1 //===-- LiveRangeEdit.cpp - Basic tools for editing a register live range -===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // The LiveRangeEdit class represents changes done to a virtual register when it
11 // is spilled or split.
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/CodeGen/LiveRangeEdit.h"
15 #include "llvm/ADT/Statistic.h"
16 #include "llvm/CodeGen/CalcSpillWeights.h"
17 #include "llvm/CodeGen/LiveIntervals.h"
18 #include "llvm/CodeGen/MachineRegisterInfo.h"
19 #include "llvm/CodeGen/TargetInstrInfo.h"
20 #include "llvm/CodeGen/VirtRegMap.h"
21 #include "llvm/Support/Debug.h"
22 #include "llvm/Support/raw_ostream.h"
23
24 using namespace llvm;
25
26 #define DEBUG_TYPE "regalloc"
27
28 STATISTIC(NumDCEDeleted, "Number of instructions deleted by DCE");
29 STATISTIC(NumDCEFoldedLoads, "Number of single use loads folded after DCE");
30 STATISTIC(NumFracRanges, "Number of live ranges fractured by DCE");
31
anchor()32 void LiveRangeEdit::Delegate::anchor() { }
33
createEmptyIntervalFrom(unsigned OldReg,bool createSubRanges)34 LiveInterval &LiveRangeEdit::createEmptyIntervalFrom(unsigned OldReg,
35 bool createSubRanges) {
36 unsigned VReg = MRI.createVirtualRegister(MRI.getRegClass(OldReg));
37 if (VRM)
38 VRM->setIsSplitFromReg(VReg, VRM->getOriginal(OldReg));
39
40 LiveInterval &LI = LIS.createEmptyInterval(VReg);
41 if (Parent && !Parent->isSpillable())
42 LI.markNotSpillable();
43 if (createSubRanges) {
44 // Create empty subranges if the OldReg's interval has them. Do not create
45 // the main range here---it will be constructed later after the subranges
46 // have been finalized.
47 LiveInterval &OldLI = LIS.getInterval(OldReg);
48 VNInfo::Allocator &Alloc = LIS.getVNInfoAllocator();
49 for (LiveInterval::SubRange &S : OldLI.subranges())
50 LI.createSubRange(Alloc, S.LaneMask);
51 }
52 return LI;
53 }
54
createFrom(unsigned OldReg)55 unsigned LiveRangeEdit::createFrom(unsigned OldReg) {
56 unsigned VReg = MRI.createVirtualRegister(MRI.getRegClass(OldReg));
57 if (VRM) {
58 VRM->setIsSplitFromReg(VReg, VRM->getOriginal(OldReg));
59 }
60 // FIXME: Getting the interval here actually computes it.
61 // In theory, this may not be what we want, but in practice
62 // the createEmptyIntervalFrom API is used when this is not
63 // the case. Generally speaking we just want to annotate the
64 // LiveInterval when it gets created but we cannot do that at
65 // the moment.
66 if (Parent && !Parent->isSpillable())
67 LIS.getInterval(VReg).markNotSpillable();
68 return VReg;
69 }
70
checkRematerializable(VNInfo * VNI,const MachineInstr * DefMI,AliasAnalysis * aa)71 bool LiveRangeEdit::checkRematerializable(VNInfo *VNI,
72 const MachineInstr *DefMI,
73 AliasAnalysis *aa) {
74 assert(DefMI && "Missing instruction");
75 ScannedRemattable = true;
76 if (!TII.isTriviallyReMaterializable(*DefMI, aa))
77 return false;
78 Remattable.insert(VNI);
79 return true;
80 }
81
scanRemattable(AliasAnalysis * aa)82 void LiveRangeEdit::scanRemattable(AliasAnalysis *aa) {
83 for (VNInfo *VNI : getParent().valnos) {
84 if (VNI->isUnused())
85 continue;
86 unsigned Original = VRM->getOriginal(getReg());
87 LiveInterval &OrigLI = LIS.getInterval(Original);
88 VNInfo *OrigVNI = OrigLI.getVNInfoAt(VNI->def);
89 if (!OrigVNI)
90 continue;
91 MachineInstr *DefMI = LIS.getInstructionFromIndex(OrigVNI->def);
92 if (!DefMI)
93 continue;
94 checkRematerializable(OrigVNI, DefMI, aa);
95 }
96 ScannedRemattable = true;
97 }
98
anyRematerializable(AliasAnalysis * aa)99 bool LiveRangeEdit::anyRematerializable(AliasAnalysis *aa) {
100 if (!ScannedRemattable)
101 scanRemattable(aa);
102 return !Remattable.empty();
103 }
104
105 /// allUsesAvailableAt - Return true if all registers used by OrigMI at
106 /// OrigIdx are also available with the same value at UseIdx.
