1 //===-- LiveRangeEdit.cpp - Basic tools for editing a register live range -===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // The LiveRangeEdit class represents changes done to a virtual register when it
11 // is spilled or split.
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/CodeGen/LiveRangeEdit.h"
15 #include "llvm/ADT/Statistic.h"
16 #include "llvm/CodeGen/CalcSpillWeights.h"
17 #include "llvm/CodeGen/LiveIntervals.h"
18 #include "llvm/CodeGen/MachineRegisterInfo.h"
19 #include "llvm/CodeGen/TargetInstrInfo.h"
20 #include "llvm/CodeGen/VirtRegMap.h"
21 #include "llvm/Support/Debug.h"
22 #include "llvm/Support/raw_ostream.h"
23 
24 using namespace llvm;
25 
26 #define DEBUG_TYPE "regalloc"
27 
28 STATISTIC(NumDCEDeleted,     "Number of instructions deleted by DCE");
29 STATISTIC(NumDCEFoldedLoads, "Number of single use loads folded after DCE");
30 STATISTIC(NumFracRanges,     "Number of live ranges fractured by DCE");
31 
anchor()32 void LiveRangeEdit::Delegate::anchor() { }
33 
createEmptyIntervalFrom(unsigned OldReg,bool createSubRanges)34 LiveInterval &LiveRangeEdit::createEmptyIntervalFrom(unsigned OldReg,
35                                                      bool createSubRanges) {
36   unsigned VReg = MRI.createVirtualRegister(MRI.getRegClass(OldReg));
37   if (VRM)
38     VRM->setIsSplitFromReg(VReg, VRM->getOriginal(OldReg));
39 
40   LiveInterval &LI = LIS.createEmptyInterval(VReg);
41   if (Parent && !Parent->isSpillable())
42     LI.markNotSpillable();
43   if (createSubRanges) {
44     // Create empty subranges if the OldReg's interval has them. Do not create
45     // the main range here---it will be constructed later after the subranges
46     // have been finalized.
47     LiveInterval &OldLI = LIS.getInterval(OldReg);
48     VNInfo::Allocator &Alloc = LIS.getVNInfoAllocator();
49     for (LiveInterval::SubRange &S : OldLI.subranges())
50       LI.createSubRange(Alloc, S.LaneMask);
51   }
52   return LI;
53 }
54 
createFrom(unsigned OldReg)55 unsigned LiveRangeEdit::createFrom(unsigned OldReg) {
56   unsigned VReg = MRI.createVirtualRegister(MRI.getRegClass(OldReg));
57   if (VRM) {
58     VRM->setIsSplitFromReg(VReg, VRM->getOriginal(OldReg));
59   }
60   // FIXME: Getting the interval here actually computes it.
61   // In theory, this may not be what we want, but in practice
62   // the createEmptyIntervalFrom API is used when this is not
63   // the case. Generally speaking we just want to annotate the
64   // LiveInterval when it gets created but we cannot do that at
65   // the moment.
66   if (Parent && !Parent->isSpillable())
67     LIS.getInterval(VReg).markNotSpillable();
68   return VReg;
69 }
70 
checkRematerializable(VNInfo * VNI,const MachineInstr * DefMI,AliasAnalysis * aa)71 bool LiveRangeEdit::checkRematerializable(VNInfo *VNI,
72                                           const MachineInstr *DefMI,
73                                           AliasAnalysis *aa) {
74   assert(DefMI && "Missing instruction");
75   ScannedRemattable = true;
76   if (!TII.isTriviallyReMaterializable(*DefMI, aa))
77     return false;
78   Remattable.insert(VNI);
79   return true;
80 }
81 
scanRemattable(AliasAnalysis * aa)82 void LiveRangeEdit::scanRemattable(AliasAnalysis *aa) {
83   for (VNInfo *VNI : getParent().valnos) {
84     if (VNI->isUnused())
85       continue;
86     unsigned Original = VRM->getOriginal(getReg());
87     LiveInterval &OrigLI = LIS.getInterval(Original);
88     VNInfo *OrigVNI = OrigLI.getVNInfoAt(VNI->def);
89     if (!OrigVNI)
90       continue;
91     MachineInstr *DefMI = LIS.getInstructionFromIndex(OrigVNI->def);
92     if (!DefMI)
93       continue;
94     checkRematerializable(OrigVNI, DefMI, aa);
95   }
96   ScannedRemattable = true;
97 }
98 
anyRematerializable(AliasAnalysis * aa)99 bool LiveRangeEdit::anyRematerializable(AliasAnalysis *aa) {
100   if (!ScannedRemattable)
101     scanRemattable(aa);
102   return !Remattable.empty();
103 }
104 
105 /// allUsesAvailableAt - Return true if all registers used by OrigMI at
106 /// OrigIdx are also available with the same value at UseIdx.
