1 //===- MachineCSE.cpp - Machine Common Subexpression Elimination Pass -----===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass performs global common subexpression elimination on machine
11 // instructions using a scoped hash table based value numbering scheme. It
12 // must be run while the machine function is still in SSA form.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/ScopedHashTable.h"
18 #include "llvm/ADT/SmallPtrSet.h"
19 #include "llvm/ADT/SmallSet.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/Analysis/AliasAnalysis.h"
23 #include "llvm/CodeGen/MachineBasicBlock.h"
24 #include "llvm/CodeGen/MachineDominators.h"
25 #include "llvm/CodeGen/MachineFunction.h"
26 #include "llvm/CodeGen/MachineFunctionPass.h"
27 #include "llvm/CodeGen/MachineInstr.h"
28 #include "llvm/CodeGen/MachineOperand.h"
29 #include "llvm/CodeGen/MachineRegisterInfo.h"
30 #include "llvm/CodeGen/Passes.h"
31 #include "llvm/CodeGen/TargetInstrInfo.h"
32 #include "llvm/CodeGen/TargetOpcodes.h"
33 #include "llvm/CodeGen/TargetRegisterInfo.h"
34 #include "llvm/CodeGen/TargetSubtargetInfo.h"
35 #include "llvm/MC/MCInstrDesc.h"
36 #include "llvm/MC/MCRegisterInfo.h"
37 #include "llvm/Pass.h"
38 #include "llvm/Support/Allocator.h"
39 #include "llvm/Support/Debug.h"
40 #include "llvm/Support/RecyclingAllocator.h"
41 #include "llvm/Support/raw_ostream.h"
42 #include <cassert>
43 #include <iterator>
44 #include <utility>
45 #include <vector>
46 
47 using namespace llvm;
48 
49 #define DEBUG_TYPE "machine-cse"
50 
51 STATISTIC(NumCoalesces, "Number of copies coalesced");
52 STATISTIC(NumCSEs,      "Number of common subexpression eliminated");
53 STATISTIC(NumPhysCSEs,
54           "Number of physreg referencing common subexpr eliminated");
55 STATISTIC(NumCrossBBCSEs,
56           "Number of cross-MBB physreg referencing CS eliminated");
57 STATISTIC(NumCommutes,  "Number of copies coalesced after commuting");
58 
59 namespace {
60 
61   class MachineCSE : public MachineFunctionPass {
62     const TargetInstrInfo *TII;
63     const TargetRegisterInfo *TRI;
64     AliasAnalysis *AA;
65     MachineDominatorTree *DT;
66     MachineRegisterInfo *MRI;
67 
68   public:
69     static char ID; // Pass identification
70 
MachineCSE()71     MachineCSE() : MachineFunctionPass(ID) {
72       initializeMachineCSEPass(*PassRegistry::getPassRegistry());
73     }
74 
75     bool runOnMachineFunction(MachineFunction &MF) override;
76 
getAnalysisUsage(AnalysisUsage & AU) const77     void getAnalysisUsage(AnalysisUsage &AU) const override {
78       AU.setPreservesCFG();
79       MachineFunctionPass::getAnalysisUsage(AU);
80       AU.addRequired<AAResultsWrapperPass>();
81       AU.addPreservedID(MachineLoopInfoID);
82       AU.addRequired<MachineDominatorTree>();
83       AU.addPreserved<MachineDominatorTree>();
84     }
85 
releaseMemory()86     void releaseMemory() override {
87       ScopeMap.clear();
88       Exps.clear();
89     }
90 
91   private:
92     using AllocatorTy = RecyclingAllocator<BumpPtrAllocator,
93                             ScopedHashTableVal<MachineInstr *, unsigned>>;
94     using ScopedHTType =
95         ScopedHashTable<MachineInstr *, unsigned, MachineInstrExpressionTrait,
96                         AllocatorTy>;
97     using ScopeType = ScopedHTType::ScopeTy;
98 
99     unsigned LookAheadLimit = 0;
100     DenseMap<MachineBasicBlock *, ScopeType *> ScopeMap;
101     ScopedHTType VNT;
102     SmallVector<MachineInstr *, 64> Exps;
103     unsigned CurrVN = 0;
104 
105     bool PerformTrivialCopyPropagation(MachineInstr *MI,
106                                        MachineBasicBlock *MBB);
