1 //===- MachinePipeliner.cpp - Machine Software Pipeliner Pass -------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // An implementation of the Swing Modulo Scheduling (SMS) software pipeliner.
11 //
12 // Software pipelining (SWP) is an instruction scheduling technique for loops
13 // that overlap loop iterations and exploits ILP via a compiler transformation.
14 //
15 // Swing Modulo Scheduling is an implementation of software pipelining
16 // that generates schedules that are near optimal in terms of initiation
17 // interval, register requirements, and stage count. See the papers:
18 //
19 // "Swing Modulo Scheduling: A Lifetime-Sensitive Approach", by J. Llosa,
20 // A. Gonzalez, E. Ayguade, and M. Valero. In PACT '96 Proceedings of the 1996
21 // Conference on Parallel Architectures and Compilation Techiniques.
22 //
23 // "Lifetime-Sensitive Modulo Scheduling in a Production Environment", by J.
24 // Llosa, E. Ayguade, A. Gonzalez, M. Valero, and J. Eckhardt. In IEEE
25 // Transactions on Computers, Vol. 50, No. 3, 2001.
26 //
27 // "An Implementation of Swing Modulo Scheduling With Extensions for
28 // Superblocks", by T. Lattner, Master's Thesis, University of Illinois at
29 // Urbana-Chambpain, 2005.
30 //
31 //
32 // The SMS algorithm consists of three main steps after computing the minimal
33 // initiation interval (MII).
34 // 1) Analyze the dependence graph and compute information about each
35 // instruction in the graph.
36 // 2) Order the nodes (instructions) by priority based upon the heuristics
37 // described in the algorithm.
38 // 3) Attempt to schedule the nodes in the specified order using the MII.
39 //
40 // This SMS implementation is a target-independent back-end pass. When enabled,
41 // the pass runs just prior to the register allocation pass, while the machine
42 // IR is in SSA form. If software pipelining is successful, then the original
43 // loop is replaced by the optimized loop. The optimized loop contains one or
44 // more prolog blocks, the pipelined kernel, and one or more epilog blocks. If
45 // the instructions cannot be scheduled in a given MII, we increase the MII by
46 // one and try again.
47 //
48 // The SMS implementation is an extension of the ScheduleDAGInstrs class. We
49 // represent loop carried dependences in the DAG as order edges to the Phi
50 // nodes. We also perform several passes over the DAG to eliminate unnecessary
51 // edges that inhibit the ability to pipeline. The implementation uses the
52 // DFAPacketizer class to compute the minimum initiation interval and the check
53 // where an instruction may be inserted in the pipelined schedule.
54 //
55 // In order for the SMS pass to work, several target specific hooks need to be
56 // implemented to get information about the loop structure and to rewrite
57 // instructions.
58 //
59 //===----------------------------------------------------------------------===//
60
61 #include "llvm/ADT/ArrayRef.h"
62 #include "llvm/ADT/BitVector.h"
63 #include "llvm/ADT/DenseMap.h"
64 #include "llvm/ADT/MapVector.h"
65 #include "llvm/ADT/PriorityQueue.h"
66 #include "llvm/ADT/SetVector.h"
67 #include "llvm/ADT/SmallPtrSet.h"
68 #include "llvm/ADT/SmallSet.h"
69 #include "llvm/ADT/SmallVector.h"
70 #include "llvm/ADT/Statistic.h"
71 #include "llvm/ADT/iterator_range.h"
72 #include "llvm/Analysis/AliasAnalysis.h"
73 #include "llvm/Analysis/MemoryLocation.h"
74 #include "llvm/Analysis/ValueTracking.h"
75 #include "llvm/CodeGen/DFAPacketizer.h"
76 #include "llvm/CodeGen/LiveIntervals.h"
77 #include "llvm/CodeGen/MachineBasicBlock.h"
78 #include "llvm/CodeGen/MachineDominators.h"
79 #include "llvm/CodeGen/MachineFunction.h"
80 #include "llvm/CodeGen/MachineFunctionPass.h"
81 #include "llvm/CodeGen/MachineInstr.h"
82 #include "llvm/CodeGen/MachineInstrBuilder.h"
83 #include "llvm/CodeGen/MachineLoopInfo.h"
84 #include "llvm/CodeGen/MachineMemOperand.h"
85 #include "llvm/CodeGen/MachineOperand.h"
86 #include "llvm/CodeGen/MachineRegisterInfo.h"
87 #include "llvm/CodeGen/RegisterClassInfo.h"
88 #include "llvm/CodeGen/RegisterPressure.h"
89 #include "llvm/CodeGen/ScheduleDAG.h"
90 #include "llvm/CodeGen/ScheduleDAGInstrs.h"
91 #include "llvm/CodeGen/ScheduleDAGMutation.h"
92 #include "llvm/CodeGen/TargetInstrInfo.h"
93 #include "llvm/CodeGen/TargetOpcodes.h"
94 #include "llvm/CodeGen/TargetRegisterInfo.h"
95 #include "llvm/CodeGen/TargetSubtargetInfo.h"
96 #include "llvm/Config/llvm-config.h"
97 #include "llvm/IR/Attributes.h"
98 #include "llvm/IR/DebugLoc.h"
99 #include "llvm/IR/Function.h"
100 #include "llvm/MC/LaneBitmask.h"
101 #include "llvm/MC/MCInstrDesc.h"
102 #include "llvm/MC/MCInstrItineraries.h"
103 #include "llvm/MC/MCRegisterInfo.h"
104 #include "llvm/Pass.h"
105 #include "llvm/Support/CommandLine.h"
106 #include "llvm/Support/Compiler.h"
107 #include "llvm/Support/Debug.h"
108 #include "llvm/Support/MathExtras.h"
109 #include "llvm/Support/raw_ostream.h"
110 #include <algorithm>
111 #include <cassert>
112 #include <climits>
113 #include <cstdint>
114 #include <deque>
115 #include <functional>
116 #include <iterator>
117 #include <map>
118 #include <memory>
119 #include <tuple>
120 #include <utility>
121 #include <vector>
122
123 using namespace llvm;
124
125 #define DEBUG_TYPE "pipeliner"
126
127 STATISTIC(NumTrytoPipeline, "Number of loops that we attempt to pipeline");
128 STATISTIC(NumPipelined, "Number of loops software pipelined");
129 STATISTIC(NumNodeOrderIssues, "Number of node order issues found");
130
131 /// A command line option to turn software pipelining on or off.
132 static cl::opt<bool> EnableSWP("enable-pipeliner", cl::Hidden, cl::init(true),
133 cl::ZeroOrMore,
134 cl::desc("Enable Software Pipelining"));
135
136 /// A command line option to enable SWP at -Os.
137 static cl::opt<bool> EnableSWPOptSize("enable-pipeliner-opt-size",
138 cl::desc("Enable SWP at Os."), cl::Hidden,
139 cl::init(false));
140
141 /// A command line argument to limit minimum initial interval for pipelining.
142 static cl::opt<int> SwpMaxMii("pipeliner-max-mii",
143 cl::desc("Size limit for the MII."),
144 cl::Hidden, cl::init(27));
145
146 /// A command line argument to limit the number of stages in the pipeline.
147 static cl::opt<int>
148 SwpMaxStages("pipeliner-max-stages",
149 cl::desc("Maximum stages allowed in the generated scheduled."),
150 cl::Hidden, cl::init(3));
151
152 /// A command line option to disable the pruning of chain dependences due to
153 /// an unrelated Phi.
154 static cl::opt<bool>
155 SwpPruneDeps("pipeliner-prune-deps",
156 cl::desc("Prune dependences between unrelated Phi nodes."),
157 cl::Hidden, cl::init(true));
158
159 /// A command line option to disable the pruning of loop carried order
160 /// dependences.
161 static cl::opt<bool>
162 SwpPruneLoopCarried("pipeliner-prune-loop-carried",
163 cl::desc("Prune loop carried order dependences."),
164 cl::Hidden, cl::init(true));
165
166 #ifndef NDEBUG
167 static cl::opt<int> SwpLoopLimit("pipeliner-max", cl::Hidden, cl::init(-1));
168 #endif
169
170 static cl::opt<bool> SwpIgnoreRecMII("pipeliner-ignore-recmii",
171 cl::ReallyHidden, cl::init(false),
172 cl::ZeroOrMore, cl::desc("Ignore RecMII"));
173
174 namespace {
175
176 class NodeSet;
177 class SMSchedule;
178
179 /// The main class in the implementation of the target independent
180 /// software pipeliner pass.
181 class MachinePipeliner : public MachineFunctionPass {
182 public:
183 MachineFunction *MF = nullptr;
184 const MachineLoopInfo *MLI = nullptr;
185 const MachineDominatorTree *MDT = nullptr;
186 const InstrItineraryData *InstrItins;
187 const TargetInstrInfo *TII = nullptr;
188 RegisterClassInfo RegClassInfo;
189
190 #ifndef NDEBUG
191 static int NumTries;
192 #endif
193
194 /// Cache the target analysis information about the loop.
195 struct LoopInfo {
196 MachineBasicBlock *TBB = nullptr;
197 MachineBasicBlock *FBB = nullptr;
198 SmallVector<MachineOperand, 4> BrCond;
199 MachineInstr *LoopInductionVar = nullptr;
200 MachineInstr *LoopCompare = nullptr;
201 };
202 LoopInfo LI;
203
204 static char ID;
205
MachinePipeliner()206 MachinePipeliner() : MachineFunctionPass(ID) {
207 initializeMachinePipelinerPass(*PassRegistry::getPassRegistry());
208 }
209
210 bool runOnMachineFunction(MachineFunction &MF) override;
211
getAnalysisUsage(AnalysisUsage & AU) const212 void getAnalysisUsage(AnalysisUsage &AU) const override {
213 AU.addRequired<AAResultsWrapperPass>();
214 AU.addPreserved<AAResultsWrapperPass>();
215 AU.addRequired<MachineLoopInfo>();
216 AU.addRequired<MachineDominatorTree>();
217 AU.addRequired<LiveIntervals>();
218 MachineFunctionPass::getAnalysisUsage(AU);
219 }
220
221 private:
222 void preprocessPhiNodes(MachineBasicBlock &B);
223 bool canPipelineLoop(MachineLoop &L);
224 bool scheduleLoop(MachineLoop &L);
225 bool swingModuloScheduler(MachineLoop &L);
226 };
227
228 /// This class builds the dependence graph for the instructions in a loop,
229 /// and attempts to schedule the instructions using the SMS algorithm.
230 class SwingSchedulerDAG : public ScheduleDAGInstrs {
231 MachinePipeliner &Pass;
232 /// The minimum initiation interval between iterations for this schedule.
233 unsigned MII = 0;
234 /// Set to true if a valid pipelined schedule is found for the loop.
235 bool Scheduled = false;
236 MachineLoop &Loop;
237 LiveIntervals &LIS;
238 const RegisterClassInfo &RegClassInfo;
239
240 /// A toplogical ordering of the SUnits, which is needed for changing
241 /// dependences and iterating over the SUnits.
242 ScheduleDAGTopologicalSort Topo;
243
244 struct NodeInfo {
245 int ASAP = 0;
246 int ALAP = 0;
247 int ZeroLatencyDepth = 0;
248 int ZeroLatencyHeight = 0;
249
250 NodeInfo() = default;
251 };
252 /// Computed properties for each node in the graph.
253 std::vector<NodeInfo> ScheduleInfo;
254
255 enum OrderKind { BottomUp = 0, TopDown = 1 };
256 /// Computed node ordering for scheduling.
257 SetVector<SUnit *> NodeOrder;
258
259 using NodeSetType = SmallVector<NodeSet, 8>;
260 using ValueMapTy = DenseMap<unsigned, unsigned>;
261 using MBBVectorTy = SmallVectorImpl<MachineBasicBlock *>;
262 using InstrMapTy = DenseMap<MachineInstr *, MachineInstr *>;
263
264 /// Instructions to change when emitting the final schedule.
265 DenseMap<SUnit *, std::pair<unsigned, int64_t>> InstrChanges;
266
267 /// We may create a new instruction, so remember it because it
268 /// must be deleted when the pass is finished.
269 SmallPtrSet<MachineInstr *, 4> NewMIs;
270
271 /// Ordered list of DAG postprocessing steps.
272 std::vector<std::unique_ptr<ScheduleDAGMutation>> Mutations;
273
274 /// Helper class to implement Johnson's circuit finding algorithm.
275 class Circuits {
276 std::vector<SUnit> &SUnits;
277 SetVector<SUnit *> Stack;
278 BitVector Blocked;
279 SmallVector<SmallPtrSet<SUnit *, 4>, 10> B;
280 SmallVector<SmallVector<int, 4>, 16> AdjK;
281 unsigned NumPaths;
282 static unsigned MaxPaths;
283
284 public:
Circuits(std::vector<SUnit> & SUs)285 Circuits(std::vector<SUnit> &SUs)
286 : SUnits(SUs), Blocked(SUs.size()), B(SUs.size()), AdjK(SUs.size()) {}
287
288 /// Reset the data structures used in the circuit algorithm.
reset()289 void reset() {
290 Stack.clear();
291 Blocked.reset();
292 B.assign(SUnits.size(), SmallPtrSet<SUnit *, 4>());
293 NumPaths = 0;
294 }
295
296 void createAdjacencyStructure(SwingSchedulerDAG *DAG);
297 bool circuit(int V, int S, NodeSetType &NodeSets, bool HasBackedge = false);
298 void unblock(int U);
299 };
300
301 public:
SwingSchedulerDAG(MachinePipeliner & P,MachineLoop & L,LiveIntervals & lis,const RegisterClassInfo & rci)302 SwingSchedulerDAG(MachinePipeliner &P, MachineLoop &L, LiveIntervals &lis,
303 const RegisterClassInfo &rci)
304 : ScheduleDAGInstrs(*P.MF, P.MLI, false), Pass(P), Loop(L), LIS(lis),
305 RegClassInfo(rci), Topo(SUnits, &ExitSU) {
306 P.MF->getSubtarget().getSMSMutations(Mutations);
307 }
308
309 void schedule() override;
310 void finishBlock() override;
311
312 /// Return true if the loop kernel has been scheduled.
hasNewSchedule()313 bool hasNewSchedule() { return Scheduled; }
314
315 /// Return the earliest time an instruction may be scheduled.
getASAP(SUnit * Node)316 int getASAP(SUnit *Node) { return ScheduleInfo[Node->NodeNum].ASAP; }
317
318 /// Return the latest time an instruction my be scheduled.
getALAP(SUnit * Node)319 int getALAP(SUnit *Node) { return ScheduleInfo[Node->NodeNum].ALAP; }
320
321 /// The mobility function, which the number of slots in which
322 /// an instruction may be scheduled.
getMOV(SUnit * Node)323 int getMOV(SUnit *Node) { return getALAP(Node) - getASAP(Node); }
324
325 /// The depth, in the dependence graph, for a node.
getDepth(SUnit * Node)326 unsigned getDepth(SUnit *Node) { return Node->getDepth(); }
327
328 /// The maximum unweighted length of a path from an arbitrary node to the
329 /// given node in which each edge has latency 0
getZeroLatencyDepth(SUnit * Node)330 int getZeroLatencyDepth(SUnit *Node) {
331 return ScheduleInfo[Node->NodeNum].ZeroLatencyDepth;
332 }
333
334 /// The height, in the dependence graph, for a node.
getHeight(SUnit * Node)335 unsigned getHeight(SUnit *Node) { return Node->getHeight(); }
336
337 /// The maximum unweighted length of a path from the given node to an
338 /// arbitrary node in which each edge has latency 0
getZeroLatencyHeight(SUnit * Node)339 int getZeroLatencyHeight(SUnit *Node) {
340 return ScheduleInfo[Node->NodeNum].ZeroLatencyHeight;
341 }
342
343 /// Return true if the dependence is a back-edge in the data dependence graph.
344 /// Since the DAG doesn't contain cycles, we represent a cycle in the graph
345 /// using an anti dependence from a Phi to an instruction.
isBackedge(SUnit * Source,const SDep & Dep)346 bool isBackedge(SUnit *Source, const SDep &Dep) {
347 if (Dep.getKind() != SDep::Anti)
348 return false;
349 return Source->getInstr()->isPHI() || Dep.getSUnit()->getInstr()->isPHI();
350 }
351
352 bool isLoopCarriedDep(SUnit *Source, const SDep &Dep, bool isSucc = true);
353
354 /// The distance function, which indicates that operation V of iteration I
355 /// depends on operations U of iteration I-distance.
getDistance(SUnit * U,SUnit * V,const SDep & Dep)356 unsigned getDistance(SUnit *U, SUnit *V, const SDep &Dep) {
357 // Instructions that feed a Phi have a distance of 1. Computing larger
358 // values for arrays requires data dependence information.
359 if (V->getInstr()->isPHI() && Dep.getKind() == SDep::Anti)
360 return 1;
361 return 0;
362 }
363
364 /// Set the Minimum Initiation Interval for this schedule attempt.
setMII(unsigned mii)365 void setMII(unsigned mii) { MII = mii; }
366
367 void applyInstrChange(MachineInstr *MI, SMSchedule &Schedule);
368
369 void fixupRegisterOverlaps(std::deque<SUnit *> &Instrs);
370
371 /// Return the new base register that was stored away for the changed
372 /// instruction.
getInstrBaseReg(SUnit * SU)373 unsigned getInstrBaseReg(SUnit *SU) {
374 DenseMap<SUnit *, std::pair<unsigned, int64_t>>::iterator It =
375 InstrChanges.find(SU);
376 if (It != InstrChanges.end())
377 return It->second.first;
378 return 0;
379 }
380
addMutation(std::unique_ptr<ScheduleDAGMutation> Mutation)381 void addMutation(std::unique_ptr<ScheduleDAGMutation> Mutation) {
382 Mutations.push_back(std::move(Mutation));
383 }
384
385 private:
386 void addLoopCarriedDependences(AliasAnalysis *AA);
387 void updatePhiDependences();
388 void changeDependences();
389 unsigned calculateResMII();
390 unsigned calculateRecMII(NodeSetType &RecNodeSets);
391 void findCircuits(NodeSetType &NodeSets);
392 void fuseRecs(NodeSetType &NodeSets);
393 void removeDuplicateNodes(NodeSetType &NodeSets);
394 void computeNodeFunctions(NodeSetType &NodeSets);
395 void registerPressureFilter(NodeSetType &NodeSets);
396 void colocateNodeSets(NodeSetType &NodeSets);
397 void checkNodeSets(NodeSetType &NodeSets);
398 void groupRemainingNodes(NodeSetType &NodeSets);
399 void addConnectedNodes(SUnit *SU, NodeSet &NewSet,
400 SetVector<SUnit *> &NodesAdded);
401 void computeNodeOrder(NodeSetType &NodeSets);
402 void checkValidNodeOrder(const NodeSetType &Circuits) const;
403 bool schedulePipeline(SMSchedule &Schedule);
404 void generatePipelinedLoop(SMSchedule &Schedule);
405 void generateProlog(SMSchedule &Schedule, unsigned LastStage,
406 MachineBasicBlock *KernelBB, ValueMapTy *VRMap,
407 MBBVectorTy &PrologBBs);
408 void generateEpilog(SMSchedule &Schedule, unsigned LastStage,
409 MachineBasicBlock *KernelBB, ValueMapTy *VRMap,
410 MBBVectorTy &EpilogBBs, MBBVectorTy &PrologBBs);
411 void generateExistingPhis(MachineBasicBlock *NewBB, MachineBasicBlock *BB1,
412 MachineBasicBlock *BB2, MachineBasicBlock *KernelBB,
413 SMSchedule &Schedule, ValueMapTy *VRMap,
414 InstrMapTy &InstrMap, unsigned LastStageNum,
415 unsigned CurStageNum, bool IsLast);
416 void generatePhis(MachineBasicBlock *NewBB, MachineBasicBlock *BB1,
417 MachineBasicBlock *BB2, MachineBasicBlock *KernelBB,
418 SMSchedule &Schedule, ValueMapTy *VRMap,
419 InstrMapTy &InstrMap, unsigned LastStageNum,
420 unsigned CurStageNum, bool IsLast);
421 void removeDeadInstructions(MachineBasicBlock *KernelBB,
422 MBBVectorTy &EpilogBBs);
423 void splitLifetimes(MachineBasicBlock *KernelBB, MBBVectorTy &EpilogBBs,
424 SMSchedule &Schedule);
425 void addBranches(MBBVectorTy &PrologBBs, MachineBasicBlock *KernelBB,
426 MBBVectorTy &EpilogBBs, SMSchedule &Schedule,
427 ValueMapTy *VRMap);
428 bool computeDelta(MachineInstr &MI, unsigned &Delta);
429 void updateMemOperands(MachineInstr &NewMI, MachineInstr &OldMI,
430 unsigned Num);
431 MachineInstr *cloneInstr(MachineInstr *OldMI, unsigned CurStageNum,
432 unsigned InstStageNum);
433 MachineInstr *cloneAndChangeInstr(MachineInstr *OldMI, unsigned CurStageNum,
434 unsigned InstStageNum,
435 SMSchedule &Schedule);
436 void updateInstruction(MachineInstr *NewMI, bool LastDef,
437 unsigned CurStageNum, unsigned InstrStageNum,
438 SMSchedule &Schedule, ValueMapTy *VRMap);
439 MachineInstr *findDefInLoop(unsigned Reg);
440 unsigned getPrevMapVal(unsigned StageNum, unsigned PhiStage, unsigned LoopVal,
441 unsigned LoopStage, ValueMapTy *VRMap,
442 MachineBasicBlock *BB);
443 void rewritePhiValues(MachineBasicBlock *NewBB, unsigned StageNum,
444 SMSchedule &Schedule, ValueMapTy *VRMap,
445 InstrMapTy &InstrMap);
446 void rewriteScheduledInstr(MachineBasicBlock *BB, SMSchedule &Schedule,
447 InstrMapTy &InstrMap, unsigned CurStageNum,
448 unsigned PhiNum, MachineInstr *Phi,
449 unsigned OldReg, unsigned NewReg,
450 unsigned PrevReg = 0);
451 bool canUseLastOffsetValue(MachineInstr *MI, unsigned &BasePos,
452 unsigned &OffsetPos, unsigned &NewBase,
453 int64_t &NewOffset);
454 void postprocessDAG();
455 };
456
457 /// A NodeSet contains a set of SUnit DAG nodes with additional information
458 /// that assigns a priority to the set.