allUsesAvailableAt(const MachineInstr * OrigMI,SlotIndex OrigIdx,SlotIndex UseIdx) const107 bool LiveRangeEdit::allUsesAvailableAt(const MachineInstr *OrigMI,
108                                        SlotIndex OrigIdx,
109                                        SlotIndex UseIdx) const {
110   OrigIdx = OrigIdx.getRegSlot(true);
111   UseIdx = UseIdx.getRegSlot(true);
112   for (unsigned i = 0, e = OrigMI->getNumOperands(); i != e; ++i) {
113     const MachineOperand &MO = OrigMI->getOperand(i);
114     if (!MO.isReg() || !MO.getReg() || !MO.readsReg())
115       continue;
116 
117     // We can't remat physreg uses, unless it is a constant.
118     if (TargetRegisterInfo::isPhysicalRegister(MO.getReg())) {
119       if (MRI.isConstantPhysReg(MO.getReg()))
120         continue;
121       return false;
122     }
123 
124     LiveInterval &li = LIS.getInterval(MO.getReg());
125     const VNInfo *OVNI = li.getVNInfoAt(OrigIdx);
126     if (!OVNI)
127       continue;
128 
129     // Don't allow rematerialization immediately after the original def.
130     // It would be incorrect if OrigMI redefines the register.
131     // See PR14098.
132     if (SlotIndex::isSameInstr(OrigIdx, UseIdx))
133       return false;
134 
135     if (OVNI != li.getVNInfoAt(UseIdx))
136       return false;
137   }
138   return true;
139 }
140 
canRematerializeAt(Remat & RM,VNInfo * OrigVNI,SlotIndex UseIdx,bool cheapAsAMove)141 bool LiveRangeEdit::canRematerializeAt(Remat &RM, VNInfo *OrigVNI,
142                                        SlotIndex UseIdx, bool cheapAsAMove) {
143   assert(ScannedRemattable && "Call anyRematerializable first");
144 
145   // Use scanRemattable info.
146   if (!Remattable.count(OrigVNI))
147     return false;
148 
149   // No defining instruction provided.
150   SlotIndex DefIdx;
151   assert(RM.OrigMI && "No defining instruction for remattable value");
152   DefIdx = LIS.getInstructionIndex(*RM.OrigMI);
153 
154   // If only cheap remats were requested, bail out early.
155   if (cheapAsAMove && !TII.isAsCheapAsAMove(*RM.OrigMI))
156     return false;
157 
158   // Verify that all used registers are available with the same values.
159   if (!allUsesAvailableAt(RM.OrigMI, DefIdx, UseIdx))
160     return false;
161 
162   return true;
163 }
164 
rematerializeAt(MachineBasicBlock & MBB,MachineBasicBlock::iterator MI,unsigned DestReg,const Remat & RM,const TargetRegisterInfo & tri,bool Late)165 SlotIndex LiveRangeEdit::rematerializeAt(MachineBasicBlock &MBB,
166                                          MachineBasicBlock::iterator MI,
167                                          unsigned DestReg,
168                                          const Remat &RM,
169                                          const TargetRegisterInfo &tri,
170                                          bool Late) {
171   assert(RM.OrigMI && "Invalid remat");
172   TII.reMaterialize(MBB, MI, DestReg, 0, *RM.OrigMI, tri);
173   // DestReg of the cloned instruction cannot be Dead. Set isDead of DestReg
174   // to false anyway in case the isDead flag of RM.OrigMI's dest register
175   // is true.
176   (*--MI).getOperand(0).setIsDead(false);
177   Rematted.insert(RM.ParentVNI);
178   return LIS.getSlotIndexes()->insertMachineInstrInMaps(*MI, Late).getRegSlot();
179 }
180 
eraseVirtReg(unsigned Reg)181 void LiveRangeEdit::eraseVirtReg(unsigned Reg) {
182   if (TheDelegate && TheDelegate->LRE_CanEraseVirtReg(Reg))
183     LIS.removeInterval(Reg);
184 }
185 
foldAsLoad(LiveInterval * LI,SmallVectorImpl<MachineInstr * > & Dead)186 bool LiveRangeEdit::foldAsLoad(LiveInterval *LI,
187                                SmallVectorImpl<MachineInstr*> &Dead) {
188   MachineInstr *DefMI = nullptr, *UseMI = nullptr;
189 
190   // Check that there is a single def and a single use.
