1 //===- MIParser.cpp - Machine instructions parser implementation ----------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the parsing of machine instructions.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "MIParser.h"
15 #include "MILexer.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/APSInt.h"
18 #include "llvm/ADT/ArrayRef.h"
19 #include "llvm/ADT/DenseMap.h"
20 #include "llvm/ADT/None.h"
21 #include "llvm/ADT/Optional.h"
22 #include "llvm/ADT/SmallVector.h"
23 #include "llvm/ADT/StringMap.h"
24 #include "llvm/ADT/StringRef.h"
25 #include "llvm/ADT/StringSwitch.h"
26 #include "llvm/ADT/Twine.h"
27 #include "llvm/AsmParser/Parser.h"
28 #include "llvm/AsmParser/SlotMapping.h"
29 #include "llvm/CodeGen/MIRPrinter.h"
30 #include "llvm/CodeGen/MachineBasicBlock.h"
31 #include "llvm/CodeGen/MachineFrameInfo.h"
32 #include "llvm/CodeGen/MachineFunction.h"
33 #include "llvm/CodeGen/MachineInstr.h"
34 #include "llvm/CodeGen/MachineInstrBuilder.h"
35 #include "llvm/CodeGen/MachineMemOperand.h"
36 #include "llvm/CodeGen/MachineOperand.h"
37 #include "llvm/CodeGen/MachineRegisterInfo.h"
38 #include "llvm/CodeGen/TargetInstrInfo.h"
39 #include "llvm/CodeGen/TargetRegisterInfo.h"
40 #include "llvm/CodeGen/TargetSubtargetInfo.h"
41 #include "llvm/IR/BasicBlock.h"
42 #include "llvm/IR/Constants.h"
43 #include "llvm/IR/DataLayout.h"
44 #include "llvm/IR/DebugInfoMetadata.h"
45 #include "llvm/IR/DebugLoc.h"
46 #include "llvm/IR/Function.h"
47 #include "llvm/IR/InstrTypes.h"
48 #include "llvm/IR/Instructions.h"
49 #include "llvm/IR/Intrinsics.h"
50 #include "llvm/IR/Metadata.h"
51 #include "llvm/IR/Module.h"
52 #include "llvm/IR/ModuleSlotTracker.h"
53 #include "llvm/IR/Type.h"
54 #include "llvm/IR/Value.h"
55 #include "llvm/IR/ValueSymbolTable.h"
56 #include "llvm/MC/LaneBitmask.h"
57 #include "llvm/MC/MCDwarf.h"
58 #include "llvm/MC/MCInstrDesc.h"
59 #include "llvm/MC/MCRegisterInfo.h"
60 #include "llvm/Support/AtomicOrdering.h"
61 #include "llvm/Support/BranchProbability.h"
62 #include "llvm/Support/Casting.h"
63 #include "llvm/Support/ErrorHandling.h"
64 #include "llvm/Support/LowLevelTypeImpl.h"
65 #include "llvm/Support/MemoryBuffer.h"
66 #include "llvm/Support/SMLoc.h"
67 #include "llvm/Support/SourceMgr.h"
68 #include "llvm/Support/raw_ostream.h"
69 #include "llvm/Target/TargetIntrinsicInfo.h"
70 #include "llvm/Target/TargetMachine.h"
71 #include <algorithm>
72 #include <cassert>
73 #include <cctype>
74 #include <cstddef>
75 #include <cstdint>
76 #include <limits>
77 #include <string>
78 #include <utility>
79
80 using namespace llvm;
81
PerFunctionMIParsingState(MachineFunction & MF,SourceMgr & SM,const SlotMapping & IRSlots,const Name2RegClassMap & Names2RegClasses,const Name2RegBankMap & Names2RegBanks)82 PerFunctionMIParsingState::PerFunctionMIParsingState(MachineFunction &MF,
83 SourceMgr &SM, const SlotMapping &IRSlots,
84 const Name2RegClassMap &Names2RegClasses,
85 const Name2RegBankMap &Names2RegBanks)
86 : MF(MF), SM(&SM), IRSlots(IRSlots), Names2RegClasses(Names2RegClasses),
87 Names2RegBanks(Names2RegBanks) {
88 }
89
getVRegInfo(unsigned Num)90 VRegInfo &PerFunctionMIParsingState::getVRegInfo(unsigned Num) {
91 auto I = VRegInfos.insert(std::make_pair(Num, nullptr));
92 if (I.second) {
93 MachineRegisterInfo &MRI = MF.getRegInfo();
94 VRegInfo *Info = new (Allocator) VRegInfo;
95 Info->VReg = MRI.createIncompleteVirtualRegister();
96 I.first->second = Info;
97 }
98 return *I.first->second;
99 }
100
getVRegInfoNamed(StringRef RegName)101 VRegInfo &PerFunctionMIParsingState::getVRegInfoNamed(StringRef RegName) {
102 assert(RegName != "" && "Expected named reg.");
103
104 auto I = VRegInfosNamed.insert(std::make_pair(RegName.str(), nullptr));
105 if (I.second) {
106 VRegInfo *Info = new (Allocator) VRegInfo;
107 Info->VReg = MF.getRegInfo().createIncompleteVirtualRegister(RegName);
108 I.first->second = Info;
109 }
110 return *I.first->second;
111 }
112
113 namespace {
114
115 /// A wrapper struct around the 'MachineOperand' struct that includes a source
116 /// range and other attributes.
117 struct ParsedMachineOperand {
118 MachineOperand Operand;
119 StringRef::iterator Begin;
120 StringRef::iterator End;
121 Optional<unsigned> TiedDefIdx;
122
ParsedMachineOperand__anon21dc26f50111::ParsedMachineOperand123 ParsedMachineOperand(const MachineOperand &Operand, StringRef::iterator Begin,
124 StringRef::iterator End, Optional<unsigned> &TiedDefIdx)
125 : Operand(Operand), Begin(Begin), End(End), TiedDefIdx(TiedDefIdx) {
126 if (TiedDefIdx)
127 assert(Operand.isReg() && Operand.isUse() &&
128 "Only used register operands can be tied");
129 }
130 };
131
132 class MIParser {
133 MachineFunction &MF;
134 SMDiagnostic &Error;
135 StringRef Source, CurrentSource;
136 MIToken Token;
137 PerFunctionMIParsingState &PFS;
138 /// Maps from instruction names to op codes.
139 StringMap<unsigned> Names2InstrOpCodes;
140 /// Maps from register names to registers.
141 StringMap<unsigned> Names2Regs;
142 /// Maps from register mask names to register masks.
143 StringMap<const uint32_t *> Names2RegMasks;
144 /// Maps from subregister names to subregister indices.
145 StringMap<unsigned> Names2SubRegIndices;
146 /// Maps from slot numbers to function's unnamed basic blocks.
147 DenseMap<unsigned, const BasicBlock *> Slots2BasicBlocks;
148 /// Maps from slot numbers to function's unnamed values.
149 DenseMap<unsigned, const Value *> Slots2Values;
150 /// Maps from target index names to target indices.
151 StringMap<int> Names2TargetIndices;
152 /// Maps from direct target flag names to the direct target flag values.
153 StringMap<unsigned> Names2DirectTargetFlags;
154 /// Maps from direct target flag names to the bitmask target flag values.
155 StringMap<unsigned> Names2BitmaskTargetFlags;
156 /// Maps from MMO target flag names to MMO target flag values.
157 StringMap<MachineMemOperand::Flags> Names2MMOTargetFlags;
158
159 public:
160 MIParser(PerFunctionMIParsingState &PFS, SMDiagnostic &Error,
161 StringRef Source);
162
163 /// \p SkipChar gives the number of characters to skip before looking
164 /// for the next token.
165 void lex(unsigned SkipChar = 0);
166
167 /// Report an error at the current location with the given message.
168 ///
169 /// This function always return true.
170 bool error(const Twine &Msg);
171
172 /// Report an error at the given location with the given message.
173 ///
174 /// This function always return true.
175 bool error(StringRef::iterator Loc, const Twine &Msg);
176
177 bool
178 parseBasicBlockDefinitions(DenseMap<unsigned, MachineBasicBlock *> &MBBSlots);
179 bool parseBasicBlocks();
180 bool parse(MachineInstr *&MI);
181 bool parseStandaloneMBB(MachineBasicBlock *&MBB);
182 bool parseStandaloneNamedRegister(unsigned &Reg);
183 bool parseStandaloneVirtualRegister(VRegInfo *&Info);
184 bool parseStandaloneRegister(unsigned &Reg);
185 bool parseStandaloneStackObject(int &FI);
186 bool parseStandaloneMDNode(MDNode *&Node);
187
188 bool
189 parseBasicBlockDefinition(DenseMap<unsigned, MachineBasicBlock *> &MBBSlots);
190 bool parseBasicBlock(MachineBasicBlock &MBB,
191 MachineBasicBlock *&AddFalthroughFrom);
192 bool parseBasicBlockLiveins(MachineBasicBlock &MBB);
193 bool parseBasicBlockSuccessors(MachineBasicBlock &MBB);
194
195 bool parseNamedRegister(unsigned &Reg);
196 bool parseVirtualRegister(VRegInfo *&Info);
197 bool parseNamedVirtualRegister(VRegInfo *&Info);
198 bool parseRegister(unsigned &Reg, VRegInfo *&VRegInfo);
199 bool parseRegisterFlag(unsigned &Flags);
200 bool parseRegisterClassOrBank(VRegInfo &RegInfo);
201 bool parseSubRegisterIndex(unsigned &SubReg);
202 bool parseRegisterTiedDefIndex(unsigned &TiedDefIdx);
203 bool parseRegisterOperand(MachineOperand &Dest,
204 Optional<unsigned> &TiedDefIdx, bool IsDef = false);
205 bool parseImmediateOperand(MachineOperand &Dest);
206 bool parseIRConstant(StringRef::iterator Loc, StringRef StringValue,
207 const Constant *&C);
208 bool parseIRConstant(StringRef::iterator Loc, const Constant *&C);
209 bool parseLowLevelType(StringRef::iterator Loc, LLT &Ty);
210 bool parseTypedImmediateOperand(MachineOperand &Dest);
211 bool parseFPImmediateOperand(MachineOperand &Dest);
212 bool parseMBBReference(MachineBasicBlock *&MBB);
213 bool parseMBBOperand(MachineOperand &Dest);
214 bool parseStackFrameIndex(int &FI);
215 bool parseStackObjectOperand(MachineOperand &Dest);
216 bool parseFixedStackFrameIndex(int &FI);
217 bool parseFixedStackObjectOperand(MachineOperand &Dest);
218 bool parseGlobalValue(GlobalValue *&GV);
219 bool parseGlobalAddressOperand(MachineOperand &Dest);
220 bool parseConstantPoolIndexOperand(MachineOperand &Dest);
221 bool parseSubRegisterIndexOperand(MachineOperand &Dest);
222 bool parseJumpTableIndexOperand(MachineOperand &Dest);
223 bool parseExternalSymbolOperand(MachineOperand &Dest);
224 bool parseMDNode(MDNode *&Node);
225 bool parseDIExpression(MDNode *&Expr);
226 bool parseMetadataOperand(MachineOperand &Dest);
227 bool parseCFIOffset(int &Offset);
228 bool parseCFIRegister(unsigned &Reg);
229 bool parseCFIEscapeValues(std::string& Values);
230 bool parseCFIOperand(MachineOperand &Dest);
231 bool parseIRBlock(BasicBlock *&BB, const Function &F);
232 bool parseBlockAddressOperand(MachineOperand &Dest);
233 bool parseIntrinsicOperand(MachineOperand &Dest);
234 bool parsePredicateOperand(MachineOperand &Dest);
235 bool parseTargetIndexOperand(MachineOperand &Dest);
236 bool parseCustomRegisterMaskOperand(MachineOperand &Dest);
237 bool parseLiveoutRegisterMaskOperand(MachineOperand &Dest);
238 bool parseMachineOperand(MachineOperand &Dest,
239 Optional<unsigned> &TiedDefIdx);
240 bool parseMachineOperandAndTargetFlags(MachineOperand &Dest,
241 Optional<unsigned> &TiedDefIdx);
242 bool parseOffset(int64_t &Offset);
243 bool parseAlignment(unsigned &Alignment);
244 bool parseAddrspace(unsigned &Addrspace);
245 bool parseOperandsOffset(MachineOperand &Op);
246 bool parseIRValue(const Value *&V);
247 bool parseMemoryOperandFlag(MachineMemOperand::Flags &Flags);
248 bool parseMemoryPseudoSourceValue(const PseudoSourceValue *&PSV);
249 bool parseMachinePointerInfo(MachinePointerInfo &Dest);
250 bool parseOptionalScope(LLVMContext &Context, SyncScope::ID &SSID);
251 bool parseOptionalAtomicOrdering(AtomicOrdering &Order);
252 bool parseMachineMemoryOperand(MachineMemOperand *&Dest);
253
254 private:
255 /// Convert the integer literal in the current token into an unsigned integer.
256 ///
257 /// Return true if an error occurred.
258 bool getUnsigned(unsigned &Result);
259
260 /// Convert the integer literal in the current token into an uint64.
261 ///
262 /// Return true if an error occurred.
263 bool getUint64(uint64_t &Result);
264
265 /// Convert the hexadecimal literal in the current token into an unsigned
266 /// APInt with a minimum bitwidth required to represent the value.
267 ///
268 /// Return true if the literal does not represent an integer value.
269 bool getHexUint(APInt &Result);
270
271 /// If the current token is of the given kind, consume it and return false.
272 /// Otherwise report an error and return true.
273 bool expectAndConsume(MIToken::TokenKind TokenKind);
274
275 /// If the current token is of the given kind, consume it and return true.
276 /// Otherwise return false.
277 bool consumeIfPresent(MIToken::TokenKind TokenKind);
278
279 void initNames2InstrOpCodes();
280
281 /// Try to convert an instruction name to an opcode. Return true if the
282 /// instruction name is invalid.
283 bool parseInstrName(StringRef InstrName, unsigned &OpCode);
284
285 bool parseInstruction(unsigned &OpCode, unsigned &Flags);
286
287 bool assignRegisterTies(MachineInstr &MI,
288 ArrayRef<ParsedMachineOperand> Operands);
289
290 bool verifyImplicitOperands(ArrayRef<ParsedMachineOperand> Operands,
291 const MCInstrDesc &MCID);
292
293 void initNames2Regs();
294
295 /// Try to convert a register name to a register number. Return true if the
296 /// register name is invalid.
297 bool getRegisterByName(StringRef RegName, unsigned &Reg);
298
299 void initNames2RegMasks();
300
301 /// Check if the given identifier is a name of a register mask.
302 ///
303 /// Return null if the identifier isn't a register mask.
304 const uint32_t *getRegMask(StringRef Identifier);
305
306 void initNames2SubRegIndices();
307
308 /// Check if the given identifier is a name of a subregister index.
309 ///
310 /// Return 0 if the name isn't a subregister index class.
311 unsigned getSubRegIndex(StringRef Name);
312
313 const BasicBlock *getIRBlock(unsigned Slot);
314 const BasicBlock *getIRBlock(unsigned Slot, const Function &F);
315
316 const Value *getIRValue(unsigned Slot);
317
318 void initNames2TargetIndices();
319
320 /// Try to convert a name of target index to the corresponding target index.
321 ///
322 /// Return true if the name isn't a name of a target index.
323 bool getTargetIndex(StringRef Name, int &Index);
324
325 void initNames2DirectTargetFlags();
326
327 /// Try to convert a name of a direct target flag to the corresponding
328 /// target flag.
329 ///
330 /// Return true if the name isn't a name of a direct flag.
