1 //===- InterleavedAccessPass.cpp ------------------------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the Interleaved Access pass, which identifies
11 // interleaved memory accesses and transforms them into target specific
12 // intrinsics.
13 //
14 // An interleaved load reads data from memory into several vectors, with
15 // DE-interleaving the data on a factor. An interleaved store writes several
16 // vectors to memory with RE-interleaving the data on a factor.
17 //
18 // As interleaved accesses are difficult to identified in CodeGen (mainly
19 // because the VECTOR_SHUFFLE DAG node is quite different from the shufflevector
20 // IR), we identify and transform them to intrinsics in this pass so the
21 // intrinsics can be easily matched into target specific instructions later in
22 // CodeGen.
23 //
24 // E.g. An interleaved load (Factor = 2):
25 // %wide.vec = load <8 x i32>, <8 x i32>* %ptr
26 // %v0 = shuffle <8 x i32> %wide.vec, <8 x i32> undef, <0, 2, 4, 6>
27 // %v1 = shuffle <8 x i32> %wide.vec, <8 x i32> undef, <1, 3, 5, 7>
28 //
29 // It could be transformed into a ld2 intrinsic in AArch64 backend or a vld2
30 // intrinsic in ARM backend.
31 //
32 // In X86, this can be further optimized into a set of target
33 // specific loads followed by an optimized sequence of shuffles.
34 //
35 // E.g. An interleaved store (Factor = 3):
36 // %i.vec = shuffle <8 x i32> %v0, <8 x i32> %v1,
37 // <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11>
38 // store <12 x i32> %i.vec, <12 x i32>* %ptr
39 //
40 // It could be transformed into a st3 intrinsic in AArch64 backend or a vst3
41 // intrinsic in ARM backend.
42 //
43 // Similarly, a set of interleaved stores can be transformed into an optimized
44 // sequence of shuffles followed by a set of target specific stores for X86.
45 //
46 //===----------------------------------------------------------------------===//
47
48 #include "llvm/ADT/ArrayRef.h"
49 #include "llvm/ADT/DenseMap.h"
50 #include "llvm/ADT/SmallVector.h"
51 #include "llvm/CodeGen/TargetLowering.h"
52 #include "llvm/CodeGen/TargetPassConfig.h"
53 #include "llvm/CodeGen/TargetSubtargetInfo.h"
54 #include "llvm/IR/Constants.h"
55 #include "llvm/IR/Dominators.h"
56 #include "llvm/IR/Function.h"
57 #include "llvm/IR/IRBuilder.h"
58 #include "llvm/IR/InstIterator.h"
59 #include "llvm/IR/Instruction.h"
60 #include "llvm/IR/Instructions.h"
61 #include "llvm/IR/Type.h"
62 #include "llvm/Pass.h"
63 #include "llvm/Support/Casting.h"
64 #include "llvm/Support/CommandLine.h"
65 #include "llvm/Support/Debug.h"
66 #include "llvm/Support/MathExtras.h"
67 #include "llvm/Support/raw_ostream.h"
68 #include "llvm/Target/TargetMachine.h"
69 #include <cassert>
70 #include <utility>
71
72 using namespace llvm;
73
74 #define DEBUG_TYPE "interleaved-access"
75
76 static cl::opt<bool> LowerInterleavedAccesses(
77 "lower-interleaved-accesses",
78 cl::desc("Enable lowering interleaved accesses to intrinsics"),
79 cl::init(true), cl::Hidden);
80
81 namespace {
82
83 class InterleavedAccess : public FunctionPass {
84 public:
85 static char ID;
86
InterleavedAccess()87 InterleavedAccess() : FunctionPass(ID) {
88 initializeInterleavedAccessPass(*PassRegistry::getPassRegistry());
89 }
90
getPassName() const91 StringRef getPassName() const override { return "Interleaved Access Pass"; }
92
93 bool runOnFunction(Function &F) override;
94
getAnalysisUsage(AnalysisUsage & AU) const95 void getAnalysisUsage(AnalysisUsage &AU) const override {
96 AU.addRequired<DominatorTreeWrapperPass>();
97 AU.addPreserved<DominatorTreeWrapperPass>();
98 }
99
100 private:
101 DominatorTree *DT = nullptr;
102 const TargetLowering *TLI = nullptr;
103
104 /// The maximum supported interleave factor.