459 class NodeSet {
460 SetVector<SUnit *> Nodes;
461 bool HasRecurrence = false;
462 unsigned RecMII = 0;
463 int MaxMOV = 0;
464 unsigned MaxDepth = 0;
465 unsigned Colocate = 0;
466 SUnit *ExceedPressure = nullptr;
467 unsigned Latency = 0;
468
469 public:
470 using iterator = SetVector<SUnit *>::const_iterator;
471
472 NodeSet() = default;
NodeSet(iterator S,iterator E)473 NodeSet(iterator S, iterator E) : Nodes(S, E), HasRecurrence(true) {
474 Latency = 0;
475 for (unsigned i = 0, e = Nodes.size(); i < e; ++i)
476 for (const SDep &Succ : Nodes[i]->Succs)
477 if (Nodes.count(Succ.getSUnit()))
478 Latency += Succ.getLatency();
479 }
480
insert(SUnit * SU)481 bool insert(SUnit *SU) { return Nodes.insert(SU); }
482
insert(iterator S,iterator E)483 void insert(iterator S, iterator E) { Nodes.insert(S, E); }
484
remove_if(UnaryPredicate P)485 template <typename UnaryPredicate> bool remove_if(UnaryPredicate P) {
486 return Nodes.remove_if(P);
487 }
488
count(SUnit * SU) const489 unsigned count(SUnit *SU) const { return Nodes.count(SU); }
490
hasRecurrence()491 bool hasRecurrence() { return HasRecurrence; };
492
size() const493 unsigned size() const { return Nodes.size(); }
494
empty() const495 bool empty() const { return Nodes.empty(); }
496
getNode(unsigned i) const497 SUnit *getNode(unsigned i) const { return Nodes[i]; };
498
setRecMII(unsigned mii)499 void setRecMII(unsigned mii) { RecMII = mii; };
500
setColocate(unsigned c)501 void setColocate(unsigned c) { Colocate = c; };
502
setExceedPressure(SUnit * SU)503 void setExceedPressure(SUnit *SU) { ExceedPressure = SU; }
504
isExceedSU(SUnit * SU)505 bool isExceedSU(SUnit *SU) { return ExceedPressure == SU; }
506
compareRecMII(NodeSet & RHS)507 int compareRecMII(NodeSet &RHS) { return RecMII - RHS.RecMII; }
508
getRecMII()509 int getRecMII() { return RecMII; }
510
511 /// Summarize node functions for the entire node set.
computeNodeSetInfo(SwingSchedulerDAG * SSD)512 void computeNodeSetInfo(SwingSchedulerDAG *SSD) {
513 for (SUnit *SU : *this) {
514 MaxMOV = std::max(MaxMOV, SSD->getMOV(SU));
515 MaxDepth = std::max(MaxDepth, SSD->getDepth(SU));
516 }
517 }
518
getLatency()519 unsigned getLatency() { return Latency; }
520
getMaxDepth()521 unsigned getMaxDepth() { return MaxDepth; }
522
clear()523 void clear() {
524 Nodes.clear();
525 RecMII = 0;
526 HasRecurrence = false;
527 MaxMOV = 0;
528 MaxDepth = 0;
529 Colocate = 0;
530 ExceedPressure = nullptr;
531 }
532
operator SetVector<SUnit*>&()533 operator SetVector<SUnit *> &() { return Nodes; }
534
535 /// Sort the node sets by importance. First, rank them by recurrence MII,
536 /// then by mobility (least mobile done first), and finally by depth.
537 /// Each node set may contain a colocate value which is used as the first
538 /// tie breaker, if it's set.
operator >(const NodeSet & RHS) const539 bool operator>(const NodeSet &RHS) const {
540 if (RecMII == RHS.RecMII) {
541 if (Colocate != 0 && RHS.Colocate != 0 && Colocate != RHS.Colocate)
542 return Colocate < RHS.Colocate;
543 if (MaxMOV == RHS.MaxMOV)
544 return MaxDepth > RHS.MaxDepth;
545 return MaxMOV < RHS.MaxMOV;
546 }
547 return RecMII > RHS.RecMII;
548 }
549
operator ==(const NodeSet & RHS) const550 bool operator==(const NodeSet &RHS) const {
551 return RecMII == RHS.RecMII && MaxMOV == RHS.MaxMOV &&
552 MaxDepth == RHS.MaxDepth;
553 }
554
operator !=(const NodeSet & RHS) const555 bool operator!=(const NodeSet &RHS) const { return !operator==(RHS); }
556
begin()557 iterator begin() { return Nodes.begin(); }
end()558 iterator end() { return Nodes.end(); }
559
print(raw_ostream & os) const560 void print(raw_ostream &os) const {
561 os << "Num nodes " << size() << " rec " << RecMII << " mov " << MaxMOV
562 << " depth " << MaxDepth << " col " << Colocate << "\n";
563 for (const auto &I : Nodes)
564 os << " SU(" << I->NodeNum << ") " << *(I->getInstr());
565 os << "\n";
566 }
567
568 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
dump() const569 LLVM_DUMP_METHOD void dump() const { print(dbgs()); }
570 #endif
571 };
572
573 /// This class represents the scheduled code. The main data structure is a
574 /// map from scheduled cycle to instructions. During scheduling, the
575 /// data structure explicitly represents all stages/iterations. When
576 /// the algorithm finshes, the schedule is collapsed into a single stage,
577 /// which represents instructions from different loop iterations.
578 ///
579 /// The SMS algorithm allows negative values for cycles, so the first cycle
580 /// in the schedule is the smallest cycle value.
581 class SMSchedule {
582 private:
583 /// Map from execution cycle to instructions.
584 DenseMap<int, std::deque<SUnit *>> ScheduledInstrs;
585
586 /// Map from instruction to execution cycle.
587 std::map<SUnit *, int> InstrToCycle;
588
589 /// Map for each register and the max difference between its uses and def.
590 /// The first element in the pair is the max difference in stages. The
591 /// second is true if the register defines a Phi value and loop value is
592 /// scheduled before the Phi.
593 std::map<unsigned, std::pair<unsigned, bool>> RegToStageDiff;
594
595 /// Keep track of the first cycle value in the schedule. It starts
596 /// as zero, but the algorithm allows negative values.
597 int FirstCycle = 0;
598
599 /// Keep track of the last cycle value in the schedule.
600 int LastCycle = 0;
601
602 /// The initiation interval (II) for the schedule.
603 int InitiationInterval = 0;
604
605 /// Target machine information.
606 const TargetSubtargetInfo &ST;
607
608 /// Virtual register information.
609 MachineRegisterInfo &MRI;
610
611 std::unique_ptr<DFAPacketizer> Resources;
612
613 public:
SMSchedule(MachineFunction * mf)614 SMSchedule(MachineFunction *mf)
615 : ST(mf->getSubtarget()), MRI(mf->getRegInfo()),
616 Resources(ST.getInstrInfo()->CreateTargetScheduleState(ST)) {}
617
reset()618 void reset() {
619 ScheduledInstrs.clear();
620 InstrToCycle.clear();
621 RegToStageDiff.clear();
622 FirstCycle = 0;
623 LastCycle = 0;
624 InitiationInterval = 0;
625 }
626
627 /// Set the initiation interval for this schedule.
setInitiationInterval(int ii)628 void setInitiationInterval(int ii) { InitiationInterval = ii; }
629
630 /// Return the first cycle in the completed schedule. This
631 /// can be a negative value.
getFirstCycle() const632 int getFirstCycle() const { return FirstCycle; }
633
634 /// Return the last cycle in the finalized schedule.
getFinalCycle() const635 int getFinalCycle() const { return FirstCycle + InitiationInterval - 1; }
636
637 /// Return the cycle of the earliest scheduled instruction in the dependence
638 /// chain.
639 int earliestCycleInChain(const SDep &Dep);
640
641 /// Return the cycle of the latest scheduled instruction in the dependence
642 /// chain.
643 int latestCycleInChain(const SDep &Dep);
644
645 void computeStart(SUnit *SU, int *MaxEarlyStart, int *MinLateStart,
646 int *MinEnd, int *MaxStart, int II, SwingSchedulerDAG *DAG);
647 bool insert(SUnit *SU, int StartCycle, int EndCycle, int II);
648
649 /// Iterators for the cycle to instruction map.
650 using sched_iterator = DenseMap<int, std::deque<SUnit *>>::iterator;
651 using const_sched_iterator =
652 DenseMap<int, std::deque<SUnit *>>::const_iterator;
653
654 /// Return true if the instruction is scheduled at the specified stage.
isScheduledAtStage(SUnit * SU,unsigned StageNum)655 bool isScheduledAtStage(SUnit *SU, unsigned StageNum) {
656 return (stageScheduled(SU) == (int)StageNum);
657 }
658
659 /// Return the stage for a scheduled instruction. Return -1 if
660 /// the instruction has not been scheduled.
stageScheduled(SUnit * SU) const661 int stageScheduled(SUnit *SU) const {
662 std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(SU);
663 if (it == InstrToCycle.end())
664 return -1;
665 return (it->second - FirstCycle) / InitiationInterval;
666 }
667
668 /// Return the cycle for a scheduled instruction. This function normalizes
669 /// the first cycle to be 0.
cycleScheduled(SUnit * SU) const670 unsigned cycleScheduled(SUnit *SU) const {
671 std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(SU);
672 assert(it != InstrToCycle.end() && "Instruction hasn't been scheduled.");
673 return (it->second - FirstCycle) % InitiationInterval;
674 }
675
676 /// Return the maximum stage count needed for this schedule.
getMaxStageCount()677 unsigned getMaxStageCount() {
678 return (LastCycle - FirstCycle) / InitiationInterval;
679 }
680
681 /// Return the max. number of stages/iterations that can occur between a
682 /// register definition and its uses.
getStagesForReg(int Reg,unsigned CurStage)683 unsigned getStagesForReg(int Reg, unsigned CurStage) {
684 std::pair<unsigned, bool> Stages = RegToStageDiff[Reg];
685 if (CurStage > getMaxStageCount() && Stages.first == 0 && Stages.second)
686 return 1;
687 return Stages.first;
688 }
689
690 /// The number of stages for a Phi is a little different than other
691 /// instructions. The minimum value computed in RegToStageDiff is 1
692 /// because we assume the Phi is needed for at least 1 iteration.
693 /// This is not the case if the loop value is scheduled prior to the
694 /// Phi in the same stage. This function returns the number of stages
695 /// or iterations needed between the Phi definition and any uses.
getStagesForPhi(int Reg)696 unsigned getStagesForPhi(int Reg) {
697 std::pair<unsigned, bool> Stages = RegToStageDiff[Reg];
698 if (Stages.second)
699 return Stages.first;
700 return Stages.first - 1;
701 }
702
703 /// Return the instructions that are scheduled at the specified cycle.
getInstructions(int cycle)704 std::deque<SUnit *> &getInstructions(int cycle) {
705 return ScheduledInstrs[cycle];
706 }
707
708 bool isValidSchedule(SwingSchedulerDAG *SSD);
709 void finalizeSchedule(SwingSchedulerDAG *SSD);
710 void orderDependence(SwingSchedulerDAG *SSD, SUnit *SU,
711 std::deque<SUnit *> &Insts);
712 bool isLoopCarried(SwingSchedulerDAG *SSD, MachineInstr &Phi);
713 bool isLoopCarriedDefOfUse(SwingSchedulerDAG *SSD, MachineInstr *Def,
714 MachineOperand &MO);
715 void print(raw_ostream &os) const;
716 void dump() const;
717 };
718
719 } // end anonymous namespace
720
721 unsigned SwingSchedulerDAG::Circuits::MaxPaths = 5;
722 char MachinePipeliner::ID = 0;
723 #ifndef NDEBUG
724 int MachinePipeliner::NumTries = 0;
725 #endif
726 char &llvm::MachinePipelinerID = MachinePipeliner::ID;
727
728 INITIALIZE_PASS_BEGIN(MachinePipeliner, DEBUG_TYPE,
729 "Modulo Software Pipelining", false, false)
INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)730 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
731 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
732 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
733 INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
734 INITIALIZE_PASS_END(MachinePipeliner, DEBUG_TYPE,
735 "Modulo Software Pipelining", false, false)
736
737 /// The "main" function for implementing Swing Modulo Scheduling.
738 bool MachinePipeliner::runOnMachineFunction(MachineFunction &mf) {
739 if (skipFunction(mf.getFunction()))
740 return false;
741
742 if (!EnableSWP)
743 return false;
744
745 if (mf.getFunction().getAttributes().hasAttribute(
746 AttributeList::FunctionIndex, Attribute::OptimizeForSize) &&
747 !EnableSWPOptSize.getPosition())
748 return false;
749
750 MF = &mf;
751 MLI = &getAnalysis<MachineLoopInfo>();
752 MDT = &getAnalysis<MachineDominatorTree>();
753 TII = MF->getSubtarget().getInstrInfo();
754 RegClassInfo.runOnMachineFunction(*MF);
755
756 for (auto &L : *MLI)
757 scheduleLoop(*L);
758
759 return false;
760 }
761
762 /// Attempt to perform the SMS algorithm on the specified loop. This function is
763 /// the main entry point for the algorithm. The function identifies candidate
764 /// loops, calculates the minimum initiation interval, and attempts to schedule
765 /// the loop.
scheduleLoop(MachineLoop & L)766 bool MachinePipeliner::scheduleLoop(MachineLoop &L) {
767 bool Changed = false;
768 for (auto &InnerLoop : L)
769 Changed |= scheduleLoop(*InnerLoop);
770
771 #ifndef NDEBUG
772 // Stop trying after reaching the limit (if any).
773 int Limit = SwpLoopLimit;
774 if (Limit >= 0) {
775 if (NumTries >= SwpLoopLimit)
776 return Changed;
777 NumTries++;
778 }
779 #endif
780
781 if (!canPipelineLoop(L))
782 return Changed;
783
784 ++NumTrytoPipeline;
785
786 Changed = swingModuloScheduler(L);
787
788 return Changed;
789 }
790
791 /// Return true if the loop can be software pipelined. The algorithm is
792 /// restricted to loops with a single basic block. Make sure that the
793 /// branch in the loop can be analyzed.
canPipelineLoop(MachineLoop & L)794 bool MachinePipeliner::canPipelineLoop(MachineLoop &L) {
795 if (L.getNumBlocks() != 1)
796 return false;
797
798 // Check if the branch can't be understood because we can't do pipelining
799 // if that's the case.
800 LI.TBB = nullptr;
801 LI.FBB = nullptr;
802 LI.BrCond.clear();
803 if (TII->analyzeBranch(*L.getHeader(), LI.TBB, LI.FBB, LI.BrCond))
804 return false;
805
806 LI.LoopInductionVar = nullptr;
807 LI.LoopCompare = nullptr;
808 if (TII->analyzeLoop(L, LI.LoopInductionVar, LI.LoopCompare))
809 return false;
810
811 if (!L.getLoopPreheader())
812 return false;
813
814 // Remove any subregisters from inputs to phi nodes.
815 preprocessPhiNodes(*L.getHeader());
816 return true;
817 }
818
preprocessPhiNodes(MachineBasicBlock & B)819 void MachinePipeliner::preprocessPhiNodes(MachineBasicBlock &B) {
820 MachineRegisterInfo &MRI = MF->getRegInfo();
821 SlotIndexes &Slots = *getAnalysis<LiveIntervals>().getSlotIndexes();
822
823 for (MachineInstr &PI : make_range(B.begin(), B.getFirstNonPHI())) {
824 MachineOperand &DefOp = PI.getOperand(0);
825 assert(DefOp.getSubReg() == 0);
826 auto *RC = MRI.getRegClass(DefOp.getReg());
827
828 for (unsigned i = 1, n = PI.getNumOperands(); i != n; i += 2) {
829 MachineOperand &RegOp = PI.getOperand(i);
830 if (RegOp.getSubReg() == 0)
831 continue;
832
833 // If the operand uses a subregister, replace it with a new register
834 // without subregisters, and generate a copy to the new register.
835 unsigned NewReg = MRI.createVirtualRegister(RC);
836 MachineBasicBlock &PredB = *PI.getOperand(i+1).getMBB();
837 MachineBasicBlock::iterator At = PredB.getFirstTerminator();
838 const DebugLoc &DL = PredB.findDebugLoc(At);
839 auto Copy = BuildMI(PredB, At, DL, TII->get(TargetOpcode::COPY), NewReg)
840 .addReg(RegOp.getReg(), getRegState(RegOp),
841 RegOp.getSubReg());
842 Slots.insertMachineInstrInMaps(*Copy);
843 RegOp.setReg(NewReg);
844 RegOp.setSubReg(0);
845 }
846 }
847 }
848
849 /// The SMS algorithm consists of the following main steps:
850 /// 1. Computation and analysis of the dependence graph.
851 /// 2. Ordering of the nodes (instructions).
852 /// 3. Attempt to Schedule the loop.
swingModuloScheduler(MachineLoop & L)853 bool MachinePipeliner::swingModuloScheduler(MachineLoop &L) {
854 assert(L.getBlocks().size() == 1 && "SMS works on single blocks only.");
855
856 SwingSchedulerDAG SMS(*this, L, getAnalysis<LiveIntervals>(), RegClassInfo);
857
858 MachineBasicBlock *MBB = L.getHeader();
859 // The kernel should not include any terminator instructions. These
860 // will be added back later.
861 SMS.startBlock(MBB);
862
863 // Compute the number of 'real' instructions in the basic block by
864 // ignoring terminators.
865 unsigned size = MBB->size();
866 for (MachineBasicBlock::iterator I = MBB->getFirstTerminator(),
867 E = MBB->instr_end();
868 I != E; ++I, --size)
869 ;
870
871 SMS.enterRegion(MBB, MBB->begin(), MBB->getFirstTerminator(), size);
872 SMS.schedule();
873 SMS.exitRegion();
874
875 SMS.finishBlock();
876 return SMS.hasNewSchedule();
877 }
878
879 /// We override the schedule function in ScheduleDAGInstrs to implement the
880 /// scheduling part of the Swing Modulo Scheduling algorithm.
schedule()881 void SwingSchedulerDAG::schedule() {
882 AliasAnalysis *AA = &Pass.getAnalysis<AAResultsWrapperPass>().getAAResults();
883 buildSchedGraph(AA);
884 addLoopCarriedDependences(AA);
885 updatePhiDependences();
886 Topo.InitDAGTopologicalSorting();
887 postprocessDAG();
888 changeDependences();
889 LLVM_DEBUG({
890 for (unsigned su = 0, e = SUnits.size(); su != e; ++su)
891 SUnits[su].dumpAll(this);
892 });
893
894 NodeSetType NodeSets;
895 findCircuits(NodeSets);
896 NodeSetType Circuits = NodeSets;
897
898 // Calculate the MII.
899 unsigned ResMII = calculateResMII();
900 unsigned RecMII = calculateRecMII(NodeSets);
901
902 fuseRecs(NodeSets);
903
904 // This flag is used for testing and can cause correctness problems.
