1 //===- MachineCSE.cpp - Machine Common Subexpression Elimination Pass -----===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass performs global common subexpression elimination on machine
11 // instructions using a scoped hash table based value numbering scheme. It
12 // must be run while the machine function is still in SSA form.
13 //
14 //===----------------------------------------------------------------------===//
15
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/ScopedHashTable.h"
18 #include "llvm/ADT/SmallPtrSet.h"
19 #include "llvm/ADT/SmallSet.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/Analysis/AliasAnalysis.h"
23 #include "llvm/CodeGen/MachineBasicBlock.h"
24 #include "llvm/CodeGen/MachineDominators.h"
25 #include "llvm/CodeGen/MachineFunction.h"
26 #include "llvm/CodeGen/MachineFunctionPass.h"
27 #include "llvm/CodeGen/MachineInstr.h"
28 #include "llvm/CodeGen/MachineOperand.h"
29 #include "llvm/CodeGen/MachineRegisterInfo.h"
30 #include "llvm/CodeGen/Passes.h"
31 #include "llvm/CodeGen/TargetInstrInfo.h"
32 #include "llvm/CodeGen/TargetOpcodes.h"
33 #include "llvm/CodeGen/TargetRegisterInfo.h"
34 #include "llvm/CodeGen/TargetSubtargetInfo.h"
35 #include "llvm/MC/MCInstrDesc.h"
36 #include "llvm/MC/MCRegisterInfo.h"
37 #include "llvm/Pass.h"
38 #include "llvm/Support/Allocator.h"
39 #include "llvm/Support/Debug.h"
40 #include "llvm/Support/RecyclingAllocator.h"
41 #include "llvm/Support/raw_ostream.h"
42 #include <cassert>
43 #include <iterator>
44 #include <utility>
45 #include <vector>
46
47 using namespace llvm;
48
49 #define DEBUG_TYPE "machine-cse"
50
51 STATISTIC(NumCoalesces, "Number of copies coalesced");
52 STATISTIC(NumCSEs, "Number of common subexpression eliminated");
53 STATISTIC(NumPhysCSEs,
54 "Number of physreg referencing common subexpr eliminated");
55 STATISTIC(NumCrossBBCSEs,
56 "Number of cross-MBB physreg referencing CS eliminated");
57 STATISTIC(NumCommutes, "Number of copies coalesced after commuting");
58
59 namespace {
60
61 class MachineCSE : public MachineFunctionPass {
62 const TargetInstrInfo *TII;
63 const TargetRegisterInfo *TRI;
64 AliasAnalysis *AA;
65 MachineDominatorTree *DT;
66 MachineRegisterInfo *MRI;
67
68 public:
69 static char ID; // Pass identification
70
MachineCSE()71 MachineCSE() : MachineFunctionPass(ID) {
72 initializeMachineCSEPass(*PassRegistry::getPassRegistry());
73 }
74
75 bool runOnMachineFunction(MachineFunction &MF) override;
76
getAnalysisUsage(AnalysisUsage & AU) const77 void getAnalysisUsage(AnalysisUsage &AU) const override {
78 AU.setPreservesCFG();
79 MachineFunctionPass::getAnalysisUsage(AU);
80 AU.addRequired<AAResultsWrapperPass>();
81 AU.addPreservedID(MachineLoopInfoID);
82 AU.addRequired<MachineDominatorTree>();
83 AU.addPreserved<MachineDominatorTree>();
84 }
85
releaseMemory()86 void releaseMemory() override {
87 ScopeMap.clear();
88 Exps.clear();
89 }
90
91 private:
92 using AllocatorTy = RecyclingAllocator<BumpPtrAllocator,
93 ScopedHashTableVal<MachineInstr *, unsigned>>;
94 using ScopedHTType =
95 ScopedHashTable<MachineInstr *, unsigned, MachineInstrExpressionTrait,
96 AllocatorTy>;
97 using ScopeType = ScopedHTType::ScopeTy;
98
99 unsigned LookAheadLimit = 0;