105 unsigned MaxFactor;
106
107 /// Transform an interleaved load into target specific intrinsics.
108 bool lowerInterleavedLoad(LoadInst *LI,
109 SmallVector<Instruction *, 32> &DeadInsts);
110
111 /// Transform an interleaved store into target specific intrinsics.
112 bool lowerInterleavedStore(StoreInst *SI,
113 SmallVector<Instruction *, 32> &DeadInsts);
114
115 /// Returns true if the uses of an interleaved load by the
116 /// extractelement instructions in \p Extracts can be replaced by uses of the
117 /// shufflevector instructions in \p Shuffles instead. If so, the necessary
118 /// replacements are also performed.
119 bool tryReplaceExtracts(ArrayRef<ExtractElementInst *> Extracts,
120 ArrayRef<ShuffleVectorInst *> Shuffles);
121 };
122
123 } // end anonymous namespace.
124
125 char InterleavedAccess::ID = 0;
126
127 INITIALIZE_PASS_BEGIN(InterleavedAccess, DEBUG_TYPE,
128 "Lower interleaved memory accesses to target specific intrinsics", false,
129 false)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)130 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
131 INITIALIZE_PASS_END(InterleavedAccess, DEBUG_TYPE,
132 "Lower interleaved memory accesses to target specific intrinsics", false,
133 false)
134
135 FunctionPass *llvm::createInterleavedAccessPass() {
136 return new InterleavedAccess();
137 }
138
139 /// Check if the mask is a DE-interleave mask of the given factor
140 /// \p Factor like:
141 /// <Index, Index+Factor, ..., Index+(NumElts-1)*Factor>
isDeInterleaveMaskOfFactor(ArrayRef<int> Mask,unsigned Factor,unsigned & Index)142 static bool isDeInterleaveMaskOfFactor(ArrayRef<int> Mask, unsigned Factor,
143 unsigned &Index) {
144 // Check all potential start indices from 0 to (Factor - 1).
145 for (Index = 0; Index < Factor; Index++) {
146 unsigned i = 0;
147
148 // Check that elements are in ascending order by Factor. Ignore undef
149 // elements.
150 for (; i < Mask.size(); i++)
151 if (Mask[i] >= 0 && static_cast<unsigned>(Mask[i]) != Index + i * Factor)
152 break;
153
154 if (i == Mask.size())
155 return true;
156 }
157
158 return false;
159 }
160
161 /// Check if the mask is a DE-interleave mask for an interleaved load.
162 ///
163 /// E.g. DE-interleave masks (Factor = 2) could be:
164 /// <0, 2, 4, 6> (mask of index 0 to extract even elements)
165 /// <1, 3, 5, 7> (mask of index 1 to extract odd elements)
isDeInterleaveMask(ArrayRef<int> Mask,unsigned & Factor,unsigned & Index,unsigned MaxFactor)166 static bool isDeInterleaveMask(ArrayRef<int> Mask, unsigned &Factor,
167 unsigned &Index, unsigned MaxFactor) {
168 if (Mask.size() < 2)
169 return false;
170
171 // Check potential Factors.
172 for (Factor = 2; Factor <= MaxFactor; Factor++)
173 if (isDeInterleaveMaskOfFactor(Mask, Factor, Index))
174 return true;
175
176 return false;
177 }
178
179 /// Check if the mask can be used in an interleaved store.
180 //
181 /// It checks for a more general pattern than the RE-interleave mask.