107     bool isPhysDefTriviallyDead(unsigned Reg,
108                                 MachineBasicBlock::const_iterator I,
109                                 MachineBasicBlock::const_iterator E) const;
110     bool hasLivePhysRegDefUses(const MachineInstr *MI,
111                                const MachineBasicBlock *MBB,
112                                SmallSet<unsigned,8> &PhysRefs,
113                                SmallVectorImpl<unsigned> &PhysDefs,
114                                bool &PhysUseDef) const;
115     bool PhysRegDefsReach(MachineInstr *CSMI, MachineInstr *MI,
116                           SmallSet<unsigned,8> &PhysRefs,
117                           SmallVectorImpl<unsigned> &PhysDefs,
118                           bool &NonLocal) const;
119     bool isCSECandidate(MachineInstr *MI);
120     bool isProfitableToCSE(unsigned CSReg, unsigned Reg,
121                            MachineInstr *CSMI, MachineInstr *MI);
122     void EnterScope(MachineBasicBlock *MBB);
123     void ExitScope(MachineBasicBlock *MBB);
124     bool ProcessBlock(MachineBasicBlock *MBB);
125     void ExitScopeIfDone(MachineDomTreeNode *Node,
126                          DenseMap<MachineDomTreeNode*, unsigned> &OpenChildren);
127     bool PerformCSE(MachineDomTreeNode *Node);
128   };
129 
130 } // end anonymous namespace
131 
132 char MachineCSE::ID = 0;
133 
134 char &llvm::MachineCSEID = MachineCSE::ID;
135 
136 INITIALIZE_PASS_BEGIN(MachineCSE, DEBUG_TYPE,
137                       "Machine Common Subexpression Elimination", false, false)
INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)138 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
139 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
140 INITIALIZE_PASS_END(MachineCSE, DEBUG_TYPE,
141                     "Machine Common Subexpression Elimination", false, false)
142 
143 /// The source register of a COPY machine instruction can be propagated to all
144 /// its users, and this propagation could increase the probability of finding
145 /// common subexpressions. If the COPY has only one user, the COPY itself can
146 /// be removed.
147 bool MachineCSE::PerformTrivialCopyPropagation(MachineInstr *MI,
148                                                MachineBasicBlock *MBB) {
149   bool Changed = false;
150   for (MachineOperand &MO : MI->operands()) {
151     if (!MO.isReg() || !MO.isUse())
152       continue;
153     unsigned Reg = MO.getReg();
154     if (!TargetRegisterInfo::isVirtualRegister(Reg))
155       continue;
156     bool OnlyOneUse = MRI->hasOneNonDBGUse(Reg);
157     MachineInstr *DefMI = MRI->getVRegDef(Reg);
158     if (!DefMI->isCopy())
159       continue;
160     unsigned SrcReg = DefMI->getOperand(1).getReg();
161     if (!TargetRegisterInfo::isVirtualRegister(SrcReg))
162       continue;
163     if (DefMI->getOperand(0).getSubReg())
164       continue;
165     // FIXME: We should trivially coalesce subregister copies to expose CSE
166     // opportunities on instructions with truncated operands (see
167     // cse-add-with-overflow.ll). This can be done here as follows:
168     // if (SrcSubReg)
169     //  RC = TRI->getMatchingSuperRegClass(MRI->getRegClass(SrcReg), RC,
170     //                                     SrcSubReg);
171     // MO.substVirtReg(SrcReg, SrcSubReg, *TRI);
172     //
173     // The 2-addr pass has been updated to handle coalesced subregs. However,
174     // some machine-specific code still can't handle it.
175     // To handle it properly we also need a way find a constrained subregister
176     // class given a super-reg class and subreg index.