191   for (MachineOperand &MO : MRI.reg_nodbg_operands(LI->reg)) {
192     MachineInstr *MI = MO.getParent();
193     if (MO.isDef()) {
194       if (DefMI && DefMI != MI)
195         return false;
196       if (!MI->canFoldAsLoad())
197         return false;
198       DefMI = MI;
199     } else if (!MO.isUndef()) {
200       if (UseMI && UseMI != MI)
201         return false;
202       // FIXME: Targets don't know how to fold subreg uses.
203       if (MO.getSubReg())
204         return false;
205       UseMI = MI;
206     }
207   }
208   if (!DefMI || !UseMI)
209     return false;
210 
211   // Since we're moving the DefMI load, make sure we're not extending any live
212   // ranges.
213   if (!allUsesAvailableAt(DefMI, LIS.getInstructionIndex(*DefMI),
214                           LIS.getInstructionIndex(*UseMI)))
215     return false;
216 
217   // We also need to make sure it is safe to move the load.
218   // Assume there are stores between DefMI and UseMI.
219   bool SawStore = true;
220   if (!DefMI->isSafeToMove(nullptr, SawStore))
221     return false;
222 
223   LLVM_DEBUG(dbgs() << "Try to fold single def: " << *DefMI
224                     << "       into single use: " << *UseMI);
225 
226   SmallVector<unsigned, 8> Ops;
227   if (UseMI->readsWritesVirtualRegister(LI->reg, &Ops).second)
228     return false;
229 
230   MachineInstr *FoldMI = TII.foldMemoryOperand(*UseMI, Ops, *DefMI, &LIS);
231   if (!FoldMI)
232     return false;
233   LLVM_DEBUG(dbgs() << "                folded: " << *FoldMI);
234   LIS.ReplaceMachineInstrInMaps(*UseMI, *FoldMI);
235   UseMI->eraseFromParent();
236   DefMI->addRegisterDead(LI->reg, nullptr);
237   Dead.push_back(DefMI);
238   ++NumDCEFoldedLoads;
239   return true;
240 }
241 
useIsKill(const LiveInterval & LI,const MachineOperand & MO) const242 bool LiveRangeEdit::useIsKill(const LiveInterval &LI,
243                               const MachineOperand &MO) const {
244   const MachineInstr &MI = *MO.getParent();
245   SlotIndex Idx = LIS.getInstructionIndex(MI).getRegSlot();
246   if (LI.Query(Idx).isKill())
247     return true;
248   const TargetRegisterInfo &TRI = *MRI.getTargetRegisterInfo();
249   unsigned SubReg = MO.getSubReg();
250   LaneBitmask LaneMask = TRI.getSubRegIndexLaneMask(SubReg);
251   for (const LiveInterval::SubRange &S : LI.subranges()) {
252     if ((S.LaneMask & LaneMask).any() && S.Query(Idx).isKill())
253       return true;
254   }
255   return false;
256 }
257 
258 /// Find all live intervals that need to shrink, then remove the instruction.
eliminateDeadDef(MachineInstr * MI,ToShrinkSet & ToShrink,AliasAnalysis * AA)259 void LiveRangeEdit::eliminateDeadDef(MachineInstr *MI, ToShrinkSet &ToShrink,
260                                      AliasAnalysis *AA) {
261   assert(MI->allDefsAreDead() && "Def isn't really dead");
262   SlotIndex Idx = LIS.getInstructionIndex(*MI).getRegSlot();
263 
264   // Never delete a bundled instruction.
265   if (MI->isBundled()) {
266     return;
267   }
268   // Never delete inline asm.
269   if (MI->isInlineAsm()) {
270     LLVM_DEBUG(dbgs() << "Won't delete: " << Idx << '\t' << *MI);
271     return;
272   }
273 
274   // Use the same criteria as DeadMachineInstructionElim.
275   bool SawStore = false;
276   if (!MI->isSafeToMove(nullptr, SawStore)) {
277     LLVM_DEBUG(dbgs() << "Can't delete: " << Idx << '\t' << *MI);
278     return;
279   }
280 
281   LLVM_DEBUG(dbgs() << "Deleting dead def " << Idx << '\t' << *MI);
282 
283   // Collect virtual registers to be erased after MI is gone.
284   SmallVector<unsigned, 8> RegsToErase;
285   bool ReadsPhysRegs = false;
286   bool isOrigDef = false;
287   unsigned Dest;
288   // Only optimize rematerialize case when the instruction has one def, since
289   // otherwise we could leave some dead defs in the code.  This case is
290   // extremely rare.