100 DenseMap<MachineBasicBlock *, ScopeType *> ScopeMap;
101 ScopedHTType VNT;
102 SmallVector<MachineInstr *, 64> Exps;
103 unsigned CurrVN = 0;
104
105 bool PerformTrivialCopyPropagation(MachineInstr *MI,
106 MachineBasicBlock *MBB);
107 bool isPhysDefTriviallyDead(unsigned Reg,
108 MachineBasicBlock::const_iterator I,
109 MachineBasicBlock::const_iterator E) const;
110 bool hasLivePhysRegDefUses(const MachineInstr *MI,
111 const MachineBasicBlock *MBB,
112 SmallSet<unsigned,8> &PhysRefs,
113 SmallVectorImpl<unsigned> &PhysDefs,
114 bool &PhysUseDef) const;
115 bool PhysRegDefsReach(MachineInstr *CSMI, MachineInstr *MI,
116 SmallSet<unsigned,8> &PhysRefs,
117 SmallVectorImpl<unsigned> &PhysDefs,
118 bool &NonLocal) const;
119 bool isCSECandidate(MachineInstr *MI);
120 bool isProfitableToCSE(unsigned CSReg, unsigned Reg,
121 MachineInstr *CSMI, MachineInstr *MI);
122 void EnterScope(MachineBasicBlock *MBB);
123 void ExitScope(MachineBasicBlock *MBB);
124 bool ProcessBlock(MachineBasicBlock *MBB);
125 void ExitScopeIfDone(MachineDomTreeNode *Node,
126 DenseMap<MachineDomTreeNode*, unsigned> &OpenChildren);
127 bool PerformCSE(MachineDomTreeNode *Node);
128 };
129
130 } // end anonymous namespace
131
132 char MachineCSE::ID = 0;
133
134 char &llvm::MachineCSEID = MachineCSE::ID;
135
136 INITIALIZE_PASS_BEGIN(MachineCSE, DEBUG_TYPE,
137 "Machine Common Subexpression Elimination", false, false)
INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)138 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
139 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
140 INITIALIZE_PASS_END(MachineCSE, DEBUG_TYPE,
141 "Machine Common Subexpression Elimination", false, false)
142
143 /// The source register of a COPY machine instruction can be propagated to all
144 /// its users, and this propagation could increase the probability of finding
145 /// common subexpressions. If the COPY has only one user, the COPY itself can
146 /// be removed.
147 bool MachineCSE::PerformTrivialCopyPropagation(MachineInstr *MI,
148 MachineBasicBlock *MBB) {
149 bool Changed = false;
150 for (MachineOperand &MO : MI->operands()) {
151 if (!MO.isReg() || !MO.isUse())
152 continue;
153 unsigned Reg = MO.getReg();
154 if (!TargetRegisterInfo::isVirtualRegister(Reg))
155 continue;
156 bool OnlyOneUse = MRI->hasOneNonDBGUse(Reg);
157 MachineInstr *DefMI = MRI->getVRegDef(Reg);
158 if (!DefMI->isCopy())
159 continue;
160 unsigned SrcReg = DefMI->getOperand(1).getReg();
161 if (!TargetRegisterInfo::isVirtualRegister(SrcReg))
162 continue;
163 if (DefMI->getOperand(0).getSubReg())
164 continue;
165 // FIXME: We should trivially coalesce subregister copies to expose CSE
166 // opportunities on instructions with truncated operands (see
167 // cse-add-with-overflow.ll). This can be done here as follows:
168 // if (SrcSubReg)
169 // RC = TRI->getMatchingSuperRegClass(MRI->getRegClass(SrcReg), RC,
170 // SrcSubReg);
171 // MO.substVirtReg(SrcReg, SrcSubReg, *TRI);
172 //
173 // The 2-addr pass has been updated to handle coalesced subregs. However,
174 // some machine-specific code still can't handle it.
175 // To handle it properly we also need a way find a constrained subregister
176 // class given a super-reg class and subreg index.