177     if (DefMI->getOperand(1).getSubReg())
178       continue;
179     if (!MRI->constrainRegAttrs(SrcReg, Reg))
180       continue;
181     LLVM_DEBUG(dbgs() << "Coalescing: " << *DefMI);
182     LLVM_DEBUG(dbgs() << "***     to: " << *MI);
183     // Propagate SrcReg of copies to MI.
184     MO.setReg(SrcReg);
185     MRI->clearKillFlags(SrcReg);
186     // Coalesce single use copies.
187     if (OnlyOneUse) {
188       DefMI->eraseFromParent();
189       ++NumCoalesces;
190     }
191     Changed = true;
192   }
193 
194   return Changed;
195 }
196 
197 bool
isPhysDefTriviallyDead(unsigned Reg,MachineBasicBlock::const_iterator I,MachineBasicBlock::const_iterator E) const198 MachineCSE::isPhysDefTriviallyDead(unsigned Reg,
199                                    MachineBasicBlock::const_iterator I,
200                                    MachineBasicBlock::const_iterator E) const {
201   unsigned LookAheadLeft = LookAheadLimit;
202   while (LookAheadLeft) {
203     // Skip over dbg_value's.
204     I = skipDebugInstructionsForward(I, E);
205 
206     if (I == E)
207       // Reached end of block, we don't know if register is dead or not.
208       return false;
209 
210     bool SeenDef = false;
211     for (const MachineOperand &MO : I->operands()) {
212       if (MO.isRegMask() && MO.clobbersPhysReg(Reg))
213         SeenDef = true;
214       if (!MO.isReg() || !MO.getReg())
215         continue;
216       if (!TRI->regsOverlap(MO.getReg(), Reg))
217         continue;
218       if (MO.isUse())
219         // Found a use!
220         return false;
221       SeenDef = true;
222     }
223     if (SeenDef)
224       // See a def of Reg (or an alias) before encountering any use, it's
225       // trivially dead.
226       return true;
227 
228     --LookAheadLeft;
229     ++I;
230   }
231   return false;
232 }
233 
234 /// hasLivePhysRegDefUses - Return true if the specified instruction read/write
235 /// physical registers (except for dead defs of physical registers). It also
236 /// returns the physical register def by reference if it's the only one and the
237 /// instruction does not uses a physical register.
hasLivePhysRegDefUses(const MachineInstr * MI,const MachineBasicBlock * MBB,SmallSet<unsigned,8> & PhysRefs,SmallVectorImpl<unsigned> & PhysDefs,bool & PhysUseDef) const238 bool MachineCSE::hasLivePhysRegDefUses(const MachineInstr *MI,
239                                        const MachineBasicBlock *MBB,
240                                        SmallSet<unsigned,8> &PhysRefs,
241                                        SmallVectorImpl<unsigned> &PhysDefs,
242                                        bool &PhysUseDef) const{
243   // First, add all uses to PhysRefs.
244   for (const MachineOperand &MO : MI->operands()) {
245     if (!MO.isReg() || MO.isDef())
246       continue;
247     unsigned Reg = MO.getReg();
248     if (!Reg)
249       continue;
250     if (TargetRegisterInfo::isVirtualRegister(Reg))
251       continue;
252     // Reading either caller preserved or constant physregs is ok.
253     if (!MRI->isCallerPreservedOrConstPhysReg(Reg))
254       for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI)
255         PhysRefs.insert(*AI);
256   }
257 
258   // Next, collect all defs into PhysDefs.  If any is already in PhysRefs
259   // (which currently contains only uses), set the PhysUseDef flag.
260   PhysUseDef = false;
261   MachineBasicBlock::const_iterator I = MI; I = std::next(I);
262   for (const MachineOperand &MO : MI->operands()) {
263     if (!MO.isReg() || !MO.isDef())
264       continue;
265     unsigned Reg = MO.getReg();
266     if (!Reg)
267       continue;
268     if (TargetRegisterInfo::isVirtualRegister(Reg))
269       continue;
270     // Check against PhysRefs even if the def is "dead".
271     if (PhysRefs.count(Reg))
272       PhysUseDef = true;
273     // If the def is dead, it's ok. But the def may not marked "dead". That's
274     // common since this pass is run before livevariables. We can scan
275     // forward a few instructions and check if it is obviously dead.