allUsesAvailableAt(const MachineInstr * OrigMI,SlotIndex OrigIdx,SlotIndex UseIdx) const107 bool LiveRangeEdit::allUsesAvailableAt(const MachineInstr *OrigMI,
108 SlotIndex OrigIdx,
109 SlotIndex UseIdx) const {
110 OrigIdx = OrigIdx.getRegSlot(true);
111 UseIdx = UseIdx.getRegSlot(true);
112 for (unsigned i = 0, e = OrigMI->getNumOperands(); i != e; ++i) {
113 const MachineOperand &MO = OrigMI->getOperand(i);
114 if (!MO.isReg() || !MO.getReg() || !MO.readsReg())
115 continue;
116
117 // We can't remat physreg uses, unless it is a constant.
118 if (TargetRegisterInfo::isPhysicalRegister(MO.getReg())) {
119 if (MRI.isConstantPhysReg(MO.getReg()))
120 continue;
121 return false;
122 }
123
124 LiveInterval &li = LIS.getInterval(MO.getReg());
125 const VNInfo *OVNI = li.getVNInfoAt(OrigIdx);
126 if (!OVNI)
127 continue;
128
129 // Don't allow rematerialization immediately after the original def.
130 // It would be incorrect if OrigMI redefines the register.
131 // See PR14098.
132 if (SlotIndex::isSameInstr(OrigIdx, UseIdx))
133 return false;
134
135 if (OVNI != li.getVNInfoAt(UseIdx))
136 return false;
137 }
138 return true;
139 }
140
canRematerializeAt(Remat & RM,VNInfo * OrigVNI,SlotIndex UseIdx,bool cheapAsAMove)141 bool LiveRangeEdit::canRematerializeAt(Remat &RM, VNInfo *OrigVNI,
142 SlotIndex UseIdx, bool cheapAsAMove) {
143 assert(ScannedRemattable && "Call anyRematerializable first");
144
145 // Use scanRemattable info.
146 if (!Remattable.count(OrigVNI))
147 return false;
148
149 // No defining instruction provided.
150 SlotIndex DefIdx;
151 assert(RM.OrigMI && "No defining instruction for remattable value");
152 DefIdx = LIS.getInstructionIndex(*RM.OrigMI);
153
154 // If only cheap remats were requested, bail out early.
155 if (cheapAsAMove && !TII.isAsCheapAsAMove(*RM.OrigMI))
156 return false;
157
158 // Verify that all used registers are available with the same values.
159 if (!allUsesAvailableAt(RM.OrigMI, DefIdx, UseIdx))
160 return false;
161
162 return true;
163 }
164
rematerializeAt(MachineBasicBlock & MBB,MachineBasicBlock::iterator MI,unsigned DestReg,const Remat & RM,const TargetRegisterInfo & tri,bool Late)165 SlotIndex LiveRangeEdit::rematerializeAt(MachineBasicBlock &MBB,
166 MachineBasicBlock::iterator MI,
167 unsigned DestReg,
168 const Remat &RM,
169 const TargetRegisterInfo &tri,
170 bool Late) {
171 assert(RM.OrigMI && "Invalid remat");
172 TII.reMaterialize(MBB, MI, DestReg, 0, *RM.OrigMI, tri);
173 // DestReg of the cloned instruction cannot be Dead. Set isDead of DestReg
174 // to false anyway in case the isDead flag of RM.OrigMI's dest register
175 // is true.
176 (*--MI).getOperand(0).setIsDead(false);
177 Rematted.insert(RM.ParentVNI);
178 return LIS.getSlotIndexes()->insertMachineInstrInMaps(*MI, Late).getRegSlot();
179 }
180
eraseVirtReg(unsigned Reg)181 void LiveRangeEdit::eraseVirtReg(unsigned Reg) {
182 if (TheDelegate && TheDelegate->LRE_CanEraseVirtReg(Reg))
183 LIS.removeInterval(Reg);
184 }
185
foldAsLoad(LiveInterval * LI,SmallVectorImpl<MachineInstr * > & Dead)186 bool LiveRangeEdit::foldAsLoad(LiveInterval *LI,
187 SmallVectorImpl<MachineInstr*> &Dead) {
188 MachineInstr *DefMI = nullptr, *UseMI = nullptr;
189
190 // Check that there is a single def and a single use.