331 bool getDirectTargetFlag(StringRef Name, unsigned &Flag);
332
333 void initNames2BitmaskTargetFlags();
334
335 /// Try to convert a name of a bitmask target flag to the corresponding
336 /// target flag.
337 ///
338 /// Return true if the name isn't a name of a bitmask target flag.
339 bool getBitmaskTargetFlag(StringRef Name, unsigned &Flag);
340
341 void initNames2MMOTargetFlags();
342
343 /// Try to convert a name of a MachineMemOperand target flag to the
344 /// corresponding target flag.
345 ///
346 /// Return true if the name isn't a name of a target MMO flag.
347 bool getMMOTargetFlag(StringRef Name, MachineMemOperand::Flags &Flag);
348
349 /// parseStringConstant
350 /// ::= StringConstant
351 bool parseStringConstant(std::string &Result);
352 };
353
354 } // end anonymous namespace
355
MIParser(PerFunctionMIParsingState & PFS,SMDiagnostic & Error,StringRef Source)356 MIParser::MIParser(PerFunctionMIParsingState &PFS, SMDiagnostic &Error,
357 StringRef Source)
358 : MF(PFS.MF), Error(Error), Source(Source), CurrentSource(Source), PFS(PFS)
359 {}
360
lex(unsigned SkipChar)361 void MIParser::lex(unsigned SkipChar) {
362 CurrentSource = lexMIToken(
363 CurrentSource.data() + SkipChar, Token,
364 [this](StringRef::iterator Loc, const Twine &Msg) { error(Loc, Msg); });
365 }
366
error(const Twine & Msg)367 bool MIParser::error(const Twine &Msg) { return error(Token.location(), Msg); }
368
error(StringRef::iterator Loc,const Twine & Msg)369 bool MIParser::error(StringRef::iterator Loc, const Twine &Msg) {
370 const SourceMgr &SM = *PFS.SM;
371 assert(Loc >= Source.data() && Loc <= (Source.data() + Source.size()));
372 const MemoryBuffer &Buffer = *SM.getMemoryBuffer(SM.getMainFileID());
373 if (Loc >= Buffer.getBufferStart() && Loc <= Buffer.getBufferEnd()) {
374 // Create an ordinary diagnostic when the source manager's buffer is the
375 // source string.
376 Error = SM.GetMessage(SMLoc::getFromPointer(Loc), SourceMgr::DK_Error, Msg);
377 return true;
378 }
379 // Create a diagnostic for a YAML string literal.
380 Error = SMDiagnostic(SM, SMLoc(), Buffer.getBufferIdentifier(), 1,
381 Loc - Source.data(), SourceMgr::DK_Error, Msg.str(),
382 Source, None, None);
383 return true;
384 }
385
toString(MIToken::TokenKind TokenKind)386 static const char *toString(MIToken::TokenKind TokenKind) {
387 switch (TokenKind) {
388 case MIToken::comma:
389 return "','";
390 case MIToken::equal:
391 return "'='";
392 case MIToken::colon:
393 return "':'";
394 case MIToken::lparen:
395 return "'('";
396 case MIToken::rparen:
397 return "')'";
398 default:
399 return "<unknown token>";
400 }
401 }
402
expectAndConsume(MIToken::TokenKind TokenKind)403 bool MIParser::expectAndConsume(MIToken::TokenKind TokenKind) {
404 if (Token.isNot(TokenKind))
405 return error(Twine("expected ") + toString(TokenKind));
406 lex();
407 return false;
408 }
409
consumeIfPresent(MIToken::TokenKind TokenKind)410 bool MIParser::consumeIfPresent(MIToken::TokenKind TokenKind) {
411 if (Token.isNot(TokenKind))
412 return false;
413 lex();
414 return true;
415 }
416
parseBasicBlockDefinition(DenseMap<unsigned,MachineBasicBlock * > & MBBSlots)417 bool MIParser::parseBasicBlockDefinition(
418 DenseMap<unsigned, MachineBasicBlock *> &MBBSlots) {
419 assert(Token.is(MIToken::MachineBasicBlockLabel));
420 unsigned ID = 0;
421 if (getUnsigned(ID))
422 return true;
423 auto Loc = Token.location();
424 auto Name = Token.stringValue();
425 lex();
426 bool HasAddressTaken = false;
427 bool IsLandingPad = false;
428 unsigned Alignment = 0;
429 BasicBlock *BB = nullptr;
430 if (consumeIfPresent(MIToken::lparen)) {
431 do {
432 // TODO: Report an error when multiple same attributes are specified.
433 switch (Token.kind()) {
434 case MIToken::kw_address_taken:
435 HasAddressTaken = true;
436 lex();
437 break;
438 case MIToken::kw_landing_pad:
439 IsLandingPad = true;
440 lex();
441 break;
442 case MIToken::kw_align:
443 if (parseAlignment(Alignment))
444 return true;
445 break;
446 case MIToken::IRBlock:
447 // TODO: Report an error when both name and ir block are specified.
448 if (parseIRBlock(BB, MF.getFunction()))
449 return true;
450 lex();
451 break;
452 default:
453 break;
454 }
455 } while (consumeIfPresent(MIToken::comma));
456 if (expectAndConsume(MIToken::rparen))
457 return true;
458 }
459 if (expectAndConsume(MIToken::colon))
460 return true;
461
462 if (!Name.empty()) {
463 BB = dyn_cast_or_null<BasicBlock>(
464 MF.getFunction().getValueSymbolTable()->lookup(Name));
465 if (!BB)
466 return error(Loc, Twine("basic block '") + Name +
467 "' is not defined in the function '" +
468 MF.getName() + "'");
469 }
470 auto *MBB = MF.CreateMachineBasicBlock(BB);
471 MF.insert(MF.end(), MBB);
472 bool WasInserted = MBBSlots.insert(std::make_pair(ID, MBB)).second;
473 if (!WasInserted)
474 return error(Loc, Twine("redefinition of machine basic block with id #") +
475 Twine(ID));
476 if (Alignment)
477 MBB->setAlignment(Alignment);
478 if (HasAddressTaken)
479 MBB->setHasAddressTaken();
480 MBB->setIsEHPad(IsLandingPad);
481 return false;
482 }
483
parseBasicBlockDefinitions(DenseMap<unsigned,MachineBasicBlock * > & MBBSlots)484 bool MIParser::parseBasicBlockDefinitions(
485 DenseMap<unsigned, MachineBasicBlock *> &MBBSlots) {
486 lex();
487 // Skip until the first machine basic block.
488 while (Token.is(MIToken::Newline))
489 lex();
490 if (Token.isErrorOrEOF())
491 return Token.isError();
492 if (Token.isNot(MIToken::MachineBasicBlockLabel))
493 return error("expected a basic block definition before instructions");
494 unsigned BraceDepth = 0;
495 do {
496 if (parseBasicBlockDefinition(MBBSlots))
497 return true;
498 bool IsAfterNewline = false;
499 // Skip until the next machine basic block.
500 while (true) {
501 if ((Token.is(MIToken::MachineBasicBlockLabel) && IsAfterNewline) ||
502 Token.isErrorOrEOF())
503 break;
504 else if (Token.is(MIToken::MachineBasicBlockLabel))
505 return error("basic block definition should be located at the start of "
506 "the line");
507 else if (consumeIfPresent(MIToken::Newline)) {
508 IsAfterNewline = true;
509 continue;
510 }
511 IsAfterNewline = false;
512 if (Token.is(MIToken::lbrace))
513 ++BraceDepth;
514 if (Token.is(MIToken::rbrace)) {
515 if (!BraceDepth)
516 return error("extraneous closing brace ('}')");
517 --BraceDepth;
518 }
519 lex();
520 }
521 // Verify that we closed all of the '{' at the end of a file or a block.
522 if (!Token.isError() && BraceDepth)
523 return error("expected '}'"); // FIXME: Report a note that shows '{'.
524 } while (!Token.isErrorOrEOF());
525 return Token.isError();
526 }
527
parseBasicBlockLiveins(MachineBasicBlock & MBB)528 bool MIParser::parseBasicBlockLiveins(MachineBasicBlock &MBB) {
529 assert(Token.is(MIToken::kw_liveins));
530 lex();
531 if (expectAndConsume(MIToken::colon))
532 return true;
533 if (Token.isNewlineOrEOF()) // Allow an empty list of liveins.
534 return false;
535 do {
536 if (Token.isNot(MIToken::NamedRegister))
537 return error("expected a named register");
538 unsigned Reg = 0;
539 if (parseNamedRegister(Reg))
540 return true;
541 lex();
542 LaneBitmask Mask = LaneBitmask::getAll();
543 if (consumeIfPresent(MIToken::colon)) {
544 // Parse lane mask.
545 if (Token.isNot(MIToken::IntegerLiteral) &&
546 Token.isNot(MIToken::HexLiteral))
547 return error("expected a lane mask");
548 static_assert(sizeof(LaneBitmask::Type) == sizeof(unsigned),
549 "Use correct get-function for lane mask");
550 LaneBitmask::Type V;
551 if (getUnsigned(V))
552 return error("invalid lane mask value");
553 Mask = LaneBitmask(V);
554 lex();
555 }
556 MBB.addLiveIn(Reg, Mask);
557 } while (consumeIfPresent(MIToken::comma));
558 return false;
559 }
560
parseBasicBlockSuccessors(MachineBasicBlock & MBB)561 bool MIParser::parseBasicBlockSuccessors(MachineBasicBlock &MBB) {
562 assert(Token.is(MIToken::kw_successors));
563 lex();
564 if (expectAndConsume(MIToken::colon))
565 return true;
566 if (Token.isNewlineOrEOF()) // Allow an empty list of successors.
567 return false;
568 do {
569 if (Token.isNot(MIToken::MachineBasicBlock))
570 return error("expected a machine basic block reference");
571 MachineBasicBlock *SuccMBB = nullptr;
572 if (parseMBBReference(SuccMBB))
573 return true;
574 lex();
575 unsigned Weight = 0;
576 if (consumeIfPresent(MIToken::lparen)) {
577 if (Token.isNot(MIToken::IntegerLiteral) &&
578 Token.isNot(MIToken::HexLiteral))
579 return error("expected an integer literal after '('");
580 if (getUnsigned(Weight))
581 return true;
582 lex();
583 if (expectAndConsume(MIToken::rparen))
584 return true;
585 }
586 MBB.addSuccessor(SuccMBB, BranchProbability::getRaw(Weight));
587 } while (consumeIfPresent(MIToken::comma));
588 MBB.normalizeSuccProbs();
589 return false;
590 }
591
parseBasicBlock(MachineBasicBlock & MBB,MachineBasicBlock * & AddFalthroughFrom)592 bool MIParser::parseBasicBlock(MachineBasicBlock &MBB,
593 MachineBasicBlock *&AddFalthroughFrom) {
594 // Skip the definition.
595 assert(Token.is(MIToken::MachineBasicBlockLabel));
596 lex();
597 if (consumeIfPresent(MIToken::lparen)) {
598 while (Token.isNot(MIToken::rparen) && !Token.isErrorOrEOF())
599 lex();
600 consumeIfPresent(MIToken::rparen);
601 }
602 consumeIfPresent(MIToken::colon);
603
604 // Parse the liveins and successors.
605 // N.B: Multiple lists of successors and liveins are allowed and they're
606 // merged into one.
607 // Example:
608 // liveins: %edi
609 // liveins: %esi
610 //
611 // is equivalent to
612 // liveins: %edi, %esi
613 bool ExplicitSuccessors = false;
614 while (true) {
615 if (Token.is(MIToken::kw_successors)) {
616 if (parseBasicBlockSuccessors(MBB))
617 return true;
618 ExplicitSuccessors = true;
619 } else if (Token.is(MIToken::kw_liveins)) {
620 if (parseBasicBlockLiveins(MBB))
621 return true;
622 } else if (consumeIfPresent(MIToken::Newline)) {
623 continue;
624 } else
625 break;
626 if (!Token.isNewlineOrEOF())
627 return error("expected line break at the end of a list");
628 lex();
629 }
630
631 // Parse the instructions.
632 bool IsInBundle = false;
633 MachineInstr *PrevMI = nullptr;
634 while (!Token.is(MIToken::MachineBasicBlockLabel) &&
635 !Token.is(MIToken::Eof)) {
636 if (consumeIfPresent(MIToken::Newline))
637 continue;
638 if (consumeIfPresent(MIToken::rbrace)) {
639 // The first parsing pass should verify that all closing '}' have an
640 // opening '{'.
641 assert(IsInBundle);
642 IsInBundle = false;
643 continue;
644 }
645 MachineInstr *MI = nullptr;
646 if (parse(MI))
647 return true;
648 MBB.insert(MBB.end(), MI);
649 if (IsInBundle) {
650 PrevMI->setFlag(MachineInstr::BundledSucc);
651 MI->setFlag(MachineInstr::BundledPred);
652 }
653 PrevMI = MI;
654 if (Token.is(MIToken::lbrace)) {
655 if (IsInBundle)
656 return error("nested instruction bundles are not allowed");
657 lex();
658 // This instruction is the start of the bundle.
659 MI->setFlag(MachineInstr::BundledSucc);
660 IsInBundle = true;
661 if (!Token.is(MIToken::Newline))
662 // The next instruction can be on the same line.
663 continue;
664 }
665 assert(Token.isNewlineOrEOF() && "MI is not fully parsed");
666 lex();
667 }
668
669 // Construct successor list by searching for basic block machine operands.
670 if (!ExplicitSuccessors) {
671 SmallVector<MachineBasicBlock*,4> Successors;
672 bool IsFallthrough;
673 guessSuccessors(MBB, Successors, IsFallthrough);
674 for (MachineBasicBlock *Succ : Successors)
675 MBB.addSuccessor(Succ);
676
677 if (IsFallthrough) {
678 AddFalthroughFrom = &MBB;
679 } else {
680 MBB.normalizeSuccProbs();
681 }
682 }
683
684 return false;
685 }
686
parseBasicBlocks()687 bool MIParser::parseBasicBlocks() {
688 lex();
689 // Skip until the first machine basic block.
690 while (Token.is(MIToken::Newline))
691 lex();
692 if (Token.isErrorOrEOF())
693 return Token.isError();
694 // The first parsing pass should have verified that this token is a MBB label
695 // in the 'parseBasicBlockDefinitions' method.
696 assert(Token.is(MIToken::MachineBasicBlockLabel));
697 MachineBasicBlock *AddFalthroughFrom = nullptr;
698 do {
699 MachineBasicBlock *MBB = nullptr;
700 if (parseMBBReference(MBB))
701 return true;
702 if (AddFalthroughFrom) {
703 if (!AddFalthroughFrom->isSuccessor(MBB))
704 AddFalthroughFrom->addSuccessor(MBB);
705 AddFalthroughFrom->normalizeSuccProbs();
706 AddFalthroughFrom = nullptr;
707 }
708 if (parseBasicBlock(*MBB, AddFalthroughFrom))
709 return true;
710 // The method 'parseBasicBlock' should parse the whole block until the next
711 // block or the end of file.