905 if (SwpIgnoreRecMII)
906 RecMII = 0;
907
908 MII = std::max(ResMII, RecMII);
909 LLVM_DEBUG(dbgs() << "MII = " << MII << " (rec=" << RecMII
910 << ", res=" << ResMII << ")\n");
911
912 // Can't schedule a loop without a valid MII.
913 if (MII == 0)
914 return;
915
916 // Don't pipeline large loops.
917 if (SwpMaxMii != -1 && (int)MII > SwpMaxMii)
918 return;
919
920 computeNodeFunctions(NodeSets);
921
922 registerPressureFilter(NodeSets);
923
924 colocateNodeSets(NodeSets);
925
926 checkNodeSets(NodeSets);
927
928 LLVM_DEBUG({
929 for (auto &I : NodeSets) {
930 dbgs() << " Rec NodeSet ";
931 I.dump();
932 }
933 });
934
935 std::stable_sort(NodeSets.begin(), NodeSets.end(), std::greater<NodeSet>());
936
937 groupRemainingNodes(NodeSets);
938
939 removeDuplicateNodes(NodeSets);
940
941 LLVM_DEBUG({
942 for (auto &I : NodeSets) {
943 dbgs() << " NodeSet ";
944 I.dump();
945 }
946 });
947
948 computeNodeOrder(NodeSets);
949
950 // check for node order issues
951 checkValidNodeOrder(Circuits);
952
953 SMSchedule Schedule(Pass.MF);
954 Scheduled = schedulePipeline(Schedule);
955
956 if (!Scheduled)
957 return;
958
959 unsigned numStages = Schedule.getMaxStageCount();
960 // No need to generate pipeline if there are no overlapped iterations.
961 if (numStages == 0)
962 return;
963
964 // Check that the maximum stage count is less than user-defined limit.
965 if (SwpMaxStages > -1 && (int)numStages > SwpMaxStages)
966 return;
967
968 generatePipelinedLoop(Schedule);
969 ++NumPipelined;
970 }
971
972 /// Clean up after the software pipeliner runs.
finishBlock()973 void SwingSchedulerDAG::finishBlock() {
974 for (MachineInstr *I : NewMIs)
975 MF.DeleteMachineInstr(I);
976 NewMIs.clear();
977
978 // Call the superclass.
979 ScheduleDAGInstrs::finishBlock();
980 }
981
982 /// Return the register values for the operands of a Phi instruction.
983 /// This function assume the instruction is a Phi.
getPhiRegs(MachineInstr & Phi,MachineBasicBlock * Loop,unsigned & InitVal,unsigned & LoopVal)984 static void getPhiRegs(MachineInstr &Phi, MachineBasicBlock *Loop,
985 unsigned &InitVal, unsigned &LoopVal) {
986 assert(Phi.isPHI() && "Expecting a Phi.");
987
988 InitVal = 0;
989 LoopVal = 0;
990 for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2)
991 if (Phi.getOperand(i + 1).getMBB() != Loop)
992 InitVal = Phi.getOperand(i).getReg();
993 else
994 LoopVal = Phi.getOperand(i).getReg();
995
996 assert(InitVal != 0 && LoopVal != 0 && "Unexpected Phi structure.");
997 }
998
999 /// Return the Phi register value that comes from the incoming block.
getInitPhiReg(MachineInstr & Phi,MachineBasicBlock * LoopBB)1000 static unsigned getInitPhiReg(MachineInstr &Phi, MachineBasicBlock *LoopBB) {
1001 for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2)
1002 if (Phi.getOperand(i + 1).getMBB() != LoopBB)
1003 return Phi.getOperand(i).getReg();
1004 return 0;
1005 }
1006
1007 /// Return the Phi register value that comes the loop block.
getLoopPhiReg(MachineInstr & Phi,MachineBasicBlock * LoopBB)1008 static unsigned getLoopPhiReg(MachineInstr &Phi, MachineBasicBlock *LoopBB) {
1009 for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2)
1010 if (Phi.getOperand(i + 1).getMBB() == LoopBB)
1011 return Phi.getOperand(i).getReg();
1012 return 0;
1013 }
1014
1015 /// Return true if SUb can be reached from SUa following the chain edges.
isSuccOrder(SUnit * SUa,SUnit * SUb)1016 static bool isSuccOrder(SUnit *SUa, SUnit *SUb) {
1017 SmallPtrSet<SUnit *, 8> Visited;
1018 SmallVector<SUnit *, 8> Worklist;
1019 Worklist.push_back(SUa);
1020 while (!Worklist.empty()) {
1021 const SUnit *SU = Worklist.pop_back_val();
1022 for (auto &SI : SU->Succs) {
1023 SUnit *SuccSU = SI.getSUnit();
1024 if (SI.getKind() == SDep::Order) {
1025 if (Visited.count(SuccSU))
1026 continue;
1027 if (SuccSU == SUb)
1028 return true;
1029 Worklist.push_back(SuccSU);
1030 Visited.insert(SuccSU);
1031 }
1032 }
1033 }
1034 return false;
1035 }
1036
1037 /// Return true if the instruction causes a chain between memory
1038 /// references before and after it.
isDependenceBarrier(MachineInstr & MI,AliasAnalysis * AA)1039 static bool isDependenceBarrier(MachineInstr &MI, AliasAnalysis *AA) {
1040 return MI.isCall() || MI.hasUnmodeledSideEffects() ||
1041 (MI.hasOrderedMemoryRef() &&
1042 (!MI.mayLoad() || !MI.isDereferenceableInvariantLoad(AA)));
1043 }
1044
1045 /// Return the underlying objects for the memory references of an instruction.
1046 /// This function calls the code in ValueTracking, but first checks that the
1047 /// instruction has a memory operand.
getUnderlyingObjects(MachineInstr * MI,SmallVectorImpl<Value * > & Objs,const DataLayout & DL)1048 static void getUnderlyingObjects(MachineInstr *MI,
1049 SmallVectorImpl<Value *> &Objs,
1050 const DataLayout &DL) {
1051 if (!MI->hasOneMemOperand())
1052 return;
1053 MachineMemOperand *MM = *MI->memoperands_begin();
1054 if (!MM->getValue())
1055 return;
1056 GetUnderlyingObjects(const_cast<Value *>(MM->getValue()), Objs, DL);
1057 for (Value *V : Objs) {
1058 if (!isIdentifiedObject(V)) {
1059 Objs.clear();
1060 return;
1061 }
1062 Objs.push_back(V);
1063 }
1064 }
1065
1066 /// Add a chain edge between a load and store if the store can be an
1067 /// alias of the load on a subsequent iteration, i.e., a loop carried
1068 /// dependence. This code is very similar to the code in ScheduleDAGInstrs
1069 /// but that code doesn't create loop carried dependences.
addLoopCarriedDependences(AliasAnalysis * AA)1070 void SwingSchedulerDAG::addLoopCarriedDependences(AliasAnalysis *AA) {
1071 MapVector<Value *, SmallVector<SUnit *, 4>> PendingLoads;
1072 Value *UnknownValue =
1073 UndefValue::get(Type::getVoidTy(MF.getFunction().getContext()));
1074 for (auto &SU : SUnits) {
1075 MachineInstr &MI = *SU.getInstr();
1076 if (isDependenceBarrier(MI, AA))
1077 PendingLoads.clear();
1078 else if (MI.mayLoad()) {
1079 SmallVector<Value *, 4> Objs;
1080 getUnderlyingObjects(&MI, Objs, MF.getDataLayout());
1081 if (Objs.empty())
1082 Objs.push_back(UnknownValue);
1083 for (auto V : Objs) {
1084 SmallVector<SUnit *, 4> &SUs = PendingLoads[V];
1085 SUs.push_back(&SU);
1086 }
1087 } else if (MI.mayStore()) {
1088 SmallVector<Value *, 4> Objs;
1089 getUnderlyingObjects(&MI, Objs, MF.getDataLayout());
1090 if (Objs.empty())
1091 Objs.push_back(UnknownValue);
1092 for (auto V : Objs) {
1093 MapVector<Value *, SmallVector<SUnit *, 4>>::iterator I =
1094 PendingLoads.find(V);
1095 if (I == PendingLoads.end())
1096 continue;
1097 for (auto Load : I->second) {
1098 if (isSuccOrder(Load, &SU))
1099 continue;
1100 MachineInstr &LdMI = *Load->getInstr();
1101 // First, perform the cheaper check that compares the base register.
1102 // If they are the same and the load offset is less than the store
1103 // offset, then mark the dependence as loop carried potentially.
1104 unsigned BaseReg1, BaseReg2;
1105 int64_t Offset1, Offset2;
1106 if (TII->getMemOpBaseRegImmOfs(LdMI, BaseReg1, Offset1, TRI) &&
1107 TII->getMemOpBaseRegImmOfs(MI, BaseReg2, Offset2, TRI)) {
1108 if (BaseReg1 == BaseReg2 && (int)Offset1 < (int)Offset2) {
1109 assert(TII->areMemAccessesTriviallyDisjoint(LdMI, MI, AA) &&
1110 "What happened to the chain edge?");
1111 SDep Dep(Load, SDep::Barrier);
1112 Dep.setLatency(1);
1113 SU.addPred(Dep);
1114 continue;
1115 }
1116 }
1117 // Second, the more expensive check that uses alias analysis on the
1118 // base registers. If they alias, and the load offset is less than
1119 // the store offset, the mark the dependence as loop carried.
1120 if (!AA) {
1121 SDep Dep(Load, SDep::Barrier);
1122 Dep.setLatency(1);
1123 SU.addPred(Dep);
1124 continue;
1125 }
1126 MachineMemOperand *MMO1 = *LdMI.memoperands_begin();
1127 MachineMemOperand *MMO2 = *MI.memoperands_begin();
1128 if (!MMO1->getValue() || !MMO2->getValue()) {
1129 SDep Dep(Load, SDep::Barrier);
1130 Dep.setLatency(1);
1131 SU.addPred(Dep);
1132 continue;
1133 }
1134 if (MMO1->getValue() == MMO2->getValue() &&
1135 MMO1->getOffset() <= MMO2->getOffset()) {
1136 SDep Dep(Load, SDep::Barrier);
1137 Dep.setLatency(1);
1138 SU.addPred(Dep);
1139 continue;
1140 }
1141 AliasResult AAResult = AA->alias(
1142 MemoryLocation(MMO1->getValue(), MemoryLocation::UnknownSize,
1143 MMO1->getAAInfo()),
1144 MemoryLocation(MMO2->getValue(), MemoryLocation::UnknownSize,
1145 MMO2->getAAInfo()));
1146
1147 if (AAResult != NoAlias) {
1148 SDep Dep(Load, SDep::Barrier);
1149 Dep.setLatency(1);
1150 SU.addPred(Dep);
1151 }
1152 }
1153 }
1154 }
1155 }
1156 }
1157
1158 /// Update the phi dependences to the DAG because ScheduleDAGInstrs no longer
1159 /// processes dependences for PHIs. This function adds true dependences
1160 /// from a PHI to a use, and a loop carried dependence from the use to the
1161 /// PHI. The loop carried dependence is represented as an anti dependence
1162 /// edge. This function also removes chain dependences between unrelated
1163 /// PHIs.
updatePhiDependences()1164 void SwingSchedulerDAG::updatePhiDependences() {
1165 SmallVector<SDep, 4> RemoveDeps;
1166 const TargetSubtargetInfo &ST = MF.getSubtarget<TargetSubtargetInfo>();
1167
1168 // Iterate over each DAG node.
1169 for (SUnit &I : SUnits) {
1170 RemoveDeps.clear();
1171 // Set to true if the instruction has an operand defined by a Phi.
1172 unsigned HasPhiUse = 0;
1173 unsigned HasPhiDef = 0;
1174 MachineInstr *MI = I.getInstr();
1175 // Iterate over each operand, and we process the definitions.
1176 for (MachineInstr::mop_iterator MOI = MI->operands_begin(),
1177 MOE = MI->operands_end();
1178 MOI != MOE; ++MOI) {
1179 if (!MOI->isReg())
1180 continue;
1181 unsigned Reg = MOI->getReg();
1182 if (MOI->isDef()) {
1183 // If the register is used by a Phi, then create an anti dependence.
1184 for (MachineRegisterInfo::use_instr_iterator
1185 UI = MRI.use_instr_begin(Reg),
1186 UE = MRI.use_instr_end();
1187 UI != UE; ++UI) {
1188 MachineInstr *UseMI = &*UI;
1189 SUnit *SU = getSUnit(UseMI);
1190 if (SU != nullptr && UseMI->isPHI()) {
1191 if (!MI->isPHI()) {
1192 SDep Dep(SU, SDep::Anti, Reg);
1193 Dep.setLatency(1);
1194 I.addPred(Dep);
1195 } else {
1196 HasPhiDef = Reg;
1197 // Add a chain edge to a dependent Phi that isn't an existing
1198 // predecessor.
1199 if (SU->NodeNum < I.NodeNum && !I.isPred(SU))
1200 I.addPred(SDep(SU, SDep::Barrier));
1201 }
1202 }
1203 }
1204 } else if (MOI->isUse()) {
1205 // If the register is defined by a Phi, then create a true dependence.
1206 MachineInstr *DefMI = MRI.getUniqueVRegDef(Reg);
1207 if (DefMI == nullptr)
1208 continue;
1209 SUnit *SU = getSUnit(DefMI);
1210 if (SU != nullptr && DefMI->isPHI()) {
1211 if (!MI->isPHI()) {
1212 SDep Dep(SU, SDep::Data, Reg);
1213 Dep.setLatency(0);
1214 ST.adjustSchedDependency(SU, &I, Dep);
1215 I.addPred(Dep);
1216 } else {
1217 HasPhiUse = Reg;
1218 // Add a chain edge to a dependent Phi that isn't an existing
1219 // predecessor.
1220 if (SU->NodeNum < I.NodeNum && !I.isPred(SU))
1221 I.addPred(SDep(SU, SDep::Barrier));
1222 }
1223 }
1224 }
1225 }
1226 // Remove order dependences from an unrelated Phi.
1227 if (!SwpPruneDeps)
1228 continue;
1229 for (auto &PI : I.Preds) {
1230 MachineInstr *PMI = PI.getSUnit()->getInstr();
1231 if (PMI->isPHI() && PI.getKind() == SDep::Order) {
1232 if (I.getInstr()->isPHI()) {
1233 if (PMI->getOperand(0).getReg() == HasPhiUse)
1234 continue;
1235 if (getLoopPhiReg(*PMI, PMI->getParent()) == HasPhiDef)
1236 continue;
1237 }
1238 RemoveDeps.push_back(PI);
1239 }
1240 }
1241 for (int i = 0, e = RemoveDeps.size(); i != e; ++i)
1242 I.removePred(RemoveDeps[i]);
1243 }
1244 }
1245
1246 /// Iterate over each DAG node and see if we can change any dependences
1247 /// in order to reduce the recurrence MII.
changeDependences()1248 void SwingSchedulerDAG::changeDependences() {
1249 // See if an instruction can use a value from the previous iteration.
1250 // If so, we update the base and offset of the instruction and change
1251 // the dependences.
1252 for (SUnit &I : SUnits) {
1253 unsigned BasePos = 0, OffsetPos = 0, NewBase = 0;
1254 int64_t NewOffset = 0;
1255 if (!canUseLastOffsetValue(I.getInstr(), BasePos, OffsetPos, NewBase,
1256 NewOffset))
1257 continue;
1258
1259 // Get the MI and SUnit for the instruction that defines the original base.
1260 unsigned OrigBase = I.getInstr()->getOperand(BasePos).getReg();
1261 MachineInstr *DefMI = MRI.getUniqueVRegDef(OrigBase);
1262 if (!DefMI)
1263 continue;
1264 SUnit *DefSU = getSUnit(DefMI);
1265 if (!DefSU)
1266 continue;
1267 // Get the MI and SUnit for the instruction that defins the new base.
1268 MachineInstr *LastMI = MRI.getUniqueVRegDef(NewBase);
1269 if (!LastMI)
1270 continue;
1271 SUnit *LastSU = getSUnit(LastMI);
1272 if (!LastSU)
1273 continue;
1274
1275 if (Topo.IsReachable(&I, LastSU))
1276 continue;
1277
1278 // Remove the dependence. The value now depends on a prior iteration.
1279 SmallVector<SDep, 4> Deps;
1280 for (SUnit::pred_iterator P = I.Preds.begin(), E = I.Preds.end(); P != E;
1281 ++P)
1282 if (P->getSUnit() == DefSU)
1283 Deps.push_back(*P);
1284 for (int i = 0, e = Deps.size(); i != e; i++) {
1285 Topo.RemovePred(&I, Deps[i].getSUnit());
1286 I.removePred(Deps[i]);
1287 }
1288 // Remove the chain dependence between the instructions.
1289 Deps.clear();
1290 for (auto &P : LastSU->Preds)
1291 if (P.getSUnit() == &I && P.getKind() == SDep::Order)
1292 Deps.push_back(P);
1293 for (int i = 0, e = Deps.size(); i != e; i++) {
1294 Topo.RemovePred(LastSU, Deps[i].getSUnit());
1295 LastSU->removePred(Deps[i]);
1296 }
1297
1298 // Add a dependence between the new instruction and the instruction
1299 // that defines the new base.
1300 SDep Dep(&I, SDep::Anti, NewBase);
1301 LastSU->addPred(Dep);
1302
1303 // Remember the base and offset information so that we can update the
1304 // instruction during code generation.
1305 InstrChanges[&I] = std::make_pair(NewBase, NewOffset);
1306 }
1307 }
1308
1309 namespace {
1310
1311 // FuncUnitSorter - Comparison operator used to sort instructions by
1312 // the number of functional unit choices.
1313 struct FuncUnitSorter {
1314 const InstrItineraryData *InstrItins;
1315 DenseMap<unsigned, unsigned> Resources;
1316
FuncUnitSorter__anona194c52b0211::FuncUnitSorter1317 FuncUnitSorter(const InstrItineraryData *IID) : InstrItins(IID) {}
1318
1319 // Compute the number of functional unit alternatives needed
1320 // at each stage, and take the minimum value. We prioritize the
1321 // instructions by the least number of choices first.
minFuncUnits__anona194c52b0211::FuncUnitSorter1322 unsigned minFuncUnits(const MachineInstr *Inst, unsigned &F) const {
1323 unsigned schedClass = Inst->getDesc().getSchedClass();
1324 unsigned min = UINT_MAX;
1325 for (const InstrStage *IS = InstrItins->beginStage(schedClass),
1326 *IE = InstrItins->endStage(schedClass);
1327 IS != IE; ++IS) {
1328 unsigned funcUnits = IS->getUnits();
1329 unsigned numAlternatives = countPopulation(funcUnits);
1330 if (numAlternatives < min) {
1331 min = numAlternatives;
1332 F = funcUnits;
1333 }
1334 }
1335 return min;
1336 }
1337
1338 // Compute the critical resources needed by the instruction. This
1339 // function records the functional units needed by instructions that
1340 // must use only one functional unit. We use this as a tie breaker
1341 // for computing the resource MII. The instrutions that require
1342 // the same, highly used, functional unit have high priority.
calcCriticalResources__anona194c52b0211::FuncUnitSorter1343 void calcCriticalResources(MachineInstr &MI) {
1344 unsigned SchedClass = MI.getDesc().getSchedClass();
1345 for (const InstrStage *IS = InstrItins->beginStage(SchedClass),
1346 *IE = InstrItins->endStage(SchedClass);
1347 IS != IE; ++IS) {
1348 unsigned FuncUnits = IS->getUnits();
1349 if (countPopulation(FuncUnits) == 1)
1350 Resources[FuncUnits]++;
1351 }
1352 }
1353
1354 /// Return true if IS1 has less priority than IS2.
operator ()__anona194c52b0211::FuncUnitSorter1355 bool operator()(const MachineInstr *IS1, const MachineInstr *IS2) const {
1356 unsigned F1 = 0, F2 = 0;
1357 unsigned MFUs1 = minFuncUnits(IS1, F1);
1358 unsigned MFUs2 = minFuncUnits(IS2, F2);
1359 if (MFUs1 == 1 && MFUs2 == 1)
1360 return Resources.lookup(F1) < Resources.lookup(F2);
1361 return MFUs1 > MFUs2;
1362 }
1363 };
1364
1365 } // end anonymous namespace
1366
1367 /// Calculate the resource constrained minimum initiation interval for the
1368 /// specified loop. We use the DFA to model the resources needed for
1369 /// each instruction, and we ignore dependences. A different DFA is created
1370 /// for each cycle that is required. When adding a new instruction, we attempt
1371 /// to add it to each existing DFA, until a legal space is found. If the
1372 /// instruction cannot be reserved in an existing DFA, we create a new one.
calculateResMII()1373 unsigned SwingSchedulerDAG::calculateResMII() {
1374 SmallVector<DFAPacketizer *, 8> Resources;
1375 MachineBasicBlock *MBB = Loop.getHeader();
1376 Resources.push_back(TII->CreateTargetScheduleState(MF.getSubtarget()));
1377
1378 // Sort the instructions by the number of available choices for scheduling,
1379 // least to most. Use the number of critical resources as the tie breaker.