276     if (!MO.isDead() && !isPhysDefTriviallyDead(Reg, I, MBB->end()))
277       PhysDefs.push_back(Reg);
278   }
279 
280   // Finally, add all defs to PhysRefs as well.
281   for (unsigned i = 0, e = PhysDefs.size(); i != e; ++i)
282     for (MCRegAliasIterator AI(PhysDefs[i], TRI, true); AI.isValid(); ++AI)
283       PhysRefs.insert(*AI);
284 
285   return !PhysRefs.empty();
286 }
287 
PhysRegDefsReach(MachineInstr * CSMI,MachineInstr * MI,SmallSet<unsigned,8> & PhysRefs,SmallVectorImpl<unsigned> & PhysDefs,bool & NonLocal) const288 bool MachineCSE::PhysRegDefsReach(MachineInstr *CSMI, MachineInstr *MI,
289                                   SmallSet<unsigned,8> &PhysRefs,
290                                   SmallVectorImpl<unsigned> &PhysDefs,
291                                   bool &NonLocal) const {
292   // For now conservatively returns false if the common subexpression is
293   // not in the same basic block as the given instruction. The only exception
294   // is if the common subexpression is in the sole predecessor block.
295   const MachineBasicBlock *MBB = MI->getParent();
296   const MachineBasicBlock *CSMBB = CSMI->getParent();
297 
298   bool CrossMBB = false;
299   if (CSMBB != MBB) {
300     if (MBB->pred_size() != 1 || *MBB->pred_begin() != CSMBB)
301       return false;
302 
303     for (unsigned i = 0, e = PhysDefs.size(); i != e; ++i) {
304       if (MRI->isAllocatable(PhysDefs[i]) || MRI->isReserved(PhysDefs[i]))
305         // Avoid extending live range of physical registers if they are
306         //allocatable or reserved.
307         return false;
308     }
309     CrossMBB = true;
310   }
311   MachineBasicBlock::const_iterator I = CSMI; I = std::next(I);
312   MachineBasicBlock::const_iterator E = MI;
313   MachineBasicBlock::const_iterator EE = CSMBB->end();
314   unsigned LookAheadLeft = LookAheadLimit;
315   while (LookAheadLeft) {
316     // Skip over dbg_value's.
317     while (I != E && I != EE && I->isDebugInstr())
318       ++I;
319 
320     if (I == EE) {
321       assert(CrossMBB && "Reaching end-of-MBB without finding MI?");
322       (void)CrossMBB;
323       CrossMBB = false;
324       NonLocal = true;
325       I = MBB->begin();
326       EE = MBB->end();
327       continue;
328     }
329 
330     if (I == E)
331       return true;
332 
333     for (const MachineOperand &MO : I->operands()) {
334       // RegMasks go on instructions like calls that clobber lots of physregs.
335       // Don't attempt to CSE across such an instruction.
336       if (MO.isRegMask())
337         return false;
338       if (!MO.isReg() || !MO.isDef())
339         continue;
340       unsigned MOReg = MO.getReg();
341       if (TargetRegisterInfo::isVirtualRegister(MOReg))
342         continue;
343       if (PhysRefs.count(MOReg))
344         return false;
345     }
346 
347     --LookAheadLeft;
348     ++I;
349   }
350 
351   return false;
352 }
353 
isCSECandidate(MachineInstr * MI)354 bool MachineCSE::isCSECandidate(MachineInstr *MI) {
355   if (MI->isPosition() || MI->isPHI() || MI->isImplicitDef() || MI->isKill() ||
356       MI->isInlineAsm() || MI->isDebugInstr())
357     return false;
358 
359   // Ignore copies.
360   if (MI->isCopyLike())
361     return false;
362 
363   // Ignore stuff that we obviously can't move.
364   if (MI->mayStore() || MI->isCall() || MI->isTerminator() ||
365       MI->hasUnmodeledSideEffects())
366     return false;
367 
368   if (MI->mayLoad()) {
369     // Okay, this instruction does a load. As a refinement, we allow the target
370     // to decide whether the loaded value is actually a constant. If so, we can
371     // actually use it as a load.