191 for (MachineOperand &MO : MRI.reg_nodbg_operands(LI->reg)) {
192 MachineInstr *MI = MO.getParent();
193 if (MO.isDef()) {
194 if (DefMI && DefMI != MI)
195 return false;
196 if (!MI->canFoldAsLoad())
197 return false;
198 DefMI = MI;
199 } else if (!MO.isUndef()) {
200 if (UseMI && UseMI != MI)
201 return false;
202 // FIXME: Targets don't know how to fold subreg uses.
203 if (MO.getSubReg())
204 return false;
205 UseMI = MI;
206 }
207 }
208 if (!DefMI || !UseMI)
209 return false;
210
211 // Since we're moving the DefMI load, make sure we're not extending any live
212 // ranges.
213 if (!allUsesAvailableAt(DefMI, LIS.getInstructionIndex(*DefMI),
214 LIS.getInstructionIndex(*UseMI)))
215 return false;
216
217 // We also need to make sure it is safe to move the load.
218 // Assume there are stores between DefMI and UseMI.
219 bool SawStore = true;
220 if (!DefMI->isSafeToMove(nullptr, SawStore))
221 return false;
222
223 LLVM_DEBUG(dbgs() << "Try to fold single def: " << *DefMI
224 << " into single use: " << *UseMI);
225
226 SmallVector<unsigned, 8> Ops;
227 if (UseMI->readsWritesVirtualRegister(LI->reg, &Ops).second)
228 return false;
229
230 MachineInstr *FoldMI = TII.foldMemoryOperand(*UseMI, Ops, *DefMI, &LIS);
231 if (!FoldMI)
232 return false;
233 LLVM_DEBUG(dbgs() << " folded: " << *FoldMI);
234 LIS.ReplaceMachineInstrInMaps(*UseMI, *FoldMI);
235 UseMI->eraseFromParent();
236 DefMI->addRegisterDead(LI->reg, nullptr);
237 Dead.push_back(DefMI);
238 ++NumDCEFoldedLoads;
239 return true;
240 }
241
useIsKill(const LiveInterval & LI,const MachineOperand & MO) const242 bool LiveRangeEdit::useIsKill(const LiveInterval &LI,
243 const MachineOperand &MO) const {
244 const MachineInstr &MI = *MO.getParent();
245 SlotIndex Idx = LIS.getInstructionIndex(MI).getRegSlot();
246 if (LI.Query(Idx).isKill())
247 return true;
248 const TargetRegisterInfo &TRI = *MRI.getTargetRegisterInfo();
249 unsigned SubReg = MO.getSubReg();
250 LaneBitmask LaneMask = TRI.getSubRegIndexLaneMask(SubReg);
251 for (const LiveInterval::SubRange &S : LI.subranges()) {
252 if ((S.LaneMask & LaneMask).any() && S.Query(Idx).isKill())
253 return true;
254 }
255 return false;
256 }
257
258 /// Find all live intervals that need to shrink, then remove the instruction.
eliminateDeadDef(MachineInstr * MI,ToShrinkSet & ToShrink,AliasAnalysis * AA)259 void LiveRangeEdit::eliminateDeadDef(MachineInstr *MI, ToShrinkSet &ToShrink,
260 AliasAnalysis *AA) {
261 assert(MI->allDefsAreDead() && "Def isn't really dead");
262 SlotIndex Idx = LIS.getInstructionIndex(*MI).getRegSlot();
263
264 // Never delete a bundled instruction.
265 if (MI->isBundled()) {
266 return;
267 }
268 // Never delete inline asm.
269 if (MI->isInlineAsm()) {
270 LLVM_DEBUG(dbgs() << "Won't delete: " << Idx << '\t' << *MI);
271 return;
272 }
273
274 // Use the same criteria as DeadMachineInstructionElim.
275 bool SawStore = false;
276 if (!MI->isSafeToMove(nullptr, SawStore)) {
277 LLVM_DEBUG(dbgs() << "Can't delete: " << Idx << '\t' << *MI);
278 return;
279 }
280
281 LLVM_DEBUG(dbgs() << "Deleting dead def " << Idx << '\t' << *MI);
282
283 // Collect virtual registers to be erased after MI is gone.
284 SmallVector<unsigned, 8> RegsToErase;
285 bool ReadsPhysRegs = false;
286 bool isOrigDef = false;
287 unsigned Dest;
288 // Only optimize rematerialize case when the instruction has one def, since
289 // otherwise we could leave some dead defs in the code. This case is
290 // extremely rare.