1380 FuncUnitSorter FUS =
1381 FuncUnitSorter(MF.getSubtarget().getInstrItineraryData());
1382 for (MachineBasicBlock::iterator I = MBB->getFirstNonPHI(),
1383 E = MBB->getFirstTerminator();
1384 I != E; ++I)
1385 FUS.calcCriticalResources(*I);
1386 PriorityQueue<MachineInstr *, std::vector<MachineInstr *>, FuncUnitSorter>
1387 FuncUnitOrder(FUS);
1388
1389 for (MachineBasicBlock::iterator I = MBB->getFirstNonPHI(),
1390 E = MBB->getFirstTerminator();
1391 I != E; ++I)
1392 FuncUnitOrder.push(&*I);
1393
1394 while (!FuncUnitOrder.empty()) {
1395 MachineInstr *MI = FuncUnitOrder.top();
1396 FuncUnitOrder.pop();
1397 if (TII->isZeroCost(MI->getOpcode()))
1398 continue;
1399 // Attempt to reserve the instruction in an existing DFA. At least one
1400 // DFA is needed for each cycle.
1401 unsigned NumCycles = getSUnit(MI)->Latency;
1402 unsigned ReservedCycles = 0;
1403 SmallVectorImpl<DFAPacketizer *>::iterator RI = Resources.begin();
1404 SmallVectorImpl<DFAPacketizer *>::iterator RE = Resources.end();
1405 for (unsigned C = 0; C < NumCycles; ++C)
1406 while (RI != RE) {
1407 if ((*RI++)->canReserveResources(*MI)) {
1408 ++ReservedCycles;
1409 break;
1410 }
1411 }
1412 // Start reserving resources using existing DFAs.
1413 for (unsigned C = 0; C < ReservedCycles; ++C) {
1414 --RI;
1415 (*RI)->reserveResources(*MI);
1416 }
1417 // Add new DFAs, if needed, to reserve resources.
1418 for (unsigned C = ReservedCycles; C < NumCycles; ++C) {
1419 DFAPacketizer *NewResource =
1420 TII->CreateTargetScheduleState(MF.getSubtarget());
1421 assert(NewResource->canReserveResources(*MI) && "Reserve error.");
1422 NewResource->reserveResources(*MI);
1423 Resources.push_back(NewResource);
1424 }
1425 }
1426 int Resmii = Resources.size();
1427 // Delete the memory for each of the DFAs that were created earlier.
1428 for (DFAPacketizer *RI : Resources) {
1429 DFAPacketizer *D = RI;
1430 delete D;
1431 }
1432 Resources.clear();
1433 return Resmii;
1434 }
1435
1436 /// Calculate the recurrence-constrainted minimum initiation interval.
1437 /// Iterate over each circuit. Compute the delay(c) and distance(c)
1438 /// for each circuit. The II needs to satisfy the inequality
1439 /// delay(c) - II*distance(c) <= 0. For each circuit, choose the smallest
1440 /// II that satisfies the inequality, and the RecMII is the maximum
1441 /// of those values.
calculateRecMII(NodeSetType & NodeSets)1442 unsigned SwingSchedulerDAG::calculateRecMII(NodeSetType &NodeSets) {
1443 unsigned RecMII = 0;
1444
1445 for (NodeSet &Nodes : NodeSets) {
1446 if (Nodes.empty())
1447 continue;
1448
1449 unsigned Delay = Nodes.getLatency();
1450 unsigned Distance = 1;
1451
1452 // ii = ceil(delay / distance)
1453 unsigned CurMII = (Delay + Distance - 1) / Distance;
1454 Nodes.setRecMII(CurMII);
1455 if (CurMII > RecMII)
1456 RecMII = CurMII;
1457 }
1458
1459 return RecMII;
1460 }
1461
1462 /// Swap all the anti dependences in the DAG. That means it is no longer a DAG,
1463 /// but we do this to find the circuits, and then change them back.
swapAntiDependences(std::vector<SUnit> & SUnits)1464 static void swapAntiDependences(std::vector<SUnit> &SUnits) {
1465 SmallVector<std::pair<SUnit *, SDep>, 8> DepsAdded;
1466 for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
1467 SUnit *SU = &SUnits[i];
1468 for (SUnit::pred_iterator IP = SU->Preds.begin(), EP = SU->Preds.end();
1469 IP != EP; ++IP) {
1470 if (IP->getKind() != SDep::Anti)
1471 continue;
1472 DepsAdded.push_back(std::make_pair(SU, *IP));
1473 }
1474 }
1475 for (SmallVector<std::pair<SUnit *, SDep>, 8>::iterator I = DepsAdded.begin(),
1476 E = DepsAdded.end();
1477 I != E; ++I) {
1478 // Remove this anti dependency and add one in the reverse direction.
1479 SUnit *SU = I->first;
1480 SDep &D = I->second;
1481 SUnit *TargetSU = D.getSUnit();
1482 unsigned Reg = D.getReg();
1483 unsigned Lat = D.getLatency();
1484 SU->removePred(D);
1485 SDep Dep(SU, SDep::Anti, Reg);
1486 Dep.setLatency(Lat);
1487 TargetSU->addPred(Dep);
1488 }
1489 }
1490
1491 /// Create the adjacency structure of the nodes in the graph.
createAdjacencyStructure(SwingSchedulerDAG * DAG)1492 void SwingSchedulerDAG::Circuits::createAdjacencyStructure(
1493 SwingSchedulerDAG *DAG) {
1494 BitVector Added(SUnits.size());
1495 DenseMap<int, int> OutputDeps;
1496 for (int i = 0, e = SUnits.size(); i != e; ++i) {
1497 Added.reset();
1498 // Add any successor to the adjacency matrix and exclude duplicates.
1499 for (auto &SI : SUnits[i].Succs) {
1500 // Only create a back-edge on the first and last nodes of a dependence
1501 // chain. This records any chains and adds them later.
1502 if (SI.getKind() == SDep::Output) {
1503 int N = SI.getSUnit()->NodeNum;
1504 int BackEdge = i;
1505 auto Dep = OutputDeps.find(BackEdge);
1506 if (Dep != OutputDeps.end()) {
1507 BackEdge = Dep->second;
1508 OutputDeps.erase(Dep);
1509 }
1510 OutputDeps[N] = BackEdge;
1511 }
1512 // Do not process a boundary node and a back-edge is processed only
1513 // if it goes to a Phi.
1514 if (SI.getSUnit()->isBoundaryNode() ||
1515 (SI.getKind() == SDep::Anti && !SI.getSUnit()->getInstr()->isPHI()))
1516 continue;
1517 int N = SI.getSUnit()->NodeNum;
1518 if (!Added.test(N)) {
1519 AdjK[i].push_back(N);
1520 Added.set(N);
1521 }
1522 }
1523 // A chain edge between a store and a load is treated as a back-edge in the
1524 // adjacency matrix.
1525 for (auto &PI : SUnits[i].Preds) {
1526 if (!SUnits[i].getInstr()->mayStore() ||
1527 !DAG->isLoopCarriedDep(&SUnits[i], PI, false))
1528 continue;
1529 if (PI.getKind() == SDep::Order && PI.getSUnit()->getInstr()->mayLoad()) {
1530 int N = PI.getSUnit()->NodeNum;
1531 if (!Added.test(N)) {
1532 AdjK[i].push_back(N);
1533 Added.set(N);
1534 }
1535 }
1536 }
1537 }
1538 // Add back-eges in the adjacency matrix for the output dependences.
1539 for (auto &OD : OutputDeps)
1540 if (!Added.test(OD.second)) {
1541 AdjK[OD.first].push_back(OD.second);
1542 Added.set(OD.second);
1543 }
1544 }
1545
1546 /// Identify an elementary circuit in the dependence graph starting at the
1547 /// specified node.
circuit(int V,int S,NodeSetType & NodeSets,bool HasBackedge)1548 bool SwingSchedulerDAG::Circuits::circuit(int V, int S, NodeSetType &NodeSets,
1549 bool HasBackedge) {
1550 SUnit *SV = &SUnits[V];
1551 bool F = false;
1552 Stack.insert(SV);
1553 Blocked.set(V);
1554
1555 for (auto W : AdjK[V]) {
1556 if (NumPaths > MaxPaths)
1557 break;
1558 if (W < S)
1559 continue;
1560 if (W == S) {
1561 if (!HasBackedge)
1562 NodeSets.push_back(NodeSet(Stack.begin(), Stack.end()));
1563 F = true;
1564 ++NumPaths;
1565 break;
1566 } else if (!Blocked.test(W)) {
1567 if (circuit(W, S, NodeSets, W < V ? true : HasBackedge))
1568 F = true;
1569 }
1570 }
1571
1572 if (F)
1573 unblock(V);
1574 else {
1575 for (auto W : AdjK[V]) {
1576 if (W < S)
1577 continue;
1578 if (B[W].count(SV) == 0)
1579 B[W].insert(SV);
1580 }
1581 }
1582 Stack.pop_back();
1583 return F;
1584 }
1585
1586 /// Unblock a node in the circuit finding algorithm.
unblock(int U)1587 void SwingSchedulerDAG::Circuits::unblock(int U) {
1588 Blocked.reset(U);
1589 SmallPtrSet<SUnit *, 4> &BU = B[U];
1590 while (!BU.empty()) {
1591 SmallPtrSet<SUnit *, 4>::iterator SI = BU.begin();
1592 assert(SI != BU.end() && "Invalid B set.");
1593 SUnit *W = *SI;
1594 BU.erase(W);
1595 if (Blocked.test(W->NodeNum))
1596 unblock(W->NodeNum);
1597 }
1598 }
1599
1600 /// Identify all the elementary circuits in the dependence graph using
1601 /// Johnson's circuit algorithm.
findCircuits(NodeSetType & NodeSets)1602 void SwingSchedulerDAG::findCircuits(NodeSetType &NodeSets) {
1603 // Swap all the anti dependences in the DAG. That means it is no longer a DAG,
1604 // but we do this to find the circuits, and then change them back.
1605 swapAntiDependences(SUnits);
1606
1607 Circuits Cir(SUnits);
1608 // Create the adjacency structure.
1609 Cir.createAdjacencyStructure(this);
1610 for (int i = 0, e = SUnits.size(); i != e; ++i) {
1611 Cir.reset();
1612 Cir.circuit(i, i, NodeSets);
1613 }
1614
1615 // Change the dependences back so that we've created a DAG again.
1616 swapAntiDependences(SUnits);
1617 }
1618
1619 /// Return true for DAG nodes that we ignore when computing the cost functions.
1620 /// We ignore the back-edge recurrence in order to avoid unbounded recursion
1621 /// in the calculation of the ASAP, ALAP, etc functions.
ignoreDependence(const SDep & D,bool isPred)1622 static bool ignoreDependence(const SDep &D, bool isPred) {
1623 if (D.isArtificial())
1624 return true;
1625 return D.getKind() == SDep::Anti && isPred;
1626 }
1627
1628 /// Compute several functions need to order the nodes for scheduling.
1629 /// ASAP - Earliest time to schedule a node.
1630 /// ALAP - Latest time to schedule a node.
1631 /// MOV - Mobility function, difference between ALAP and ASAP.
1632 /// D - Depth of each node.
1633 /// H - Height of each node.
computeNodeFunctions(NodeSetType & NodeSets)1634 void SwingSchedulerDAG::computeNodeFunctions(NodeSetType &NodeSets) {
1635 ScheduleInfo.resize(SUnits.size());
1636
1637 LLVM_DEBUG({
1638 for (ScheduleDAGTopologicalSort::const_iterator I = Topo.begin(),
1639 E = Topo.end();
1640 I != E; ++I) {
1641 SUnit *SU = &SUnits[*I];
1642 SU->dump(this);
1643 }
1644 });
1645
1646 int maxASAP = 0;
1647 // Compute ASAP and ZeroLatencyDepth.
1648 for (ScheduleDAGTopologicalSort::const_iterator I = Topo.begin(),
1649 E = Topo.end();
1650 I != E; ++I) {
1651 int asap = 0;
1652 int zeroLatencyDepth = 0;
1653 SUnit *SU = &SUnits[*I];
1654 for (SUnit::const_pred_iterator IP = SU->Preds.begin(),
1655 EP = SU->Preds.end();
1656 IP != EP; ++IP) {
1657 SUnit *pred = IP->getSUnit();
1658 if (IP->getLatency() == 0)
1659 zeroLatencyDepth =
1660 std::max(zeroLatencyDepth, getZeroLatencyDepth(pred) + 1);
1661 if (ignoreDependence(*IP, true))
1662 continue;
1663 asap = std::max(asap, (int)(getASAP(pred) + IP->getLatency() -
1664 getDistance(pred, SU, *IP) * MII));
1665 }
1666 maxASAP = std::max(maxASAP, asap);
1667 ScheduleInfo[*I].ASAP = asap;
1668 ScheduleInfo[*I].ZeroLatencyDepth = zeroLatencyDepth;
1669 }
1670
1671 // Compute ALAP, ZeroLatencyHeight, and MOV.
1672 for (ScheduleDAGTopologicalSort::const_reverse_iterator I = Topo.rbegin(),
1673 E = Topo.rend();
1674 I != E; ++I) {
1675 int alap = maxASAP;
1676 int zeroLatencyHeight = 0;
1677 SUnit *SU = &SUnits[*I];
1678 for (SUnit::const_succ_iterator IS = SU->Succs.begin(),
1679 ES = SU->Succs.end();
1680 IS != ES; ++IS) {
1681 SUnit *succ = IS->getSUnit();
1682 if (IS->getLatency() == 0)
1683 zeroLatencyHeight =
1684 std::max(zeroLatencyHeight, getZeroLatencyHeight(succ) + 1);
1685 if (ignoreDependence(*IS, true))
1686 continue;
1687 alap = std::min(alap, (int)(getALAP(succ) - IS->getLatency() +
1688 getDistance(SU, succ, *IS) * MII));
1689 }
1690
1691 ScheduleInfo[*I].ALAP = alap;
1692 ScheduleInfo[*I].ZeroLatencyHeight = zeroLatencyHeight;
1693 }
1694
1695 // After computing the node functions, compute the summary for each node set.
1696 for (NodeSet &I : NodeSets)
1697 I.computeNodeSetInfo(this);
1698
1699 LLVM_DEBUG({
1700 for (unsigned i = 0; i < SUnits.size(); i++) {
1701 dbgs() << "\tNode " << i << ":\n";
1702 dbgs() << "\t ASAP = " << getASAP(&SUnits[i]) << "\n";
1703 dbgs() << "\t ALAP = " << getALAP(&SUnits[i]) << "\n";
1704 dbgs() << "\t MOV = " << getMOV(&SUnits[i]) << "\n";
1705 dbgs() << "\t D = " << getDepth(&SUnits[i]) << "\n";
1706 dbgs() << "\t H = " << getHeight(&SUnits[i]) << "\n";
1707 dbgs() << "\t ZLD = " << getZeroLatencyDepth(&SUnits[i]) << "\n";
1708 dbgs() << "\t ZLH = " << getZeroLatencyHeight(&SUnits[i]) << "\n";
1709 }
1710 });
1711 }
1712
1713 /// Compute the Pred_L(O) set, as defined in the paper. The set is defined
1714 /// as the predecessors of the elements of NodeOrder that are not also in
1715 /// NodeOrder.
pred_L(SetVector<SUnit * > & NodeOrder,SmallSetVector<SUnit *,8> & Preds,const NodeSet * S=nullptr)1716 static bool pred_L(SetVector<SUnit *> &NodeOrder,
1717 SmallSetVector<SUnit *, 8> &Preds,
1718 const NodeSet *S = nullptr) {
1719 Preds.clear();
1720 for (SetVector<SUnit *>::iterator I = NodeOrder.begin(), E = NodeOrder.end();
1721 I != E; ++I) {
1722 for (SUnit::pred_iterator PI = (*I)->Preds.begin(), PE = (*I)->Preds.end();
1723 PI != PE; ++PI) {
1724 if (S && S->count(PI->getSUnit()) == 0)
1725 continue;
1726 if (ignoreDependence(*PI, true))
1727 continue;
1728 if (NodeOrder.count(PI->getSUnit()) == 0)
1729 Preds.insert(PI->getSUnit());
1730 }
1731 // Back-edges are predecessors with an anti-dependence.
1732 for (SUnit::const_succ_iterator IS = (*I)->Succs.begin(),
1733 ES = (*I)->Succs.end();
1734 IS != ES; ++IS) {
1735 if (IS->getKind() != SDep::Anti)
1736 continue;
1737 if (S && S->count(IS->getSUnit()) == 0)
1738 continue;
1739 if (NodeOrder.count(IS->getSUnit()) == 0)
1740 Preds.insert(IS->getSUnit());
1741 }
1742 }
1743 return !Preds.empty();
1744 }
1745
1746 /// Compute the Succ_L(O) set, as defined in the paper. The set is defined
1747 /// as the successors of the elements of NodeOrder that are not also in
1748 /// NodeOrder.
succ_L(SetVector<SUnit * > & NodeOrder,SmallSetVector<SUnit *,8> & Succs,const NodeSet * S=nullptr)1749 static bool succ_L(SetVector<SUnit *> &NodeOrder,
1750 SmallSetVector<SUnit *, 8> &Succs,
1751 const NodeSet *S = nullptr) {
1752 Succs.clear();
1753 for (SetVector<SUnit *>::iterator I = NodeOrder.begin(), E = NodeOrder.end();
1754 I != E; ++I) {
1755 for (SUnit::succ_iterator SI = (*I)->Succs.begin(), SE = (*I)->Succs.end();
1756 SI != SE; ++SI) {
1757 if (S && S->count(SI->getSUnit()) == 0)
1758 continue;
1759 if (ignoreDependence(*SI, false))
1760 continue;
1761 if (NodeOrder.count(SI->getSUnit()) == 0)
1762 Succs.insert(SI->getSUnit());
1763 }
1764 for (SUnit::const_pred_iterator PI = (*I)->Preds.begin(),
1765 PE = (*I)->Preds.end();
1766 PI != PE; ++PI) {
1767 if (PI->getKind() != SDep::Anti)
1768 continue;
1769 if (S && S->count(PI->getSUnit()) == 0)
1770 continue;
1771 if (NodeOrder.count(PI->getSUnit()) == 0)
1772 Succs.insert(PI->getSUnit());
1773 }
1774 }
1775 return !Succs.empty();
1776 }
1777
1778 /// Return true if there is a path from the specified node to any of the nodes
1779 /// in DestNodes. Keep track and return the nodes in any path.
computePath(SUnit * Cur,SetVector<SUnit * > & Path,SetVector<SUnit * > & DestNodes,SetVector<SUnit * > & Exclude,SmallPtrSet<SUnit *,8> & Visited)1780 static bool computePath(SUnit *Cur, SetVector<SUnit *> &Path,
1781 SetVector<SUnit *> &DestNodes,
1782 SetVector<SUnit *> &Exclude,
1783 SmallPtrSet<SUnit *, 8> &Visited) {
1784 if (Cur->isBoundaryNode())
1785 return false;
1786 if (Exclude.count(Cur) != 0)
1787 return false;
1788 if (DestNodes.count(Cur) != 0)
1789 return true;
1790 if (!Visited.insert(Cur).second)
1791 return Path.count(Cur) != 0;
1792 bool FoundPath = false;
1793 for (auto &SI : Cur->Succs)
1794 FoundPath |= computePath(SI.getSUnit(), Path, DestNodes, Exclude, Visited);
1795 for (auto &PI : Cur->Preds)
1796 if (PI.getKind() == SDep::Anti)
1797 FoundPath |=
1798 computePath(PI.getSUnit(), Path, DestNodes, Exclude, Visited);
1799 if (FoundPath)
1800 Path.insert(Cur);
1801 return FoundPath;
1802 }
1803
1804 /// Return true if Set1 is a subset of Set2.
isSubset(S1Ty & Set1,S2Ty & Set2)1805 template <class S1Ty, class S2Ty> static bool isSubset(S1Ty &Set1, S2Ty &Set2) {
1806 for (typename S1Ty::iterator I = Set1.begin(), E = Set1.end(); I != E; ++I)
1807 if (Set2.count(*I) == 0)
1808 return false;
1809 return true;
1810 }
1811
1812 /// Compute the live-out registers for the instructions in a node-set.