291   if (VRM && MI->getOperand(0).isReg() && MI->getOperand(0).isDef() &&
292       MI->getDesc().getNumDefs() == 1) {
293     Dest = MI->getOperand(0).getReg();
294     unsigned Original = VRM->getOriginal(Dest);
295     LiveInterval &OrigLI = LIS.getInterval(Original);
296     VNInfo *OrigVNI = OrigLI.getVNInfoAt(Idx);
297     // The original live-range may have been shrunk to
298     // an empty live-range. It happens when it is dead, but
299     // we still keep it around to be able to rematerialize
300     // other values that depend on it.
301     if (OrigVNI)
302       isOrigDef = SlotIndex::isSameInstr(OrigVNI->def, Idx);
303   }
304 
305   // Check for live intervals that may shrink
306   for (MachineInstr::mop_iterator MOI = MI->operands_begin(),
307          MOE = MI->operands_end(); MOI != MOE; ++MOI) {
308     if (!MOI->isReg())
309       continue;
310     unsigned Reg = MOI->getReg();
311     if (!TargetRegisterInfo::isVirtualRegister(Reg)) {
312       // Check if MI reads any unreserved physregs.
313       if (Reg && MOI->readsReg() && !MRI.isReserved(Reg))
314         ReadsPhysRegs = true;
315       else if (MOI->isDef())
316         LIS.removePhysRegDefAt(Reg, Idx);
317       continue;
318     }
319     LiveInterval &LI = LIS.getInterval(Reg);
320 
321     // Shrink read registers, unless it is likely to be expensive and
322     // unlikely to change anything. We typically don't want to shrink the
323     // PIC base register that has lots of uses everywhere.
324     // Always shrink COPY uses that probably come from live range splitting.
325     if ((MI->readsVirtualRegister(Reg) && (MI->isCopy() || MOI->isDef())) ||
326         (MOI->readsReg() && (MRI.hasOneNonDBGUse(Reg) || useIsKill(LI, *MOI))))
327       ToShrink.insert(&LI);
328 
329     // Remove defined value.
330     if (MOI->isDef()) {
331       if (TheDelegate && LI.getVNInfoAt(Idx) != nullptr)
332         TheDelegate->LRE_WillShrinkVirtReg(LI.reg);
333       LIS.removeVRegDefAt(LI, Idx);
334       if (LI.empty())
335         RegsToErase.push_back(Reg);
336     }
337   }
338 
339   // Currently, we don't support DCE of physreg live ranges. If MI reads
340   // any unreserved physregs, don't erase the instruction, but turn it into
341   // a KILL instead. This way, the physreg live ranges don't end up
342   // dangling.
343   // FIXME: It would be better to have something like shrinkToUses() for
344   // physregs. That could potentially enable more DCE and it would free up
345   // the physreg. It would not happen often, though.
346   if (ReadsPhysRegs) {
347     MI->setDesc(TII.get(TargetOpcode::KILL));
348     // Remove all operands that aren't physregs.
349     for (unsigned i = MI->getNumOperands(); i; --i) {
350       const MachineOperand &MO = MI->getOperand(i-1);
351       if (MO.isReg() && TargetRegisterInfo::isPhysicalRegister(MO.getReg()))
352         continue;
353       MI->RemoveOperand(i-1);
354     }
355     LLVM_DEBUG(dbgs() << "Converted physregs to:\t" << *MI);
356   } else {
357     // If the dest of MI is an original reg and MI is reMaterializable,
358     // don't delete the inst. Replace the dest with a new reg, and keep
359     // the inst for remat of other siblings. The inst is saved in
360     // LiveRangeEdit::DeadRemats and will be deleted after all the
361     // allocations of the func are done.
362     if (isOrigDef && DeadRemats && TII.isTriviallyReMaterializable(*MI, AA)) {
363       LiveInterval &NewLI = createEmptyIntervalFrom(Dest, false);
364       VNInfo *VNI = NewLI.getNextValue(Idx, LIS.getVNInfoAllocator());
365       NewLI.addSegment(LiveInterval::Segment(Idx, Idx.getDeadSlot(), VNI));
366       pop_back();
367       DeadRemats->insert(MI);
368       const TargetRegisterInfo &TRI = *MRI.getTargetRegisterInfo();
369       MI->substituteRegister(Dest, NewLI.reg, 0, TRI);
370       MI->getOperand(0).setIsDead(true);
371     } else {
372       if (TheDelegate)
373         TheDelegate->LRE_WillEraseInstruction(MI);
374       LIS.RemoveMachineInstrFromMaps(*MI);
375       MI->eraseFromParent();
376       ++NumDCEDeleted;
377     }
378   }
379 
380   // Erase any virtregs that are now empty and unused. There may be <undef>
381   // uses around. Keep the empty live range in that case.