291 if (VRM && MI->getOperand(0).isReg() && MI->getOperand(0).isDef() &&
292 MI->getDesc().getNumDefs() == 1) {
293 Dest = MI->getOperand(0).getReg();
294 unsigned Original = VRM->getOriginal(Dest);
295 LiveInterval &OrigLI = LIS.getInterval(Original);
296 VNInfo *OrigVNI = OrigLI.getVNInfoAt(Idx);
297 // The original live-range may have been shrunk to
298 // an empty live-range. It happens when it is dead, but
299 // we still keep it around to be able to rematerialize
300 // other values that depend on it.
301 if (OrigVNI)
302 isOrigDef = SlotIndex::isSameInstr(OrigVNI->def, Idx);
303 }
304
305 // Check for live intervals that may shrink
306 for (MachineInstr::mop_iterator MOI = MI->operands_begin(),
307 MOE = MI->operands_end(); MOI != MOE; ++MOI) {
308 if (!MOI->isReg())
309 continue;
310 unsigned Reg = MOI->getReg();
311 if (!TargetRegisterInfo::isVirtualRegister(Reg)) {
312 // Check if MI reads any unreserved physregs.
313 if (Reg && MOI->readsReg() && !MRI.isReserved(Reg))
314 ReadsPhysRegs = true;
315 else if (MOI->isDef())
316 LIS.removePhysRegDefAt(Reg, Idx);
317 continue;
318 }
319 LiveInterval &LI = LIS.getInterval(Reg);
320
321 // Shrink read registers, unless it is likely to be expensive and
322 // unlikely to change anything. We typically don't want to shrink the
323 // PIC base register that has lots of uses everywhere.
324 // Always shrink COPY uses that probably come from live range splitting.
325 if ((MI->readsVirtualRegister(Reg) && (MI->isCopy() || MOI->isDef())) ||
326 (MOI->readsReg() && (MRI.hasOneNonDBGUse(Reg) || useIsKill(LI, *MOI))))
327 ToShrink.insert(&LI);
328
329 // Remove defined value.
330 if (MOI->isDef()) {
331 if (TheDelegate && LI.getVNInfoAt(Idx) != nullptr)
332 TheDelegate->LRE_WillShrinkVirtReg(LI.reg);
333 LIS.removeVRegDefAt(LI, Idx);
334 if (LI.empty())
335 RegsToErase.push_back(Reg);
336 }
337 }
338
339 // Currently, we don't support DCE of physreg live ranges. If MI reads
340 // any unreserved physregs, don't erase the instruction, but turn it into
341 // a KILL instead. This way, the physreg live ranges don't end up
342 // dangling.
343 // FIXME: It would be better to have something like shrinkToUses() for
344 // physregs. That could potentially enable more DCE and it would free up
345 // the physreg. It would not happen often, though.
346 if (ReadsPhysRegs) {
347 MI->setDesc(TII.get(TargetOpcode::KILL));
348 // Remove all operands that aren't physregs.
349 for (unsigned i = MI->getNumOperands(); i; --i) {
350 const MachineOperand &MO = MI->getOperand(i-1);
351 if (MO.isReg() && TargetRegisterInfo::isPhysicalRegister(MO.getReg()))
352 continue;
353 MI->RemoveOperand(i-1);
354 }
355 LLVM_DEBUG(dbgs() << "Converted physregs to:\t" << *MI);
356 } else {
357 // If the dest of MI is an original reg and MI is reMaterializable,
358 // don't delete the inst. Replace the dest with a new reg, and keep
359 // the inst for remat of other siblings. The inst is saved in
360 // LiveRangeEdit::DeadRemats and will be deleted after all the
361 // allocations of the func are done.
362 if (isOrigDef && DeadRemats && TII.isTriviallyReMaterializable(*MI, AA)) {
363 LiveInterval &NewLI = createEmptyIntervalFrom(Dest, false);
364 VNInfo *VNI = NewLI.getNextValue(Idx, LIS.getVNInfoAllocator());
365 NewLI.addSegment(LiveInterval::Segment(Idx, Idx.getDeadSlot(), VNI));
366 pop_back();
367 DeadRemats->insert(MI);
368 const TargetRegisterInfo &TRI = *MRI.getTargetRegisterInfo();
369 MI->substituteRegister(Dest, NewLI.reg, 0, TRI);
370 MI->getOperand(0).setIsDead(true);
371 } else {
372 if (TheDelegate)
373 TheDelegate->LRE_WillEraseInstruction(MI);
374 LIS.RemoveMachineInstrFromMaps(*MI);
375 MI->eraseFromParent();
376 ++NumDCEDeleted;
377 }
378 }
379
380 // Erase any virtregs that are now empty and unused. There may be <undef>
381 // uses around. Keep the empty live range in that case.