712 assert(Token.is(MIToken::MachineBasicBlockLabel) || Token.is(MIToken::Eof));
713 } while (Token.isNot(MIToken::Eof));
714 return false;
715 }
716
parse(MachineInstr * & MI)717 bool MIParser::parse(MachineInstr *&MI) {
718 // Parse any register operands before '='
719 MachineOperand MO = MachineOperand::CreateImm(0);
720 SmallVector<ParsedMachineOperand, 8> Operands;
721 while (Token.isRegister() || Token.isRegisterFlag()) {
722 auto Loc = Token.location();
723 Optional<unsigned> TiedDefIdx;
724 if (parseRegisterOperand(MO, TiedDefIdx, /*IsDef=*/true))
725 return true;
726 Operands.push_back(
727 ParsedMachineOperand(MO, Loc, Token.location(), TiedDefIdx));
728 if (Token.isNot(MIToken::comma))
729 break;
730 lex();
731 }
732 if (!Operands.empty() && expectAndConsume(MIToken::equal))
733 return true;
734
735 unsigned OpCode, Flags = 0;
736 if (Token.isError() || parseInstruction(OpCode, Flags))
737 return true;
738
739 // Parse the remaining machine operands.
740 while (!Token.isNewlineOrEOF() && Token.isNot(MIToken::kw_debug_location) &&
741 Token.isNot(MIToken::coloncolon) && Token.isNot(MIToken::lbrace)) {
742 auto Loc = Token.location();
743 Optional<unsigned> TiedDefIdx;
744 if (parseMachineOperandAndTargetFlags(MO, TiedDefIdx))
745 return true;
746 Operands.push_back(
747 ParsedMachineOperand(MO, Loc, Token.location(), TiedDefIdx));
748 if (Token.isNewlineOrEOF() || Token.is(MIToken::coloncolon) ||
749 Token.is(MIToken::lbrace))
750 break;
751 if (Token.isNot(MIToken::comma))
752 return error("expected ',' before the next machine operand");
753 lex();
754 }
755
756 DebugLoc DebugLocation;
757 if (Token.is(MIToken::kw_debug_location)) {
758 lex();
759 if (Token.isNot(MIToken::exclaim))
760 return error("expected a metadata node after 'debug-location'");
761 MDNode *Node = nullptr;
762 if (parseMDNode(Node))
763 return true;
764 DebugLocation = DebugLoc(Node);
765 }
766
767 // Parse the machine memory operands.
768 SmallVector<MachineMemOperand *, 2> MemOperands;
769 if (Token.is(MIToken::coloncolon)) {
770 lex();
771 while (!Token.isNewlineOrEOF()) {
772 MachineMemOperand *MemOp = nullptr;
773 if (parseMachineMemoryOperand(MemOp))
774 return true;
775 MemOperands.push_back(MemOp);
776 if (Token.isNewlineOrEOF())
777 break;
778 if (Token.isNot(MIToken::comma))
779 return error("expected ',' before the next machine memory operand");
780 lex();
781 }
782 }
783
784 const auto &MCID = MF.getSubtarget().getInstrInfo()->get(OpCode);
785 if (!MCID.isVariadic()) {
786 // FIXME: Move the implicit operand verification to the machine verifier.
787 if (verifyImplicitOperands(Operands, MCID))
788 return true;
789 }
790
791 // TODO: Check for extraneous machine operands.
792 MI = MF.CreateMachineInstr(MCID, DebugLocation, /*NoImplicit=*/true);
793 MI->setFlags(Flags);
794 for (const auto &Operand : Operands)
795 MI->addOperand(MF, Operand.Operand);
796 if (assignRegisterTies(*MI, Operands))
797 return true;
798 if (MemOperands.empty())
799 return false;
800 MachineInstr::mmo_iterator MemRefs =
801 MF.allocateMemRefsArray(MemOperands.size());
802 std::copy(MemOperands.begin(), MemOperands.end(), MemRefs);
803 MI->setMemRefs(MemRefs, MemRefs + MemOperands.size());
804 return false;
805 }
806
parseStandaloneMBB(MachineBasicBlock * & MBB)807 bool MIParser::parseStandaloneMBB(MachineBasicBlock *&MBB) {
808 lex();
809 if (Token.isNot(MIToken::MachineBasicBlock))
810 return error("expected a machine basic block reference");
811 if (parseMBBReference(MBB))
812 return true;
813 lex();
814 if (Token.isNot(MIToken::Eof))
815 return error(
816 "expected end of string after the machine basic block reference");
817 return false;
818 }
819
parseStandaloneNamedRegister(unsigned & Reg)820 bool MIParser::parseStandaloneNamedRegister(unsigned &Reg) {
821 lex();
822 if (Token.isNot(MIToken::NamedRegister))
823 return error("expected a named register");
824 if (parseNamedRegister(Reg))
825 return true;
826 lex();
827 if (Token.isNot(MIToken::Eof))
828 return error("expected end of string after the register reference");
829 return false;
830 }
831
parseStandaloneVirtualRegister(VRegInfo * & Info)832 bool MIParser::parseStandaloneVirtualRegister(VRegInfo *&Info) {
833 lex();
834 if (Token.isNot(MIToken::VirtualRegister))
835 return error("expected a virtual register");
836 if (parseVirtualRegister(Info))
837 return true;
838 lex();
839 if (Token.isNot(MIToken::Eof))
840 return error("expected end of string after the register reference");
841 return false;
842 }
843
parseStandaloneRegister(unsigned & Reg)844 bool MIParser::parseStandaloneRegister(unsigned &Reg) {
845 lex();
846 if (Token.isNot(MIToken::NamedRegister) &&
847 Token.isNot(MIToken::VirtualRegister))
848 return error("expected either a named or virtual register");
849
850 VRegInfo *Info;
851 if (parseRegister(Reg, Info))
852 return true;
853
854 lex();
855 if (Token.isNot(MIToken::Eof))
856 return error("expected end of string after the register reference");
857 return false;
858 }
859
parseStandaloneStackObject(int & FI)860 bool MIParser::parseStandaloneStackObject(int &FI) {
861 lex();
862 if (Token.isNot(MIToken::StackObject))
863 return error("expected a stack object");
864 if (parseStackFrameIndex(FI))
865 return true;
866 if (Token.isNot(MIToken::Eof))
867 return error("expected end of string after the stack object reference");
868 return false;
869 }
870
parseStandaloneMDNode(MDNode * & Node)871 bool MIParser::parseStandaloneMDNode(MDNode *&Node) {
872 lex();
873 if (Token.is(MIToken::exclaim)) {
874 if (parseMDNode(Node))
875 return true;
876 } else if (Token.is(MIToken::md_diexpr)) {
877 if (parseDIExpression(Node))
878 return true;
879 } else
880 return error("expected a metadata node");
881 if (Token.isNot(MIToken::Eof))
882 return error("expected end of string after the metadata node");
883 return false;
884 }
885
printImplicitRegisterFlag(const MachineOperand & MO)886 static const char *printImplicitRegisterFlag(const MachineOperand &MO) {
887 assert(MO.isImplicit());
888 return MO.isDef() ? "implicit-def" : "implicit";
889 }
890
getRegisterName(const TargetRegisterInfo * TRI,unsigned Reg)891 static std::string getRegisterName(const TargetRegisterInfo *TRI,
892 unsigned Reg) {
893 assert(TargetRegisterInfo::isPhysicalRegister(Reg) && "expected phys reg");
894 return StringRef(TRI->getName(Reg)).lower();
895 }
896
897 /// Return true if the parsed machine operands contain a given machine operand.
isImplicitOperandIn(const MachineOperand & ImplicitOperand,ArrayRef<ParsedMachineOperand> Operands)898 static bool isImplicitOperandIn(const MachineOperand &ImplicitOperand,
899 ArrayRef<ParsedMachineOperand> Operands) {
900 for (const auto &I : Operands) {
901 if (ImplicitOperand.isIdenticalTo(I.Operand))
902 return true;
903 }
904 return false;
905 }
906
verifyImplicitOperands(ArrayRef<ParsedMachineOperand> Operands,const MCInstrDesc & MCID)907 bool MIParser::verifyImplicitOperands(ArrayRef<ParsedMachineOperand> Operands,
908 const MCInstrDesc &MCID) {
909 if (MCID.isCall())
910 // We can't verify call instructions as they can contain arbitrary implicit
911 // register and register mask operands.
912 return false;
913
914 // Gather all the expected implicit operands.
915 SmallVector<MachineOperand, 4> ImplicitOperands;
916 if (MCID.ImplicitDefs)
917 for (const MCPhysReg *ImpDefs = MCID.getImplicitDefs(); *ImpDefs; ++ImpDefs)
918 ImplicitOperands.push_back(
919 MachineOperand::CreateReg(*ImpDefs, true, true));
920 if (MCID.ImplicitUses)
921 for (const MCPhysReg *ImpUses = MCID.getImplicitUses(); *ImpUses; ++ImpUses)
922 ImplicitOperands.push_back(
923 MachineOperand::CreateReg(*ImpUses, false, true));
924
925 const auto *TRI = MF.getSubtarget().getRegisterInfo();
926 assert(TRI && "Expected target register info");
927 for (const auto &I : ImplicitOperands) {
928 if (isImplicitOperandIn(I, Operands))
929 continue;
930 return error(Operands.empty() ? Token.location() : Operands.back().End,
931 Twine("missing implicit register operand '") +
932 printImplicitRegisterFlag(I) + " $" +
933 getRegisterName(TRI, I.getReg()) + "'");
934 }
935 return false;
936 }
937
parseInstruction(unsigned & OpCode,unsigned & Flags)938 bool MIParser::parseInstruction(unsigned &OpCode, unsigned &Flags) {
939 // Allow frame and fast math flags for OPCODE
940 while (Token.is(MIToken::kw_frame_setup) ||
941 Token.is(MIToken::kw_frame_destroy) ||
942 Token.is(MIToken::kw_nnan) ||
943 Token.is(MIToken::kw_ninf) ||
944 Token.is(MIToken::kw_nsz) ||
945 Token.is(MIToken::kw_arcp) ||
946 Token.is(MIToken::kw_contract) ||
947 Token.is(MIToken::kw_afn) ||
948 Token.is(MIToken::kw_reassoc)) {
949 // Mine frame and fast math flags
950 if (Token.is(MIToken::kw_frame_setup))
951 Flags |= MachineInstr::FrameSetup;
952 if (Token.is(MIToken::kw_frame_destroy))
953 Flags |= MachineInstr::FrameDestroy;
954 if (Token.is(MIToken::kw_nnan))
955 Flags |= MachineInstr::FmNoNans;
956 if (Token.is(MIToken::kw_ninf))
957 Flags |= MachineInstr::FmNoInfs;
958 if (Token.is(MIToken::kw_nsz))
959 Flags |= MachineInstr::FmNsz;
960 if (Token.is(MIToken::kw_arcp))
961 Flags |= MachineInstr::FmArcp;
962 if (Token.is(MIToken::kw_contract))
963 Flags |= MachineInstr::FmContract;
964 if (Token.is(MIToken::kw_afn))
965 Flags |= MachineInstr::FmAfn;
966 if (Token.is(MIToken::kw_reassoc))
967 Flags |= MachineInstr::FmReassoc;
968
969 lex();
970 }
971 if (Token.isNot(MIToken::Identifier))
972 return error("expected a machine instruction");
973 StringRef InstrName = Token.stringValue();
974 if (parseInstrName(InstrName, OpCode))
975 return error(Twine("unknown machine instruction name '") + InstrName + "'");
976 lex();
977 return false;
978 }
979
parseNamedRegister(unsigned & Reg)980 bool MIParser::parseNamedRegister(unsigned &Reg) {
981 assert(Token.is(MIToken::NamedRegister) && "Needs NamedRegister token");
982 StringRef Name = Token.stringValue();
983 if (getRegisterByName(Name, Reg))
984 return error(Twine("unknown register name '") + Name + "'");
985 return false;
986 }
987
parseNamedVirtualRegister(VRegInfo * & Info)988 bool MIParser::parseNamedVirtualRegister(VRegInfo *&Info) {
989 assert(Token.is(MIToken::NamedVirtualRegister) && "Expected NamedVReg token");
990 StringRef Name = Token.stringValue();
991 // TODO: Check that the VReg name is not the same as a physical register name.
992 // If it is, then print a warning (when warnings are implemented).
993 Info = &PFS.getVRegInfoNamed(Name);
994 return false;
995 }
996
parseVirtualRegister(VRegInfo * & Info)997 bool MIParser::parseVirtualRegister(VRegInfo *&Info) {
998 if (Token.is(MIToken::NamedVirtualRegister))
999 return parseNamedVirtualRegister(Info);
1000 assert(Token.is(MIToken::VirtualRegister) && "Needs VirtualRegister token");
1001 unsigned ID;
1002 if (getUnsigned(ID))
1003 return true;
1004 Info = &PFS.getVRegInfo(ID);
1005 return false;
1006 }
1007
parseRegister(unsigned & Reg,VRegInfo * & Info)1008 bool MIParser::parseRegister(unsigned &Reg, VRegInfo *&Info) {
1009 switch (Token.kind()) {
1010 case MIToken::underscore:
1011 Reg = 0;
1012 return false;
1013 case MIToken::NamedRegister:
1014 return parseNamedRegister(Reg);
1015 case MIToken::NamedVirtualRegister:
1016 case MIToken::VirtualRegister:
1017 if (parseVirtualRegister(Info))
1018 return true;
1019 Reg = Info->VReg;
1020 return false;
1021 // TODO: Parse other register kinds.
1022 default:
1023 llvm_unreachable("The current token should be a register");
1024 }
1025 }
1026
parseRegisterClassOrBank(VRegInfo & RegInfo)1027 bool MIParser::parseRegisterClassOrBank(VRegInfo &RegInfo) {
1028 if (Token.isNot(MIToken::Identifier) && Token.isNot(MIToken::underscore))
1029 return error("expected '_', register class, or register bank name");
1030 StringRef::iterator Loc = Token.location();
1031 StringRef Name = Token.stringValue();
1032
1033 // Was it a register class?
1034 auto RCNameI = PFS.Names2RegClasses.find(Name);
1035 if (RCNameI != PFS.Names2RegClasses.end()) {
1036 lex();
1037 const TargetRegisterClass &RC = *RCNameI->getValue();
1038
1039 switch (RegInfo.Kind) {
1040 case VRegInfo::UNKNOWN:
1041 case VRegInfo::NORMAL:
1042 RegInfo.Kind = VRegInfo::NORMAL;
1043 if (RegInfo.Explicit && RegInfo.D.RC != &RC) {
1044 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
1045 return error(Loc, Twine("conflicting register classes, previously: ") +
1046 Twine(TRI.getRegClassName(RegInfo.D.RC)));
1047 }
1048 RegInfo.D.RC = &RC;
1049 RegInfo.Explicit = true;
1050 return false;
1051
1052 case VRegInfo::GENERIC:
1053 case VRegInfo::REGBANK:
1054 return error(Loc, "register class specification on generic register");
1055 }
1056 llvm_unreachable("Unexpected register kind");
1057 }
1058
1059 // Should be a register bank or a generic register.