372     if (!MI->isDereferenceableInvariantLoad(AA))
373       // FIXME: we should be able to hoist loads with no other side effects if
374       // there are no other instructions which can change memory in this loop.
375       // This is a trivial form of alias analysis.
376       return false;
377   }
378 
379   // Ignore stack guard loads, otherwise the register that holds CSEed value may
380   // be spilled and get loaded back with corrupted data.
381   if (MI->getOpcode() == TargetOpcode::LOAD_STACK_GUARD)
382     return false;
383 
384   return true;
385 }
386 
387 /// isProfitableToCSE - Return true if it's profitable to eliminate MI with a
388 /// common expression that defines Reg.
isProfitableToCSE(unsigned CSReg,unsigned Reg,MachineInstr * CSMI,MachineInstr * MI)389 bool MachineCSE::isProfitableToCSE(unsigned CSReg, unsigned Reg,
390                                    MachineInstr *CSMI, MachineInstr *MI) {
391   // FIXME: Heuristics that works around the lack the live range splitting.
392 
393   // If CSReg is used at all uses of Reg, CSE should not increase register
394   // pressure of CSReg.
395   bool MayIncreasePressure = true;
396   if (TargetRegisterInfo::isVirtualRegister(CSReg) &&
397       TargetRegisterInfo::isVirtualRegister(Reg)) {
398     MayIncreasePressure = false;
399     SmallPtrSet<MachineInstr*, 8> CSUses;
400     for (MachineInstr &MI : MRI->use_nodbg_instructions(CSReg)) {
401       CSUses.insert(&MI);
402     }
403     for (MachineInstr &MI : MRI->use_nodbg_instructions(Reg)) {
404       if (!CSUses.count(&MI)) {
405         MayIncreasePressure = true;
406         break;
407       }
408     }
409   }
410   if (!MayIncreasePressure) return true;
411 
412   // Heuristics #1: Don't CSE "cheap" computation if the def is not local or in
413   // an immediate predecessor. We don't want to increase register pressure and
414   // end up causing other computation to be spilled.
415   if (TII->isAsCheapAsAMove(*MI)) {
416     MachineBasicBlock *CSBB = CSMI->getParent();
417     MachineBasicBlock *BB = MI->getParent();
418     if (CSBB != BB && !CSBB->isSuccessor(BB))
419       return false;
420   }
421 
422   // Heuristics #2: If the expression doesn't not use a vr and the only use
423   // of the redundant computation are copies, do not cse.
424   bool HasVRegUse = false;
425   for (const MachineOperand &MO : MI->operands()) {
426     if (MO.isReg() && MO.isUse() &&
427         TargetRegisterInfo::isVirtualRegister(MO.getReg())) {
428       HasVRegUse = true;
429       break;
430     }
431   }
432   if (!HasVRegUse) {
433     bool HasNonCopyUse = false;
434     for (MachineInstr &MI : MRI->use_nodbg_instructions(Reg)) {
435       // Ignore copies.
436       if (!MI.isCopyLike()) {
437         HasNonCopyUse = true;
438         break;
439       }
440     }
441     if (!HasNonCopyUse)
442       return false;
443   }
444 
445   // Heuristics #3: If the common subexpression is used by PHIs, do not reuse
446   // it unless the defined value is already used in the BB of the new use.