182 /// I.e. <x, y, ... z, x+1, y+1, ...z+1, x+2, y+2, ...z+2, ...>
183 /// E.g. For a Factor of 2 (LaneLen=4): <4, 32, 5, 33, 6, 34, 7, 35>
184 /// E.g. For a Factor of 3 (LaneLen=4): <4, 32, 16, 5, 33, 17, 6, 34, 18, 7, 35, 19>
185 /// E.g. For a Factor of 4 (LaneLen=2): <8, 2, 12, 4, 9, 3, 13, 5>
186 ///
187 /// The particular case of an RE-interleave mask is:
188 /// I.e. <0, LaneLen, ... , LaneLen*(Factor - 1), 1, LaneLen + 1, ...>
189 /// E.g. For a Factor of 2 (LaneLen=4): <0, 4, 1, 5, 2, 6, 3, 7>
isReInterleaveMask(ArrayRef<int> Mask,unsigned & Factor,unsigned MaxFactor,unsigned OpNumElts)190 static bool isReInterleaveMask(ArrayRef<int> Mask, unsigned &Factor,
191 unsigned MaxFactor, unsigned OpNumElts) {
192 unsigned NumElts = Mask.size();
193 if (NumElts < 4)
194 return false;
195
196 // Check potential Factors.
197 for (Factor = 2; Factor <= MaxFactor; Factor++) {
198 if (NumElts % Factor)
199 continue;
200
201 unsigned LaneLen = NumElts / Factor;
202 if (!isPowerOf2_32(LaneLen))
203 continue;
204
205 // Check whether each element matches the general interleaved rule.
206 // Ignore undef elements, as long as the defined elements match the rule.
207 // Outer loop processes all factors (x, y, z in the above example)
208 unsigned I = 0, J;
209 for (; I < Factor; I++) {
210 unsigned SavedLaneValue;
211 unsigned SavedNoUndefs = 0;
212
213 // Inner loop processes consecutive accesses (x, x+1... in the example)
214 for (J = 0; J < LaneLen - 1; J++) {
215 // Lane computes x's position in the Mask
216 unsigned Lane = J * Factor + I;
217 unsigned NextLane = Lane + Factor;
218 int LaneValue = Mask[Lane];
219 int NextLaneValue = Mask[NextLane];
220
221 // If both are defined, values must be sequential
222 if (LaneValue >= 0 && NextLaneValue >= 0 &&
223 LaneValue + 1 != NextLaneValue)
224 break;
225
226 // If the next value is undef, save the current one as reference
227 if (LaneValue >= 0 && NextLaneValue < 0) {
228 SavedLaneValue = LaneValue;
229 SavedNoUndefs = 1;
230 }
231
232 // Undefs are allowed, but defined elements must still be consecutive:
233 // i.e.: x,..., undef,..., x + 2,..., undef,..., undef,..., x + 5, ....
234 // Verify this by storing the last non-undef followed by an undef
235 // Check that following non-undef masks are incremented with the
236 // corresponding distance.
237 if (SavedNoUndefs > 0 && LaneValue < 0) {
238 SavedNoUndefs++;
239 if (NextLaneValue >= 0 &&
240 SavedLaneValue + SavedNoUndefs != (unsigned)NextLaneValue)
241 break;
242 }
243 }
244
245 if (J < LaneLen - 1)
246 break;
247
248 int StartMask = 0;
249 if (Mask[I] >= 0) {
250 // Check that the start of the I range (J=0) is greater than 0
251 StartMask = Mask[I];
252 } else if (Mask[(LaneLen - 1) * Factor + I] >= 0) {
253 // StartMask defined by the last value in lane
254 StartMask = Mask[(LaneLen - 1) * Factor + I] - J;
255 } else if (SavedNoUndefs > 0) {
256 // StartMask defined by some non-zero value in the j loop
257 StartMask = SavedLaneValue - (LaneLen - 1 - SavedNoUndefs);
258 }
259 // else StartMask remains set to 0, i.e. all elements are undefs
260
261 if (StartMask < 0)
262 break;
263 // We must stay within the vectors; This case can happen with undefs.
264 if (StartMask + LaneLen > OpNumElts*2)
265 break;
266 }
267
268 // Found an interleaved mask of current factor.