177 if (DefMI->getOperand(1).getSubReg())
178 continue;
179 if (!MRI->constrainRegAttrs(SrcReg, Reg))
180 continue;
181 LLVM_DEBUG(dbgs() << "Coalescing: " << *DefMI);
182 LLVM_DEBUG(dbgs() << "*** to: " << *MI);
183 // Propagate SrcReg of copies to MI.
184 MO.setReg(SrcReg);
185 MRI->clearKillFlags(SrcReg);
186 // Coalesce single use copies.
187 if (OnlyOneUse) {
188 DefMI->eraseFromParent();
189 ++NumCoalesces;
190 }
191 Changed = true;
192 }
193
194 return Changed;
195 }
196
197 bool
isPhysDefTriviallyDead(unsigned Reg,MachineBasicBlock::const_iterator I,MachineBasicBlock::const_iterator E) const198 MachineCSE::isPhysDefTriviallyDead(unsigned Reg,
199 MachineBasicBlock::const_iterator I,
200 MachineBasicBlock::const_iterator E) const {
201 unsigned LookAheadLeft = LookAheadLimit;
202 while (LookAheadLeft) {
203 // Skip over dbg_value's.
204 I = skipDebugInstructionsForward(I, E);
205
206 if (I == E)
207 // Reached end of block, we don't know if register is dead or not.
208 return false;
209
210 bool SeenDef = false;
211 for (const MachineOperand &MO : I->operands()) {
212 if (MO.isRegMask() && MO.clobbersPhysReg(Reg))
213 SeenDef = true;
214 if (!MO.isReg() || !MO.getReg())
215 continue;
216 if (!TRI->regsOverlap(MO.getReg(), Reg))
217 continue;
218 if (MO.isUse())
219 // Found a use!
220 return false;
221 SeenDef = true;
222 }
223 if (SeenDef)
224 // See a def of Reg (or an alias) before encountering any use, it's
225 // trivially dead.
226 return true;
227
228 --LookAheadLeft;
229 ++I;
230 }
231 return false;
232 }
233
234 /// hasLivePhysRegDefUses - Return true if the specified instruction read/write
235 /// physical registers (except for dead defs of physical registers). It also
236 /// returns the physical register def by reference if it's the only one and the
237 /// instruction does not uses a physical register.
hasLivePhysRegDefUses(const MachineInstr * MI,const MachineBasicBlock * MBB,SmallSet<unsigned,8> & PhysRefs,SmallVectorImpl<unsigned> & PhysDefs,bool & PhysUseDef) const238 bool MachineCSE::hasLivePhysRegDefUses(const MachineInstr *MI,
239 const MachineBasicBlock *MBB,
240 SmallSet<unsigned,8> &PhysRefs,
241 SmallVectorImpl<unsigned> &PhysDefs,
242 bool &PhysUseDef) const{
243 // First, add all uses to PhysRefs.
244 for (const MachineOperand &MO : MI->operands()) {
245 if (!MO.isReg() || MO.isDef())
246 continue;
247 unsigned Reg = MO.getReg();
248 if (!Reg)
249 continue;
250 if (TargetRegisterInfo::isVirtualRegister(Reg))
251 continue;
252 // Reading either caller preserved or constant physregs is ok.
253 if (!MRI->isCallerPreservedOrConstPhysReg(Reg))
254 for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI)
255 PhysRefs.insert(*AI);
256 }
257
258 // Next, collect all defs into PhysDefs. If any is already in PhysRefs
259 // (which currently contains only uses), set the PhysUseDef flag.
260 PhysUseDef = false;
261 MachineBasicBlock::const_iterator I = MI; I = std::next(I);
262 for (const MachineOperand &MO : MI->operands()) {
263 if (!MO.isReg() || !MO.isDef())
264 continue;
265 unsigned Reg = MO.getReg();
266 if (!Reg)
267 continue;
268 if (TargetRegisterInfo::isVirtualRegister(Reg))
269 continue;
270 // Check against PhysRefs even if the def is "dead".
271 if (PhysRefs.count(Reg))
272 PhysUseDef = true;
273 // If the def is dead, it's ok. But the def may not marked "dead". That's
274 // common since this pass is run before livevariables. We can scan
275 // forward a few instructions and check if it is obviously dead.