1060 const RegisterBank *RegBank = nullptr;
1061 if (Name != "_") {
1062 auto RBNameI = PFS.Names2RegBanks.find(Name);
1063 if (RBNameI == PFS.Names2RegBanks.end())
1064 return error(Loc, "expected '_', register class, or register bank name");
1065 RegBank = RBNameI->getValue();
1066 }
1067
1068 lex();
1069
1070 switch (RegInfo.Kind) {
1071 case VRegInfo::UNKNOWN:
1072 case VRegInfo::GENERIC:
1073 case VRegInfo::REGBANK:
1074 RegInfo.Kind = RegBank ? VRegInfo::REGBANK : VRegInfo::GENERIC;
1075 if (RegInfo.Explicit && RegInfo.D.RegBank != RegBank)
1076 return error(Loc, "conflicting generic register banks");
1077 RegInfo.D.RegBank = RegBank;
1078 RegInfo.Explicit = true;
1079 return false;
1080
1081 case VRegInfo::NORMAL:
1082 return error(Loc, "register bank specification on normal register");
1083 }
1084 llvm_unreachable("Unexpected register kind");
1085 }
1086
parseRegisterFlag(unsigned & Flags)1087 bool MIParser::parseRegisterFlag(unsigned &Flags) {
1088 const unsigned OldFlags = Flags;
1089 switch (Token.kind()) {
1090 case MIToken::kw_implicit:
1091 Flags |= RegState::Implicit;
1092 break;
1093 case MIToken::kw_implicit_define:
1094 Flags |= RegState::ImplicitDefine;
1095 break;
1096 case MIToken::kw_def:
1097 Flags |= RegState::Define;
1098 break;
1099 case MIToken::kw_dead:
1100 Flags |= RegState::Dead;
1101 break;
1102 case MIToken::kw_killed:
1103 Flags |= RegState::Kill;
1104 break;
1105 case MIToken::kw_undef:
1106 Flags |= RegState::Undef;
1107 break;
1108 case MIToken::kw_internal:
1109 Flags |= RegState::InternalRead;
1110 break;
1111 case MIToken::kw_early_clobber:
1112 Flags |= RegState::EarlyClobber;
1113 break;
1114 case MIToken::kw_debug_use:
1115 Flags |= RegState::Debug;
1116 break;
1117 case MIToken::kw_renamable:
1118 Flags |= RegState::Renamable;
1119 break;
1120 default:
1121 llvm_unreachable("The current token should be a register flag");
1122 }
1123 if (OldFlags == Flags)
1124 // We know that the same flag is specified more than once when the flags
1125 // weren't modified.
1126 return error("duplicate '" + Token.stringValue() + "' register flag");
1127 lex();
1128 return false;
1129 }
1130
parseSubRegisterIndex(unsigned & SubReg)1131 bool MIParser::parseSubRegisterIndex(unsigned &SubReg) {
1132 assert(Token.is(MIToken::dot));
1133 lex();
1134 if (Token.isNot(MIToken::Identifier))
1135 return error("expected a subregister index after '.'");
1136 auto Name = Token.stringValue();
1137 SubReg = getSubRegIndex(Name);
1138 if (!SubReg)
1139 return error(Twine("use of unknown subregister index '") + Name + "'");
1140 lex();
1141 return false;
1142 }
1143
parseRegisterTiedDefIndex(unsigned & TiedDefIdx)1144 bool MIParser::parseRegisterTiedDefIndex(unsigned &TiedDefIdx) {
1145 if (!consumeIfPresent(MIToken::kw_tied_def))
1146 return true;
1147 if (Token.isNot(MIToken::IntegerLiteral))
1148 return error("expected an integer literal after 'tied-def'");
1149 if (getUnsigned(TiedDefIdx))
1150 return true;
1151 lex();
1152 if (expectAndConsume(MIToken::rparen))
1153 return true;
1154 return false;
1155 }
1156
assignRegisterTies(MachineInstr & MI,ArrayRef<ParsedMachineOperand> Operands)1157 bool MIParser::assignRegisterTies(MachineInstr &MI,
1158 ArrayRef<ParsedMachineOperand> Operands) {
1159 SmallVector<std::pair<unsigned, unsigned>, 4> TiedRegisterPairs;
1160 for (unsigned I = 0, E = Operands.size(); I != E; ++I) {
1161 if (!Operands[I].TiedDefIdx)
1162 continue;
1163 // The parser ensures that this operand is a register use, so we just have
1164 // to check the tied-def operand.
1165 unsigned DefIdx = Operands[I].TiedDefIdx.getValue();
1166 if (DefIdx >= E)
1167 return error(Operands[I].Begin,
1168 Twine("use of invalid tied-def operand index '" +
1169 Twine(DefIdx) + "'; instruction has only ") +
1170 Twine(E) + " operands");
1171 const auto &DefOperand = Operands[DefIdx].Operand;
1172 if (!DefOperand.isReg() || !DefOperand.isDef())
1173 // FIXME: add note with the def operand.
1174 return error(Operands[I].Begin,
1175 Twine("use of invalid tied-def operand index '") +
1176 Twine(DefIdx) + "'; the operand #" + Twine(DefIdx) +
1177 " isn't a defined register");
1178 // Check that the tied-def operand wasn't tied elsewhere.
1179 for (const auto &TiedPair : TiedRegisterPairs) {
1180 if (TiedPair.first == DefIdx)
1181 return error(Operands[I].Begin,
1182 Twine("the tied-def operand #") + Twine(DefIdx) +
1183 " is already tied with another register operand");
1184 }
1185 TiedRegisterPairs.push_back(std::make_pair(DefIdx, I));
1186 }
1187 // FIXME: Verify that for non INLINEASM instructions, the def and use tied
1188 // indices must be less than tied max.
1189 for (const auto &TiedPair : TiedRegisterPairs)
1190 MI.tieOperands(TiedPair.first, TiedPair.second);
1191 return false;
1192 }
1193
parseRegisterOperand(MachineOperand & Dest,Optional<unsigned> & TiedDefIdx,bool IsDef)1194 bool MIParser::parseRegisterOperand(MachineOperand &Dest,
1195 Optional<unsigned> &TiedDefIdx,
1196 bool IsDef) {
1197 unsigned Flags = IsDef ? RegState::Define : 0;
1198 while (Token.isRegisterFlag()) {
1199 if (parseRegisterFlag(Flags))
1200 return true;
1201 }
1202 if (!Token.isRegister())
1203 return error("expected a register after register flags");
1204 unsigned Reg;
1205 VRegInfo *RegInfo;
1206 if (parseRegister(Reg, RegInfo))
1207 return true;
1208 lex();
1209 unsigned SubReg = 0;
1210 if (Token.is(MIToken::dot)) {
1211 if (parseSubRegisterIndex(SubReg))
1212 return true;
1213 if (!TargetRegisterInfo::isVirtualRegister(Reg))
1214 return error("subregister index expects a virtual register");
1215 }
1216 if (Token.is(MIToken::colon)) {
1217 if (!TargetRegisterInfo::isVirtualRegister(Reg))
1218 return error("register class specification expects a virtual register");
1219 lex();
1220 if (parseRegisterClassOrBank(*RegInfo))
1221 return true;
1222 }
1223 MachineRegisterInfo &MRI = MF.getRegInfo();
1224 if ((Flags & RegState::Define) == 0) {
1225 if (consumeIfPresent(MIToken::lparen)) {
1226 unsigned Idx;
1227 if (!parseRegisterTiedDefIndex(Idx))
1228 TiedDefIdx = Idx;
1229 else {
1230 // Try a redundant low-level type.
1231 LLT Ty;
1232 if (parseLowLevelType(Token.location(), Ty))
1233 return error("expected tied-def or low-level type after '('");
1234
1235 if (expectAndConsume(MIToken::rparen))
1236 return true;
1237
1238 if (MRI.getType(Reg).isValid() && MRI.getType(Reg) != Ty)
1239 return error("inconsistent type for generic virtual register");
1240
1241 MRI.setType(Reg, Ty);
1242 }
1243 }
1244 } else if (consumeIfPresent(MIToken::lparen)) {
1245 // Virtual registers may have a tpe with GlobalISel.
1246 if (!TargetRegisterInfo::isVirtualRegister(Reg))
1247 return error("unexpected type on physical register");
1248
1249 LLT Ty;
1250 if (parseLowLevelType(Token.location(), Ty))
1251 return true;
1252
1253 if (expectAndConsume(MIToken::rparen))
1254 return true;
1255
1256 if (MRI.getType(Reg).isValid() && MRI.getType(Reg) != Ty)
1257 return error("inconsistent type for generic virtual register");
1258
1259 MRI.setType(Reg, Ty);
1260 } else if (TargetRegisterInfo::isVirtualRegister(Reg)) {
1261 // Generic virtual registers must have a type.
1262 // If we end up here this means the type hasn't been specified and
1263 // this is bad!
1264 if (RegInfo->Kind == VRegInfo::GENERIC ||
1265 RegInfo->Kind == VRegInfo::REGBANK)
1266 return error("generic virtual registers must have a type");
1267 }
1268 Dest = MachineOperand::CreateReg(
1269 Reg, Flags & RegState::Define, Flags & RegState::Implicit,
1270 Flags & RegState::Kill, Flags & RegState::Dead, Flags & RegState::Undef,
1271 Flags & RegState::EarlyClobber, SubReg, Flags & RegState::Debug,
1272 Flags & RegState::InternalRead, Flags & RegState::Renamable);
1273
1274 return false;
1275 }
1276
parseImmediateOperand(MachineOperand & Dest)1277 bool MIParser::parseImmediateOperand(MachineOperand &Dest) {
1278 assert(Token.is(MIToken::IntegerLiteral));
1279 const APSInt &Int = Token.integerValue();
1280 if (Int.getMinSignedBits() > 64)
1281 return error("integer literal is too large to be an immediate operand");
1282 Dest = MachineOperand::CreateImm(Int.getExtValue());
1283 lex();
1284 return false;
1285 }
1286
parseIRConstant(StringRef::iterator Loc,StringRef StringValue,const Constant * & C)1287 bool MIParser::parseIRConstant(StringRef::iterator Loc, StringRef StringValue,
1288 const Constant *&C) {
1289 auto Source = StringValue.str(); // The source has to be null terminated.
1290 SMDiagnostic Err;
1291 C = parseConstantValue(Source, Err, *MF.getFunction().getParent(),
1292 &PFS.IRSlots);
1293 if (!C)
1294 return error(Loc + Err.getColumnNo(), Err.getMessage());
1295 return false;
1296 }
1297
parseIRConstant(StringRef::iterator Loc,const Constant * & C)1298 bool MIParser::parseIRConstant(StringRef::iterator Loc, const Constant *&C) {
1299 if (parseIRConstant(Loc, StringRef(Loc, Token.range().end() - Loc), C))
1300 return true;
1301 lex();
1302 return false;
1303 }
1304
parseLowLevelType(StringRef::iterator Loc,LLT & Ty)1305 bool MIParser::parseLowLevelType(StringRef::iterator Loc, LLT &Ty) {
1306 if (Token.range().front() == 's' || Token.range().front() == 'p') {
1307 StringRef SizeStr = Token.range().drop_front();
1308 if (SizeStr.size() == 0 || !llvm::all_of(SizeStr, isdigit))
1309 return error("expected integers after 's'/'p' type character");
1310 }
1311
1312 if (Token.range().front() == 's') {
1313 Ty = LLT::scalar(APSInt(Token.range().drop_front()).getZExtValue());
1314 lex();
1315 return false;
1316 } else if (Token.range().front() == 'p') {
1317 const DataLayout &DL = MF.getDataLayout();
1318 unsigned AS = APSInt(Token.range().drop_front()).getZExtValue();
1319 Ty = LLT::pointer(AS, DL.getPointerSizeInBits(AS));
1320 lex();
1321 return false;
1322 }
1323
1324 // Now we're looking for a vector.
1325 if (Token.isNot(MIToken::less))
1326 return error(Loc,
1327 "expected sN, pA, <M x sN>, or <M x pA> for GlobalISel type");
1328 lex();
1329
1330 if (Token.isNot(MIToken::IntegerLiteral))
1331 return error(Loc, "expected <M x sN> or <M x pA> for vector type");
1332 uint64_t NumElements = Token.integerValue().getZExtValue();
1333 lex();
1334
1335 if (Token.isNot(MIToken::Identifier) || Token.stringValue() != "x")
1336 return error(Loc, "expected <M x sN> or <M x pA> for vector type");
1337 lex();
1338
1339 if (Token.range().front() != 's' && Token.range().front() != 'p')
1340 return error(Loc, "expected <M x sN> or <M x pA> for vector type");
1341 StringRef SizeStr = Token.range().drop_front();
1342 if (SizeStr.size() == 0 || !llvm::all_of(SizeStr, isdigit))
1343 return error("expected integers after 's'/'p' type character");
1344
1345 if (Token.range().front() == 's')
1346 Ty = LLT::scalar(APSInt(Token.range().drop_front()).getZExtValue());
1347 else if (Token.range().front() == 'p') {
1348 const DataLayout &DL = MF.getDataLayout();
1349 unsigned AS = APSInt(Token.range().drop_front()).getZExtValue();
1350 Ty = LLT::pointer(AS, DL.getPointerSizeInBits(AS));
1351 } else
1352 return error(Loc, "expected <M x sN> or <M x pA> for vector type");
1353 lex();
1354
1355 if (Token.isNot(MIToken::greater))
1356 return error(Loc, "expected <M x sN> or <M x pA> for vector type");
1357 lex();
1358
1359 Ty = LLT::vector(NumElements, Ty);
1360 return false;
1361 }
1362
parseTypedImmediateOperand(MachineOperand & Dest)1363 bool MIParser::parseTypedImmediateOperand(MachineOperand &Dest) {
1364 assert(Token.is(MIToken::Identifier));
1365 StringRef TypeStr = Token.range();
1366 if (TypeStr.front() != 'i' && TypeStr.front() != 's' &&
1367 TypeStr.front() != 'p')
1368 return error(
1369 "a typed immediate operand should start with one of 'i', 's', or 'p'");
1370 StringRef SizeStr = Token.range().drop_front();
1371 if (SizeStr.size() == 0 || !llvm::all_of(SizeStr, isdigit))
1372 return error("expected integers after 'i'/'s'/'p' type character");
1373
1374 auto Loc = Token.location();
1375 lex();
1376 if (Token.isNot(MIToken::IntegerLiteral)) {
1377 if (Token.isNot(MIToken::Identifier) ||
1378 !(Token.range() == "true" || Token.range() == "false"))
1379 return error("expected an integer literal");
1380 }
1381 const Constant *C = nullptr;
1382 if (parseIRConstant(Loc, C))
1383 return true;
1384 Dest = MachineOperand::CreateCImm(cast<ConstantInt>(C));
1385 return false;
1386 }
1387
parseFPImmediateOperand(MachineOperand & Dest)1388 bool MIParser::parseFPImmediateOperand(MachineOperand &Dest) {
1389 auto Loc = Token.location();
1390 lex();
1391 if (Token.isNot(MIToken::FloatingPointLiteral) &&
1392 Token.isNot(MIToken::HexLiteral))
1393 return error("expected a floating point literal");
1394 const Constant *C = nullptr;
1395 if (parseIRConstant(Loc, C))
1396 return true;
1397 Dest = MachineOperand::CreateFPImm(cast<ConstantFP>(C));
1398 return false;
1399 }
1400
getUnsigned(unsigned & Result)1401 bool MIParser::getUnsigned(unsigned &Result) {
1402 if (Token.hasIntegerValue()) {
1403 const uint64_t Limit = uint64_t(std::numeric_limits<unsigned>::max()) + 1;
1404 uint64_t Val64 = Token.integerValue().getLimitedValue(Limit);
1405 if (Val64 == Limit)
1406 return error("expected 32-bit integer (too large)");
1407 Result = Val64;
1408 return false;
1409 }
1410 if (Token.is(MIToken::HexLiteral)) {
1411 APInt A;
1412 if (getHexUint(A))
1413 return true;
1414 if (A.getBitWidth() > 32)
1415 return error("expected 32-bit integer (too large)");
1416 Result = A.getZExtValue();
1417 return false;
1418 }
1419 return true;
1420 }
1421
parseMBBReference(MachineBasicBlock * & MBB)1422 bool MIParser::parseMBBReference(MachineBasicBlock *&MBB) {
1423 assert(Token.is(MIToken::MachineBasicBlock) ||
1424 Token.is(MIToken::MachineBasicBlockLabel));
1425 unsigned Number;
1426 if (getUnsigned(Number))
1427 return true;
1428 auto MBBInfo = PFS.MBBSlots.find(Number);
1429 if (MBBInfo == PFS.MBBSlots.end())
1430 return error(Twine("use of undefined machine basic block #") +
1431 Twine(Number));
1432 MBB = MBBInfo->second;
1433 // TODO: Only parse the name if it's a MachineBasicBlockLabel. Deprecate once
1434 // we drop the <irname> from the bb.<id>.<irname> format.
