mayStore() ? FaultMaps::FaultingLoadStore : FaultMaps::FaultingLoad;
631 else
632 FK = FaultMaps::FaultingStore;
633
634 auto MIB = BuildMI(MBB, DL, TII->get(TargetOpcode::FAULTING_OP), DefReg)
635 .addImm(FK)
636 .addMBB(HandlerMBB)
637 .addImm(MI->getOpcode());
638
639 for (auto &MO : MI->uses()) {
640 if (MO.isReg()) {
641 MachineOperand NewMO = MO;
642 if (MO.isUse()) {
643 NewMO.setIsKill(false);
644 } else {
645 assert(MO.isDef() && "Expected def or use");
646 NewMO.setIsDead(false);
647 }
648 MIB.add(NewMO);
649 } else {
650 MIB.add(MO);
651 }
652 }
653
654 MIB.setMemRefs(MI->memoperands_begin(), MI->memoperands_end());
655
656 return MIB;
657 }
658
659 /// Rewrite the null checks in NullCheckList into implicit null checks.
rewriteNullChecks(ArrayRef<ImplicitNullChecks::NullCheck> NullCheckList)660 void ImplicitNullChecks::rewriteNullChecks(
661 ArrayRef<ImplicitNullChecks::NullCheck> NullCheckList) {
662 DebugLoc DL;
663
664 for (auto &NC : NullCheckList) {
665 // Remove the conditional branch dependent on the null check.
666 unsigned BranchesRemoved = TII->removeBranch(*NC.getCheckBlock());
667 (void)BranchesRemoved;
668 assert(BranchesRemoved > 0 && "expected at least one branch!");
669
670 if (auto *DepMI = NC.getOnlyDependency()) {
671 DepMI->removeFromParent();
672 NC.getCheckBlock()->insert(NC.getCheckBlock()->end(), DepMI);
673 }
674
675 // Insert a faulting instruction where the conditional branch was
676 // originally. We check earlier ensures that this bit of code motion
677 // is legal. We do not touch the successors list for any basic block
678 // since we haven't changed control flow, we've just made it implicit.
679 MachineInstr *FaultingInstr = insertFaultingInstr(
680 NC.getMemOperation(), NC.getCheckBlock(), NC.getNullSucc());
681 // Now the values defined by MemOperation, if any, are live-in of
682 // the block of MemOperation.
683 // The original operation may define implicit-defs alongside
684 // the value.
685 MachineBasicBlock *MBB = NC.getMemOperation()->getParent();
686 for (const MachineOperand &MO : FaultingInstr->operands()) {
687 if (!MO.isReg() || !MO.isDef())
688 continue;
689 unsigned Reg = MO.getReg();
690 if (!Reg || MBB->isLiveIn(Reg))
691 continue;
692 MBB->addLiveIn(Reg);
693 }
694
695 if (auto *DepMI = NC.getOnlyDependency()) {
696 for (auto &MO : DepMI->operands()) {
697 if (!MO.isReg() || !MO.getReg() || !MO.isDef())
698 continue;
699 if (!NC.getNotNullSucc()->isLiveIn(MO.getReg()))
700 NC.getNotNullSucc()->addLiveIn(MO.getReg());
701 }
702 }
703
704 NC.getMemOperation()->eraseFromParent();
705 NC.getCheckOperation()->eraseFromParent();
706
707 // Insert an *unconditional* branch to not-null successor.
708 TII->insertBranch(*NC.getCheckBlock(), NC.getNotNullSucc(), nullptr,
709 /*Cond=*/None, DL);
710
711 NumImplicitNullChecks++;
712 }
713 }
714
715 char ImplicitNullChecks::ID = 0;
716
717 char &llvm::ImplicitNullChecksID = ImplicitNullChecks::ID;
718
719 INITIALIZE_PASS_BEGIN(ImplicitNullChecks, DEBUG_TYPE,
720 "Implicit null checks", false, false)
721 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
722 INITIALIZE_PASS_END(ImplicitNullChecks, DEBUG_TYPE,
723 "Implicit null checks", false, false)
724