1 //===-- lib/CodeGen/MachineInstrBundle.cpp --------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 
10 #include "llvm/CodeGen/MachineInstrBundle.h"
11 #include "llvm/ADT/SmallSet.h"
12 #include "llvm/ADT/SmallVector.h"
13 #include "llvm/CodeGen/MachineFunctionPass.h"
14 #include "llvm/CodeGen/MachineInstrBuilder.h"
15 #include "llvm/CodeGen/Passes.h"
16 #include "llvm/CodeGen/TargetInstrInfo.h"
17 #include "llvm/CodeGen/TargetRegisterInfo.h"
18 #include "llvm/CodeGen/TargetSubtargetInfo.h"
19 #include "llvm/Target/TargetMachine.h"
20 #include <utility>
21 using namespace llvm;
22 
23 namespace {
24   class UnpackMachineBundles : public MachineFunctionPass {
25   public:
26     static char ID; // Pass identification
UnpackMachineBundles(std::function<bool (const MachineFunction &)> Ftor=nullptr)27     UnpackMachineBundles(
28         std::function<bool(const MachineFunction &)> Ftor = nullptr)
29         : MachineFunctionPass(ID), PredicateFtor(std::move(Ftor)) {
30       initializeUnpackMachineBundlesPass(*PassRegistry::getPassRegistry());
31     }
32 
33     bool runOnMachineFunction(MachineFunction &MF) override;
34 
35   private:
36     std::function<bool(const MachineFunction &)> PredicateFtor;
37   };
38 } // end anonymous namespace
39 
40 char UnpackMachineBundles::ID = 0;
41 char &llvm::UnpackMachineBundlesID = UnpackMachineBundles::ID;
42 INITIALIZE_PASS(UnpackMachineBundles, "unpack-mi-bundles",
43                 "Unpack machine instruction bundles", false, false)
44 
runOnMachineFunction(MachineFunction & MF)45 bool UnpackMachineBundles::runOnMachineFunction(MachineFunction &MF) {
46   if (PredicateFtor && !PredicateFtor(MF))
47     return false;
48 
49   bool Changed = false;
50   for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I) {
51     MachineBasicBlock *MBB = &*I;
52 
53     for (MachineBasicBlock::instr_iterator MII = MBB->instr_begin(),
54            MIE = MBB->instr_end(); MII != MIE; ) {
55       MachineInstr *MI = &*MII;
56 
57       // Remove BUNDLE instruction and the InsideBundle flags from bundled
58       // instructions.
59       if (MI->isBundle()) {
60         while (++MII != MIE && MII->isBundledWithPred()) {
61           MII->unbundleFromPred();
62           for (unsigned i = 0, e = MII->getNumOperands(); i != e; ++i) {
63             MachineOperand &MO = MII->getOperand(i);
64             if (MO.isReg() && MO.isInternalRead())
65               MO.setIsInternalRead(false);
66           }
67         }
68         MI->eraseFromParent();
69 
70         Changed = true;
71         continue;
72       }
73 
74       ++MII;
75     }
76   }
77 
78   return Changed;
79 }
80 
81 FunctionPass *
createUnpackMachineBundles(std::function<bool (const MachineFunction &)> Ftor)82 llvm::createUnpackMachineBundles(
83     std::function<bool(const MachineFunction &)> Ftor) {
84   return new UnpackMachineBundles(std::move(Ftor));
85 }
86 
87 namespace {
88   class FinalizeMachineBundles : public MachineFunctionPass {
89   public:
90     static char ID; // Pass identification
FinalizeMachineBundles()91     FinalizeMachineBundles() : MachineFunctionPass(ID) {
92       initializeFinalizeMachineBundlesPass(*PassRegistry::getPassRegistry());
93     }
94 
95     bool runOnMachineFunction(MachineFunction &MF) override;
96   };
97 } // end anonymous namespace
98 
99 char FinalizeMachineBundles::ID = 0;
100 char &llvm::FinalizeMachineBundlesID = FinalizeMachineBundles::ID;
101 INITIALIZE_PASS(FinalizeMachineBundles, "finalize-mi-bundles",
102                 "Finalize machine instruction bundles", false, false)
103 
runOnMachineFunction(MachineFunction & MF)104 bool FinalizeMachineBundles::runOnMachineFunction(MachineFunction &MF) {
105   return llvm::finalizeBundles(MF);
106 }
107 
108 
109 /// finalizeBundle - Finalize a machine instruction bundle which includes
110 /// a sequence of instructions starting from FirstMI to LastMI (exclusive).