447   bool HasPHI = false;
448   for (MachineInstr &UseMI : MRI->use_nodbg_instructions(CSReg)) {
449     HasPHI |= UseMI.isPHI();
450     if (UseMI.getParent() == MI->getParent())
451       return true;
452   }
453 
454   return !HasPHI;
455 }
456 
EnterScope(MachineBasicBlock * MBB)457 void MachineCSE::EnterScope(MachineBasicBlock *MBB) {
458   LLVM_DEBUG(dbgs() << "Entering: " << MBB->getName() << '\n');
459   ScopeType *Scope = new ScopeType(VNT);
460   ScopeMap[MBB] = Scope;
461 }
462 
ExitScope(MachineBasicBlock * MBB)463 void MachineCSE::ExitScope(MachineBasicBlock *MBB) {
464   LLVM_DEBUG(dbgs() << "Exiting: " << MBB->getName() << '\n');
465   DenseMap<MachineBasicBlock*, ScopeType*>::iterator SI = ScopeMap.find(MBB);
466   assert(SI != ScopeMap.end());
467   delete SI->second;
468   ScopeMap.erase(SI);
469 }
470 
ProcessBlock(MachineBasicBlock * MBB)471 bool MachineCSE::ProcessBlock(MachineBasicBlock *MBB) {
472   bool Changed = false;
473 
474   SmallVector<std::pair<unsigned, unsigned>, 8> CSEPairs;
475   SmallVector<unsigned, 2> ImplicitDefsToUpdate;
476   SmallVector<unsigned, 2> ImplicitDefs;
477   for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end(); I != E; ) {
478     MachineInstr *MI = &*I;
479     ++I;
480 
481     if (!isCSECandidate(MI))
482       continue;
483 
484     bool FoundCSE = VNT.count(MI);
485     if (!FoundCSE) {
486       // Using trivial copy propagation to find more CSE opportunities.
487       if (PerformTrivialCopyPropagation(MI, MBB)) {
488         Changed = true;
489 
490         // After coalescing MI itself may become a copy.
491         if (MI->isCopyLike())
492           continue;
493 
494         // Try again to see if CSE is possible.
495         FoundCSE = VNT.count(MI);
496       }
497     }
498 
499     // Commute commutable instructions.
500     bool Commuted = false;
501     if (!FoundCSE && MI->isCommutable()) {
502       if (MachineInstr *NewMI = TII->commuteInstruction(*MI)) {
503         Commuted = true;
504         FoundCSE = VNT.count(NewMI);
505         if (NewMI != MI) {
506           // New instruction. It doesn't need to be kept.
507           NewMI->eraseFromParent();
508           Changed = true;
509         } else if (!FoundCSE)
510           // MI was changed but it didn't help, commute it back!
511           (void)TII->commuteInstruction(*MI);
512       }
513     }
514 
515     // If the instruction defines physical registers and the values *may* be
516     // used, then it's not safe to replace it with a common subexpression.
517     // It's also not safe if the instruction uses physical registers.
518     bool CrossMBBPhysDef = false;
519     SmallSet<unsigned, 8> PhysRefs;
520     SmallVector<unsigned, 2> PhysDefs;
521     bool PhysUseDef = false;
522     if (FoundCSE && hasLivePhysRegDefUses(MI, MBB, PhysRefs,
523                                           PhysDefs, PhysUseDef)) {
524       FoundCSE = false;
525 
526       // ... Unless the CS is local or is in the sole predecessor block
527       // and it also defines the physical register which is not clobbered
528       // in between and the physical register uses were not clobbered.
529       // This can never be the case if the instruction both uses and
530       // defines the same physical register, which was detected above.
531       if (!PhysUseDef) {
532         unsigned CSVN = VNT.lookup(MI);
533         MachineInstr *CSMI = Exps[CSVN];
534         if (PhysRegDefsReach(CSMI, MI, PhysRefs, PhysDefs, CrossMBBPhysDef))
535           FoundCSE = true;
536       }
537     }
538 
539     if (!FoundCSE) {
540       VNT.insert(MI, CurrVN++);
541       Exps.push_back(MI);
542       continue;
543     }
544 
545     // Found a common subexpression, eliminate it.
546     unsigned CSVN = VNT.lookup(MI);
547     MachineInstr *CSMI = Exps[CSVN];
548     LLVM_DEBUG(dbgs() << "Examining: " << *MI);
549     LLVM_DEBUG(dbgs() << "*** Found a common subexpression: " << *CSMI);
550 
551     // Check if it's profitable to perform this CSE.