276 if (!MO.isDead() && !isPhysDefTriviallyDead(Reg, I, MBB->end()))
277 PhysDefs.push_back(Reg);
278 }
279
280 // Finally, add all defs to PhysRefs as well.
281 for (unsigned i = 0, e = PhysDefs.size(); i != e; ++i)
282 for (MCRegAliasIterator AI(PhysDefs[i], TRI, true); AI.isValid(); ++AI)
283 PhysRefs.insert(*AI);
284
285 return !PhysRefs.empty();
286 }
287
PhysRegDefsReach(MachineInstr * CSMI,MachineInstr * MI,SmallSet<unsigned,8> & PhysRefs,SmallVectorImpl<unsigned> & PhysDefs,bool & NonLocal) const288 bool MachineCSE::PhysRegDefsReach(MachineInstr *CSMI, MachineInstr *MI,
289 SmallSet<unsigned,8> &PhysRefs,
290 SmallVectorImpl<unsigned> &PhysDefs,
291 bool &NonLocal) const {
292 // For now conservatively returns false if the common subexpression is
293 // not in the same basic block as the given instruction. The only exception
294 // is if the common subexpression is in the sole predecessor block.
295 const MachineBasicBlock *MBB = MI->getParent();
296 const MachineBasicBlock *CSMBB = CSMI->getParent();
297
298 bool CrossMBB = false;
299 if (CSMBB != MBB) {
300 if (MBB->pred_size() != 1 || *MBB->pred_begin() != CSMBB)
301 return false;
302
303 for (unsigned i = 0, e = PhysDefs.size(); i != e; ++i) {
304 if (MRI->isAllocatable(PhysDefs[i]) || MRI->isReserved(PhysDefs[i]))
305 // Avoid extending live range of physical registers if they are
306 //allocatable or reserved.
307 return false;
308 }
309 CrossMBB = true;
310 }
311 MachineBasicBlock::const_iterator I = CSMI; I = std::next(I);
312 MachineBasicBlock::const_iterator E = MI;
313 MachineBasicBlock::const_iterator EE = CSMBB->end();
314 unsigned LookAheadLeft = LookAheadLimit;
315 while (LookAheadLeft) {
316 // Skip over dbg_value's.
317 while (I != E && I != EE && I->isDebugInstr())
318 ++I;
319
320 if (I == EE) {
321 assert(CrossMBB && "Reaching end-of-MBB without finding MI?");
322 (void)CrossMBB;
323 CrossMBB = false;
324 NonLocal = true;
325 I = MBB->begin();
326 EE = MBB->end();
327 continue;
328 }
329
330 if (I == E)
331 return true;
332
333 for (const MachineOperand &MO : I->operands()) {
334 // RegMasks go on instructions like calls that clobber lots of physregs.
335 // Don't attempt to CSE across such an instruction.
336 if (MO.isRegMask())
337 return false;
338 if (!MO.isReg() || !MO.isDef())
339 continue;
340 unsigned MOReg = MO.getReg();
341 if (TargetRegisterInfo::isVirtualRegister(MOReg))
342 continue;
343 if (PhysRefs.count(MOReg))
344 return false;
345 }
346
347 --LookAheadLeft;
348 ++I;
349 }
350
351 return false;
352 }
353
isCSECandidate(MachineInstr * MI)354 bool MachineCSE::isCSECandidate(MachineInstr *MI) {
355 if (MI->isPosition() || MI->isPHI() || MI->isImplicitDef() || MI->isKill() ||
356 MI->isInlineAsm() || MI->isDebugInstr())
357 return false;
358
359 // Ignore copies.
360 if (MI->isCopyLike())
361 return false;
362
363 // Ignore stuff that we obviously can't move.
364 if (MI->mayStore() || MI->isCall() || MI->isTerminator() ||
365 MI->hasUnmodeledSideEffects())
366 return false;
367
368 if (MI->mayLoad()) {
369 // Okay, this instruction does a load. As a refinement, we allow the target
370 // to decide whether the loaded value is actually a constant. If so, we can
371 // actually use it as a load.