111 /// This routine adds a BUNDLE instruction to represent the bundle, it adds
112 /// IsInternalRead markers to MachineOperands which are defined inside the
113 /// bundle, and it copies externally visible defs and uses to the BUNDLE
114 /// instruction.
finalizeBundle(MachineBasicBlock & MBB,MachineBasicBlock::instr_iterator FirstMI,MachineBasicBlock::instr_iterator LastMI)115 void llvm::finalizeBundle(MachineBasicBlock &MBB,
116                           MachineBasicBlock::instr_iterator FirstMI,
117                           MachineBasicBlock::instr_iterator LastMI) {
118   assert(FirstMI != LastMI && "Empty bundle?");
119   MIBundleBuilder Bundle(MBB, FirstMI, LastMI);
120 
121   MachineFunction &MF = *MBB.getParent();
122   const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo();
123   const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
124 
125   MachineInstrBuilder MIB =
126       BuildMI(MF, FirstMI->getDebugLoc(), TII->get(TargetOpcode::BUNDLE));
127   Bundle.prepend(MIB);
128 
129   SmallVector<unsigned, 32> LocalDefs;
130   SmallSet<unsigned, 32> LocalDefSet;
131   SmallSet<unsigned, 8> DeadDefSet;
132   SmallSet<unsigned, 16> KilledDefSet;
133   SmallVector<unsigned, 8> ExternUses;
134   SmallSet<unsigned, 8> ExternUseSet;
135   SmallSet<unsigned, 8> KilledUseSet;
136   SmallSet<unsigned, 8> UndefUseSet;
137   SmallVector<MachineOperand*, 4> Defs;
138   for (; FirstMI != LastMI; ++FirstMI) {
139     for (unsigned i = 0, e = FirstMI->getNumOperands(); i != e; ++i) {
140       MachineOperand &MO = FirstMI->getOperand(i);
141       if (!MO.isReg())
142         continue;
143       if (MO.isDef()) {
144         Defs.push_back(&MO);
145         continue;
146       }
147 
148       unsigned Reg = MO.getReg();
149       if (!Reg)
150         continue;
151       assert(TargetRegisterInfo::isPhysicalRegister(Reg));
152       if (LocalDefSet.count(Reg)) {
153         MO.setIsInternalRead();
154         if (MO.isKill())
155           // Internal def is now killed.
156           KilledDefSet.insert(Reg);
157       } else {
158         if (ExternUseSet.insert(Reg).second) {
159           ExternUses.push_back(Reg);
160           if (MO.isUndef())
161             UndefUseSet.insert(Reg);
162         }
163         if (MO.isKill())
164           // External def is now killed.
165           KilledUseSet.insert(Reg);
166       }
167     }
168 
169     for (unsigned i = 0, e = Defs.size(); i != e; ++i) {
170       MachineOperand &MO = *Defs[i];
171       unsigned Reg = MO.getReg();
172       if (!Reg)
173         continue;
174 
175       if (LocalDefSet.insert(Reg).second) {
176         LocalDefs.push_back(Reg);
177         if (MO.isDead()) {
178           DeadDefSet.insert(Reg);
179         }
180       } else {
181         // Re-defined inside the bundle, it's no longer killed.
182         KilledDefSet.erase(Reg);
183         if (!MO.isDead())
184           // Previously defined but dead.
185           DeadDefSet.erase(Reg);
186       }
187 
188       if (!MO.isDead()) {
189         for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs) {
190           unsigned SubReg = *SubRegs;
191           if (LocalDefSet.insert(SubReg).second)
192             LocalDefs.push_back(SubReg);
193         }
194       }
195     }
196 
197     Defs.clear();
198   }
199 
200   SmallSet<unsigned, 32> Added;
201   for (unsigned i = 0, e = LocalDefs.size(); i != e; ++i) {
202     unsigned Reg = LocalDefs[i];
203     if (Added.insert(Reg).second) {
204       // If it's not live beyond end of the bundle, mark it dead.
205       bool isDead = DeadDefSet.count(Reg) || KilledDefSet.count(Reg);
206       MIB.addReg(Reg, getDefRegState(true) | getDeadRegState(isDead) |
207                  getImplRegState(true));
208     }
209   }
210 
211   for (unsigned i = 0, e = ExternUses.size(); i != e; ++i) {
212     unsigned Reg = ExternUses[i];
213     bool isKill = KilledUseSet.count(Reg);
214     bool isUndef = UndefUseSet.count(Reg);
215     MIB.addReg(Reg, getKillRegState(isKill) | getUndefRegState(isUndef) |
216                getImplRegState(true));
217   }
218 }
219 
220 /// finalizeBundle - Same functionality as the previous finalizeBundle except
221 /// the last instruction in the bundle is not provided as an input. This is
222 /// used in cases where bundles are pre-determined by marking instructions
223 /// with 'InsideBundle' marker. It returns the MBB instruction iterator that
224 /// points to the end of the bundle.