1813 /// The live-out registers are those that are defined in the node-set,
1814 /// but not used. Except for use operands of Phis.
computeLiveOuts(MachineFunction & MF,RegPressureTracker & RPTracker,NodeSet & NS)1815 static void computeLiveOuts(MachineFunction &MF, RegPressureTracker &RPTracker,
1816 NodeSet &NS) {
1817 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
1818 MachineRegisterInfo &MRI = MF.getRegInfo();
1819 SmallVector<RegisterMaskPair, 8> LiveOutRegs;
1820 SmallSet<unsigned, 4> Uses;
1821 for (SUnit *SU : NS) {
1822 const MachineInstr *MI = SU->getInstr();
1823 if (MI->isPHI())
1824 continue;
1825 for (const MachineOperand &MO : MI->operands())
1826 if (MO.isReg() && MO.isUse()) {
1827 unsigned Reg = MO.getReg();
1828 if (TargetRegisterInfo::isVirtualRegister(Reg))
1829 Uses.insert(Reg);
1830 else if (MRI.isAllocatable(Reg))
1831 for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units)
1832 Uses.insert(*Units);
1833 }
1834 }
1835 for (SUnit *SU : NS)
1836 for (const MachineOperand &MO : SU->getInstr()->operands())
1837 if (MO.isReg() && MO.isDef() && !MO.isDead()) {
1838 unsigned Reg = MO.getReg();
1839 if (TargetRegisterInfo::isVirtualRegister(Reg)) {
1840 if (!Uses.count(Reg))
1841 LiveOutRegs.push_back(RegisterMaskPair(Reg,
1842 LaneBitmask::getNone()));
1843 } else if (MRI.isAllocatable(Reg)) {
1844 for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units)
1845 if (!Uses.count(*Units))
1846 LiveOutRegs.push_back(RegisterMaskPair(*Units,
1847 LaneBitmask::getNone()));
1848 }
1849 }
1850 RPTracker.addLiveRegs(LiveOutRegs);
1851 }
1852
1853 /// A heuristic to filter nodes in recurrent node-sets if the register
1854 /// pressure of a set is too high.
registerPressureFilter(NodeSetType & NodeSets)1855 void SwingSchedulerDAG::registerPressureFilter(NodeSetType &NodeSets) {
1856 for (auto &NS : NodeSets) {
1857 // Skip small node-sets since they won't cause register pressure problems.
1858 if (NS.size() <= 2)
1859 continue;
1860 IntervalPressure RecRegPressure;
1861 RegPressureTracker RecRPTracker(RecRegPressure);
1862 RecRPTracker.init(&MF, &RegClassInfo, &LIS, BB, BB->end(), false, true);
1863 computeLiveOuts(MF, RecRPTracker, NS);
1864 RecRPTracker.closeBottom();
1865
1866 std::vector<SUnit *> SUnits(NS.begin(), NS.end());
1867 llvm::sort(SUnits.begin(), SUnits.end(),
1868 [](const SUnit *A, const SUnit *B) {
1869 return A->NodeNum > B->NodeNum;
1870 });
1871
1872 for (auto &SU : SUnits) {
1873 // Since we're computing the register pressure for a subset of the
1874 // instructions in a block, we need to set the tracker for each
1875 // instruction in the node-set. The tracker is set to the instruction
1876 // just after the one we're interested in.
1877 MachineBasicBlock::const_iterator CurInstI = SU->getInstr();
1878 RecRPTracker.setPos(std::next(CurInstI));
1879
1880 RegPressureDelta RPDelta;
1881 ArrayRef<PressureChange> CriticalPSets;
1882 RecRPTracker.getMaxUpwardPressureDelta(SU->getInstr(), nullptr, RPDelta,
1883 CriticalPSets,
1884 RecRegPressure.MaxSetPressure);
1885 if (RPDelta.Excess.isValid()) {
1886 LLVM_DEBUG(
1887 dbgs() << "Excess register pressure: SU(" << SU->NodeNum << ") "
1888 << TRI->getRegPressureSetName(RPDelta.Excess.getPSet())
1889 << ":" << RPDelta.Excess.getUnitInc());
1890 NS.setExceedPressure(SU);
1891 break;
1892 }
1893 RecRPTracker.recede();
1894 }
1895 }
1896 }
1897
1898 /// A heuristic to colocate node sets that have the same set of
1899 /// successors.
colocateNodeSets(NodeSetType & NodeSets)1900 void SwingSchedulerDAG::colocateNodeSets(NodeSetType &NodeSets) {
1901 unsigned Colocate = 0;
1902 for (int i = 0, e = NodeSets.size(); i < e; ++i) {
1903 NodeSet &N1 = NodeSets[i];
1904 SmallSetVector<SUnit *, 8> S1;
1905 if (N1.empty() || !succ_L(N1, S1))
1906 continue;
1907 for (int j = i + 1; j < e; ++j) {
1908 NodeSet &N2 = NodeSets[j];
1909 if (N1.compareRecMII(N2) != 0)
1910 continue;
1911 SmallSetVector<SUnit *, 8> S2;
1912 if (N2.empty() || !succ_L(N2, S2))
1913 continue;
1914 if (isSubset(S1, S2) && S1.size() == S2.size()) {
1915 N1.setColocate(++Colocate);
1916 N2.setColocate(Colocate);
1917 break;
1918 }
1919 }
1920 }
1921 }
1922
1923 /// Check if the existing node-sets are profitable. If not, then ignore the
1924 /// recurrent node-sets, and attempt to schedule all nodes together. This is
1925 /// a heuristic. If the MII is large and all the recurrent node-sets are small,
1926 /// then it's best to try to schedule all instructions together instead of
1927 /// starting with the recurrent node-sets.
checkNodeSets(NodeSetType & NodeSets)1928 void SwingSchedulerDAG::checkNodeSets(NodeSetType &NodeSets) {
1929 // Look for loops with a large MII.
1930 if (MII < 17)
1931 return;
1932 // Check if the node-set contains only a simple add recurrence.
1933 for (auto &NS : NodeSets) {
1934 if (NS.getRecMII() > 2)
1935 return;
1936 if (NS.getMaxDepth() > MII)
1937 return;
1938 }
1939 NodeSets.clear();
1940 LLVM_DEBUG(dbgs() << "Clear recurrence node-sets\n");
1941 return;
1942 }
1943
1944 /// Add the nodes that do not belong to a recurrence set into groups
1945 /// based upon connected componenets.
groupRemainingNodes(NodeSetType & NodeSets)1946 void SwingSchedulerDAG::groupRemainingNodes(NodeSetType &NodeSets) {
1947 SetVector<SUnit *> NodesAdded;
1948 SmallPtrSet<SUnit *, 8> Visited;
1949 // Add the nodes that are on a path between the previous node sets and
1950 // the current node set.
1951 for (NodeSet &I : NodeSets) {
1952 SmallSetVector<SUnit *, 8> N;
1953 // Add the nodes from the current node set to the previous node set.
1954 if (succ_L(I, N)) {
1955 SetVector<SUnit *> Path;
1956 for (SUnit *NI : N) {
1957 Visited.clear();
1958 computePath(NI, Path, NodesAdded, I, Visited);
1959 }
1960 if (!Path.empty())
1961 I.insert(Path.begin(), Path.end());
1962 }
1963 // Add the nodes from the previous node set to the current node set.
1964 N.clear();
1965 if (succ_L(NodesAdded, N)) {
1966 SetVector<SUnit *> Path;
1967 for (SUnit *NI : N) {
1968 Visited.clear();
1969 computePath(NI, Path, I, NodesAdded, Visited);
1970 }
1971 if (!Path.empty())
1972 I.insert(Path.begin(), Path.end());
1973 }
1974 NodesAdded.insert(I.begin(), I.end());
1975 }
1976
1977 // Create a new node set with the connected nodes of any successor of a node
1978 // in a recurrent set.
1979 NodeSet NewSet;
1980 SmallSetVector<SUnit *, 8> N;
1981 if (succ_L(NodesAdded, N))
1982 for (SUnit *I : N)
1983 addConnectedNodes(I, NewSet, NodesAdded);
1984 if (!NewSet.empty())
1985 NodeSets.push_back(NewSet);
1986
1987 // Create a new node set with the connected nodes of any predecessor of a node
1988 // in a recurrent set.
1989 NewSet.clear();
1990 if (pred_L(NodesAdded, N))
1991 for (SUnit *I : N)
1992 addConnectedNodes(I, NewSet, NodesAdded);
1993 if (!NewSet.empty())
1994 NodeSets.push_back(NewSet);
1995
1996 // Create new nodes sets with the connected nodes any remaining node that
1997 // has no predecessor.
1998 for (unsigned i = 0; i < SUnits.size(); ++i) {
1999 SUnit *SU = &SUnits[i];
2000 if (NodesAdded.count(SU) == 0) {
2001 NewSet.clear();
2002 addConnectedNodes(SU, NewSet, NodesAdded);
2003 if (!NewSet.empty())
2004 NodeSets.push_back(NewSet);
2005 }
2006 }
2007 }
2008
2009 /// Add the node to the set, and add all is its connected nodes to the set.
addConnectedNodes(SUnit * SU,NodeSet & NewSet,SetVector<SUnit * > & NodesAdded)2010 void SwingSchedulerDAG::addConnectedNodes(SUnit *SU, NodeSet &NewSet,
2011 SetVector<SUnit *> &NodesAdded) {
2012 NewSet.insert(SU);
2013 NodesAdded.insert(SU);
2014 for (auto &SI : SU->Succs) {
2015 SUnit *Successor = SI.getSUnit();
2016 if (!SI.isArtificial() && NodesAdded.count(Successor) == 0)
2017 addConnectedNodes(Successor, NewSet, NodesAdded);
2018 }
2019 for (auto &PI : SU->Preds) {
2020 SUnit *Predecessor = PI.getSUnit();
2021 if (!PI.isArtificial() && NodesAdded.count(Predecessor) == 0)
2022 addConnectedNodes(Predecessor, NewSet, NodesAdded);
2023 }
2024 }
2025
2026 /// Return true if Set1 contains elements in Set2. The elements in common
2027 /// are returned in a different container.
isIntersect(SmallSetVector<SUnit *,8> & Set1,const NodeSet & Set2,SmallSetVector<SUnit *,8> & Result)2028 static bool isIntersect(SmallSetVector<SUnit *, 8> &Set1, const NodeSet &Set2,
2029 SmallSetVector<SUnit *, 8> &Result) {
2030 Result.clear();
2031 for (unsigned i = 0, e = Set1.size(); i != e; ++i) {
2032 SUnit *SU = Set1[i];
2033 if (Set2.count(SU) != 0)
2034 Result.insert(SU);
2035 }
2036 return !Result.empty();
2037 }
2038
2039 /// Merge the recurrence node sets that have the same initial node.
fuseRecs(NodeSetType & NodeSets)2040 void SwingSchedulerDAG::fuseRecs(NodeSetType &NodeSets) {
2041 for (NodeSetType::iterator I = NodeSets.begin(), E = NodeSets.end(); I != E;
2042 ++I) {
2043 NodeSet &NI = *I;
2044 for (NodeSetType::iterator J = I + 1; J != E;) {
2045 NodeSet &NJ = *J;
2046 if (NI.getNode(0)->NodeNum == NJ.getNode(0)->NodeNum) {
2047 if (NJ.compareRecMII(NI) > 0)
2048 NI.setRecMII(NJ.getRecMII());
2049 for (NodeSet::iterator NII = J->begin(), ENI = J->end(); NII != ENI;
2050 ++NII)
2051 I->insert(*NII);
2052 NodeSets.erase(J);
2053 E = NodeSets.end();
2054 } else {
2055 ++J;
2056 }
2057 }
2058 }
2059 }
2060
2061 /// Remove nodes that have been scheduled in previous NodeSets.
removeDuplicateNodes(NodeSetType & NodeSets)2062 void SwingSchedulerDAG::removeDuplicateNodes(NodeSetType &NodeSets) {
2063 for (NodeSetType::iterator I = NodeSets.begin(), E = NodeSets.end(); I != E;
2064 ++I)
2065 for (NodeSetType::iterator J = I + 1; J != E;) {
2066 J->remove_if([&](SUnit *SUJ) { return I->count(SUJ); });
2067
2068 if (J->empty()) {
2069 NodeSets.erase(J);
2070 E = NodeSets.end();
2071 } else {
2072 ++J;
2073 }
2074 }
2075 }
2076
2077 /// Compute an ordered list of the dependence graph nodes, which
2078 /// indicates the order that the nodes will be scheduled. This is a
2079 /// two-level algorithm. First, a partial order is created, which
2080 /// consists of a list of sets ordered from highest to lowest priority.
computeNodeOrder(NodeSetType & NodeSets)2081 void SwingSchedulerDAG::computeNodeOrder(NodeSetType &NodeSets) {
2082 SmallSetVector<SUnit *, 8> R;
2083 NodeOrder.clear();
2084
2085 for (auto &Nodes : NodeSets) {
2086 LLVM_DEBUG(dbgs() << "NodeSet size " << Nodes.size() << "\n");
2087 OrderKind Order;
2088 SmallSetVector<SUnit *, 8> N;
2089 if (pred_L(NodeOrder, N) && isSubset(N, Nodes)) {
2090 R.insert(N.begin(), N.end());
2091 Order = BottomUp;
2092 LLVM_DEBUG(dbgs() << " Bottom up (preds) ");
2093 } else if (succ_L(NodeOrder, N) && isSubset(N, Nodes)) {
2094 R.insert(N.begin(), N.end());
2095 Order = TopDown;
2096 LLVM_DEBUG(dbgs() << " Top down (succs) ");
2097 } else if (isIntersect(N, Nodes, R)) {
2098 // If some of the successors are in the existing node-set, then use the
2099 // top-down ordering.
2100 Order = TopDown;
2101 LLVM_DEBUG(dbgs() << " Top down (intersect) ");
2102 } else if (NodeSets.size() == 1) {
2103 for (auto &N : Nodes)
2104 if (N->Succs.size() == 0)
2105 R.insert(N);
2106 Order = BottomUp;
2107 LLVM_DEBUG(dbgs() << " Bottom up (all) ");
2108 } else {
2109 // Find the node with the highest ASAP.
2110 SUnit *maxASAP = nullptr;
2111 for (SUnit *SU : Nodes) {
2112 if (maxASAP == nullptr || getASAP(SU) > getASAP(maxASAP) ||
2113 (getASAP(SU) == getASAP(maxASAP) && SU->NodeNum > maxASAP->NodeNum))
2114 maxASAP = SU;
2115 }
2116 R.insert(maxASAP);
2117 Order = BottomUp;
2118 LLVM_DEBUG(dbgs() << " Bottom up (default) ");
2119 }
2120
2121 while (!R.empty()) {
2122 if (Order == TopDown) {
2123 // Choose the node with the maximum height. If more than one, choose
2124 // the node wiTH the maximum ZeroLatencyHeight. If still more than one,
2125 // choose the node with the lowest MOV.
2126 while (!R.empty()) {
2127 SUnit *maxHeight = nullptr;
2128 for (SUnit *I : R) {
2129 if (maxHeight == nullptr || getHeight(I) > getHeight(maxHeight))
2130 maxHeight = I;
2131 else if (getHeight(I) == getHeight(maxHeight) &&
2132 getZeroLatencyHeight(I) > getZeroLatencyHeight(maxHeight))
2133 maxHeight = I;
2134 else if (getHeight(I) == getHeight(maxHeight) &&
2135 getZeroLatencyHeight(I) ==
2136 getZeroLatencyHeight(maxHeight) &&
2137 getMOV(I) < getMOV(maxHeight))
2138 maxHeight = I;
2139 }
2140 NodeOrder.insert(maxHeight);
2141 LLVM_DEBUG(dbgs() << maxHeight->NodeNum << " ");
2142 R.remove(maxHeight);
2143 for (const auto &I : maxHeight->Succs) {
2144 if (Nodes.count(I.getSUnit()) == 0)
2145 continue;
2146 if (NodeOrder.count(I.getSUnit()) != 0)
2147 continue;
2148 if (ignoreDependence(I, false))
2149 continue;
2150 R.insert(I.getSUnit());
2151 }
2152 // Back-edges are predecessors with an anti-dependence.
2153 for (const auto &I : maxHeight->Preds) {
2154 if (I.getKind() != SDep::Anti)
2155 continue;
2156 if (Nodes.count(I.getSUnit()) == 0)
2157 continue;
2158 if (NodeOrder.count(I.getSUnit()) != 0)
2159 continue;
2160 R.insert(I.getSUnit());
2161 }
2162 }
2163 Order = BottomUp;
2164 LLVM_DEBUG(dbgs() << "\n Switching order to bottom up ");
2165 SmallSetVector<SUnit *, 8> N;
2166 if (pred_L(NodeOrder, N, &Nodes))
2167 R.insert(N.begin(), N.end());
2168 } else {
2169 // Choose the node with the maximum depth. If more than one, choose
2170 // the node with the maximum ZeroLatencyDepth. If still more than one,
2171 // choose the node with the lowest MOV.
2172 while (!R.empty()) {
2173 SUnit *maxDepth = nullptr;
2174 for (SUnit *I : R) {
2175 if (maxDepth == nullptr || getDepth(I) > getDepth(maxDepth))
2176 maxDepth = I;
2177 else if (getDepth(I) == getDepth(maxDepth) &&
2178 getZeroLatencyDepth(I) > getZeroLatencyDepth(maxDepth))
2179 maxDepth = I;
2180 else if (getDepth(I) == getDepth(maxDepth) &&
2181 getZeroLatencyDepth(I) == getZeroLatencyDepth(maxDepth) &&
2182 getMOV(I) < getMOV(maxDepth))
2183 maxDepth = I;
2184 }
2185 NodeOrder.insert(maxDepth);
2186 LLVM_DEBUG(dbgs() << maxDepth->NodeNum << " ");
2187 R.remove(maxDepth);
2188 if (Nodes.isExceedSU(maxDepth)) {
2189 Order = TopDown;
2190 R.clear();
2191 R.insert(Nodes.getNode(0));
2192 break;
2193 }
2194 for (const auto &I : maxDepth->Preds) {
2195 if (Nodes.count(I.getSUnit()) == 0)
2196 continue;
2197 if (NodeOrder.count(I.getSUnit()) != 0)
2198 continue;
2199 R.insert(I.getSUnit());
2200 }
2201 // Back-edges are predecessors with an anti-dependence.
2202 for (const auto &I : maxDepth->Succs) {
2203 if (I.getKind() != SDep::Anti)
2204 continue;
2205 if (Nodes.count(I.getSUnit()) == 0)
2206 continue;
2207 if (NodeOrder.count(I.getSUnit()) != 0)
2208 continue;
2209 R.insert(I.getSUnit());
2210 }
2211 }
2212 Order = TopDown;
2213 LLVM_DEBUG(dbgs() << "\n Switching order to top down ");
2214 SmallSetVector<SUnit *, 8> N;
2215 if (succ_L(NodeOrder, N, &Nodes))
2216 R.insert(N.begin(), N.end());
2217 }
2218 }
2219 LLVM_DEBUG(dbgs() << "\nDone with Nodeset\n");
2220 }
2221
2222 LLVM_DEBUG({
2223 dbgs() << "Node order: ";
2224 for (SUnit *I : NodeOrder)
2225 dbgs() << " " << I->NodeNum << " ";
2226 dbgs() << "\n";
2227 });
2228 }
2229
2230 /// Process the nodes in the computed order and create the pipelined schedule
2231 /// of the instructions, if possible. Return true if a schedule is found.
schedulePipeline(SMSchedule & Schedule)2232 bool SwingSchedulerDAG::schedulePipeline(SMSchedule &Schedule) {
2233 if (NodeOrder.empty())
2234 return false;
2235
2236 bool scheduleFound = false;
2237 // Keep increasing II until a valid schedule is found.
2238 for (unsigned II = MII; II < MII + 10 && !scheduleFound; ++II) {
2239 Schedule.reset();
2240 Schedule.setInitiationInterval(II);
2241 LLVM_DEBUG(dbgs() << "Try to schedule with " << II << "\n");
2242
2243 SetVector<SUnit *>::iterator NI = NodeOrder.begin();
2244 SetVector<SUnit *>::iterator NE = NodeOrder.end();
2245 do {
2246 SUnit *SU = *NI;
2247
2248 // Compute the schedule time for the instruction, which is based
2249 // upon the scheduled time for any predecessors/successors.