372 if (!MI->isDereferenceableInvariantLoad(AA))
373 // FIXME: we should be able to hoist loads with no other side effects if
374 // there are no other instructions which can change memory in this loop.
375 // This is a trivial form of alias analysis.
376 return false;
377 }
378
379 // Ignore stack guard loads, otherwise the register that holds CSEed value may
380 // be spilled and get loaded back with corrupted data.
381 if (MI->getOpcode() == TargetOpcode::LOAD_STACK_GUARD)
382 return false;
383
384 return true;
385 }
386
387 /// isProfitableToCSE - Return true if it's profitable to eliminate MI with a
388 /// common expression that defines Reg.
isProfitableToCSE(unsigned CSReg,unsigned Reg,MachineInstr * CSMI,MachineInstr * MI)389 bool MachineCSE::isProfitableToCSE(unsigned CSReg, unsigned Reg,
390 MachineInstr *CSMI, MachineInstr *MI) {
391 // FIXME: Heuristics that works around the lack the live range splitting.
392
393 // If CSReg is used at all uses of Reg, CSE should not increase register
394 // pressure of CSReg.
395 bool MayIncreasePressure = true;
396 if (TargetRegisterInfo::isVirtualRegister(CSReg) &&
397 TargetRegisterInfo::isVirtualRegister(Reg)) {
398 MayIncreasePressure = false;
399 SmallPtrSet<MachineInstr*, 8> CSUses;
400 for (MachineInstr &MI : MRI->use_nodbg_instructions(CSReg)) {
401 CSUses.insert(&MI);
402 }
403 for (MachineInstr &MI : MRI->use_nodbg_instructions(Reg)) {
404 if (!CSUses.count(&MI)) {
405 MayIncreasePressure = true;
406 break;
407 }
408 }
409 }
410 if (!MayIncreasePressure) return true;
411
412 // Heuristics #1: Don't CSE "cheap" computation if the def is not local or in
413 // an immediate predecessor. We don't want to increase register pressure and
414 // end up causing other computation to be spilled.
415 if (TII->isAsCheapAsAMove(*MI)) {
416 MachineBasicBlock *CSBB = CSMI->getParent();
417 MachineBasicBlock *BB = MI->getParent();
418 if (CSBB != BB && !CSBB->isSuccessor(BB))
419 return false;
420 }
421
422 // Heuristics #2: If the expression doesn't not use a vr and the only use
423 // of the redundant computation are copies, do not cse.
424 bool HasVRegUse = false;
425 for (const MachineOperand &MO : MI->operands()) {
426 if (MO.isReg() && MO.isUse() &&
427 TargetRegisterInfo::isVirtualRegister(MO.getReg())) {
428 HasVRegUse = true;
429 break;
430 }
431 }
432 if (!HasVRegUse) {
433 bool HasNonCopyUse = false;
434 for (MachineInstr &MI : MRI->use_nodbg_instructions(Reg)) {
435 // Ignore copies.
436 if (!MI.isCopyLike()) {
437 HasNonCopyUse = true;
438 break;
439 }
440 }
441 if (!HasNonCopyUse)
442 return false;
443 }
444
445 // Heuristics #3: If the common subexpression is used by PHIs, do not reuse
446 // it unless the defined value is already used in the BB of the new use.