1435 if (!Token.stringValue().empty() && Token.stringValue() != MBB->getName())
1436 return error(Twine("the name of machine basic block #") + Twine(Number) +
1437 " isn't '" + Token.stringValue() + "'");
1438 return false;
1439 }
1440
parseMBBOperand(MachineOperand & Dest)1441 bool MIParser::parseMBBOperand(MachineOperand &Dest) {
1442 MachineBasicBlock *MBB;
1443 if (parseMBBReference(MBB))
1444 return true;
1445 Dest = MachineOperand::CreateMBB(MBB);
1446 lex();
1447 return false;
1448 }
1449
parseStackFrameIndex(int & FI)1450 bool MIParser::parseStackFrameIndex(int &FI) {
1451 assert(Token.is(MIToken::StackObject));
1452 unsigned ID;
1453 if (getUnsigned(ID))
1454 return true;
1455 auto ObjectInfo = PFS.StackObjectSlots.find(ID);
1456 if (ObjectInfo == PFS.StackObjectSlots.end())
1457 return error(Twine("use of undefined stack object '%stack.") + Twine(ID) +
1458 "'");
1459 StringRef Name;
1460 if (const auto *Alloca =
1461 MF.getFrameInfo().getObjectAllocation(ObjectInfo->second))
1462 Name = Alloca->getName();
1463 if (!Token.stringValue().empty() && Token.stringValue() != Name)
1464 return error(Twine("the name of the stack object '%stack.") + Twine(ID) +
1465 "' isn't '" + Token.stringValue() + "'");
1466 lex();
1467 FI = ObjectInfo->second;
1468 return false;
1469 }
1470
parseStackObjectOperand(MachineOperand & Dest)1471 bool MIParser::parseStackObjectOperand(MachineOperand &Dest) {
1472 int FI;
1473 if (parseStackFrameIndex(FI))
1474 return true;
1475 Dest = MachineOperand::CreateFI(FI);
1476 return false;
1477 }
1478
parseFixedStackFrameIndex(int & FI)1479 bool MIParser::parseFixedStackFrameIndex(int &FI) {
1480 assert(Token.is(MIToken::FixedStackObject));
1481 unsigned ID;
1482 if (getUnsigned(ID))
1483 return true;
1484 auto ObjectInfo = PFS.FixedStackObjectSlots.find(ID);
1485 if (ObjectInfo == PFS.FixedStackObjectSlots.end())
1486 return error(Twine("use of undefined fixed stack object '%fixed-stack.") +
1487 Twine(ID) + "'");
1488 lex();
1489 FI = ObjectInfo->second;
1490 return false;
1491 }
1492
parseFixedStackObjectOperand(MachineOperand & Dest)1493 bool MIParser::parseFixedStackObjectOperand(MachineOperand &Dest) {
1494 int FI;
1495 if (parseFixedStackFrameIndex(FI))
1496 return true;
1497 Dest = MachineOperand::CreateFI(FI);
1498 return false;
1499 }
1500
parseGlobalValue(GlobalValue * & GV)1501 bool MIParser::parseGlobalValue(GlobalValue *&GV) {
1502 switch (Token.kind()) {
1503 case MIToken::NamedGlobalValue: {
1504 const Module *M = MF.getFunction().getParent();
1505 GV = M->getNamedValue(Token.stringValue());
1506 if (!GV)
1507 return error(Twine("use of undefined global value '") + Token.range() +
1508 "'");
1509 break;
1510 }
1511 case MIToken::GlobalValue: {
1512 unsigned GVIdx;
1513 if (getUnsigned(GVIdx))
1514 return true;
1515 if (GVIdx >= PFS.IRSlots.GlobalValues.size())
1516 return error(Twine("use of undefined global value '@") + Twine(GVIdx) +
1517 "'");
1518 GV = PFS.IRSlots.GlobalValues[GVIdx];
1519 break;
1520 }
1521 default:
1522 llvm_unreachable("The current token should be a global value");
1523 }
1524 return false;
1525 }
1526
parseGlobalAddressOperand(MachineOperand & Dest)1527 bool MIParser::parseGlobalAddressOperand(MachineOperand &Dest) {
1528 GlobalValue *GV = nullptr;
1529 if (parseGlobalValue(GV))
1530 return true;
1531 lex();
1532 Dest = MachineOperand::CreateGA(GV, /*Offset=*/0);
1533 if (parseOperandsOffset(Dest))
1534 return true;
1535 return false;
1536 }
1537
parseConstantPoolIndexOperand(MachineOperand & Dest)1538 bool MIParser::parseConstantPoolIndexOperand(MachineOperand &Dest) {
1539 assert(Token.is(MIToken::ConstantPoolItem));
1540 unsigned ID;
1541 if (getUnsigned(ID))
1542 return true;
1543 auto ConstantInfo = PFS.ConstantPoolSlots.find(ID);
1544 if (ConstantInfo == PFS.ConstantPoolSlots.end())
1545 return error("use of undefined constant '%const." + Twine(ID) + "'");
1546 lex();
1547 Dest = MachineOperand::CreateCPI(ID, /*Offset=*/0);
1548 if (parseOperandsOffset(Dest))
1549 return true;
1550 return false;
1551 }
1552
parseJumpTableIndexOperand(MachineOperand & Dest)1553 bool MIParser::parseJumpTableIndexOperand(MachineOperand &Dest) {
1554 assert(Token.is(MIToken::JumpTableIndex));
1555 unsigned ID;
1556 if (getUnsigned(ID))
1557 return true;
1558 auto JumpTableEntryInfo = PFS.JumpTableSlots.find(ID);
1559 if (JumpTableEntryInfo == PFS.JumpTableSlots.end())
1560 return error("use of undefined jump table '%jump-table." + Twine(ID) + "'");
1561 lex();
1562 Dest = MachineOperand::CreateJTI(JumpTableEntryInfo->second);
1563 return false;
1564 }
1565
parseExternalSymbolOperand(MachineOperand & Dest)1566 bool MIParser::parseExternalSymbolOperand(MachineOperand &Dest) {
1567 assert(Token.is(MIToken::ExternalSymbol));
1568 const char *Symbol = MF.createExternalSymbolName(Token.stringValue());
1569 lex();
1570 Dest = MachineOperand::CreateES(Symbol);
1571 if (parseOperandsOffset(Dest))
1572 return true;
1573 return false;
1574 }
1575
parseSubRegisterIndexOperand(MachineOperand & Dest)1576 bool MIParser::parseSubRegisterIndexOperand(MachineOperand &Dest) {
1577 assert(Token.is(MIToken::SubRegisterIndex));
1578 StringRef Name = Token.stringValue();
1579 unsigned SubRegIndex = getSubRegIndex(Token.stringValue());
1580 if (SubRegIndex == 0)
1581 return error(Twine("unknown subregister index '") + Name + "'");
1582 lex();
1583 Dest = MachineOperand::CreateImm(SubRegIndex);
1584 return false;
1585 }
1586
parseMDNode(MDNode * & Node)1587 bool MIParser::parseMDNode(MDNode *&Node) {
1588 assert(Token.is(MIToken::exclaim));
1589
1590 auto Loc = Token.location();
1591 lex();
1592 if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned())
1593 return error("expected metadata id after '!'");
1594 unsigned ID;
1595 if (getUnsigned(ID))
1596 return true;
1597 auto NodeInfo = PFS.IRSlots.MetadataNodes.find(ID);
1598 if (NodeInfo == PFS.IRSlots.MetadataNodes.end())
1599 return error(Loc, "use of undefined metadata '!" + Twine(ID) + "'");
1600 lex();
1601 Node = NodeInfo->second.get();
1602 return false;
1603 }
1604
parseDIExpression(MDNode * & Expr)1605 bool MIParser::parseDIExpression(MDNode *&Expr) {
1606 assert(Token.is(MIToken::md_diexpr));
1607 lex();
1608
1609 // FIXME: Share this parsing with the IL parser.
1610 SmallVector<uint64_t, 8> Elements;
1611
1612 if (expectAndConsume(MIToken::lparen))
1613 return true;
1614
1615 if (Token.isNot(MIToken::rparen)) {
1616 do {
1617 if (Token.is(MIToken::Identifier)) {
1618 if (unsigned Op = dwarf::getOperationEncoding(Token.stringValue())) {
1619 lex();
1620 Elements.push_back(Op);
1621 continue;
1622 }
1623 return error(Twine("invalid DWARF op '") + Token.stringValue() + "'");
1624 }
1625
1626 if (Token.isNot(MIToken::IntegerLiteral) ||
1627 Token.integerValue().isSigned())
1628 return error("expected unsigned integer");
1629
1630 auto &U = Token.integerValue();
1631 if (U.ugt(UINT64_MAX))
1632 return error("element too large, limit is " + Twine(UINT64_MAX));
1633 Elements.push_back(U.getZExtValue());
1634 lex();
1635
1636 } while (consumeIfPresent(MIToken::comma));
1637 }
1638
1639 if (expectAndConsume(MIToken::rparen))
1640 return true;
1641
1642 Expr = DIExpression::get(MF.getFunction().getContext(), Elements);
1643 return false;
1644 }
1645
parseMetadataOperand(MachineOperand & Dest)1646 bool MIParser::parseMetadataOperand(MachineOperand &Dest) {
1647 MDNode *Node = nullptr;
1648 if (Token.is(MIToken::exclaim)) {
1649 if (parseMDNode(Node))
1650 return true;
1651 } else if (Token.is(MIToken::md_diexpr)) {
1652 if (parseDIExpression(Node))
1653 return true;
1654 }
1655 Dest = MachineOperand::CreateMetadata(Node);
1656 return false;
1657 }
1658
parseCFIOffset(int & Offset)1659 bool MIParser::parseCFIOffset(int &Offset) {
1660 if (Token.isNot(MIToken::IntegerLiteral))
1661 return error("expected a cfi offset");
1662 if (Token.integerValue().getMinSignedBits() > 32)
1663 return error("expected a 32 bit integer (the cfi offset is too large)");
1664 Offset = (int)Token.integerValue().getExtValue();
1665 lex();
1666 return false;
1667 }
1668
parseCFIRegister(unsigned & Reg)1669 bool MIParser::parseCFIRegister(unsigned &Reg) {
1670 if (Token.isNot(MIToken::NamedRegister))
1671 return error("expected a cfi register");
1672 unsigned LLVMReg;
1673 if (parseNamedRegister(LLVMReg))
1674 return true;
1675 const auto *TRI = MF.getSubtarget().getRegisterInfo();
1676 assert(TRI && "Expected target register info");
1677 int DwarfReg = TRI->getDwarfRegNum(LLVMReg, true);
1678 if (DwarfReg < 0)
1679 return error("invalid DWARF register");
1680 Reg = (unsigned)DwarfReg;
1681 lex();
1682 return false;
1683 }
1684
parseCFIEscapeValues(std::string & Values)1685 bool MIParser::parseCFIEscapeValues(std::string &Values) {
1686 do {
1687 if (Token.isNot(MIToken::HexLiteral))
1688 return error("expected a hexadecimal literal");
1689 unsigned Value;
1690 if (getUnsigned(Value))
1691 return true;
1692 if (Value > UINT8_MAX)
1693 return error("expected a 8-bit integer (too large)");
1694 Values.push_back(static_cast<uint8_t>(Value));
1695 lex();
1696 } while (consumeIfPresent(MIToken::comma));
1697 return false;
1698 }
1699
parseCFIOperand(MachineOperand & Dest)1700 bool MIParser::parseCFIOperand(MachineOperand &Dest) {
1701 auto Kind = Token.kind();
1702 lex();
1703 int Offset;
1704 unsigned Reg;
1705 unsigned CFIIndex;
1706 switch (Kind) {
1707 case MIToken::kw_cfi_same_value:
1708 if (parseCFIRegister(Reg))
1709 return true;
1710 CFIIndex = MF.addFrameInst(MCCFIInstruction::createSameValue(nullptr, Reg));
1711 break;
1712 case MIToken::kw_cfi_offset:
1713 if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) ||
1714 parseCFIOffset(Offset))
1715 return true;
1716 CFIIndex =
1717 MF.addFrameInst(MCCFIInstruction::createOffset(nullptr, Reg, Offset));
1718 break;
1719 case MIToken::kw_cfi_rel_offset:
1720 if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) ||
1721 parseCFIOffset(Offset))
1722 return true;
1723 CFIIndex = MF.addFrameInst(
1724 MCCFIInstruction::createRelOffset(nullptr, Reg, Offset));
1725 break;
1726 case MIToken::kw_cfi_def_cfa_register:
1727 if (parseCFIRegister(Reg))
1728 return true;
1729 CFIIndex =
1730 MF.addFrameInst(MCCFIInstruction::createDefCfaRegister(nullptr, Reg));
1731 break;
1732 case MIToken::kw_cfi_def_cfa_offset:
1733 if (parseCFIOffset(Offset))
1734 return true;
1735 // NB: MCCFIInstruction::createDefCfaOffset negates the offset.
1736 CFIIndex = MF.addFrameInst(
1737 MCCFIInstruction::createDefCfaOffset(nullptr, -Offset));
1738 break;
1739 case MIToken::kw_cfi_adjust_cfa_offset:
1740 if (parseCFIOffset(Offset))
1741 return true;
1742 CFIIndex = MF.addFrameInst(
1743 MCCFIInstruction::createAdjustCfaOffset(nullptr, Offset));
1744 break;
1745 case MIToken::kw_cfi_def_cfa:
1746 if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) ||
1747 parseCFIOffset(Offset))
1748 return true;
1749 // NB: MCCFIInstruction::createDefCfa negates the offset.
1750 CFIIndex =
1751 MF.addFrameInst(MCCFIInstruction::createDefCfa(nullptr, Reg, -Offset));
1752 break;
1753 case MIToken::kw_cfi_remember_state:
1754 CFIIndex = MF.addFrameInst(MCCFIInstruction::createRememberState(nullptr));
1755 break;
1756 case MIToken::kw_cfi_restore:
1757 if (parseCFIRegister(Reg))
1758 return true;
1759 CFIIndex = MF.addFrameInst(MCCFIInstruction::createRestore(nullptr, Reg));
1760 break;
1761 case MIToken::kw_cfi_restore_state:
1762 CFIIndex = MF.addFrameInst(MCCFIInstruction::createRestoreState(nullptr));
1763 break;
1764 case MIToken::kw_cfi_undefined:
1765 if (parseCFIRegister(Reg))
1766 return true;
1767 CFIIndex = MF.addFrameInst(MCCFIInstruction::createUndefined(nullptr, Reg));
1768 break;
1769 case MIToken::kw_cfi_register: {
1770 unsigned Reg2;
1771 if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) ||
1772 parseCFIRegister(Reg2))
1773 return true;
1774
1775 CFIIndex =
1776 MF.addFrameInst(MCCFIInstruction::createRegister(nullptr, Reg, Reg2));
1777 break;
1778 }
1779 case MIToken::kw_cfi_window_save:
1780 CFIIndex = MF.addFrameInst(MCCFIInstruction::createWindowSave(nullptr));
1781 break;
1782 case MIToken::kw_cfi_escape: {
1783 std::string Values;
1784 if (parseCFIEscapeValues(Values))
1785 return true;
1786 CFIIndex = MF.addFrameInst(MCCFIInstruction::createEscape(nullptr, Values));
1787 break;
1788 }
1789 default:
1790 // TODO: Parse the other CFI operands.