552     bool DoCSE = true;
553     unsigned NumDefs = MI->getNumDefs();
554 
555     for (unsigned i = 0, e = MI->getNumOperands(); NumDefs && i != e; ++i) {
556       MachineOperand &MO = MI->getOperand(i);
557       if (!MO.isReg() || !MO.isDef())
558         continue;
559       unsigned OldReg = MO.getReg();
560       unsigned NewReg = CSMI->getOperand(i).getReg();
561 
562       // Go through implicit defs of CSMI and MI, if a def is not dead at MI,
563       // we should make sure it is not dead at CSMI.
564       if (MO.isImplicit() && !MO.isDead() && CSMI->getOperand(i).isDead())
565         ImplicitDefsToUpdate.push_back(i);
566 
567       // Keep track of implicit defs of CSMI and MI, to clear possibly
568       // made-redundant kill flags.
569       if (MO.isImplicit() && !MO.isDead() && OldReg == NewReg)
570         ImplicitDefs.push_back(OldReg);
571 
572       if (OldReg == NewReg) {
573         --NumDefs;
574         continue;
575       }
576 
577       assert(TargetRegisterInfo::isVirtualRegister(OldReg) &&
578              TargetRegisterInfo::isVirtualRegister(NewReg) &&
579              "Do not CSE physical register defs!");
580 
581       if (!isProfitableToCSE(NewReg, OldReg, CSMI, MI)) {
582         LLVM_DEBUG(dbgs() << "*** Not profitable, avoid CSE!\n");
583         DoCSE = false;
584         break;
585       }
586 
587       // Don't perform CSE if the result of the new instruction cannot exist
588       // within the constraints (register class, bank, or low-level type) of
589       // the old instruction.
590       if (!MRI->constrainRegAttrs(NewReg, OldReg)) {
591         LLVM_DEBUG(
592             dbgs() << "*** Not the same register constraints, avoid CSE!\n");
593         DoCSE = false;
594         break;
595       }
596 
597       CSEPairs.push_back(std::make_pair(OldReg, NewReg));
598       --NumDefs;
599     }
600 
601     // Actually perform the elimination.
602     if (DoCSE) {
603       for (std::pair<unsigned, unsigned> &CSEPair : CSEPairs) {
604         unsigned OldReg = CSEPair.first;
605         unsigned NewReg = CSEPair.second;
606         // OldReg may have been unused but is used now, clear the Dead flag
607         MachineInstr *Def = MRI->getUniqueVRegDef(NewReg);
608         assert(Def != nullptr && "CSEd register has no unique definition?");
609         Def->clearRegisterDeads(NewReg);
610         // Replace with NewReg and clear kill flags which may be wrong now.
611         MRI->replaceRegWith(OldReg, NewReg);
612         MRI->clearKillFlags(NewReg);
613       }
614 
615       // Go through implicit defs of CSMI and MI, if a def is not dead at MI,
616       // we should make sure it is not dead at CSMI.
617       for (unsigned ImplicitDefToUpdate : ImplicitDefsToUpdate)
618         CSMI->getOperand(ImplicitDefToUpdate).setIsDead(false);
619 
620       // Go through implicit defs of CSMI and MI, and clear the kill flags on
621       // their uses in all the instructions between CSMI and MI.
622       // We might have made some of the kill flags redundant, consider:
623       //   subs  ... implicit-def %nzcv    <- CSMI
624       //   csinc ... implicit killed %nzcv <- this kill flag isn't valid anymore
625       //   subs  ... implicit-def %nzcv    <- MI, to be eliminated
626       //   csinc ... implicit killed %nzcv
627       // Since we eliminated MI, and reused a register imp-def'd by CSMI
628       // (here %nzcv), that register, if it was killed before MI, should have
629       // that kill flag removed, because it's lifetime was extended.
630       if (CSMI->getParent() == MI->getParent()) {
631         for (MachineBasicBlock::iterator II = CSMI, IE = MI; II != IE; ++II)
632           for (auto ImplicitDef : ImplicitDefs)
633             if (MachineOperand *MO = II->findRegisterUseOperand(
634                     ImplicitDef, /*isKill=*/true, TRI))
635               MO->setIsKill(false);
636       } else {
637         // If the instructions aren't in the same BB, bail out and clear the
638         // kill flag on all uses of the imp-def'd register.