2250 int EarlyStart = INT_MIN;
2251 int LateStart = INT_MAX;
2252 // These values are set when the size of the schedule window is limited
2253 // due to chain dependences.
2254 int SchedEnd = INT_MAX;
2255 int SchedStart = INT_MIN;
2256 Schedule.computeStart(SU, &EarlyStart, &LateStart, &SchedEnd, &SchedStart,
2257 II, this);
2258 LLVM_DEBUG({
2259 dbgs() << "Inst (" << SU->NodeNum << ") ";
2260 SU->getInstr()->dump();
2261 dbgs() << "\n";
2262 });
2263 LLVM_DEBUG({
2264 dbgs() << "\tes: " << EarlyStart << " ls: " << LateStart
2265 << " me: " << SchedEnd << " ms: " << SchedStart << "\n";
2266 });
2267
2268 if (EarlyStart > LateStart || SchedEnd < EarlyStart ||
2269 SchedStart > LateStart)
2270 scheduleFound = false;
2271 else if (EarlyStart != INT_MIN && LateStart == INT_MAX) {
2272 SchedEnd = std::min(SchedEnd, EarlyStart + (int)II - 1);
2273 scheduleFound = Schedule.insert(SU, EarlyStart, SchedEnd, II);
2274 } else if (EarlyStart == INT_MIN && LateStart != INT_MAX) {
2275 SchedStart = std::max(SchedStart, LateStart - (int)II + 1);
2276 scheduleFound = Schedule.insert(SU, LateStart, SchedStart, II);
2277 } else if (EarlyStart != INT_MIN && LateStart != INT_MAX) {
2278 SchedEnd =
2279 std::min(SchedEnd, std::min(LateStart, EarlyStart + (int)II - 1));
2280 // When scheduling a Phi it is better to start at the late cycle and go
2281 // backwards. The default order may insert the Phi too far away from
2282 // its first dependence.
2283 if (SU->getInstr()->isPHI())
2284 scheduleFound = Schedule.insert(SU, SchedEnd, EarlyStart, II);
2285 else
2286 scheduleFound = Schedule.insert(SU, EarlyStart, SchedEnd, II);
2287 } else {
2288 int FirstCycle = Schedule.getFirstCycle();
2289 scheduleFound = Schedule.insert(SU, FirstCycle + getASAP(SU),
2290 FirstCycle + getASAP(SU) + II - 1, II);
2291 }
2292 // Even if we find a schedule, make sure the schedule doesn't exceed the
2293 // allowable number of stages. We keep trying if this happens.
2294 if (scheduleFound)
2295 if (SwpMaxStages > -1 &&
2296 Schedule.getMaxStageCount() > (unsigned)SwpMaxStages)
2297 scheduleFound = false;
2298
2299 LLVM_DEBUG({
2300 if (!scheduleFound)
2301 dbgs() << "\tCan't schedule\n";
2302 });
2303 } while (++NI != NE && scheduleFound);
2304
2305 // If a schedule is found, check if it is a valid schedule too.
2306 if (scheduleFound)
2307 scheduleFound = Schedule.isValidSchedule(this);
2308 }
2309
2310 LLVM_DEBUG(dbgs() << "Schedule Found? " << scheduleFound << "\n");
2311
2312 if (scheduleFound)
2313 Schedule.finalizeSchedule(this);
2314 else
2315 Schedule.reset();
2316
2317 return scheduleFound && Schedule.getMaxStageCount() > 0;
2318 }
2319
2320 /// Given a schedule for the loop, generate a new version of the loop,
2321 /// and replace the old version. This function generates a prolog
2322 /// that contains the initial iterations in the pipeline, and kernel
2323 /// loop, and the epilogue that contains the code for the final
2324 /// iterations.
generatePipelinedLoop(SMSchedule & Schedule)2325 void SwingSchedulerDAG::generatePipelinedLoop(SMSchedule &Schedule) {
2326 // Create a new basic block for the kernel and add it to the CFG.
2327 MachineBasicBlock *KernelBB = MF.CreateMachineBasicBlock(BB->getBasicBlock());
2328
2329 unsigned MaxStageCount = Schedule.getMaxStageCount();
2330
2331 // Remember the registers that are used in different stages. The index is
2332 // the iteration, or stage, that the instruction is scheduled in. This is
2333 // a map between register names in the original block and the names created
2334 // in each stage of the pipelined loop.
2335 ValueMapTy *VRMap = new ValueMapTy[(MaxStageCount + 1) * 2];
2336 InstrMapTy InstrMap;
2337
2338 SmallVector<MachineBasicBlock *, 4> PrologBBs;
2339 // Generate the prolog instructions that set up the pipeline.
2340 generateProlog(Schedule, MaxStageCount, KernelBB, VRMap, PrologBBs);
2341 MF.insert(BB->getIterator(), KernelBB);
2342
2343 // Rearrange the instructions to generate the new, pipelined loop,
2344 // and update register names as needed.
2345 for (int Cycle = Schedule.getFirstCycle(),
2346 LastCycle = Schedule.getFinalCycle();
2347 Cycle <= LastCycle; ++Cycle) {
2348 std::deque<SUnit *> &CycleInstrs = Schedule.getInstructions(Cycle);
2349 // This inner loop schedules each instruction in the cycle.
2350 for (SUnit *CI : CycleInstrs) {
2351 if (CI->getInstr()->isPHI())
2352 continue;
2353 unsigned StageNum = Schedule.stageScheduled(getSUnit(CI->getInstr()));
2354 MachineInstr *NewMI = cloneInstr(CI->getInstr(), MaxStageCount, StageNum);
2355 updateInstruction(NewMI, false, MaxStageCount, StageNum, Schedule, VRMap);
2356 KernelBB->push_back(NewMI);
2357 InstrMap[NewMI] = CI->getInstr();
2358 }
2359 }
2360
2361 // Copy any terminator instructions to the new kernel, and update
2362 // names as needed.
2363 for (MachineBasicBlock::iterator I = BB->getFirstTerminator(),
2364 E = BB->instr_end();
2365 I != E; ++I) {
2366 MachineInstr *NewMI = MF.CloneMachineInstr(&*I);
2367 updateInstruction(NewMI, false, MaxStageCount, 0, Schedule, VRMap);
2368 KernelBB->push_back(NewMI);
2369 InstrMap[NewMI] = &*I;
2370 }
2371
2372 KernelBB->transferSuccessors(BB);
2373 KernelBB->replaceSuccessor(BB, KernelBB);
2374
2375 generateExistingPhis(KernelBB, PrologBBs.back(), KernelBB, KernelBB, Schedule,
2376 VRMap, InstrMap, MaxStageCount, MaxStageCount, false);
2377 generatePhis(KernelBB, PrologBBs.back(), KernelBB, KernelBB, Schedule, VRMap,
2378 InstrMap, MaxStageCount, MaxStageCount, false);
2379
2380 LLVM_DEBUG(dbgs() << "New block\n"; KernelBB->dump(););
2381
2382 SmallVector<MachineBasicBlock *, 4> EpilogBBs;
2383 // Generate the epilog instructions to complete the pipeline.
2384 generateEpilog(Schedule, MaxStageCount, KernelBB, VRMap, EpilogBBs,
2385 PrologBBs);
2386
2387 // We need this step because the register allocation doesn't handle some
2388 // situations well, so we insert copies to help out.
2389 splitLifetimes(KernelBB, EpilogBBs, Schedule);
2390
2391 // Remove dead instructions due to loop induction variables.
2392 removeDeadInstructions(KernelBB, EpilogBBs);
2393
2394 // Add branches between prolog and epilog blocks.
2395 addBranches(PrologBBs, KernelBB, EpilogBBs, Schedule, VRMap);
2396
2397 // Remove the original loop since it's no longer referenced.
2398 for (auto &I : *BB)
2399 LIS.RemoveMachineInstrFromMaps(I);
2400 BB->clear();
2401 BB->eraseFromParent();
2402
2403 delete[] VRMap;
2404 }
2405
2406 /// Generate the pipeline prolog code.
generateProlog(SMSchedule & Schedule,unsigned LastStage,MachineBasicBlock * KernelBB,ValueMapTy * VRMap,MBBVectorTy & PrologBBs)2407 void SwingSchedulerDAG::generateProlog(SMSchedule &Schedule, unsigned LastStage,
2408 MachineBasicBlock *KernelBB,
2409 ValueMapTy *VRMap,
2410 MBBVectorTy &PrologBBs) {
2411 MachineBasicBlock *PreheaderBB = MLI->getLoopFor(BB)->getLoopPreheader();
2412 assert(PreheaderBB != nullptr &&
2413 "Need to add code to handle loops w/o preheader");
2414 MachineBasicBlock *PredBB = PreheaderBB;
2415 InstrMapTy InstrMap;
2416
2417 // Generate a basic block for each stage, not including the last stage,
2418 // which will be generated in the kernel. Each basic block may contain
2419 // instructions from multiple stages/iterations.
2420 for (unsigned i = 0; i < LastStage; ++i) {
2421 // Create and insert the prolog basic block prior to the original loop
2422 // basic block. The original loop is removed later.
2423 MachineBasicBlock *NewBB = MF.CreateMachineBasicBlock(BB->getBasicBlock());
2424 PrologBBs.push_back(NewBB);
2425 MF.insert(BB->getIterator(), NewBB);
2426 NewBB->transferSuccessors(PredBB);
2427 PredBB->addSuccessor(NewBB);
2428 PredBB = NewBB;
2429
2430 // Generate instructions for each appropriate stage. Process instructions
2431 // in original program order.
2432 for (int StageNum = i; StageNum >= 0; --StageNum) {
2433 for (MachineBasicBlock::iterator BBI = BB->instr_begin(),
2434 BBE = BB->getFirstTerminator();
2435 BBI != BBE; ++BBI) {
2436 if (Schedule.isScheduledAtStage(getSUnit(&*BBI), (unsigned)StageNum)) {
2437 if (BBI->isPHI())
2438 continue;
2439 MachineInstr *NewMI =
2440 cloneAndChangeInstr(&*BBI, i, (unsigned)StageNum, Schedule);
2441 updateInstruction(NewMI, false, i, (unsigned)StageNum, Schedule,
2442 VRMap);
2443 NewBB->push_back(NewMI);
2444 InstrMap[NewMI] = &*BBI;
2445 }
2446 }
2447 }
2448 rewritePhiValues(NewBB, i, Schedule, VRMap, InstrMap);
2449 LLVM_DEBUG({
2450 dbgs() << "prolog:\n";
2451 NewBB->dump();
2452 });
2453 }
2454
2455 PredBB->replaceSuccessor(BB, KernelBB);
2456
2457 // Check if we need to remove the branch from the preheader to the original
2458 // loop, and replace it with a branch to the new loop.
2459 unsigned numBranches = TII->removeBranch(*PreheaderBB);
2460 if (numBranches) {
2461 SmallVector<MachineOperand, 0> Cond;
2462 TII->insertBranch(*PreheaderBB, PrologBBs[0], nullptr, Cond, DebugLoc());
2463 }
2464 }
2465
2466 /// Generate the pipeline epilog code. The epilog code finishes the iterations
2467 /// that were started in either the prolog or the kernel. We create a basic
2468 /// block for each stage that needs to complete.
generateEpilog(SMSchedule & Schedule,unsigned LastStage,MachineBasicBlock * KernelBB,ValueMapTy * VRMap,MBBVectorTy & EpilogBBs,MBBVectorTy & PrologBBs)2469 void SwingSchedulerDAG::generateEpilog(SMSchedule &Schedule, unsigned LastStage,
2470 MachineBasicBlock *KernelBB,
2471 ValueMapTy *VRMap,
2472 MBBVectorTy &EpilogBBs,
2473 MBBVectorTy &PrologBBs) {
2474 // We need to change the branch from the kernel to the first epilog block, so
2475 // this call to analyze branch uses the kernel rather than the original BB.
2476 MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
2477 SmallVector<MachineOperand, 4> Cond;
2478 bool checkBranch = TII->analyzeBranch(*KernelBB, TBB, FBB, Cond);
2479 assert(!checkBranch && "generateEpilog must be able to analyze the branch");
2480 if (checkBranch)
2481 return;
2482
2483 MachineBasicBlock::succ_iterator LoopExitI = KernelBB->succ_begin();
2484 if (*LoopExitI == KernelBB)
2485 ++LoopExitI;
2486 assert(LoopExitI != KernelBB->succ_end() && "Expecting a successor");
2487 MachineBasicBlock *LoopExitBB = *LoopExitI;
2488
2489 MachineBasicBlock *PredBB = KernelBB;
2490 MachineBasicBlock *EpilogStart = LoopExitBB;
2491 InstrMapTy InstrMap;
2492
2493 // Generate a basic block for each stage, not including the last stage,
2494 // which was generated for the kernel. Each basic block may contain
2495 // instructions from multiple stages/iterations.
2496 int EpilogStage = LastStage + 1;
2497 for (unsigned i = LastStage; i >= 1; --i, ++EpilogStage) {
2498 MachineBasicBlock *NewBB = MF.CreateMachineBasicBlock();
2499 EpilogBBs.push_back(NewBB);
2500 MF.insert(BB->getIterator(), NewBB);
2501
2502 PredBB->replaceSuccessor(LoopExitBB, NewBB);
2503 NewBB->addSuccessor(LoopExitBB);
2504
2505 if (EpilogStart == LoopExitBB)
2506 EpilogStart = NewBB;
2507
2508 // Add instructions to the epilog depending on the current block.
2509 // Process instructions in original program order.
2510 for (unsigned StageNum = i; StageNum <= LastStage; ++StageNum) {
2511 for (auto &BBI : *BB) {
2512 if (BBI.isPHI())
2513 continue;
2514 MachineInstr *In = &BBI;
2515 if (Schedule.isScheduledAtStage(getSUnit(In), StageNum)) {
2516 // Instructions with memoperands in the epilog are updated with
2517 // conservative values.
2518 MachineInstr *NewMI = cloneInstr(In, UINT_MAX, 0);
2519 updateInstruction(NewMI, i == 1, EpilogStage, 0, Schedule, VRMap);
2520 NewBB->push_back(NewMI);
2521 InstrMap[NewMI] = In;
2522 }
2523 }
2524 }
2525 generateExistingPhis(NewBB, PrologBBs[i - 1], PredBB, KernelBB, Schedule,
2526 VRMap, InstrMap, LastStage, EpilogStage, i == 1);
2527 generatePhis(NewBB, PrologBBs[i - 1], PredBB, KernelBB, Schedule, VRMap,
2528 InstrMap, LastStage, EpilogStage, i == 1);
2529 PredBB = NewBB;
2530
2531 LLVM_DEBUG({
2532 dbgs() << "epilog:\n";
2533 NewBB->dump();
2534 });
2535 }
2536
2537 // Fix any Phi nodes in the loop exit block.
2538 for (MachineInstr &MI : *LoopExitBB) {
2539 if (!MI.isPHI())
2540 break;
2541 for (unsigned i = 2, e = MI.getNumOperands() + 1; i != e; i += 2) {
2542 MachineOperand &MO = MI.getOperand(i);
2543 if (MO.getMBB() == BB)
2544 MO.setMBB(PredBB);
2545 }
2546 }
2547
2548 // Create a branch to the new epilog from the kernel.
2549 // Remove the original branch and add a new branch to the epilog.
2550 TII->removeBranch(*KernelBB);
2551 TII->insertBranch(*KernelBB, KernelBB, EpilogStart, Cond, DebugLoc());
2552 // Add a branch to the loop exit.
2553 if (EpilogBBs.size() > 0) {
2554 MachineBasicBlock *LastEpilogBB = EpilogBBs.back();
2555 SmallVector<MachineOperand, 4> Cond1;
2556 TII->insertBranch(*LastEpilogBB, LoopExitBB, nullptr, Cond1, DebugLoc());
2557 }
2558 }
2559
2560 /// Replace all uses of FromReg that appear outside the specified
2561 /// basic block with ToReg.
replaceRegUsesAfterLoop(unsigned FromReg,unsigned ToReg,MachineBasicBlock * MBB,MachineRegisterInfo & MRI,LiveIntervals & LIS)2562 static void replaceRegUsesAfterLoop(unsigned FromReg, unsigned ToReg,
2563 MachineBasicBlock *MBB,
2564 MachineRegisterInfo &MRI,
2565 LiveIntervals &LIS) {
2566 for (MachineRegisterInfo::use_iterator I = MRI.use_begin(FromReg),
2567 E = MRI.use_end();
2568 I != E;) {
2569 MachineOperand &O = *I;
2570 ++I;
2571 if (O.getParent()->getParent() != MBB)
2572 O.setReg(ToReg);
2573 }
2574 if (!LIS.hasInterval(ToReg))
2575 LIS.createEmptyInterval(ToReg);
2576 }
2577
2578 /// Return true if the register has a use that occurs outside the
2579 /// specified loop.
hasUseAfterLoop(unsigned Reg,MachineBasicBlock * BB,MachineRegisterInfo & MRI)2580 static bool hasUseAfterLoop(unsigned Reg, MachineBasicBlock *BB,
2581 MachineRegisterInfo &MRI) {
2582 for (MachineRegisterInfo::use_iterator I = MRI.use_begin(Reg),
2583 E = MRI.use_end();
2584 I != E; ++I)
2585 if (I->getParent()->getParent() != BB)
2586 return true;
2587 return false;
2588 }
2589
2590 /// Generate Phis for the specific block in the generated pipelined code.
2591 /// This function looks at the Phis from the original code to guide the
2592 /// creation of new Phis.
generateExistingPhis(MachineBasicBlock * NewBB,MachineBasicBlock * BB1,MachineBasicBlock * BB2,MachineBasicBlock * KernelBB,SMSchedule & Schedule,ValueMapTy * VRMap,InstrMapTy & InstrMap,unsigned LastStageNum,unsigned CurStageNum,bool IsLast)2593 void SwingSchedulerDAG::generateExistingPhis(
2594 MachineBasicBlock *NewBB, MachineBasicBlock *BB1, MachineBasicBlock *BB2,
2595 MachineBasicBlock *KernelBB, SMSchedule &Schedule, ValueMapTy *VRMap,
2596 InstrMapTy &InstrMap, unsigned LastStageNum, unsigned CurStageNum,
2597 bool IsLast) {
2598 // Compute the stage number for the initial value of the Phi, which
2599 // comes from the prolog. The prolog to use depends on to which kernel/
2600 // epilog that we're adding the Phi.
2601 unsigned PrologStage = 0;
2602 unsigned PrevStage = 0;
2603 bool InKernel = (LastStageNum == CurStageNum);
2604 if (InKernel) {
2605 PrologStage = LastStageNum - 1;
2606 PrevStage = CurStageNum;
2607 } else {
2608 PrologStage = LastStageNum - (CurStageNum - LastStageNum);
2609 PrevStage = LastStageNum + (CurStageNum - LastStageNum) - 1;
2610 }
2611
2612 for (MachineBasicBlock::iterator BBI = BB->instr_begin(),
2613 BBE = BB->getFirstNonPHI();
2614 BBI != BBE; ++BBI) {
2615 unsigned Def = BBI->getOperand(0).getReg();
2616
2617 unsigned InitVal = 0;
2618 unsigned LoopVal = 0;
2619 getPhiRegs(*BBI, BB, InitVal, LoopVal);
2620
2621 unsigned PhiOp1 = 0;
2622 // The Phi value from the loop body typically is defined in the loop, but
2623 // not always. So, we need to check if the value is defined in the loop.
2624 unsigned PhiOp2 = LoopVal;
2625 if (VRMap[LastStageNum].count(LoopVal))
2626 PhiOp2 = VRMap[LastStageNum][LoopVal];
2627
2628 int StageScheduled = Schedule.stageScheduled(getSUnit(&*BBI));
2629 int LoopValStage =
2630 Schedule.stageScheduled(getSUnit(MRI.getVRegDef(LoopVal)));
2631 unsigned NumStages = Schedule.getStagesForReg(Def, CurStageNum);
2632 if (NumStages == 0) {
2633 // We don't need to generate a Phi anymore, but we need to rename any uses
2634 // of the Phi value.
2635 unsigned NewReg = VRMap[PrevStage][LoopVal];
2636 rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, 0, &*BBI,
2637 Def, InitVal, NewReg);
2638 if (VRMap[CurStageNum].count(LoopVal))
2639 VRMap[CurStageNum][Def] = VRMap[CurStageNum][LoopVal];
2640 }
2641 // Adjust the number of Phis needed depending on the number of prologs left,
2642 // and the distance from where the Phi is first scheduled. The number of
2643 // Phis cannot exceed the number of prolog stages. Each stage can
2644 // potentially define two values.