1791 llvm_unreachable("The current token should be a cfi operand");
1792 }
1793 Dest = MachineOperand::CreateCFIIndex(CFIIndex);
1794 return false;
1795 }
1796
parseIRBlock(BasicBlock * & BB,const Function & F)1797 bool MIParser::parseIRBlock(BasicBlock *&BB, const Function &F) {
1798 switch (Token.kind()) {
1799 case MIToken::NamedIRBlock: {
1800 BB = dyn_cast_or_null<BasicBlock>(
1801 F.getValueSymbolTable()->lookup(Token.stringValue()));
1802 if (!BB)
1803 return error(Twine("use of undefined IR block '") + Token.range() + "'");
1804 break;
1805 }
1806 case MIToken::IRBlock: {
1807 unsigned SlotNumber = 0;
1808 if (getUnsigned(SlotNumber))
1809 return true;
1810 BB = const_cast<BasicBlock *>(getIRBlock(SlotNumber, F));
1811 if (!BB)
1812 return error(Twine("use of undefined IR block '%ir-block.") +
1813 Twine(SlotNumber) + "'");
1814 break;
1815 }
1816 default:
1817 llvm_unreachable("The current token should be an IR block reference");
1818 }
1819 return false;
1820 }
1821
parseBlockAddressOperand(MachineOperand & Dest)1822 bool MIParser::parseBlockAddressOperand(MachineOperand &Dest) {
1823 assert(Token.is(MIToken::kw_blockaddress));
1824 lex();
1825 if (expectAndConsume(MIToken::lparen))
1826 return true;
1827 if (Token.isNot(MIToken::GlobalValue) &&
1828 Token.isNot(MIToken::NamedGlobalValue))
1829 return error("expected a global value");
1830 GlobalValue *GV = nullptr;
1831 if (parseGlobalValue(GV))
1832 return true;
1833 auto *F = dyn_cast<Function>(GV);
1834 if (!F)
1835 return error("expected an IR function reference");
1836 lex();
1837 if (expectAndConsume(MIToken::comma))
1838 return true;
1839 BasicBlock *BB = nullptr;
1840 if (Token.isNot(MIToken::IRBlock) && Token.isNot(MIToken::NamedIRBlock))
1841 return error("expected an IR block reference");
1842 if (parseIRBlock(BB, *F))
1843 return true;
1844 lex();
1845 if (expectAndConsume(MIToken::rparen))
1846 return true;
1847 Dest = MachineOperand::CreateBA(BlockAddress::get(F, BB), /*Offset=*/0);
1848 if (parseOperandsOffset(Dest))
1849 return true;
1850 return false;
1851 }
1852
parseIntrinsicOperand(MachineOperand & Dest)1853 bool MIParser::parseIntrinsicOperand(MachineOperand &Dest) {
1854 assert(Token.is(MIToken::kw_intrinsic));
1855 lex();
1856 if (expectAndConsume(MIToken::lparen))
1857 return error("expected syntax intrinsic(@llvm.whatever)");
1858
1859 if (Token.isNot(MIToken::NamedGlobalValue))
1860 return error("expected syntax intrinsic(@llvm.whatever)");
1861
1862 std::string Name = Token.stringValue();
1863 lex();
1864
1865 if (expectAndConsume(MIToken::rparen))
1866 return error("expected ')' to terminate intrinsic name");
1867
1868 // Find out what intrinsic we're dealing with, first try the global namespace
1869 // and then the target's private intrinsics if that fails.
1870 const TargetIntrinsicInfo *TII = MF.getTarget().getIntrinsicInfo();
1871 Intrinsic::ID ID = Function::lookupIntrinsicID(Name);
1872 if (ID == Intrinsic::not_intrinsic && TII)
1873 ID = static_cast<Intrinsic::ID>(TII->lookupName(Name));
1874
1875 if (ID == Intrinsic::not_intrinsic)
1876 return error("unknown intrinsic name");
1877 Dest = MachineOperand::CreateIntrinsicID(ID);
1878
1879 return false;
1880 }
1881
parsePredicateOperand(MachineOperand & Dest)1882 bool MIParser::parsePredicateOperand(MachineOperand &Dest) {
1883 assert(Token.is(MIToken::kw_intpred) || Token.is(MIToken::kw_floatpred));
1884 bool IsFloat = Token.is(MIToken::kw_floatpred);
1885 lex();
1886
1887 if (expectAndConsume(MIToken::lparen))
1888 return error("expected syntax intpred(whatever) or floatpred(whatever");
1889
1890 if (Token.isNot(MIToken::Identifier))
1891 return error("whatever");
1892
1893 CmpInst::Predicate Pred;
1894 if (IsFloat) {
1895 Pred = StringSwitch<CmpInst::Predicate>(Token.stringValue())
1896 .Case("false", CmpInst::FCMP_FALSE)
1897 .Case("oeq", CmpInst::FCMP_OEQ)
1898 .Case("ogt", CmpInst::FCMP_OGT)
1899 .Case("oge", CmpInst::FCMP_OGE)
1900 .Case("olt", CmpInst::FCMP_OLT)
1901 .Case("ole", CmpInst::FCMP_OLE)
1902 .Case("one", CmpInst::FCMP_ONE)
1903 .Case("ord", CmpInst::FCMP_ORD)
1904 .Case("uno", CmpInst::FCMP_UNO)
1905 .Case("ueq", CmpInst::FCMP_UEQ)
1906 .Case("ugt", CmpInst::FCMP_UGT)
1907 .Case("uge", CmpInst::FCMP_UGE)
1908 .Case("ult", CmpInst::FCMP_ULT)
1909 .Case("ule", CmpInst::FCMP_ULE)
1910 .Case("une", CmpInst::FCMP_UNE)
1911 .Case("true", CmpInst::FCMP_TRUE)
1912 .Default(CmpInst::BAD_FCMP_PREDICATE);
1913 if (!CmpInst::isFPPredicate(Pred))
1914 return error("invalid floating-point predicate");
1915 } else {
1916 Pred = StringSwitch<CmpInst::Predicate>(Token.stringValue())
1917 .Case("eq", CmpInst::ICMP_EQ)
1918 .Case("ne", CmpInst::ICMP_NE)
1919 .Case("sgt", CmpInst::ICMP_SGT)
1920 .Case("sge", CmpInst::ICMP_SGE)
1921 .Case("slt", CmpInst::ICMP_SLT)
1922 .Case("sle", CmpInst::ICMP_SLE)
1923 .Case("ugt", CmpInst::ICMP_UGT)
1924 .Case("uge", CmpInst::ICMP_UGE)
1925 .Case("ult", CmpInst::ICMP_ULT)
1926 .Case("ule", CmpInst::ICMP_ULE)
1927 .Default(CmpInst::BAD_ICMP_PREDICATE);
1928 if (!CmpInst::isIntPredicate(Pred))
1929 return error("invalid integer predicate");
1930 }
1931
1932 lex();
1933 Dest = MachineOperand::CreatePredicate(Pred);
1934 if (expectAndConsume(MIToken::rparen))
1935 return error("predicate should be terminated by ')'.");
1936
1937 return false;
1938 }
1939
parseTargetIndexOperand(MachineOperand & Dest)1940 bool MIParser::parseTargetIndexOperand(MachineOperand &Dest) {
1941 assert(Token.is(MIToken::kw_target_index));
1942 lex();
1943 if (expectAndConsume(MIToken::lparen))
1944 return true;
1945 if (Token.isNot(MIToken::Identifier))
1946 return error("expected the name of the target index");
1947 int Index = 0;
1948 if (getTargetIndex(Token.stringValue(), Index))
1949 return error("use of undefined target index '" + Token.stringValue() + "'");
1950 lex();
1951 if (expectAndConsume(MIToken::rparen))
1952 return true;
1953 Dest = MachineOperand::CreateTargetIndex(unsigned(Index), /*Offset=*/0);
1954 if (parseOperandsOffset(Dest))
1955 return true;
1956 return false;
1957 }
1958
parseCustomRegisterMaskOperand(MachineOperand & Dest)1959 bool MIParser::parseCustomRegisterMaskOperand(MachineOperand &Dest) {
1960 assert(Token.stringValue() == "CustomRegMask" && "Expected a custom RegMask");
1961 lex();
1962 if (expectAndConsume(MIToken::lparen))
1963 return true;
1964
1965 uint32_t *Mask = MF.allocateRegMask();
1966 while (true) {
1967 if (Token.isNot(MIToken::NamedRegister))
1968 return error("expected a named register");
1969 unsigned Reg;
1970 if (parseNamedRegister(Reg))
1971 return true;
1972 lex();
1973 Mask[Reg / 32] |= 1U << (Reg % 32);
1974 // TODO: Report an error if the same register is used more than once.
1975 if (Token.isNot(MIToken::comma))
1976 break;
1977 lex();
1978 }
1979
1980 if (expectAndConsume(MIToken::rparen))
1981 return true;
1982 Dest = MachineOperand::CreateRegMask(Mask);
1983 return false;
1984 }
1985
parseLiveoutRegisterMaskOperand(MachineOperand & Dest)1986 bool MIParser::parseLiveoutRegisterMaskOperand(MachineOperand &Dest) {
1987 assert(Token.is(MIToken::kw_liveout));
1988 uint32_t *Mask = MF.allocateRegMask();
1989 lex();
1990 if (expectAndConsume(MIToken::lparen))
1991 return true;
1992 while (true) {
1993 if (Token.isNot(MIToken::NamedRegister))
1994 return error("expected a named register");
1995 unsigned Reg;
1996 if (parseNamedRegister(Reg))
1997 return true;
1998 lex();
1999 Mask[Reg / 32] |= 1U << (Reg % 32);
2000 // TODO: Report an error if the same register is used more than once.
2001 if (Token.isNot(MIToken::comma))
2002 break;
2003 lex();
2004 }
2005 if (expectAndConsume(MIToken::rparen))
2006 return true;
2007 Dest = MachineOperand::CreateRegLiveOut(Mask);
2008 return false;
2009 }
2010
parseMachineOperand(MachineOperand & Dest,Optional<unsigned> & TiedDefIdx)2011 bool MIParser::parseMachineOperand(MachineOperand &Dest,
2012 Optional<unsigned> &TiedDefIdx) {
2013 switch (Token.kind()) {
2014 case MIToken::kw_implicit:
2015 case MIToken::kw_implicit_define:
2016 case MIToken::kw_def:
2017 case MIToken::kw_dead:
2018 case MIToken::kw_killed:
2019 case MIToken::kw_undef:
2020 case MIToken::kw_internal:
2021 case MIToken::kw_early_clobber:
2022 case MIToken::kw_debug_use:
2023 case MIToken::kw_renamable:
2024 case MIToken::underscore:
2025 case MIToken::NamedRegister:
2026 case MIToken::VirtualRegister:
2027 case MIToken::NamedVirtualRegister:
2028 return parseRegisterOperand(Dest, TiedDefIdx);
2029 case MIToken::IntegerLiteral:
2030 return parseImmediateOperand(Dest);
2031 case MIToken::kw_half:
2032 case MIToken::kw_float:
2033 case MIToken::kw_double:
2034 case MIToken::kw_x86_fp80:
2035 case MIToken::kw_fp128:
2036 case MIToken::kw_ppc_fp128:
2037 return parseFPImmediateOperand(Dest);
2038 case MIToken::MachineBasicBlock:
2039 return parseMBBOperand(Dest);
2040 case MIToken::StackObject:
2041 return parseStackObjectOperand(Dest);
2042 case MIToken::FixedStackObject:
2043 return parseFixedStackObjectOperand(Dest);
2044 case MIToken::GlobalValue:
2045 case MIToken::NamedGlobalValue:
2046 return parseGlobalAddressOperand(Dest);
2047 case MIToken::ConstantPoolItem:
2048 return parseConstantPoolIndexOperand(Dest);
2049 case MIToken::JumpTableIndex:
2050 return parseJumpTableIndexOperand(Dest);
2051 case MIToken::ExternalSymbol:
2052 return parseExternalSymbolOperand(Dest);
2053 case MIToken::SubRegisterIndex:
2054 return parseSubRegisterIndexOperand(Dest);
2055 case MIToken::md_diexpr:
2056 case MIToken::exclaim:
2057 return parseMetadataOperand(Dest);
2058 case MIToken::kw_cfi_same_value:
2059 case MIToken::kw_cfi_offset:
2060 case MIToken::kw_cfi_rel_offset:
2061 case MIToken::kw_cfi_def_cfa_register:
2062 case MIToken::kw_cfi_def_cfa_offset:
2063 case MIToken::kw_cfi_adjust_cfa_offset:
2064 case MIToken::kw_cfi_escape:
2065 case MIToken::kw_cfi_def_cfa:
2066 case MIToken::kw_cfi_register:
2067 case MIToken::kw_cfi_remember_state:
2068 case MIToken::kw_cfi_restore:
2069 case MIToken::kw_cfi_restore_state:
2070 case MIToken::kw_cfi_undefined:
2071 case MIToken::kw_cfi_window_save:
2072 return parseCFIOperand(Dest);
2073 case MIToken::kw_blockaddress:
2074 return parseBlockAddressOperand(Dest);
2075 case MIToken::kw_intrinsic:
2076 return parseIntrinsicOperand(Dest);
2077 case MIToken::kw_target_index:
2078 return parseTargetIndexOperand(Dest);
2079 case MIToken::kw_liveout:
2080 return parseLiveoutRegisterMaskOperand(Dest);
2081 case MIToken::kw_floatpred:
2082 case MIToken::kw_intpred:
2083 return parsePredicateOperand(Dest);
2084 case MIToken::Error:
2085 return true;
2086 case MIToken::Identifier:
2087 if (const auto *RegMask = getRegMask(Token.stringValue())) {
2088 Dest = MachineOperand::CreateRegMask(RegMask);
2089 lex();
2090 break;
2091 } else if (Token.stringValue() == "CustomRegMask") {
2092 return parseCustomRegisterMaskOperand(Dest);
2093 } else
2094 return parseTypedImmediateOperand(Dest);
2095 default:
2096 // FIXME: Parse the MCSymbol machine operand.
2097 return error("expected a machine operand");
2098 }
2099 return false;
2100 }
2101
parseMachineOperandAndTargetFlags(MachineOperand & Dest,Optional<unsigned> & TiedDefIdx)2102 bool MIParser::parseMachineOperandAndTargetFlags(
2103 MachineOperand &Dest, Optional<unsigned> &TiedDefIdx) {
2104 unsigned TF = 0;
2105 bool HasTargetFlags = false;
2106 if (Token.is(MIToken::kw_target_flags)) {
2107 HasTargetFlags = true;
2108 lex();
2109 if (expectAndConsume(MIToken::lparen))
2110 return true;
2111 if (Token.isNot(MIToken::Identifier))
2112 return error("expected the name of the target flag");
2113 if (getDirectTargetFlag(Token.stringValue(), TF)) {
2114 if (getBitmaskTargetFlag(Token.stringValue(), TF))
2115 return error("use of undefined target flag '" + Token.stringValue() +
2116 "'");
2117 }
2118 lex();
2119 while (Token.is(MIToken::comma)) {
2120 lex();
2121 if (Token.isNot(MIToken::Identifier))
2122 return error("expected the name of the target flag");
2123 unsigned BitFlag = 0;
2124 if (getBitmaskTargetFlag(Token.stringValue(), BitFlag))
2125 return error("use of undefined target flag '" + Token.stringValue() +
2126 "'");
2127 // TODO: Report an error when using a duplicate bit target flag.