447 bool HasPHI = false;
448 for (MachineInstr &UseMI : MRI->use_nodbg_instructions(CSReg)) {
449 HasPHI |= UseMI.isPHI();
450 if (UseMI.getParent() == MI->getParent())
451 return true;
452 }
453
454 return !HasPHI;
455 }
456
EnterScope(MachineBasicBlock * MBB)457 void MachineCSE::EnterScope(MachineBasicBlock *MBB) {
458 LLVM_DEBUG(dbgs() << "Entering: " << MBB->getName() << '\n');
459 ScopeType *Scope = new ScopeType(VNT);
460 ScopeMap[MBB] = Scope;
461 }
462
ExitScope(MachineBasicBlock * MBB)463 void MachineCSE::ExitScope(MachineBasicBlock *MBB) {
464 LLVM_DEBUG(dbgs() << "Exiting: " << MBB->getName() << '\n');
465 DenseMap<MachineBasicBlock*, ScopeType*>::iterator SI = ScopeMap.find(MBB);
466 assert(SI != ScopeMap.end());
467 delete SI->second;
468 ScopeMap.erase(SI);
469 }
470
ProcessBlock(MachineBasicBlock * MBB)471 bool MachineCSE::ProcessBlock(MachineBasicBlock *MBB) {
472 bool Changed = false;
473
474 SmallVector<std::pair<unsigned, unsigned>, 8> CSEPairs;
475 SmallVector<unsigned, 2> ImplicitDefsToUpdate;
476 SmallVector<unsigned, 2> ImplicitDefs;
477 for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end(); I != E; ) {
478 MachineInstr *MI = &*I;
479 ++I;
480
481 if (!isCSECandidate(MI))
482 continue;
483
484 bool FoundCSE = VNT.count(MI);
485 if (!FoundCSE) {
486 // Using trivial copy propagation to find more CSE opportunities.
487 if (PerformTrivialCopyPropagation(MI, MBB)) {
488 Changed = true;
489
490 // After coalescing MI itself may become a copy.
491 if (MI->isCopyLike())
492 continue;
493
494 // Try again to see if CSE is possible.
495 FoundCSE = VNT.count(MI);
496 }
497 }
498
499 // Commute commutable instructions.
500 bool Commuted = false;
501 if (!FoundCSE && MI->isCommutable()) {
502 if (MachineInstr *NewMI = TII->commuteInstruction(*MI)) {
503 Commuted = true;
504 FoundCSE = VNT.count(NewMI);
505 if (NewMI != MI) {
506 // New instruction. It doesn't need to be kept.
507 NewMI->eraseFromParent();
508 Changed = true;
509 } else if (!FoundCSE)
510 // MI was changed but it didn't help, commute it back!
511 (void)TII->commuteInstruction(*MI);
512 }
513 }
514
515 // If the instruction defines physical registers and the values *may* be
516 // used, then it's not safe to replace it with a common subexpression.
517 // It's also not safe if the instruction uses physical registers.
518 bool CrossMBBPhysDef = false;
519 SmallSet<unsigned, 8> PhysRefs;
520 SmallVector<unsigned, 2> PhysDefs;
521 bool PhysUseDef = false;
522 if (FoundCSE && hasLivePhysRegDefUses(MI, MBB, PhysRefs,
523 PhysDefs, PhysUseDef)) {
524 FoundCSE = false;
525
526 // ... Unless the CS is local or is in the sole predecessor block
527 // and it also defines the physical register which is not clobbered
528 // in between and the physical register uses were not clobbered.
529 // This can never be the case if the instruction both uses and
530 // defines the same physical register, which was detected above.
531 if (!PhysUseDef) {
532 unsigned CSVN = VNT.lookup(MI);
533 MachineInstr *CSMI = Exps[CSVN];
534 if (PhysRegDefsReach(CSMI, MI, PhysRefs, PhysDefs, CrossMBBPhysDef))
535 FoundCSE = true;
536 }
537 }
538
539 if (!FoundCSE) {
540 VNT.insert(MI, CurrVN++);
541 Exps.push_back(MI);
542 continue;
543 }
544
545 // Found a common subexpression, eliminate it.
546 unsigned CSVN = VNT.lookup(MI);
547 MachineInstr *CSMI = Exps[CSVN];
548 LLVM_DEBUG(dbgs() << "Examining: " << *MI);
549 LLVM_DEBUG(dbgs() << "*** Found a common subexpression: " << *CSMI);
550
551 // Check if it's profitable to perform this CSE.
