1 //===---- LatencyPriorityQueue.cpp - A latency-oriented priority queue ----===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the LatencyPriorityQueue class, which is a
11 // SchedulingPriorityQueue that schedules using latency information to
12 // reduce the length of the critical path through the basic block.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #include "llvm/CodeGen/LatencyPriorityQueue.h"
17 #include "llvm/Config/llvm-config.h"
18 #include "llvm/Support/Debug.h"
19 #include "llvm/Support/raw_ostream.h"
20 using namespace llvm;
21 
22 #define DEBUG_TYPE "scheduler"
23 
operator ()(const SUnit * LHS,const SUnit * RHS) const24 bool latency_sort::operator()(const SUnit *LHS, const SUnit *RHS) const {
25   // The isScheduleHigh flag allows nodes with wraparound dependencies that
26   // cannot easily be modeled as edges with latencies to be scheduled as
27   // soon as possible in a top-down schedule.
28   if (LHS->isScheduleHigh && !RHS->isScheduleHigh)
29     return false;
30   if (!LHS->isScheduleHigh && RHS->isScheduleHigh)
31     return true;
32 
33   unsigned LHSNum = LHS->NodeNum;
34   unsigned RHSNum = RHS->NodeNum;
35 
36   // The most important heuristic is scheduling the critical path.
37   unsigned LHSLatency = PQ->getLatency(LHSNum);
38   unsigned RHSLatency = PQ->getLatency(RHSNum);
39   if (LHSLatency < RHSLatency) return true;
40   if (LHSLatency > RHSLatency) return false;
41 
42   // After that, if two nodes have identical latencies, look to see if one will
43   // unblock more other nodes than the other.
44   unsigned LHSBlocked = PQ->getNumSolelyBlockNodes(LHSNum);
45   unsigned RHSBlocked = PQ->getNumSolelyBlockNodes(RHSNum);
46   if (LHSBlocked < RHSBlocked) return true;
47   if (LHSBlocked > RHSBlocked) return false;
48 
49   // Finally, just to provide a stable ordering, use the node number as a
50   // deciding factor.
51   return RHSNum < LHSNum;
52 }
53 
54 
55 /// getSingleUnscheduledPred - If there is exactly one unscheduled predecessor
56 /// of SU, return it, otherwise return null.
getSingleUnscheduledPred(SUnit * SU)57 SUnit *LatencyPriorityQueue::getSingleUnscheduledPred(SUnit *SU) {
58   SUnit *OnlyAvailablePred = nullptr;
59   for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
60        I != E; ++I) {
61     SUnit &Pred = *I->getSUnit();
62     if (!Pred.isScheduled) {
63       // We found an available, but not scheduled, predecessor.  If it's the
64       // only one we have found, keep track of it... otherwise give up.
65       if (OnlyAvailablePred && OnlyAvailablePred != &Pred)
66         return nullptr;
67       OnlyAvailablePred = &Pred;
68     }
69   }
70 
71   return OnlyAvailablePred;
72 }
73 
push(SUnit * SU)74 void LatencyPriorityQueue::push(SUnit *SU) {
75   // Look at all of the successors of this node.  Count the number of nodes that
76   // this node is the sole unscheduled node for.
77   unsigned NumNodesBlocking = 0;
78   for (SUnit::const_succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
79        I != E; ++I) {
80     if (getSingleUnscheduledPred(I->getSUnit()) == SU)
81       ++NumNodesBlocking;
82   }
83   NumNodesSolelyBlocking[SU->NodeNum] = NumNodesBlocking;
84 
85   Queue.push_back(SU);
86 }
87 
88 
89 // scheduledNode - As nodes are scheduled, we look to see if there are any
90 // successor nodes that have a single unscheduled predecessor.  If so, that
91 // single predecessor has a higher priority, since scheduling it will make
92 // the node available.
scheduledNode(SUnit * SU)93 void LatencyPriorityQueue::scheduledNode(SUnit *SU) {
94   for (SUnit::const_succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
95        I != E; ++I) {
96     AdjustPriorityOfUnscheduledPreds(I->getSUnit());
97   }
98 }
99 
100 /// AdjustPriorityOfUnscheduledPreds - One of the predecessors of SU was just
101 /// scheduled.  If SU is not itself available, then there is at least one
102 /// predecessor node that has not been scheduled yet.  If SU has exactly ONE
103 /// unscheduled predecessor, we want to increase its priority: it getting
104 /// scheduled will make this node available, so it is better than some other
105 /// node of the same priority that will not make a node available.
AdjustPriorityOfUnscheduledPreds(SUnit * SU)106 void LatencyPriorityQueue::AdjustPriorityOfUnscheduledPreds(SUnit *SU) {
107   if (SU->isAvailable) return;  // All preds scheduled.
108 
109   SUnit *OnlyAvailablePred = getSingleUnscheduledPred(SU);
110   if (!OnlyAvailablePred || !OnlyAvailablePred->isAvailable) return;
111 
112   // Okay, we found a single predecessor that is available, but not scheduled.
113   // Since it is available, it must be in the priority queue.  First remove it.
114   remove(OnlyAvailablePred);
115 
116   // Reinsert the node into the priority queue, which recomputes its
117   // NumNodesSolelyBlocking value.
118   push(OnlyAvailablePred);
119 }
120 
pop()121 SUnit *LatencyPriorityQueue::pop() {
122   if (empty()) return nullptr;
123   std::vector<SUnit *>::iterator Best = Queue.begin();
124   for (std::vector<SUnit *>::iterator I = std::next(Queue.begin()),
125        E = Queue.end(); I != E; ++I)
126     if (Picker(*Best, *I))
127       Best = I;
128   SUnit *V = *Best;
129   if (Best != std::prev(Queue.end()))
130     std::swap(*Best, Queue.back());
131   Queue.pop_back();
132   return V;
133 }
134 
remove(SUnit * SU)135 void LatencyPriorityQueue::remove(SUnit *SU) {
136   assert(!Queue.empty() && "Queue is empty!");
137   std::vector<SUnit *>::iterator I = find(Queue, SU);
138   assert(I != Queue.end() && "Queue doesn't contain the SU being removed!");
139   if (I != std::prev(Queue.end()))
140     std::swap(*I, Queue.back());
141   Queue.pop_back();
142 }
143 
144 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
dump(ScheduleDAG * DAG) const145 LLVM_DUMP_METHOD void LatencyPriorityQueue::dump(ScheduleDAG *DAG) const {
146   dbgs() << "Latency Priority Queue\n";
147   dbgs() << "  Number of Queue Entries: " << Queue.size() << "\n";
148   for (auto const &SU : Queue) {
149     dbgs() << "    ";
150     SU->dump(DAG);
151   }
152 }
153 #endif
154