2128 TF |= BitFlag;
2129 lex();
2130 }
2131 if (expectAndConsume(MIToken::rparen))
2132 return true;
2133 }
2134 auto Loc = Token.location();
2135 if (parseMachineOperand(Dest, TiedDefIdx))
2136 return true;
2137 if (!HasTargetFlags)
2138 return false;
2139 if (Dest.isReg())
2140 return error(Loc, "register operands can't have target flags");
2141 Dest.setTargetFlags(TF);
2142 return false;
2143 }
2144
parseOffset(int64_t & Offset)2145 bool MIParser::parseOffset(int64_t &Offset) {
2146 if (Token.isNot(MIToken::plus) && Token.isNot(MIToken::minus))
2147 return false;
2148 StringRef Sign = Token.range();
2149 bool IsNegative = Token.is(MIToken::minus);
2150 lex();
2151 if (Token.isNot(MIToken::IntegerLiteral))
2152 return error("expected an integer literal after '" + Sign + "'");
2153 if (Token.integerValue().getMinSignedBits() > 64)
2154 return error("expected 64-bit integer (too large)");
2155 Offset = Token.integerValue().getExtValue();
2156 if (IsNegative)
2157 Offset = -Offset;
2158 lex();
2159 return false;
2160 }
2161
parseAlignment(unsigned & Alignment)2162 bool MIParser::parseAlignment(unsigned &Alignment) {
2163 assert(Token.is(MIToken::kw_align));
2164 lex();
2165 if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned())
2166 return error("expected an integer literal after 'align'");
2167 if (getUnsigned(Alignment))
2168 return true;
2169 lex();
2170 return false;
2171 }
2172
parseAddrspace(unsigned & Addrspace)2173 bool MIParser::parseAddrspace(unsigned &Addrspace) {
2174 assert(Token.is(MIToken::kw_addrspace));
2175 lex();
2176 if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned())
2177 return error("expected an integer literal after 'addrspace'");
2178 if (getUnsigned(Addrspace))
2179 return true;
2180 lex();
2181 return false;
2182 }
2183
parseOperandsOffset(MachineOperand & Op)2184 bool MIParser::parseOperandsOffset(MachineOperand &Op) {
2185 int64_t Offset = 0;
2186 if (parseOffset(Offset))
2187 return true;
2188 Op.setOffset(Offset);
2189 return false;
2190 }
2191
parseIRValue(const Value * & V)2192 bool MIParser::parseIRValue(const Value *&V) {
2193 switch (Token.kind()) {
2194 case MIToken::NamedIRValue: {
2195 V = MF.getFunction().getValueSymbolTable()->lookup(Token.stringValue());
2196 break;
2197 }
2198 case MIToken::IRValue: {
2199 unsigned SlotNumber = 0;
2200 if (getUnsigned(SlotNumber))
2201 return true;
2202 V = getIRValue(SlotNumber);
2203 break;
2204 }
2205 case MIToken::NamedGlobalValue:
2206 case MIToken::GlobalValue: {
2207 GlobalValue *GV = nullptr;
2208 if (parseGlobalValue(GV))
2209 return true;
2210 V = GV;
2211 break;
2212 }
2213 case MIToken::QuotedIRValue: {
2214 const Constant *C = nullptr;
2215 if (parseIRConstant(Token.location(), Token.stringValue(), C))
2216 return true;
2217 V = C;
2218 break;
2219 }
2220 default:
2221 llvm_unreachable("The current token should be an IR block reference");
2222 }
2223 if (!V)
2224 return error(Twine("use of undefined IR value '") + Token.range() + "'");
2225 return false;
2226 }
2227
getUint64(uint64_t & Result)2228 bool MIParser::getUint64(uint64_t &Result) {
2229 if (Token.hasIntegerValue()) {
2230 if (Token.integerValue().getActiveBits() > 64)
2231 return error("expected 64-bit integer (too large)");
2232 Result = Token.integerValue().getZExtValue();
2233 return false;
2234 }
2235 if (Token.is(MIToken::HexLiteral)) {
2236 APInt A;
2237 if (getHexUint(A))
2238 return true;
2239 if (A.getBitWidth() > 64)
2240 return error("expected 64-bit integer (too large)");
2241 Result = A.getZExtValue();
2242 return false;
2243 }
2244 return true;
2245 }
2246
getHexUint(APInt & Result)2247 bool MIParser::getHexUint(APInt &Result) {
2248 assert(Token.is(MIToken::HexLiteral));
2249 StringRef S = Token.range();
2250 assert(S[0] == '0' && tolower(S[1]) == 'x');
2251 // This could be a floating point literal with a special prefix.
2252 if (!isxdigit(S[2]))
2253 return true;
2254 StringRef V = S.substr(2);
2255 APInt A(V.size()*4, V, 16);
2256
2257 // If A is 0, then A.getActiveBits() is 0. This isn't a valid bitwidth. Make
2258 // sure it isn't the case before constructing result.
2259 unsigned NumBits = (A == 0) ? 32 : A.getActiveBits();
2260 Result = APInt(NumBits, ArrayRef<uint64_t>(A.getRawData(), A.getNumWords()));
2261 return false;
2262 }
2263
parseMemoryOperandFlag(MachineMemOperand::Flags & Flags)2264 bool MIParser::parseMemoryOperandFlag(MachineMemOperand::Flags &Flags) {
2265 const auto OldFlags = Flags;
2266 switch (Token.kind()) {
2267 case MIToken::kw_volatile:
2268 Flags |= MachineMemOperand::MOVolatile;
2269 break;
2270 case MIToken::kw_non_temporal:
2271 Flags |= MachineMemOperand::MONonTemporal;
2272 break;
2273 case MIToken::kw_dereferenceable:
2274 Flags |= MachineMemOperand::MODereferenceable;
2275 break;
2276 case MIToken::kw_invariant:
2277 Flags |= MachineMemOperand::MOInvariant;
2278 break;
2279 case MIToken::StringConstant: {
2280 MachineMemOperand::Flags TF;
2281 if (getMMOTargetFlag(Token.stringValue(), TF))
2282 return error("use of undefined target MMO flag '" + Token.stringValue() +
2283 "'");
2284 Flags |= TF;
2285 break;
2286 }
2287 default:
2288 llvm_unreachable("The current token should be a memory operand flag");
2289 }
2290 if (OldFlags == Flags)
2291 // We know that the same flag is specified more than once when the flags
2292 // weren't modified.
2293 return error("duplicate '" + Token.stringValue() + "' memory operand flag");
2294 lex();
2295 return false;
2296 }
2297
parseMemoryPseudoSourceValue(const PseudoSourceValue * & PSV)2298 bool MIParser::parseMemoryPseudoSourceValue(const PseudoSourceValue *&PSV) {
2299 switch (Token.kind()) {
2300 case MIToken::kw_stack:
2301 PSV = MF.getPSVManager().getStack();
2302 break;
2303 case MIToken::kw_got:
2304 PSV = MF.getPSVManager().getGOT();
2305 break;
2306 case MIToken::kw_jump_table:
2307 PSV = MF.getPSVManager().getJumpTable();
2308 break;
2309 case MIToken::kw_constant_pool:
2310 PSV = MF.getPSVManager().getConstantPool();
2311 break;
2312 case MIToken::FixedStackObject: {
2313 int FI;
2314 if (parseFixedStackFrameIndex(FI))
2315 return true;
2316 PSV = MF.getPSVManager().getFixedStack(FI);
2317 // The token was already consumed, so use return here instead of break.
2318 return false;
2319 }
2320 case MIToken::StackObject: {
2321 int FI;
2322 if (parseStackFrameIndex(FI))
2323 return true;
2324 PSV = MF.getPSVManager().getFixedStack(FI);
2325 // The token was already consumed, so use return here instead of break.
2326 return false;
2327 }
2328 case MIToken::kw_call_entry:
2329 lex();
2330 switch (Token.kind()) {
2331 case MIToken::GlobalValue:
2332 case MIToken::NamedGlobalValue: {
2333 GlobalValue *GV = nullptr;
2334 if (parseGlobalValue(GV))
2335 return true;
2336 PSV = MF.getPSVManager().getGlobalValueCallEntry(GV);
2337 break;
2338 }
2339 case MIToken::ExternalSymbol:
2340 PSV = MF.getPSVManager().getExternalSymbolCallEntry(
2341 MF.createExternalSymbolName(Token.stringValue()));
2342 break;
2343 default:
2344 return error(
2345 "expected a global value or an external symbol after 'call-entry'");
2346 }
2347 break;
2348 default:
2349 llvm_unreachable("The current token should be pseudo source value");
2350 }
2351 lex();
2352 return false;
2353 }
2354
parseMachinePointerInfo(MachinePointerInfo & Dest)2355 bool MIParser::parseMachinePointerInfo(MachinePointerInfo &Dest) {
2356 if (Token.is(MIToken::kw_constant_pool) || Token.is(MIToken::kw_stack) ||
2357 Token.is(MIToken::kw_got) || Token.is(MIToken::kw_jump_table) ||
2358 Token.is(MIToken::FixedStackObject) || Token.is(MIToken::StackObject) ||
2359 Token.is(MIToken::kw_call_entry)) {
2360 const PseudoSourceValue *PSV = nullptr;
2361 if (parseMemoryPseudoSourceValue(PSV))
2362 return true;
2363 int64_t Offset = 0;
2364 if (parseOffset(Offset))
2365 return true;
2366 Dest = MachinePointerInfo(PSV, Offset);
2367 return false;
2368 }
2369 if (Token.isNot(MIToken::NamedIRValue) && Token.isNot(MIToken::IRValue) &&
2370 Token.isNot(MIToken::GlobalValue) &&
2371 Token.isNot(MIToken::NamedGlobalValue) &&
2372 Token.isNot(MIToken::QuotedIRValue))
2373 return error("expected an IR value reference");
2374 const Value *V = nullptr;
2375 if (parseIRValue(V))
2376 return true;
2377 if (!V->getType()->isPointerTy())
2378 return error("expected a pointer IR value");
2379 lex();
2380 int64_t Offset = 0;
2381 if (parseOffset(Offset))
2382 return true;
2383 Dest = MachinePointerInfo(V, Offset);
2384 return false;
2385 }
2386
parseOptionalScope(LLVMContext & Context,SyncScope::ID & SSID)2387 bool MIParser::parseOptionalScope(LLVMContext &Context,
2388 SyncScope::ID &SSID) {
2389 SSID = SyncScope::System;
2390 if (Token.is(MIToken::Identifier) && Token.stringValue() == "syncscope") {
2391 lex();
2392 if (expectAndConsume(MIToken::lparen))
2393 return error("expected '(' in syncscope");
2394
2395 std::string SSN;
2396 if (parseStringConstant(SSN))
2397 return true;
2398
2399 SSID = Context.getOrInsertSyncScopeID(SSN);
2400 if (expectAndConsume(MIToken::rparen))
2401 return error("expected ')' in syncscope");
2402 }
2403
2404 return false;
2405 }
2406
parseOptionalAtomicOrdering(AtomicOrdering & Order)2407 bool MIParser::parseOptionalAtomicOrdering(AtomicOrdering &Order) {
2408 Order = AtomicOrdering::NotAtomic;
2409 if (Token.isNot(MIToken::Identifier))
2410 return false;
2411
2412 Order = StringSwitch<AtomicOrdering>(Token.stringValue())
2413 .Case("unordered", AtomicOrdering::Unordered)
2414 .Case("monotonic", AtomicOrdering::Monotonic)
2415 .Case("acquire", AtomicOrdering::Acquire)
2416 .Case("release", AtomicOrdering::Release)
2417 .Case("acq_rel", AtomicOrdering::AcquireRelease)
2418 .Case("seq_cst", AtomicOrdering::SequentiallyConsistent)
2419 .Default(AtomicOrdering::NotAtomic);
2420
2421 if (Order != AtomicOrdering::NotAtomic) {
2422 lex();
2423 return false;
2424 }
2425
2426 return error("expected an atomic scope, ordering or a size integer literal");
2427 }
2428
parseMachineMemoryOperand(MachineMemOperand * & Dest)2429 bool MIParser::parseMachineMemoryOperand(MachineMemOperand *&Dest) {
2430 if (expectAndConsume(MIToken::lparen))
2431 return true;
2432 MachineMemOperand::Flags Flags = MachineMemOperand::MONone;
2433 while (Token.isMemoryOperandFlag()) {
2434 if (parseMemoryOperandFlag(Flags))
2435 return true;
2436 }
2437 if (Token.isNot(MIToken::Identifier) ||
2438 (Token.stringValue() != "load" && Token.stringValue() != "store"))
2439 return error("expected 'load' or 'store' memory operation");
2440 if (Token.stringValue() == "load")
2441 Flags |= MachineMemOperand::MOLoad;
2442 else
2443 Flags |= MachineMemOperand::MOStore;
2444 lex();
2445
2446 // Optional 'store' for operands that both load and store.
2447 if (Token.is(MIToken::Identifier) && Token.stringValue() == "store") {
2448 Flags |= MachineMemOperand::MOStore;
2449 lex();
2450 }
2451
2452 // Optional synchronization scope.
2453 SyncScope::ID SSID;
2454 if (parseOptionalScope(MF.getFunction().getContext(), SSID))
2455 return true;
2456
2457 // Up to two atomic orderings (cmpxchg provides guarantees on failure).
2458 AtomicOrdering Order, FailureOrder;
2459 if (parseOptionalAtomicOrdering(Order))
2460 return true;
2461
2462 if (parseOptionalAtomicOrdering(FailureOrder))
2463 return true;
2464
2465 if (Token.isNot(MIToken::IntegerLiteral))
2466 return error("expected the size integer literal after memory operation");
2467 uint64_t Size;
2468 if (getUint64(Size))
2469 return true;
2470 lex();
2471
2472 MachinePointerInfo Ptr = MachinePointerInfo();
2473 if (Token.is(MIToken::Identifier)) {
2474 const char *Word =
2475 ((Flags & MachineMemOperand::MOLoad) &&
2476 (Flags & MachineMemOperand::MOStore))
2477 ? "on"
2478 : Flags & MachineMemOperand::MOLoad ? "from" : "into";
2479 if (Token.stringValue() != Word)
2480 return error(Twine("expected '") + Word + "'");
2481 lex();
2482
2483 if (parseMachinePointerInfo(Ptr))
2484 return true;
2485 }
2486 unsigned BaseAlignment = Size;
2487 AAMDNodes AAInfo;
2488 MDNode *Range = nullptr;
2489 while (consumeIfPresent(MIToken::comma)) {
2490 switch (Token.kind()) {
2491 case MIToken::kw_align:
2492 if (parseAlignment(BaseAlignment))
2493 return true;
2494 break;
2495 case MIToken::kw_addrspace:
2496 if (parseAddrspace(Ptr.AddrSpace))
2497 return true;
2498 break;
2499 case MIToken::md_tbaa:
2500 lex();
2501 if (parseMDNode(AAInfo.TBAA))
2502 return true;
2503 break;
2504 case MIToken::md_alias_scope:
2505 lex();
2506 if (parseMDNode(AAInfo.Scope))
2507 return true;
2508 break;
2509 case MIToken::md_noalias:
2510 lex();
2511 if (parseMDNode(AAInfo.NoAlias))
2512 return true;
2513 break;
2514 case MIToken::md_range:
2515 lex();
2516 if (parseMDNode(Range))
2517 return true;
2518 break;
2519 // TODO: Report an error on duplicate metadata nodes.