269 if (I == Factor)
270 return true;
271 }
272
273 return false;
274 }
275
lowerInterleavedLoad(LoadInst * LI,SmallVector<Instruction *,32> & DeadInsts)276 bool InterleavedAccess::lowerInterleavedLoad(
277 LoadInst *LI, SmallVector<Instruction *, 32> &DeadInsts) {
278 if (!LI->isSimple())
279 return false;
280
281 SmallVector<ShuffleVectorInst *, 4> Shuffles;
282 SmallVector<ExtractElementInst *, 4> Extracts;
283
284 // Check if all users of this load are shufflevectors. If we encounter any
285 // users that are extractelement instructions, we save them to later check if
286 // they can be modifed to extract from one of the shufflevectors instead of
287 // the load.
288 for (auto UI = LI->user_begin(), E = LI->user_end(); UI != E; UI++) {
289 auto *Extract = dyn_cast<ExtractElementInst>(*UI);
290 if (Extract && isa<ConstantInt>(Extract->getIndexOperand())) {
291 Extracts.push_back(Extract);
292 continue;
293 }
294 ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(*UI);
295 if (!SVI || !isa<UndefValue>(SVI->getOperand(1)))
296 return false;
297
298 Shuffles.push_back(SVI);
299 }
300
301 if (Shuffles.empty())
302 return false;
303
304 unsigned Factor, Index;
305
306 // Check if the first shufflevector is DE-interleave shuffle.
307 if (!isDeInterleaveMask(Shuffles[0]->getShuffleMask(), Factor, Index,
308 MaxFactor))
309 return false;
310
311 // Holds the corresponding index for each DE-interleave shuffle.
312 SmallVector<unsigned, 4> Indices;
313 Indices.push_back(Index);
314
315 Type *VecTy = Shuffles[0]->getType();
316
317 // Check if other shufflevectors are also DE-interleaved of the same type
318 // and factor as the first shufflevector.
319 for (unsigned i = 1; i < Shuffles.size(); i++) {
320 if (Shuffles[i]->getType() != VecTy)
321 return false;
322
323 if (!isDeInterleaveMaskOfFactor(Shuffles[i]->getShuffleMask(), Factor,
324 Index))
325 return false;
326
327 Indices.push_back(Index);
328 }
329
330 // Try and modify users of the load that are extractelement instructions to
331 // use the shufflevector instructions instead of the load.
332 if (!tryReplaceExtracts(Extracts, Shuffles))
333 return false;
334
335 LLVM_DEBUG(dbgs() << "IA: Found an interleaved load: " << *LI << "\n");
336
337 // Try to create target specific intrinsics to replace the load and shuffles.
338 if (!TLI->lowerInterleavedLoad(LI, Shuffles, Indices, Factor))
339 return false;
340
341 for (auto SVI : Shuffles)
342 DeadInsts.push_back(SVI);
343
344 DeadInsts.push_back(LI);
345 return true;
346 }
347
tryReplaceExtracts(ArrayRef<ExtractElementInst * > Extracts,ArrayRef<ShuffleVectorInst * > Shuffles)348 bool InterleavedAccess::tryReplaceExtracts(
349 ArrayRef<ExtractElementInst *> Extracts,
350 ArrayRef<ShuffleVectorInst *> Shuffles) {
351 // If there aren't any extractelement instructions to modify, there's nothing
352 // to do.
353 if (Extracts.empty())
354 return true;
355
356 // Maps extractelement instructions to vector-index pairs. The extractlement
357 // instructions will be modified to use the new vector and index operands.
358 DenseMap<ExtractElementInst *, std::pair<Value *, int>> ReplacementMap;
359
360 for (auto *Extract : Extracts) {
361 // The vector index that is extracted.
362 auto *IndexOperand = cast<ConstantInt>(Extract->getIndexOperand());
363 auto Index = IndexOperand->getSExtValue();
364
365 // Look for a suitable shufflevector instruction. The goal is to modify the
366 // extractelement instruction (which uses an interleaved load) to use one
367 // of the shufflevector instructions instead of the load.
368 for (auto *Shuffle : Shuffles) {
369 // If the shufflevector instruction doesn't dominate the extract, we
370 // can't create a use of it.