382   for (unsigned i = 0, e = RegsToErase.size(); i != e; ++i) {
383     unsigned Reg = RegsToErase[i];
384     if (LIS.hasInterval(Reg) && MRI.reg_nodbg_empty(Reg)) {
385       ToShrink.remove(&LIS.getInterval(Reg));
386       eraseVirtReg(Reg);
387     }
388   }
389 }
390 
eliminateDeadDefs(SmallVectorImpl<MachineInstr * > & Dead,ArrayRef<unsigned> RegsBeingSpilled,AliasAnalysis * AA)391 void LiveRangeEdit::eliminateDeadDefs(SmallVectorImpl<MachineInstr *> &Dead,
392                                       ArrayRef<unsigned> RegsBeingSpilled,
393                                       AliasAnalysis *AA) {
394   ToShrinkSet ToShrink;
395 
396   for (;;) {
397     // Erase all dead defs.
398     while (!Dead.empty())
399       eliminateDeadDef(Dead.pop_back_val(), ToShrink, AA);
400 
401     if (ToShrink.empty())
402       break;
403 
404     // Shrink just one live interval. Then delete new dead defs.
405     LiveInterval *LI = ToShrink.back();
406     ToShrink.pop_back();
407     if (foldAsLoad(LI, Dead))
408       continue;
409     unsigned VReg = LI->reg;
410     if (TheDelegate)
411       TheDelegate->LRE_WillShrinkVirtReg(VReg);
412     if (!LIS.shrinkToUses(LI, &Dead))
413       continue;
414 
415     // Don't create new intervals for a register being spilled.
416     // The new intervals would have to be spilled anyway so its not worth it.
417     // Also they currently aren't spilled so creating them and not spilling
418     // them results in incorrect code.
419     bool BeingSpilled = false;
420     for (unsigned i = 0, e = RegsBeingSpilled.size(); i != e; ++i) {
421       if (VReg == RegsBeingSpilled[i]) {
422         BeingSpilled = true;
423         break;
424       }
425     }
426 
427     if (BeingSpilled) continue;
428 
429     // LI may have been separated, create new intervals.
430     LI->RenumberValues();
431     SmallVector<LiveInterval*, 8> SplitLIs;
432     LIS.splitSeparateComponents(*LI, SplitLIs);
433     if (!SplitLIs.empty())
434       ++NumFracRanges;
435 
436     unsigned Original = VRM ? VRM->getOriginal(VReg) : 0;
437     for (const LiveInterval *SplitLI : SplitLIs) {
438       // If LI is an original interval that hasn't been split yet, make the new
439       // intervals their own originals instead of referring to LI. The original
440       // interval must contain all the split products, and LI doesn't.
441       if (Original != VReg && Original != 0)
442         VRM->setIsSplitFromReg(SplitLI->reg, Original);
443       if (TheDelegate)
444         TheDelegate->LRE_DidCloneVirtReg(SplitLI->reg, VReg);
445     }
446   }
447 }
448 
449 // Keep track of new virtual registers created via
450 // MachineRegisterInfo::createVirtualRegister.
451 void
MRI_NoteNewVirtualRegister(unsigned VReg)452 LiveRangeEdit::MRI_NoteNewVirtualRegister(unsigned VReg)
453 {
454   if (VRM)
455     VRM->grow();
456 
457   NewRegs.push_back(VReg);
458 }
459 
460 void
calculateRegClassAndHint(MachineFunction & MF,const MachineLoopInfo & Loops,const MachineBlockFrequencyInfo & MBFI)461 LiveRangeEdit::calculateRegClassAndHint(MachineFunction &MF,
462                                         const MachineLoopInfo &Loops,
463                                         const MachineBlockFrequencyInfo &MBFI) {
464   VirtRegAuxInfo VRAI(MF, LIS, VRM, Loops, MBFI);
465   for (unsigned I = 0, Size = size(); I < Size; ++I) {
466     LiveInterval &LI = LIS.getInterval(get(I));
467     if (MRI.recomputeRegClass(LI.reg))
468       LLVM_DEBUG({
469         const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
470         dbgs() << "Inflated " << printReg(LI.reg) << " to "
471                << TRI->getRegClassName(MRI.getRegClass(LI.reg)) << '\n';
472       });
473     VRAI.calculateSpillWeightAndHint(LI);
474   }
475 }
476