2520 default:
2521 return error("expected 'align' or '!tbaa' or '!alias.scope' or "
2522 "'!noalias' or '!range'");
2523 }
2524 }
2525 if (expectAndConsume(MIToken::rparen))
2526 return true;
2527 Dest = MF.getMachineMemOperand(Ptr, Flags, Size, BaseAlignment, AAInfo, Range,
2528 SSID, Order, FailureOrder);
2529 return false;
2530 }
2531
initNames2InstrOpCodes()2532 void MIParser::initNames2InstrOpCodes() {
2533 if (!Names2InstrOpCodes.empty())
2534 return;
2535 const auto *TII = MF.getSubtarget().getInstrInfo();
2536 assert(TII && "Expected target instruction info");
2537 for (unsigned I = 0, E = TII->getNumOpcodes(); I < E; ++I)
2538 Names2InstrOpCodes.insert(std::make_pair(StringRef(TII->getName(I)), I));
2539 }
2540
parseInstrName(StringRef InstrName,unsigned & OpCode)2541 bool MIParser::parseInstrName(StringRef InstrName, unsigned &OpCode) {
2542 initNames2InstrOpCodes();
2543 auto InstrInfo = Names2InstrOpCodes.find(InstrName);
2544 if (InstrInfo == Names2InstrOpCodes.end())
2545 return true;
2546 OpCode = InstrInfo->getValue();
2547 return false;
2548 }
2549
initNames2Regs()2550 void MIParser::initNames2Regs() {
2551 if (!Names2Regs.empty())
2552 return;
2553 // The '%noreg' register is the register 0.
2554 Names2Regs.insert(std::make_pair("noreg", 0));
2555 const auto *TRI = MF.getSubtarget().getRegisterInfo();
2556 assert(TRI && "Expected target register info");
2557 for (unsigned I = 0, E = TRI->getNumRegs(); I < E; ++I) {
2558 bool WasInserted =
2559 Names2Regs.insert(std::make_pair(StringRef(TRI->getName(I)).lower(), I))
2560 .second;
2561 (void)WasInserted;
2562 assert(WasInserted && "Expected registers to be unique case-insensitively");
2563 }
2564 }
2565
getRegisterByName(StringRef RegName,unsigned & Reg)2566 bool MIParser::getRegisterByName(StringRef RegName, unsigned &Reg) {
2567 initNames2Regs();
2568 auto RegInfo = Names2Regs.find(RegName);
2569 if (RegInfo == Names2Regs.end())
2570 return true;
2571 Reg = RegInfo->getValue();
2572 return false;
2573 }
2574
initNames2RegMasks()2575 void MIParser::initNames2RegMasks() {
2576 if (!Names2RegMasks.empty())
2577 return;
2578 const auto *TRI = MF.getSubtarget().getRegisterInfo();
2579 assert(TRI && "Expected target register info");
2580 ArrayRef<const uint32_t *> RegMasks = TRI->getRegMasks();
2581 ArrayRef<const char *> RegMaskNames = TRI->getRegMaskNames();
2582 assert(RegMasks.size() == RegMaskNames.size());
2583 for (size_t I = 0, E = RegMasks.size(); I < E; ++I)
2584 Names2RegMasks.insert(
2585 std::make_pair(StringRef(RegMaskNames[I]).lower(), RegMasks[I]));
2586 }
2587
getRegMask(StringRef Identifier)2588 const uint32_t *MIParser::getRegMask(StringRef Identifier) {
2589 initNames2RegMasks();
2590 auto RegMaskInfo = Names2RegMasks.find(Identifier);
2591 if (RegMaskInfo == Names2RegMasks.end())
2592 return nullptr;
2593 return RegMaskInfo->getValue();
2594 }
2595
initNames2SubRegIndices()2596 void MIParser::initNames2SubRegIndices() {
2597 if (!Names2SubRegIndices.empty())
2598 return;
2599 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
2600 for (unsigned I = 1, E = TRI->getNumSubRegIndices(); I < E; ++I)
2601 Names2SubRegIndices.insert(
2602 std::make_pair(StringRef(TRI->getSubRegIndexName(I)).lower(), I));
2603 }
2604
getSubRegIndex(StringRef Name)2605 unsigned MIParser::getSubRegIndex(StringRef Name) {
2606 initNames2SubRegIndices();
2607 auto SubRegInfo = Names2SubRegIndices.find(Name);
2608 if (SubRegInfo == Names2SubRegIndices.end())
2609 return 0;
2610 return SubRegInfo->getValue();
2611 }
2612
initSlots2BasicBlocks(const Function & F,DenseMap<unsigned,const BasicBlock * > & Slots2BasicBlocks)2613 static void initSlots2BasicBlocks(
2614 const Function &F,
2615 DenseMap<unsigned, const BasicBlock *> &Slots2BasicBlocks) {
2616 ModuleSlotTracker MST(F.getParent(), /*ShouldInitializeAllMetadata=*/false);
2617 MST.incorporateFunction(F);
2618 for (auto &BB : F) {
2619 if (BB.hasName())
2620 continue;
2621 int Slot = MST.getLocalSlot(&BB);
2622 if (Slot == -1)
2623 continue;
2624 Slots2BasicBlocks.insert(std::make_pair(unsigned(Slot), &BB));
2625 }
2626 }
2627
getIRBlockFromSlot(unsigned Slot,const DenseMap<unsigned,const BasicBlock * > & Slots2BasicBlocks)2628 static const BasicBlock *getIRBlockFromSlot(
2629 unsigned Slot,
2630 const DenseMap<unsigned, const BasicBlock *> &Slots2BasicBlocks) {
2631 auto BlockInfo = Slots2BasicBlocks.find(Slot);
2632 if (BlockInfo == Slots2BasicBlocks.end())
2633 return nullptr;
2634 return BlockInfo->second;
2635 }
2636
getIRBlock(unsigned Slot)2637 const BasicBlock *MIParser::getIRBlock(unsigned Slot) {
2638 if (Slots2BasicBlocks.empty())
2639 initSlots2BasicBlocks(MF.getFunction(), Slots2BasicBlocks);
2640 return getIRBlockFromSlot(Slot, Slots2BasicBlocks);
2641 }
2642
getIRBlock(unsigned Slot,const Function & F)2643 const BasicBlock *MIParser::getIRBlock(unsigned Slot, const Function &F) {
2644 if (&F == &MF.getFunction())
2645 return getIRBlock(Slot);
2646 DenseMap<unsigned, const BasicBlock *> CustomSlots2BasicBlocks;
2647 initSlots2BasicBlocks(F, CustomSlots2BasicBlocks);
2648 return getIRBlockFromSlot(Slot, CustomSlots2BasicBlocks);
2649 }
2650
mapValueToSlot(const Value * V,ModuleSlotTracker & MST,DenseMap<unsigned,const Value * > & Slots2Values)2651 static void mapValueToSlot(const Value *V, ModuleSlotTracker &MST,
2652 DenseMap<unsigned, const Value *> &Slots2Values) {
2653 int Slot = MST.getLocalSlot(V);
2654 if (Slot == -1)
2655 return;
2656 Slots2Values.insert(std::make_pair(unsigned(Slot), V));
2657 }
2658
2659 /// Creates the mapping from slot numbers to function's unnamed IR values.
initSlots2Values(const Function & F,DenseMap<unsigned,const Value * > & Slots2Values)2660 static void initSlots2Values(const Function &F,
2661 DenseMap<unsigned, const Value *> &Slots2Values) {
2662 ModuleSlotTracker MST(F.getParent(), /*ShouldInitializeAllMetadata=*/false);
2663 MST.incorporateFunction(F);
2664 for (const auto &Arg : F.args())
2665 mapValueToSlot(&Arg, MST, Slots2Values);
2666 for (const auto &BB : F) {
2667 mapValueToSlot(&BB, MST, Slots2Values);
2668 for (const auto &I : BB)
2669 mapValueToSlot(&I, MST, Slots2Values);
2670 }
2671 }
2672
getIRValue(unsigned Slot)2673 const Value *MIParser::getIRValue(unsigned Slot) {
2674 if (Slots2Values.empty())
2675 initSlots2Values(MF.getFunction(), Slots2Values);
2676 auto ValueInfo = Slots2Values.find(Slot);
2677 if (ValueInfo == Slots2Values.end())
2678 return nullptr;
2679 return ValueInfo->second;
2680 }
2681
initNames2TargetIndices()2682 void MIParser::initNames2TargetIndices() {
2683 if (!Names2TargetIndices.empty())
2684 return;
2685 const auto *TII = MF.getSubtarget().getInstrInfo();
2686 assert(TII && "Expected target instruction info");
2687 auto Indices = TII->getSerializableTargetIndices();
2688 for (const auto &I : Indices)
2689 Names2TargetIndices.insert(std::make_pair(StringRef(I.second), I.first));
2690 }
2691
getTargetIndex(StringRef Name,int & Index)2692 bool MIParser::getTargetIndex(StringRef Name, int &Index) {
2693 initNames2TargetIndices();
2694 auto IndexInfo = Names2TargetIndices.find(Name);
2695 if (IndexInfo == Names2TargetIndices.end())
2696 return true;
2697 Index = IndexInfo->second;
2698 return false;
2699 }
2700
initNames2DirectTargetFlags()2701 void MIParser::initNames2DirectTargetFlags() {
2702 if (!Names2DirectTargetFlags.empty())
2703 return;
2704 const auto *TII = MF.getSubtarget().getInstrInfo();
2705 assert(TII && "Expected target instruction info");
2706 auto Flags = TII->getSerializableDirectMachineOperandTargetFlags();
2707 for (const auto &I : Flags)
2708 Names2DirectTargetFlags.insert(
2709 std::make_pair(StringRef(I.second), I.first));
2710 }
2711
getDirectTargetFlag(StringRef Name,unsigned & Flag)2712 bool MIParser::getDirectTargetFlag(StringRef Name, unsigned &Flag) {
2713 initNames2DirectTargetFlags();
2714 auto FlagInfo = Names2DirectTargetFlags.find(Name);
2715 if (FlagInfo == Names2DirectTargetFlags.end())
2716 return true;
2717 Flag = FlagInfo->second;
2718 return false;
2719 }
2720
initNames2BitmaskTargetFlags()2721 void MIParser::initNames2BitmaskTargetFlags() {
2722 if (!Names2BitmaskTargetFlags.empty())
2723 return;
2724 const auto *TII = MF.getSubtarget().getInstrInfo();
2725 assert(TII && "Expected target instruction info");
2726 auto Flags = TII->getSerializableBitmaskMachineOperandTargetFlags();
2727 for (const auto &I : Flags)
2728 Names2BitmaskTargetFlags.insert(
2729 std::make_pair(StringRef(I.second), I.first));
2730 }
2731
getBitmaskTargetFlag(StringRef Name,unsigned & Flag)2732 bool MIParser::getBitmaskTargetFlag(StringRef Name, unsigned &Flag) {
2733 initNames2BitmaskTargetFlags();
2734 auto FlagInfo = Names2BitmaskTargetFlags.find(Name);
2735 if (FlagInfo == Names2BitmaskTargetFlags.end())
2736 return true;
2737 Flag = FlagInfo->second;
2738 return false;
2739 }
2740
initNames2MMOTargetFlags()2741 void MIParser::initNames2MMOTargetFlags() {
2742 if (!Names2MMOTargetFlags.empty())
2743 return;
2744 const auto *TII = MF.getSubtarget().getInstrInfo();
2745 assert(TII && "Expected target instruction info");
2746 auto Flags = TII->getSerializableMachineMemOperandTargetFlags();
2747 for (const auto &I : Flags)
2748 Names2MMOTargetFlags.insert(
2749 std::make_pair(StringRef(I.second), I.first));
2750 }
2751
getMMOTargetFlag(StringRef Name,MachineMemOperand::Flags & Flag)2752 bool MIParser::getMMOTargetFlag(StringRef Name,
2753 MachineMemOperand::Flags &Flag) {
2754 initNames2MMOTargetFlags();
2755 auto FlagInfo = Names2MMOTargetFlags.find(Name);
2756 if (FlagInfo == Names2MMOTargetFlags.end())
2757 return true;
2758 Flag = FlagInfo->second;
2759 return false;
2760 }
2761
parseStringConstant(std::string & Result)2762 bool MIParser::parseStringConstant(std::string &Result) {
2763 if (Token.isNot(MIToken::StringConstant))
2764 return error("expected string constant");
2765 Result = Token.stringValue();
2766 lex();
2767 return false;
2768 }
2769
parseMachineBasicBlockDefinitions(PerFunctionMIParsingState & PFS,StringRef Src,SMDiagnostic & Error)2770 bool llvm::parseMachineBasicBlockDefinitions(PerFunctionMIParsingState &PFS,
2771 StringRef Src,
2772 SMDiagnostic &Error) {
2773 return MIParser(PFS, Error, Src).parseBasicBlockDefinitions(PFS.MBBSlots);
2774 }
2775
parseMachineInstructions(PerFunctionMIParsingState & PFS,StringRef Src,SMDiagnostic & Error)2776 bool llvm::parseMachineInstructions(PerFunctionMIParsingState &PFS,
2777 StringRef Src, SMDiagnostic &Error) {
2778 return MIParser(PFS, Error, Src).parseBasicBlocks();
2779 }
2780
parseMBBReference(PerFunctionMIParsingState & PFS,MachineBasicBlock * & MBB,StringRef Src,SMDiagnostic & Error)2781 bool llvm::parseMBBReference(PerFunctionMIParsingState &PFS,
2782 MachineBasicBlock *&MBB, StringRef Src,
2783 SMDiagnostic &Error) {
2784 return MIParser(PFS, Error, Src).parseStandaloneMBB(MBB);
2785 }
2786
parseRegisterReference(PerFunctionMIParsingState & PFS,unsigned & Reg,StringRef Src,SMDiagnostic & Error)2787 bool llvm::parseRegisterReference(PerFunctionMIParsingState &PFS,
2788 unsigned &Reg, StringRef Src,
2789 SMDiagnostic &Error) {
2790 return MIParser(PFS, Error, Src).parseStandaloneRegister(Reg);
2791 }
2792
parseNamedRegisterReference(PerFunctionMIParsingState & PFS,unsigned & Reg,StringRef Src,SMDiagnostic & Error)2793 bool llvm::parseNamedRegisterReference(PerFunctionMIParsingState &PFS,
2794 unsigned &Reg, StringRef Src,
2795 SMDiagnostic &Error) {
2796 return MIParser(PFS, Error, Src).parseStandaloneNamedRegister(Reg);
2797 }
2798
parseVirtualRegisterReference(PerFunctionMIParsingState & PFS,VRegInfo * & Info,StringRef Src,SMDiagnostic & Error)2799 bool llvm::parseVirtualRegisterReference(PerFunctionMIParsingState &PFS,
2800 VRegInfo *&Info, StringRef Src,
2801 SMDiagnostic &Error) {
2802 return MIParser(PFS, Error, Src).parseStandaloneVirtualRegister(Info);
2803 }
2804
parseStackObjectReference(PerFunctionMIParsingState & PFS,int & FI,StringRef Src,SMDiagnostic & Error)2805 bool llvm::parseStackObjectReference(PerFunctionMIParsingState &PFS,
2806 int &FI, StringRef Src,
2807 SMDiagnostic &Error) {
2808 return MIParser(PFS, Error, Src).parseStandaloneStackObject(FI);
2809 }
2810
parseMDNode(PerFunctionMIParsingState & PFS,MDNode * & Node,StringRef Src,SMDiagnostic & Error)2811 bool llvm::parseMDNode(PerFunctionMIParsingState &PFS,
2812 MDNode *&Node, StringRef Src, SMDiagnostic &Error) {
2813 return MIParser(PFS, Error, Src).parseStandaloneMDNode(Node);
2814 }
2815