552 bool DoCSE = true;
553 unsigned NumDefs = MI->getNumDefs();
554
555 for (unsigned i = 0, e = MI->getNumOperands(); NumDefs && i != e; ++i) {
556 MachineOperand &MO = MI->getOperand(i);
557 if (!MO.isReg() || !MO.isDef())
558 continue;
559 unsigned OldReg = MO.getReg();
560 unsigned NewReg = CSMI->getOperand(i).getReg();
561
562 // Go through implicit defs of CSMI and MI, if a def is not dead at MI,
563 // we should make sure it is not dead at CSMI.
564 if (MO.isImplicit() && !MO.isDead() && CSMI->getOperand(i).isDead())
565 ImplicitDefsToUpdate.push_back(i);
566
567 // Keep track of implicit defs of CSMI and MI, to clear possibly
568 // made-redundant kill flags.
569 if (MO.isImplicit() && !MO.isDead() && OldReg == NewReg)
570 ImplicitDefs.push_back(OldReg);
571
572 if (OldReg == NewReg) {
573 --NumDefs;
574 continue;
575 }
576
577 assert(TargetRegisterInfo::isVirtualRegister(OldReg) &&
578 TargetRegisterInfo::isVirtualRegister(NewReg) &&
579 "Do not CSE physical register defs!");
580
581 if (!isProfitableToCSE(NewReg, OldReg, CSMI, MI)) {
582 LLVM_DEBUG(dbgs() << "*** Not profitable, avoid CSE!\n");
583 DoCSE = false;
584 break;
585 }
586
587 // Don't perform CSE if the result of the new instruction cannot exist
588 // within the constraints (register class, bank, or low-level type) of
589 // the old instruction.
590 if (!MRI->constrainRegAttrs(NewReg, OldReg)) {
591 LLVM_DEBUG(
592 dbgs() << "*** Not the same register constraints, avoid CSE!\n");
593 DoCSE = false;
594 break;
595 }
596
597 CSEPairs.push_back(std::make_pair(OldReg, NewReg));
598 --NumDefs;
599 }
600
601 // Actually perform the elimination.
602 if (DoCSE) {
603 for (std::pair<unsigned, unsigned> &CSEPair : CSEPairs) {
604 unsigned OldReg = CSEPair.first;
605 unsigned NewReg = CSEPair.second;
606 // OldReg may have been unused but is used now, clear the Dead flag
607 MachineInstr *Def = MRI->getUniqueVRegDef(NewReg);
608 assert(Def != nullptr && "CSEd register has no unique definition?");
609 Def->clearRegisterDeads(NewReg);
610 // Replace with NewReg and clear kill flags which may be wrong now.
611 MRI->replaceRegWith(OldReg, NewReg);
612 MRI->clearKillFlags(NewReg);
613 }
614
615 // Go through implicit defs of CSMI and MI, if a def is not dead at MI,
616 // we should make sure it is not dead at CSMI.
617 for (unsigned ImplicitDefToUpdate : ImplicitDefsToUpdate)
618 CSMI->getOperand(ImplicitDefToUpdate).setIsDead(false);
619
620 // Go through implicit defs of CSMI and MI, and clear the kill flags on
621 // their uses in all the instructions between CSMI and MI.
622 // We might have made some of the kill flags redundant, consider:
623 // subs ... implicit-def %nzcv <- CSMI
624 // csinc ... implicit killed %nzcv <- this kill flag isn't valid anymore
625 // subs ... implicit-def %nzcv <- MI, to be eliminated
626 // csinc ... implicit killed %nzcv
627 // Since we eliminated MI, and reused a register imp-def'd by CSMI
628 // (here %nzcv), that register, if it was killed before MI, should have
629 // that kill flag removed, because it's lifetime was extended.
630 if (CSMI->getParent() == MI->getParent()) {
631 for (MachineBasicBlock::iterator II = CSMI, IE = MI; II != IE; ++II)
632 for (auto ImplicitDef : ImplicitDefs)
633 if (MachineOperand *MO = II->findRegisterUseOperand(
634 ImplicitDef, /*isKill=*/true, TRI))
635 MO->setIsKill(false);
636 } else {
637 // If the instructions aren't in the same BB, bail out and clear the
638 // kill flag on all uses of the imp-def'd register.