225 MachineBasicBlock::instr_iterator
finalizeBundle(MachineBasicBlock & MBB,MachineBasicBlock::instr_iterator FirstMI)226 llvm::finalizeBundle(MachineBasicBlock &MBB,
227                      MachineBasicBlock::instr_iterator FirstMI) {
228   MachineBasicBlock::instr_iterator E = MBB.instr_end();
229   MachineBasicBlock::instr_iterator LastMI = std::next(FirstMI);
230   while (LastMI != E && LastMI->isInsideBundle())
231     ++LastMI;
232   finalizeBundle(MBB, FirstMI, LastMI);
233   return LastMI;
234 }
235 
236 /// finalizeBundles - Finalize instruction bundles in the specified
237 /// MachineFunction. Return true if any bundles are finalized.
finalizeBundles(MachineFunction & MF)238 bool llvm::finalizeBundles(MachineFunction &MF) {
239   bool Changed = false;
240   for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I) {
241     MachineBasicBlock &MBB = *I;
242     MachineBasicBlock::instr_iterator MII = MBB.instr_begin();
243     MachineBasicBlock::instr_iterator MIE = MBB.instr_end();
244     if (MII == MIE)
245       continue;
246     assert(!MII->isInsideBundle() &&
247            "First instr cannot be inside bundle before finalization!");
248 
249     for (++MII; MII != MIE; ) {
250       if (!MII->isInsideBundle())
251         ++MII;
252       else {
253         MII = finalizeBundle(MBB, std::prev(MII));
254         Changed = true;
255       }
256     }
257   }
258 
259   return Changed;
260 }
261 
262 //===----------------------------------------------------------------------===//
263 // MachineOperand iterator
264 //===----------------------------------------------------------------------===//
265 
266 MachineOperandIteratorBase::VirtRegInfo
analyzeVirtReg(unsigned Reg,SmallVectorImpl<std::pair<MachineInstr *,unsigned>> * Ops)267 MachineOperandIteratorBase::analyzeVirtReg(unsigned Reg,
268                     SmallVectorImpl<std::pair<MachineInstr*, unsigned> > *Ops) {
269   VirtRegInfo RI = { false, false, false };
270   for(; isValid(); ++*this) {
271     MachineOperand &MO = deref();
272     if (!MO.isReg() || MO.getReg() != Reg)
273       continue;
274 
275     // Remember each (MI, OpNo) that refers to Reg.
276     if (Ops)
277       Ops->push_back(std::make_pair(MO.getParent(), getOperandNo()));
278 
279     // Both defs and uses can read virtual registers.
280     if (MO.readsReg()) {
281       RI.Reads = true;
282       if (MO.isDef())
283         RI.Tied = true;
284     }
285 
286     // Only defs can write.
287     if (MO.isDef())
288       RI.Writes = true;
289     else if (!RI.Tied && MO.getParent()->isRegTiedToDefOperand(getOperandNo()))
290       RI.Tied = true;
291   }
292   return RI;
293 }
294 
295 MachineOperandIteratorBase::PhysRegInfo
analyzePhysReg(unsigned Reg,const TargetRegisterInfo * TRI)296 MachineOperandIteratorBase::analyzePhysReg(unsigned Reg,
297                                            const TargetRegisterInfo *TRI) {
298   bool AllDefsDead = true;
299   PhysRegInfo PRI = {false, false, false, false, false, false, false, false};
300 
301   assert(TargetRegisterInfo::isPhysicalRegister(Reg) &&
302          "analyzePhysReg not given a physical register!");
303   for (; isValid(); ++*this) {
304     MachineOperand &MO = deref();
305 
306     if (MO.isRegMask() && MO.clobbersPhysReg(Reg)) {
307       PRI.Clobbered = true;
308       continue;
309     }
310 
311     if (!MO.isReg())
312       continue;
313 
314     unsigned MOReg = MO.getReg();
315     if (!MOReg || !TargetRegisterInfo::isPhysicalRegister(MOReg))
316       continue;
317 
318     if (!TRI->regsOverlap(MOReg, Reg))
319       continue;
320 
321     bool Covered = TRI->isSuperRegisterEq(Reg, MOReg);
322     if (MO.readsReg()) {
323       PRI.Read = true;
324       if (Covered) {
325         PRI.FullyRead = true;
326         if (MO.isKill())
327           PRI.Killed = true;
328       }
329     } else if (MO.isDef()) {
330       PRI.Defined = true;
331       if (Covered)
332         PRI.FullyDefined = true;
333       if (!MO.isDead())
334         AllDefsDead = false;
335     }
336   }
337 
338   if (AllDefsDead) {
339     if (PRI.FullyDefined || PRI.Clobbered)
340       PRI.DeadDef = true;
341     else if (PRI.Defined)
342       PRI.PartialDeadDef = true;
343   }
344 
345   return PRI;
346 }
347