2645 unsigned MaxPhis = PrologStage + 2;
2646 if (!InKernel && (int)PrologStage <= LoopValStage)
2647 MaxPhis = std::max((int)MaxPhis - (int)LoopValStage, 1);
2648 unsigned NumPhis = std::min(NumStages, MaxPhis);
2649
2650 unsigned NewReg = 0;
2651 unsigned AccessStage = (LoopValStage != -1) ? LoopValStage : StageScheduled;
2652 // In the epilog, we may need to look back one stage to get the correct
2653 // Phi name because the epilog and prolog blocks execute the same stage.
2654 // The correct name is from the previous block only when the Phi has
2655 // been completely scheduled prior to the epilog, and Phi value is not
2656 // needed in multiple stages.
2657 int StageDiff = 0;
2658 if (!InKernel && StageScheduled >= LoopValStage && AccessStage == 0 &&
2659 NumPhis == 1)
2660 StageDiff = 1;
2661 // Adjust the computations below when the phi and the loop definition
2662 // are scheduled in different stages.
2663 if (InKernel && LoopValStage != -1 && StageScheduled > LoopValStage)
2664 StageDiff = StageScheduled - LoopValStage;
2665 for (unsigned np = 0; np < NumPhis; ++np) {
2666 // If the Phi hasn't been scheduled, then use the initial Phi operand
2667 // value. Otherwise, use the scheduled version of the instruction. This
2668 // is a little complicated when a Phi references another Phi.
2669 if (np > PrologStage || StageScheduled >= (int)LastStageNum)
2670 PhiOp1 = InitVal;
2671 // Check if the Phi has already been scheduled in a prolog stage.
2672 else if (PrologStage >= AccessStage + StageDiff + np &&
2673 VRMap[PrologStage - StageDiff - np].count(LoopVal) != 0)
2674 PhiOp1 = VRMap[PrologStage - StageDiff - np][LoopVal];
2675 // Check if the Phi has already been scheduled, but the loop intruction
2676 // is either another Phi, or doesn't occur in the loop.
2677 else if (PrologStage >= AccessStage + StageDiff + np) {
2678 // If the Phi references another Phi, we need to examine the other
2679 // Phi to get the correct value.
2680 PhiOp1 = LoopVal;
2681 MachineInstr *InstOp1 = MRI.getVRegDef(PhiOp1);
2682 int Indirects = 1;
2683 while (InstOp1 && InstOp1->isPHI() && InstOp1->getParent() == BB) {
2684 int PhiStage = Schedule.stageScheduled(getSUnit(InstOp1));
2685 if ((int)(PrologStage - StageDiff - np) < PhiStage + Indirects)
2686 PhiOp1 = getInitPhiReg(*InstOp1, BB);
2687 else
2688 PhiOp1 = getLoopPhiReg(*InstOp1, BB);
2689 InstOp1 = MRI.getVRegDef(PhiOp1);
2690 int PhiOpStage = Schedule.stageScheduled(getSUnit(InstOp1));
2691 int StageAdj = (PhiOpStage != -1 ? PhiStage - PhiOpStage : 0);
2692 if (PhiOpStage != -1 && PrologStage - StageAdj >= Indirects + np &&
2693 VRMap[PrologStage - StageAdj - Indirects - np].count(PhiOp1)) {
2694 PhiOp1 = VRMap[PrologStage - StageAdj - Indirects - np][PhiOp1];
2695 break;
2696 }
2697 ++Indirects;
2698 }
2699 } else
2700 PhiOp1 = InitVal;
2701 // If this references a generated Phi in the kernel, get the Phi operand
2702 // from the incoming block.
2703 if (MachineInstr *InstOp1 = MRI.getVRegDef(PhiOp1))
2704 if (InstOp1->isPHI() && InstOp1->getParent() == KernelBB)
2705 PhiOp1 = getInitPhiReg(*InstOp1, KernelBB);
2706
2707 MachineInstr *PhiInst = MRI.getVRegDef(LoopVal);
2708 bool LoopDefIsPhi = PhiInst && PhiInst->isPHI();
2709 // In the epilog, a map lookup is needed to get the value from the kernel,
2710 // or previous epilog block. How is does this depends on if the
2711 // instruction is scheduled in the previous block.
2712 if (!InKernel) {
2713 int StageDiffAdj = 0;
2714 if (LoopValStage != -1 && StageScheduled > LoopValStage)
2715 StageDiffAdj = StageScheduled - LoopValStage;
2716 // Use the loop value defined in the kernel, unless the kernel
2717 // contains the last definition of the Phi.
2718 if (np == 0 && PrevStage == LastStageNum &&
2719 (StageScheduled != 0 || LoopValStage != 0) &&
2720 VRMap[PrevStage - StageDiffAdj].count(LoopVal))
2721 PhiOp2 = VRMap[PrevStage - StageDiffAdj][LoopVal];
2722 // Use the value defined by the Phi. We add one because we switch
2723 // from looking at the loop value to the Phi definition.
2724 else if (np > 0 && PrevStage == LastStageNum &&
2725 VRMap[PrevStage - np + 1].count(Def))
2726 PhiOp2 = VRMap[PrevStage - np + 1][Def];
2727 // Use the loop value defined in the kernel.
2728 else if ((unsigned)LoopValStage + StageDiffAdj > PrologStage + 1 &&
2729 VRMap[PrevStage - StageDiffAdj - np].count(LoopVal))
2730 PhiOp2 = VRMap[PrevStage - StageDiffAdj - np][LoopVal];
2731 // Use the value defined by the Phi, unless we're generating the first
2732 // epilog and the Phi refers to a Phi in a different stage.
2733 else if (VRMap[PrevStage - np].count(Def) &&
2734 (!LoopDefIsPhi || PrevStage != LastStageNum))
2735 PhiOp2 = VRMap[PrevStage - np][Def];
2736 }
2737
2738 // Check if we can reuse an existing Phi. This occurs when a Phi
2739 // references another Phi, and the other Phi is scheduled in an
2740 // earlier stage. We can try to reuse an existing Phi up until the last
2741 // stage of the current Phi.
2742 if (LoopDefIsPhi && (int)(PrologStage - np) >= StageScheduled) {
2743 int LVNumStages = Schedule.getStagesForPhi(LoopVal);
2744 int StageDiff = (StageScheduled - LoopValStage);
2745 LVNumStages -= StageDiff;
2746 // Make sure the loop value Phi has been processed already.
2747 if (LVNumStages > (int)np && VRMap[CurStageNum].count(LoopVal)) {
2748 NewReg = PhiOp2;
2749 unsigned ReuseStage = CurStageNum;
2750 if (Schedule.isLoopCarried(this, *PhiInst))
2751 ReuseStage -= LVNumStages;
2752 // Check if the Phi to reuse has been generated yet. If not, then
2753 // there is nothing to reuse.
2754 if (VRMap[ReuseStage - np].count(LoopVal)) {
2755 NewReg = VRMap[ReuseStage - np][LoopVal];
2756
2757 rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np,
2758 &*BBI, Def, NewReg);
2759 // Update the map with the new Phi name.
2760 VRMap[CurStageNum - np][Def] = NewReg;
2761 PhiOp2 = NewReg;
2762 if (VRMap[LastStageNum - np - 1].count(LoopVal))
2763 PhiOp2 = VRMap[LastStageNum - np - 1][LoopVal];
2764
2765 if (IsLast && np == NumPhis - 1)
2766 replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS);
2767 continue;
2768 }
2769 } else if (InKernel && StageDiff > 0 &&
2770 VRMap[CurStageNum - StageDiff - np].count(LoopVal))
2771 PhiOp2 = VRMap[CurStageNum - StageDiff - np][LoopVal];
2772 }
2773
2774 const TargetRegisterClass *RC = MRI.getRegClass(Def);
2775 NewReg = MRI.createVirtualRegister(RC);
2776
2777 MachineInstrBuilder NewPhi =
2778 BuildMI(*NewBB, NewBB->getFirstNonPHI(), DebugLoc(),
2779 TII->get(TargetOpcode::PHI), NewReg);
2780 NewPhi.addReg(PhiOp1).addMBB(BB1);
2781 NewPhi.addReg(PhiOp2).addMBB(BB2);
2782 if (np == 0)
2783 InstrMap[NewPhi] = &*BBI;
2784
2785 // We define the Phis after creating the new pipelined code, so
2786 // we need to rename the Phi values in scheduled instructions.
2787
2788 unsigned PrevReg = 0;
2789 if (InKernel && VRMap[PrevStage - np].count(LoopVal))
2790 PrevReg = VRMap[PrevStage - np][LoopVal];
2791 rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np, &*BBI,
2792 Def, NewReg, PrevReg);
2793 // If the Phi has been scheduled, use the new name for rewriting.
2794 if (VRMap[CurStageNum - np].count(Def)) {
2795 unsigned R = VRMap[CurStageNum - np][Def];
2796 rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np, &*BBI,
2797 R, NewReg);
2798 }
2799
2800 // Check if we need to rename any uses that occurs after the loop. The
2801 // register to replace depends on whether the Phi is scheduled in the
2802 // epilog.
2803 if (IsLast && np == NumPhis - 1)
2804 replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS);
2805
2806 // In the kernel, a dependent Phi uses the value from this Phi.
2807 if (InKernel)
2808 PhiOp2 = NewReg;
2809
2810 // Update the map with the new Phi name.
2811 VRMap[CurStageNum - np][Def] = NewReg;
2812 }
2813
2814 while (NumPhis++ < NumStages) {
2815 rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, NumPhis,
2816 &*BBI, Def, NewReg, 0);
2817 }
2818
2819 // Check if we need to rename a Phi that has been eliminated due to
2820 // scheduling.
2821 if (NumStages == 0 && IsLast && VRMap[CurStageNum].count(LoopVal))
2822 replaceRegUsesAfterLoop(Def, VRMap[CurStageNum][LoopVal], BB, MRI, LIS);
2823 }
2824 }
2825
2826 /// Generate Phis for the specified block in the generated pipelined code.
2827 /// These are new Phis needed because the definition is scheduled after the
2828 /// use in the pipelined sequence.
generatePhis(MachineBasicBlock * NewBB,MachineBasicBlock * BB1,MachineBasicBlock * BB2,MachineBasicBlock * KernelBB,SMSchedule & Schedule,ValueMapTy * VRMap,InstrMapTy & InstrMap,unsigned LastStageNum,unsigned CurStageNum,bool IsLast)2829 void SwingSchedulerDAG::generatePhis(
2830 MachineBasicBlock *NewBB, MachineBasicBlock *BB1, MachineBasicBlock *BB2,
2831 MachineBasicBlock *KernelBB, SMSchedule &Schedule, ValueMapTy *VRMap,
2832 InstrMapTy &InstrMap, unsigned LastStageNum, unsigned CurStageNum,
2833 bool IsLast) {
2834 // Compute the stage number that contains the initial Phi value, and
2835 // the Phi from the previous stage.
2836 unsigned PrologStage = 0;
2837 unsigned PrevStage = 0;
2838 unsigned StageDiff = CurStageNum - LastStageNum;
2839 bool InKernel = (StageDiff == 0);
2840 if (InKernel) {
2841 PrologStage = LastStageNum - 1;
2842 PrevStage = CurStageNum;
2843 } else {
2844 PrologStage = LastStageNum - StageDiff;
2845 PrevStage = LastStageNum + StageDiff - 1;
2846 }
2847
2848 for (MachineBasicBlock::iterator BBI = BB->getFirstNonPHI(),
2849 BBE = BB->instr_end();
2850 BBI != BBE; ++BBI) {
2851 for (unsigned i = 0, e = BBI->getNumOperands(); i != e; ++i) {
2852 MachineOperand &MO = BBI->getOperand(i);
2853 if (!MO.isReg() || !MO.isDef() ||
2854 !TargetRegisterInfo::isVirtualRegister(MO.getReg()))
2855 continue;
2856
2857 int StageScheduled = Schedule.stageScheduled(getSUnit(&*BBI));
2858 assert(StageScheduled != -1 && "Expecting scheduled instruction.");
2859 unsigned Def = MO.getReg();
2860 unsigned NumPhis = Schedule.getStagesForReg(Def, CurStageNum);
2861 // An instruction scheduled in stage 0 and is used after the loop
2862 // requires a phi in the epilog for the last definition from either
2863 // the kernel or prolog.
2864 if (!InKernel && NumPhis == 0 && StageScheduled == 0 &&
2865 hasUseAfterLoop(Def, BB, MRI))
2866 NumPhis = 1;
2867 if (!InKernel && (unsigned)StageScheduled > PrologStage)
2868 continue;
2869
2870 unsigned PhiOp2 = VRMap[PrevStage][Def];
2871 if (MachineInstr *InstOp2 = MRI.getVRegDef(PhiOp2))
2872 if (InstOp2->isPHI() && InstOp2->getParent() == NewBB)
2873 PhiOp2 = getLoopPhiReg(*InstOp2, BB2);
2874 // The number of Phis can't exceed the number of prolog stages. The
2875 // prolog stage number is zero based.
2876 if (NumPhis > PrologStage + 1 - StageScheduled)
2877 NumPhis = PrologStage + 1 - StageScheduled;
2878 for (unsigned np = 0; np < NumPhis; ++np) {
2879 unsigned PhiOp1 = VRMap[PrologStage][Def];
2880 if (np <= PrologStage)
2881 PhiOp1 = VRMap[PrologStage - np][Def];
2882 if (MachineInstr *InstOp1 = MRI.getVRegDef(PhiOp1)) {
2883 if (InstOp1->isPHI() && InstOp1->getParent() == KernelBB)
2884 PhiOp1 = getInitPhiReg(*InstOp1, KernelBB);
2885 if (InstOp1->isPHI() && InstOp1->getParent() == NewBB)
2886 PhiOp1 = getInitPhiReg(*InstOp1, NewBB);
2887 }
2888 if (!InKernel)
2889 PhiOp2 = VRMap[PrevStage - np][Def];
2890
2891 const TargetRegisterClass *RC = MRI.getRegClass(Def);
2892 unsigned NewReg = MRI.createVirtualRegister(RC);
2893
2894 MachineInstrBuilder NewPhi =
2895 BuildMI(*NewBB, NewBB->getFirstNonPHI(), DebugLoc(),
2896 TII->get(TargetOpcode::PHI), NewReg);
2897 NewPhi.addReg(PhiOp1).addMBB(BB1);
2898 NewPhi.addReg(PhiOp2).addMBB(BB2);
2899 if (np == 0)
2900 InstrMap[NewPhi] = &*BBI;
2901
2902 // Rewrite uses and update the map. The actions depend upon whether
2903 // we generating code for the kernel or epilog blocks.
2904 if (InKernel) {
2905 rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np,
2906 &*BBI, PhiOp1, NewReg);
2907 rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np,
2908 &*BBI, PhiOp2, NewReg);
2909
2910 PhiOp2 = NewReg;
2911 VRMap[PrevStage - np - 1][Def] = NewReg;
2912 } else {
2913 VRMap[CurStageNum - np][Def] = NewReg;
2914 if (np == NumPhis - 1)
2915 rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np,
2916 &*BBI, Def, NewReg);
2917 }
2918 if (IsLast && np == NumPhis - 1)
2919 replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS);
2920 }
2921 }
2922 }
2923 }
2924
2925 /// Remove instructions that generate values with no uses.
2926 /// Typically, these are induction variable operations that generate values
2927 /// used in the loop itself. A dead instruction has a definition with
2928 /// no uses, or uses that occur in the original loop only.
removeDeadInstructions(MachineBasicBlock * KernelBB,MBBVectorTy & EpilogBBs)2929 void SwingSchedulerDAG::removeDeadInstructions(MachineBasicBlock *KernelBB,
2930 MBBVectorTy &EpilogBBs) {
2931 // For each epilog block, check that the value defined by each instruction
2932 // is used. If not, delete it.
2933 for (MBBVectorTy::reverse_iterator MBB = EpilogBBs.rbegin(),
2934 MBE = EpilogBBs.rend();
2935 MBB != MBE; ++MBB)
2936 for (MachineBasicBlock::reverse_instr_iterator MI = (*MBB)->instr_rbegin(),
2937 ME = (*MBB)->instr_rend();
2938 MI != ME;) {
2939 // From DeadMachineInstructionElem. Don't delete inline assembly.
2940 if (MI->isInlineAsm()) {
2941 ++MI;
2942 continue;
2943 }
2944 bool SawStore = false;
2945 // Check if it's safe to remove the instruction due to side effects.
2946 // We can, and want to, remove Phis here.
2947 if (!MI->isSafeToMove(nullptr, SawStore) && !MI->isPHI()) {
2948 ++MI;
2949 continue;
2950 }
2951 bool used = true;
2952 for (MachineInstr::mop_iterator MOI = MI->operands_begin(),
2953 MOE = MI->operands_end();
2954 MOI != MOE; ++MOI) {
2955 if (!MOI->isReg() || !MOI->isDef())
2956 continue;
2957 unsigned reg = MOI->getReg();
2958 // Assume physical registers are used, unless they are marked dead.
2959 if (TargetRegisterInfo::isPhysicalRegister(reg)) {
2960 used = !MOI->isDead();
2961 if (used)
2962 break;
2963 continue;
2964 }
2965 unsigned realUses = 0;
2966 for (MachineRegisterInfo::use_iterator UI = MRI.use_begin(reg),
2967 EI = MRI.use_end();
2968 UI != EI; ++UI) {
2969 // Check if there are any uses that occur only in the original
2970 // loop. If so, that's not a real use.
2971 if (UI->getParent()->getParent() != BB) {
2972 realUses++;
2973 used = true;
2974 break;
2975 }
2976 }
2977 if (realUses > 0)
2978 break;
2979 used = false;
2980 }
2981 if (!used) {
2982 LIS.RemoveMachineInstrFromMaps(*MI);
2983 MI++->eraseFromParent();
2984 continue;
2985 }
2986 ++MI;
2987 }
2988 // In the kernel block, check if we can remove a Phi that generates a value
2989 // used in an instruction removed in the epilog block.
2990 for (MachineBasicBlock::iterator BBI = KernelBB->instr_begin(),
2991 BBE = KernelBB->getFirstNonPHI();
2992 BBI != BBE;) {
2993 MachineInstr *MI = &*BBI;
2994 ++BBI;
2995 unsigned reg = MI->getOperand(0).getReg();
2996 if (MRI.use_begin(reg) == MRI.use_end()) {
2997 LIS.RemoveMachineInstrFromMaps(*MI);
2998 MI->eraseFromParent();
2999 }
3000 }
3001 }
3002
3003 /// For loop carried definitions, we split the lifetime of a virtual register
3004 /// that has uses past the definition in the next iteration. A copy with a new
3005 /// virtual register is inserted before the definition, which helps with
3006 /// generating a better register assignment.
3007 ///
3008 /// v1 = phi(a, v2) v1 = phi(a, v2)
3009 /// v2 = phi(b, v3) v2 = phi(b, v3)
3010 /// v3 = .. v4 = copy v1
3011 /// .. = V1 v3 = ..
3012 /// .. = v4
splitLifetimes(MachineBasicBlock * KernelBB,MBBVectorTy & EpilogBBs,SMSchedule & Schedule)3013 void SwingSchedulerDAG::splitLifetimes(MachineBasicBlock *KernelBB,
3014 MBBVectorTy &EpilogBBs,
3015 SMSchedule &Schedule) {
3016 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
3017 for (auto &PHI : KernelBB->phis()) {
3018 unsigned Def = PHI.getOperand(0).getReg();
3019 // Check for any Phi definition that used as an operand of another Phi
3020 // in the same block.
3021 for (MachineRegisterInfo::use_instr_iterator I = MRI.use_instr_begin(Def),
3022 E = MRI.use_instr_end();
3023 I != E; ++I) {
3024 if (I->isPHI() && I->getParent() == KernelBB) {
3025 // Get the loop carried definition.
3026 unsigned LCDef = getLoopPhiReg(PHI, KernelBB);
3027 if (!LCDef)
3028 continue;
3029 MachineInstr *MI = MRI.getVRegDef(LCDef);
3030 if (!MI || MI->getParent() != KernelBB || MI->isPHI())
3031 continue;
3032 // Search through the rest of the block looking for uses of the Phi
3033 // definition. If one occurs, then split the lifetime.
3034 unsigned SplitReg = 0;
3035 for (auto &BBJ : make_range(MachineBasicBlock::instr_iterator(MI),
3036 KernelBB->instr_end()))
3037 if (BBJ.readsRegister(Def)) {
3038 // We split the lifetime when we find the first use.