639 for (auto ImplicitDef : ImplicitDefs)
640 MRI->clearKillFlags(ImplicitDef);
641 }
642
643 if (CrossMBBPhysDef) {
644 // Add physical register defs now coming in from a predecessor to MBB
645 // livein list.
646 while (!PhysDefs.empty()) {
647 unsigned LiveIn = PhysDefs.pop_back_val();
648 if (!MBB->isLiveIn(LiveIn))
649 MBB->addLiveIn(LiveIn);
650 }
651 ++NumCrossBBCSEs;
652 }
653
654 MI->eraseFromParent();
655 ++NumCSEs;
656 if (!PhysRefs.empty())
657 ++NumPhysCSEs;
658 if (Commuted)
659 ++NumCommutes;
660 Changed = true;
661 } else {
662 VNT.insert(MI, CurrVN++);
663 Exps.push_back(MI);
664 }
665 CSEPairs.clear();
666 ImplicitDefsToUpdate.clear();
667 ImplicitDefs.clear();
668 }
669
670 return Changed;
671 }
672
673 /// ExitScopeIfDone - Destroy scope for the MBB that corresponds to the given
674 /// dominator tree node if its a leaf or all of its children are done. Walk
675 /// up the dominator tree to destroy ancestors which are now done.
676 void
ExitScopeIfDone(MachineDomTreeNode * Node,DenseMap<MachineDomTreeNode *,unsigned> & OpenChildren)677 MachineCSE::ExitScopeIfDone(MachineDomTreeNode *Node,
678 DenseMap<MachineDomTreeNode*, unsigned> &OpenChildren) {
679 if (OpenChildren[Node])
680 return;
681
682 // Pop scope.
683 ExitScope(Node->getBlock());
684
685 // Now traverse upwards to pop ancestors whose offsprings are all done.
686 while (MachineDomTreeNode *Parent = Node->getIDom()) {
687 unsigned Left = --OpenChildren[Parent];
688 if (Left != 0)
689 break;
690 ExitScope(Parent->getBlock());
691 Node = Parent;
692 }
693 }
694
PerformCSE(MachineDomTreeNode * Node)695 bool MachineCSE::PerformCSE(MachineDomTreeNode *Node) {
696 SmallVector<MachineDomTreeNode*, 32> Scopes;
697 SmallVector<MachineDomTreeNode*, 8> WorkList;
698 DenseMap<MachineDomTreeNode*, unsigned> OpenChildren;
699
700 CurrVN = 0;
701
702 // Perform a DFS walk to determine the order of visit.
703 WorkList.push_back(Node);
704 do {
705 Node = WorkList.pop_back_val();
706 Scopes.push_back(Node);
707 const std::vector<MachineDomTreeNode*> &Children = Node->getChildren();
708 OpenChildren[Node] = Children.size();
709 for (MachineDomTreeNode *Child : Children)
710 WorkList.push_back(Child);
711 } while (!WorkList.empty());
712
713 // Now perform CSE.
714 bool Changed = false;
715 for (MachineDomTreeNode *Node : Scopes) {
716 MachineBasicBlock *MBB = Node->getBlock();
717 EnterScope(MBB);
718 Changed |= ProcessBlock(MBB);
719 // If it's a leaf node, it's done. Traverse upwards to pop ancestors.
720 ExitScopeIfDone(Node, OpenChildren);
721 }
722
723 return Changed;
724 }
725
runOnMachineFunction(MachineFunction & MF)726 bool MachineCSE::runOnMachineFunction(MachineFunction &MF) {
727 if (skipFunction(MF.getFunction()))
728 return false;
729
730 TII = MF.getSubtarget().getInstrInfo();
731 TRI = MF.getSubtarget().getRegisterInfo();
732 MRI = &MF.getRegInfo();
733 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
734 DT = &getAnalysis<MachineDominatorTree>();
735 LookAheadLimit = TII->getMachineCSELookAheadLimit();
736 return PerformCSE(DT->getRootNode());
737 }
738