371 if (!DT->dominates(Shuffle, Extract))
372 continue;
373
374 // Inspect the indices of the shufflevector instruction. If the shuffle
375 // selects the same index that is extracted, we can modify the
376 // extractelement instruction.
377 SmallVector<int, 4> Indices;
378 Shuffle->getShuffleMask(Indices);
379 for (unsigned I = 0; I < Indices.size(); ++I)
380 if (Indices[I] == Index) {
381 assert(Extract->getOperand(0) == Shuffle->getOperand(0) &&
382 "Vector operations do not match");
383 ReplacementMap[Extract] = std::make_pair(Shuffle, I);
384 break;
385 }
386
387 // If we found a suitable shufflevector instruction, stop looking.
388 if (ReplacementMap.count(Extract))
389 break;
390 }
391
392 // If we did not find a suitable shufflevector instruction, the
393 // extractelement instruction cannot be modified, so we must give up.
394 if (!ReplacementMap.count(Extract))
395 return false;
396 }
397
398 // Finally, perform the replacements.
399 IRBuilder<> Builder(Extracts[0]->getContext());
400 for (auto &Replacement : ReplacementMap) {
401 auto *Extract = Replacement.first;
402 auto *Vector = Replacement.second.first;
403 auto Index = Replacement.second.second;
404 Builder.SetInsertPoint(Extract);
405 Extract->replaceAllUsesWith(Builder.CreateExtractElement(Vector, Index));
406 Extract->eraseFromParent();
407 }
408
409 return true;
410 }
411
lowerInterleavedStore(StoreInst * SI,SmallVector<Instruction *,32> & DeadInsts)412 bool InterleavedAccess::lowerInterleavedStore(
413 StoreInst *SI, SmallVector<Instruction *, 32> &DeadInsts) {
414 if (!SI->isSimple())
415 return false;
416
417 ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(SI->getValueOperand());
418 if (!SVI || !SVI->hasOneUse())
419 return false;
420
421 // Check if the shufflevector is RE-interleave shuffle.
422 unsigned Factor;
423 unsigned OpNumElts = SVI->getOperand(0)->getType()->getVectorNumElements();
424 if (!isReInterleaveMask(SVI->getShuffleMask(), Factor, MaxFactor, OpNumElts))
425 return false;
426
427 LLVM_DEBUG(dbgs() << "IA: Found an interleaved store: " << *SI << "\n");
428
429 // Try to create target specific intrinsics to replace the store and shuffle.
430 if (!TLI->lowerInterleavedStore(SI, SVI, Factor))
431 return false;
432
433 // Already have a new target specific interleaved store. Erase the old store.
434 DeadInsts.push_back(SI);
435 DeadInsts.push_back(SVI);
436 return true;
437 }
438
runOnFunction(Function & F)439 bool InterleavedAccess::runOnFunction(Function &F) {
440 auto *TPC = getAnalysisIfAvailable<TargetPassConfig>();
441 if (!TPC || !LowerInterleavedAccesses)
442 return false;
443
444 LLVM_DEBUG(dbgs() << "*** " << getPassName() << ": " << F.getName() << "\n");
445
446 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
447 auto &TM = TPC->getTM<TargetMachine>();
448 TLI = TM.getSubtargetImpl(F)->getTargetLowering();
449 MaxFactor = TLI->getMaxSupportedInterleaveFactor();
450
451 // Holds dead instructions that will be erased later.
452 SmallVector<Instruction *, 32> DeadInsts;
453 bool Changed = false;
454
455 for (auto &I : instructions(F)) {
456 if (LoadInst *LI = dyn_cast<LoadInst>(&I))
457 Changed |= lowerInterleavedLoad(LI, DeadInsts);
458
459 if (StoreInst *SI = dyn_cast<StoreInst>(&I))
460 Changed |= lowerInterleavedStore(SI, DeadInsts);
461 }
462
463 for (auto I : DeadInsts)
464 I->eraseFromParent();
465
466 return Changed;
467 }
468