639         for (auto ImplicitDef : ImplicitDefs)
640           MRI->clearKillFlags(ImplicitDef);
641       }
642 
643       if (CrossMBBPhysDef) {
644         // Add physical register defs now coming in from a predecessor to MBB
645         // livein list.
646         while (!PhysDefs.empty()) {
647           unsigned LiveIn = PhysDefs.pop_back_val();
648           if (!MBB->isLiveIn(LiveIn))
649             MBB->addLiveIn(LiveIn);
650         }
651         ++NumCrossBBCSEs;
652       }
653 
654       MI->eraseFromParent();
655       ++NumCSEs;
656       if (!PhysRefs.empty())
657         ++NumPhysCSEs;
658       if (Commuted)
659         ++NumCommutes;
660       Changed = true;
661     } else {
662       VNT.insert(MI, CurrVN++);
663       Exps.push_back(MI);
664     }
665     CSEPairs.clear();
666     ImplicitDefsToUpdate.clear();
667     ImplicitDefs.clear();
668   }
669 
670   return Changed;
671 }
672 
673 /// ExitScopeIfDone - Destroy scope for the MBB that corresponds to the given
674 /// dominator tree node if its a leaf or all of its children are done. Walk
675 /// up the dominator tree to destroy ancestors which are now done.
676 void
ExitScopeIfDone(MachineDomTreeNode * Node,DenseMap<MachineDomTreeNode *,unsigned> & OpenChildren)677 MachineCSE::ExitScopeIfDone(MachineDomTreeNode *Node,
678                         DenseMap<MachineDomTreeNode*, unsigned> &OpenChildren) {
679   if (OpenChildren[Node])
680     return;
681 
682   // Pop scope.
683   ExitScope(Node->getBlock());
684 
685   // Now traverse upwards to pop ancestors whose offsprings are all done.
686   while (MachineDomTreeNode *Parent = Node->getIDom()) {
687     unsigned Left = --OpenChildren[Parent];
688     if (Left != 0)
689       break;
690     ExitScope(Parent->getBlock());
691     Node = Parent;
692   }
693 }
694 
PerformCSE(MachineDomTreeNode * Node)695 bool MachineCSE::PerformCSE(MachineDomTreeNode *Node) {
696   SmallVector<MachineDomTreeNode*, 32> Scopes;
697   SmallVector<MachineDomTreeNode*, 8> WorkList;
698   DenseMap<MachineDomTreeNode*, unsigned> OpenChildren;
699 
700   CurrVN = 0;
701 
702   // Perform a DFS walk to determine the order of visit.
703   WorkList.push_back(Node);
704   do {
705     Node = WorkList.pop_back_val();
706     Scopes.push_back(Node);
707     const std::vector<MachineDomTreeNode*> &Children = Node->getChildren();
708     OpenChildren[Node] = Children.size();
709     for (MachineDomTreeNode *Child : Children)
710       WorkList.push_back(Child);
711   } while (!WorkList.empty());
712 
713   // Now perform CSE.
714   bool Changed = false;
715   for (MachineDomTreeNode *Node : Scopes) {
716     MachineBasicBlock *MBB = Node->getBlock();
717     EnterScope(MBB);
718     Changed |= ProcessBlock(MBB);
719     // If it's a leaf node, it's done. Traverse upwards to pop ancestors.
720     ExitScopeIfDone(Node, OpenChildren);
721   }
722 
723   return Changed;
724 }
725 
runOnMachineFunction(MachineFunction & MF)726 bool MachineCSE::runOnMachineFunction(MachineFunction &MF) {
727   if (skipFunction(MF.getFunction()))
728     return false;
729 
730   TII = MF.getSubtarget().getInstrInfo();
731   TRI = MF.getSubtarget().getRegisterInfo();
732   MRI = &MF.getRegInfo();
733   AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
734   DT = &getAnalysis<MachineDominatorTree>();
735   LookAheadLimit = TII->getMachineCSELookAheadLimit();
736   return PerformCSE(DT->getRootNode());
737 }
738