382 for (unsigned i = 0, e = RegsToErase.size(); i != e; ++i) {
383 unsigned Reg = RegsToErase[i];
384 if (LIS.hasInterval(Reg) && MRI.reg_nodbg_empty(Reg)) {
385 ToShrink.remove(&LIS.getInterval(Reg));
386 eraseVirtReg(Reg);
387 }
388 }
389 }
390
eliminateDeadDefs(SmallVectorImpl<MachineInstr * > & Dead,ArrayRef<unsigned> RegsBeingSpilled,AliasAnalysis * AA)391 void LiveRangeEdit::eliminateDeadDefs(SmallVectorImpl<MachineInstr *> &Dead,
392 ArrayRef<unsigned> RegsBeingSpilled,
393 AliasAnalysis *AA) {
394 ToShrinkSet ToShrink;
395
396 for (;;) {
397 // Erase all dead defs.
398 while (!Dead.empty())
399 eliminateDeadDef(Dead.pop_back_val(), ToShrink, AA);
400
401 if (ToShrink.empty())
402 break;
403
404 // Shrink just one live interval. Then delete new dead defs.
405 LiveInterval *LI = ToShrink.back();
406 ToShrink.pop_back();
407 if (foldAsLoad(LI, Dead))
408 continue;
409 unsigned VReg = LI->reg;
410 if (TheDelegate)
411 TheDelegate->LRE_WillShrinkVirtReg(VReg);
412 if (!LIS.shrinkToUses(LI, &Dead))
413 continue;
414
415 // Don't create new intervals for a register being spilled.
416 // The new intervals would have to be spilled anyway so its not worth it.
417 // Also they currently aren't spilled so creating them and not spilling
418 // them results in incorrect code.
419 bool BeingSpilled = false;
420 for (unsigned i = 0, e = RegsBeingSpilled.size(); i != e; ++i) {
421 if (VReg == RegsBeingSpilled[i]) {
422 BeingSpilled = true;
423 break;
424 }
425 }
426
427 if (BeingSpilled) continue;
428
429 // LI may have been separated, create new intervals.
430 LI->RenumberValues();
431 SmallVector<LiveInterval*, 8> SplitLIs;
432 LIS.splitSeparateComponents(*LI, SplitLIs);
433 if (!SplitLIs.empty())
434 ++NumFracRanges;
435
436 unsigned Original = VRM ? VRM->getOriginal(VReg) : 0;
437 for (const LiveInterval *SplitLI : SplitLIs) {
438 // If LI is an original interval that hasn't been split yet, make the new
439 // intervals their own originals instead of referring to LI. The original
440 // interval must contain all the split products, and LI doesn't.
441 if (Original != VReg && Original != 0)
442 VRM->setIsSplitFromReg(SplitLI->reg, Original);
443 if (TheDelegate)
444 TheDelegate->LRE_DidCloneVirtReg(SplitLI->reg, VReg);
445 }
446 }
447 }
448
449 // Keep track of new virtual registers created via
450 // MachineRegisterInfo::createVirtualRegister.
451 void
MRI_NoteNewVirtualRegister(unsigned VReg)452 LiveRangeEdit::MRI_NoteNewVirtualRegister(unsigned VReg)
453 {
454 if (VRM)
455 VRM->grow();
456
457 NewRegs.push_back(VReg);
458 }
459
460 void
calculateRegClassAndHint(MachineFunction & MF,const MachineLoopInfo & Loops,const MachineBlockFrequencyInfo & MBFI)461 LiveRangeEdit::calculateRegClassAndHint(MachineFunction &MF,
462 const MachineLoopInfo &Loops,
463 const MachineBlockFrequencyInfo &MBFI) {
464 VirtRegAuxInfo VRAI(MF, LIS, VRM, Loops, MBFI);
465 for (unsigned I = 0, Size = size(); I < Size; ++I) {
466 LiveInterval &LI = LIS.getInterval(get(I));
467 if (MRI.recomputeRegClass(LI.reg))
468 LLVM_DEBUG({
469 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
470 dbgs() << "Inflated " << printReg(LI.reg) << " to "
471 << TRI->getRegClassName(MRI.getRegClass(LI.reg)) << '\n';
472 });
473 VRAI.calculateSpillWeightAndHint(LI);
474 }
475 }
476