3039 if (SplitReg == 0) {
3040 SplitReg = MRI.createVirtualRegister(MRI.getRegClass(Def));
3041 BuildMI(*KernelBB, MI, MI->getDebugLoc(),
3042 TII->get(TargetOpcode::COPY), SplitReg)
3043 .addReg(Def);
3044 }
3045 BBJ.substituteRegister(Def, SplitReg, 0, *TRI);
3046 }
3047 if (!SplitReg)
3048 continue;
3049 // Search through each of the epilog blocks for any uses to be renamed.
3050 for (auto &Epilog : EpilogBBs)
3051 for (auto &I : *Epilog)
3052 if (I.readsRegister(Def))
3053 I.substituteRegister(Def, SplitReg, 0, *TRI);
3054 break;
3055 }
3056 }
3057 }
3058 }
3059
3060 /// Remove the incoming block from the Phis in a basic block.
removePhis(MachineBasicBlock * BB,MachineBasicBlock * Incoming)3061 static void removePhis(MachineBasicBlock *BB, MachineBasicBlock *Incoming) {
3062 for (MachineInstr &MI : *BB) {
3063 if (!MI.isPHI())
3064 break;
3065 for (unsigned i = 1, e = MI.getNumOperands(); i != e; i += 2)
3066 if (MI.getOperand(i + 1).getMBB() == Incoming) {
3067 MI.RemoveOperand(i + 1);
3068 MI.RemoveOperand(i);
3069 break;
3070 }
3071 }
3072 }
3073
3074 /// Create branches from each prolog basic block to the appropriate epilog
3075 /// block. These edges are needed if the loop ends before reaching the
3076 /// kernel.
addBranches(MBBVectorTy & PrologBBs,MachineBasicBlock * KernelBB,MBBVectorTy & EpilogBBs,SMSchedule & Schedule,ValueMapTy * VRMap)3077 void SwingSchedulerDAG::addBranches(MBBVectorTy &PrologBBs,
3078 MachineBasicBlock *KernelBB,
3079 MBBVectorTy &EpilogBBs,
3080 SMSchedule &Schedule, ValueMapTy *VRMap) {
3081 assert(PrologBBs.size() == EpilogBBs.size() && "Prolog/Epilog mismatch");
3082 MachineInstr *IndVar = Pass.LI.LoopInductionVar;
3083 MachineInstr *Cmp = Pass.LI.LoopCompare;
3084 MachineBasicBlock *LastPro = KernelBB;
3085 MachineBasicBlock *LastEpi = KernelBB;
3086
3087 // Start from the blocks connected to the kernel and work "out"
3088 // to the first prolog and the last epilog blocks.
3089 SmallVector<MachineInstr *, 4> PrevInsts;
3090 unsigned MaxIter = PrologBBs.size() - 1;
3091 unsigned LC = UINT_MAX;
3092 unsigned LCMin = UINT_MAX;
3093 for (unsigned i = 0, j = MaxIter; i <= MaxIter; ++i, --j) {
3094 // Add branches to the prolog that go to the corresponding
3095 // epilog, and the fall-thru prolog/kernel block.
3096 MachineBasicBlock *Prolog = PrologBBs[j];
3097 MachineBasicBlock *Epilog = EpilogBBs[i];
3098 // We've executed one iteration, so decrement the loop count and check for
3099 // the loop end.
3100 SmallVector<MachineOperand, 4> Cond;
3101 // Check if the LOOP0 has already been removed. If so, then there is no need
3102 // to reduce the trip count.
3103 if (LC != 0)
3104 LC = TII->reduceLoopCount(*Prolog, IndVar, *Cmp, Cond, PrevInsts, j,
3105 MaxIter);
3106
3107 // Record the value of the first trip count, which is used to determine if
3108 // branches and blocks can be removed for constant trip counts.
3109 if (LCMin == UINT_MAX)
3110 LCMin = LC;
3111
3112 unsigned numAdded = 0;
3113 if (TargetRegisterInfo::isVirtualRegister(LC)) {
3114 Prolog->addSuccessor(Epilog);
3115 numAdded = TII->insertBranch(*Prolog, Epilog, LastPro, Cond, DebugLoc());
3116 } else if (j >= LCMin) {
3117 Prolog->addSuccessor(Epilog);
3118 Prolog->removeSuccessor(LastPro);
3119 LastEpi->removeSuccessor(Epilog);
3120 numAdded = TII->insertBranch(*Prolog, Epilog, nullptr, Cond, DebugLoc());
3121 removePhis(Epilog, LastEpi);
3122 // Remove the blocks that are no longer referenced.
3123 if (LastPro != LastEpi) {
3124 LastEpi->clear();
3125 LastEpi->eraseFromParent();
3126 }
3127 LastPro->clear();
3128 LastPro->eraseFromParent();
3129 } else {
3130 numAdded = TII->insertBranch(*Prolog, LastPro, nullptr, Cond, DebugLoc());
3131 removePhis(Epilog, Prolog);
3132 }
3133 LastPro = Prolog;
3134 LastEpi = Epilog;
3135 for (MachineBasicBlock::reverse_instr_iterator I = Prolog->instr_rbegin(),
3136 E = Prolog->instr_rend();
3137 I != E && numAdded > 0; ++I, --numAdded)
3138 updateInstruction(&*I, false, j, 0, Schedule, VRMap);
3139 }
3140 }
3141
3142 /// Return true if we can compute the amount the instruction changes
3143 /// during each iteration. Set Delta to the amount of the change.
computeDelta(MachineInstr & MI,unsigned & Delta)3144 bool SwingSchedulerDAG::computeDelta(MachineInstr &MI, unsigned &Delta) {
3145 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
3146 unsigned BaseReg;
3147 int64_t Offset;
3148 if (!TII->getMemOpBaseRegImmOfs(MI, BaseReg, Offset, TRI))
3149 return false;
3150
3151 MachineRegisterInfo &MRI = MF.getRegInfo();
3152 // Check if there is a Phi. If so, get the definition in the loop.
3153 MachineInstr *BaseDef = MRI.getVRegDef(BaseReg);
3154 if (BaseDef && BaseDef->isPHI()) {
3155 BaseReg = getLoopPhiReg(*BaseDef, MI.getParent());
3156 BaseDef = MRI.getVRegDef(BaseReg);
3157 }
3158 if (!BaseDef)
3159 return false;
3160
3161 int D = 0;
3162 if (!TII->getIncrementValue(*BaseDef, D) && D >= 0)
3163 return false;
3164
3165 Delta = D;
3166 return true;
3167 }
3168
3169 /// Update the memory operand with a new offset when the pipeliner
3170 /// generates a new copy of the instruction that refers to a
3171 /// different memory location.
updateMemOperands(MachineInstr & NewMI,MachineInstr & OldMI,unsigned Num)3172 void SwingSchedulerDAG::updateMemOperands(MachineInstr &NewMI,
3173 MachineInstr &OldMI, unsigned Num) {
3174 if (Num == 0)
3175 return;
3176 // If the instruction has memory operands, then adjust the offset
3177 // when the instruction appears in different stages.
3178 unsigned NumRefs = NewMI.memoperands_end() - NewMI.memoperands_begin();
3179 if (NumRefs == 0)
3180 return;
3181 MachineInstr::mmo_iterator NewMemRefs = MF.allocateMemRefsArray(NumRefs);
3182 unsigned Refs = 0;
3183 for (MachineMemOperand *MMO : NewMI.memoperands()) {
3184 if (MMO->isVolatile() || (MMO->isInvariant() && MMO->isDereferenceable()) ||
3185 (!MMO->getValue())) {
3186 NewMemRefs[Refs++] = MMO;
3187 continue;
3188 }
3189 unsigned Delta;
3190 if (Num != UINT_MAX && computeDelta(OldMI, Delta)) {
3191 int64_t AdjOffset = Delta * Num;
3192 NewMemRefs[Refs++] =
3193 MF.getMachineMemOperand(MMO, AdjOffset, MMO->getSize());
3194 } else {
3195 NewMI.dropMemRefs();
3196 return;
3197 }
3198 }
3199 NewMI.setMemRefs(NewMemRefs, NewMemRefs + NumRefs);
3200 }
3201
3202 /// Clone the instruction for the new pipelined loop and update the
3203 /// memory operands, if needed.
cloneInstr(MachineInstr * OldMI,unsigned CurStageNum,unsigned InstStageNum)3204 MachineInstr *SwingSchedulerDAG::cloneInstr(MachineInstr *OldMI,
3205 unsigned CurStageNum,
3206 unsigned InstStageNum) {
3207 MachineInstr *NewMI = MF.CloneMachineInstr(OldMI);
3208 // Check for tied operands in inline asm instructions. This should be handled
3209 // elsewhere, but I'm not sure of the best solution.
3210 if (OldMI->isInlineAsm())
3211 for (unsigned i = 0, e = OldMI->getNumOperands(); i != e; ++i) {
3212 const auto &MO = OldMI->getOperand(i);
3213 if (MO.isReg() && MO.isUse())
3214 break;
3215 unsigned UseIdx;
3216 if (OldMI->isRegTiedToUseOperand(i, &UseIdx))
3217 NewMI->tieOperands(i, UseIdx);
3218 }
3219 updateMemOperands(*NewMI, *OldMI, CurStageNum - InstStageNum);
3220 return NewMI;
3221 }
3222
3223 /// Clone the instruction for the new pipelined loop. If needed, this
3224 /// function updates the instruction using the values saved in the
3225 /// InstrChanges structure.
cloneAndChangeInstr(MachineInstr * OldMI,unsigned CurStageNum,unsigned InstStageNum,SMSchedule & Schedule)3226 MachineInstr *SwingSchedulerDAG::cloneAndChangeInstr(MachineInstr *OldMI,
3227 unsigned CurStageNum,
3228 unsigned InstStageNum,
3229 SMSchedule &Schedule) {
3230 MachineInstr *NewMI = MF.CloneMachineInstr(OldMI);
3231 DenseMap<SUnit *, std::pair<unsigned, int64_t>>::iterator It =
3232 InstrChanges.find(getSUnit(OldMI));
3233 if (It != InstrChanges.end()) {
3234 std::pair<unsigned, int64_t> RegAndOffset = It->second;
3235 unsigned BasePos, OffsetPos;
3236 if (!TII->getBaseAndOffsetPosition(*OldMI, BasePos, OffsetPos))
3237 return nullptr;
3238 int64_t NewOffset = OldMI->getOperand(OffsetPos).getImm();
3239 MachineInstr *LoopDef = findDefInLoop(RegAndOffset.first);
3240 if (Schedule.stageScheduled(getSUnit(LoopDef)) > (signed)InstStageNum)
3241 NewOffset += RegAndOffset.second * (CurStageNum - InstStageNum);
3242 NewMI->getOperand(OffsetPos).setImm(NewOffset);
3243 }
3244 updateMemOperands(*NewMI, *OldMI, CurStageNum - InstStageNum);
3245 return NewMI;
3246 }
3247
3248 /// Update the machine instruction with new virtual registers. This
3249 /// function may change the defintions and/or uses.
updateInstruction(MachineInstr * NewMI,bool LastDef,unsigned CurStageNum,unsigned InstrStageNum,SMSchedule & Schedule,ValueMapTy * VRMap)3250 void SwingSchedulerDAG::updateInstruction(MachineInstr *NewMI, bool LastDef,
3251 unsigned CurStageNum,
3252 unsigned InstrStageNum,
3253 SMSchedule &Schedule,
3254 ValueMapTy *VRMap) {
3255 for (unsigned i = 0, e = NewMI->getNumOperands(); i != e; ++i) {
3256 MachineOperand &MO = NewMI->getOperand(i);
3257 if (!MO.isReg() || !TargetRegisterInfo::isVirtualRegister(MO.getReg()))
3258 continue;
3259 unsigned reg = MO.getReg();
3260 if (MO.isDef()) {
3261 // Create a new virtual register for the definition.
3262 const TargetRegisterClass *RC = MRI.getRegClass(reg);
3263 unsigned NewReg = MRI.createVirtualRegister(RC);
3264 MO.setReg(NewReg);
3265 VRMap[CurStageNum][reg] = NewReg;
3266 if (LastDef)
3267 replaceRegUsesAfterLoop(reg, NewReg, BB, MRI, LIS);
3268 } else if (MO.isUse()) {
3269 MachineInstr *Def = MRI.getVRegDef(reg);
3270 // Compute the stage that contains the last definition for instruction.
3271 int DefStageNum = Schedule.stageScheduled(getSUnit(Def));
3272 unsigned StageNum = CurStageNum;
3273 if (DefStageNum != -1 && (int)InstrStageNum > DefStageNum) {
3274 // Compute the difference in stages between the defintion and the use.
3275 unsigned StageDiff = (InstrStageNum - DefStageNum);
3276 // Make an adjustment to get the last definition.
3277 StageNum -= StageDiff;
3278 }
3279 if (VRMap[StageNum].count(reg))
3280 MO.setReg(VRMap[StageNum][reg]);
3281 }
3282 }
3283 }
3284
3285 /// Return the instruction in the loop that defines the register.
3286 /// If the definition is a Phi, then follow the Phi operand to
3287 /// the instruction in the loop.
findDefInLoop(unsigned Reg)3288 MachineInstr *SwingSchedulerDAG::findDefInLoop(unsigned Reg) {
3289 SmallPtrSet<MachineInstr *, 8> Visited;
3290 MachineInstr *Def = MRI.getVRegDef(Reg);
3291 while (Def->isPHI()) {
3292 if (!Visited.insert(Def).second)
3293 break;
3294 for (unsigned i = 1, e = Def->getNumOperands(); i < e; i += 2)
3295 if (Def->getOperand(i + 1).getMBB() == BB) {
3296 Def = MRI.getVRegDef(Def->getOperand(i).getReg());
3297 break;
3298 }
3299 }
3300 return Def;
3301 }
3302
3303 /// Return the new name for the value from the previous stage.
getPrevMapVal(unsigned StageNum,unsigned PhiStage,unsigned LoopVal,unsigned LoopStage,ValueMapTy * VRMap,MachineBasicBlock * BB)3304 unsigned SwingSchedulerDAG::getPrevMapVal(unsigned StageNum, unsigned PhiStage,
3305 unsigned LoopVal, unsigned LoopStage,
3306 ValueMapTy *VRMap,
3307 MachineBasicBlock *BB) {
3308 unsigned PrevVal = 0;
3309 if (StageNum > PhiStage) {
3310 MachineInstr *LoopInst = MRI.getVRegDef(LoopVal);
3311 if (PhiStage == LoopStage && VRMap[StageNum - 1].count(LoopVal))
3312 // The name is defined in the previous stage.
3313 PrevVal = VRMap[StageNum - 1][LoopVal];
3314 else if (VRMap[StageNum].count(LoopVal))
3315 // The previous name is defined in the current stage when the instruction
3316 // order is swapped.
3317 PrevVal = VRMap[StageNum][LoopVal];
3318 else if (!LoopInst->isPHI() || LoopInst->getParent() != BB)
3319 // The loop value hasn't yet been scheduled.
3320 PrevVal = LoopVal;
3321 else if (StageNum == PhiStage + 1)
3322 // The loop value is another phi, which has not been scheduled.
3323 PrevVal = getInitPhiReg(*LoopInst, BB);
3324 else if (StageNum > PhiStage + 1 && LoopInst->getParent() == BB)
3325 // The loop value is another phi, which has been scheduled.
3326 PrevVal =
3327 getPrevMapVal(StageNum - 1, PhiStage, getLoopPhiReg(*LoopInst, BB),
3328 LoopStage, VRMap, BB);
3329 }
3330 return PrevVal;
3331 }
3332
3333 /// Rewrite the Phi values in the specified block to use the mappings
3334 /// from the initial operand. Once the Phi is scheduled, we switch
3335 /// to using the loop value instead of the Phi value, so those names
3336 /// do not need to be rewritten.
rewritePhiValues(MachineBasicBlock * NewBB,unsigned StageNum,SMSchedule & Schedule,ValueMapTy * VRMap,InstrMapTy & InstrMap)3337 void SwingSchedulerDAG::rewritePhiValues(MachineBasicBlock *NewBB,
3338 unsigned StageNum,
3339 SMSchedule &Schedule,
3340 ValueMapTy *VRMap,
3341 InstrMapTy &InstrMap) {
3342 for (auto &PHI : BB->phis()) {
3343 unsigned InitVal = 0;
3344 unsigned LoopVal = 0;
3345 getPhiRegs(PHI, BB, InitVal, LoopVal);
3346 unsigned PhiDef = PHI.getOperand(0).getReg();
3347
3348 unsigned PhiStage =
3349 (unsigned)Schedule.stageScheduled(getSUnit(MRI.getVRegDef(PhiDef)));
3350 unsigned LoopStage =
3351 (unsigned)Schedule.stageScheduled(getSUnit(MRI.getVRegDef(LoopVal)));
3352 unsigned NumPhis = Schedule.getStagesForPhi(PhiDef);
3353 if (NumPhis > StageNum)
3354 NumPhis = StageNum;
3355 for (unsigned np = 0; np <= NumPhis; ++np) {
3356 unsigned NewVal =
3357 getPrevMapVal(StageNum - np, PhiStage, LoopVal, LoopStage, VRMap, BB);
3358 if (!NewVal)
3359 NewVal = InitVal;
3360 rewriteScheduledInstr(NewBB, Schedule, InstrMap, StageNum - np, np, &PHI,
3361 PhiDef, NewVal);
3362 }
3363 }
3364 }
3365
3366 /// Rewrite a previously scheduled instruction to use the register value
3367 /// from the new instruction. Make sure the instruction occurs in the
3368 /// basic block, and we don't change the uses in the new instruction.
rewriteScheduledInstr(MachineBasicBlock * BB,SMSchedule & Schedule,InstrMapTy & InstrMap,unsigned CurStageNum,unsigned PhiNum,MachineInstr * Phi,unsigned OldReg,unsigned NewReg,unsigned PrevReg)3369 void SwingSchedulerDAG::rewriteScheduledInstr(
3370 MachineBasicBlock *BB, SMSchedule &Schedule, InstrMapTy &InstrMap,
3371 unsigned CurStageNum, unsigned PhiNum, MachineInstr *Phi, unsigned OldReg,
3372 unsigned NewReg, unsigned PrevReg) {
3373 bool InProlog = (CurStageNum < Schedule.getMaxStageCount());
3374 int StagePhi = Schedule.stageScheduled(getSUnit(Phi)) + PhiNum;
3375 // Rewrite uses that have been scheduled already to use the new
3376 // Phi register.
3377 for (MachineRegisterInfo::use_iterator UI = MRI.use_begin(OldReg),
3378 EI = MRI.use_end();
3379 UI != EI;) {
3380 MachineOperand &UseOp = *UI;
3381 MachineInstr *UseMI = UseOp.getParent();
3382 ++UI;
3383 if (UseMI->getParent() != BB)
3384 continue;
3385 if (UseMI->isPHI()) {
3386 if (!Phi->isPHI() && UseMI->getOperand(0).getReg() == NewReg)
3387 continue;
3388 if (getLoopPhiReg(*UseMI, BB) != OldReg)
3389 continue;
3390 }
3391 InstrMapTy::iterator OrigInstr = InstrMap.find(UseMI);
3392 assert(OrigInstr != InstrMap.end() && "Instruction not scheduled.");
3393 SUnit *OrigMISU = getSUnit(OrigInstr->second);
3394 int StageSched = Schedule.stageScheduled(OrigMISU);
3395 int CycleSched = Schedule.cycleScheduled(OrigMISU);
3396 unsigned ReplaceReg = 0;
3397 // This is the stage for the scheduled instruction.
3398 if (StagePhi == StageSched && Phi->isPHI()) {
3399 int CyclePhi = Schedule.cycleScheduled(getSUnit(Phi));
3400 if (PrevReg && InProlog)
3401 ReplaceReg = PrevReg;
3402 else if (PrevReg && !Schedule.isLoopCarried(this, *Phi) &&
3403 (CyclePhi <= CycleSched || OrigMISU->getInstr()->isPHI()))
3404 ReplaceReg = PrevReg;
3405 else
3406 ReplaceReg = NewReg;
3407 }
3408 // The scheduled instruction occurs before the scheduled Phi, and the
3409 // Phi is not loop carried.
3410 if (!InProlog && StagePhi + 1 == StageSched &&
3411 !Schedule.isLoopCarried(this, *Phi))
3412 ReplaceReg = NewReg;
3413 if (StagePhi > StageSched && Phi->isPHI())
3414 ReplaceReg = NewReg;
3415 if (!InProlog && !Phi->isPHI() && StagePhi < StageSched)
3416 ReplaceReg = NewReg;
3417 if (ReplaceReg) {
3418 MRI.constrainRegClass(ReplaceReg, MRI.getRegClass(OldReg));
3419 UseOp.setReg(ReplaceReg);
3420 }
3421 }
3422 }
3423
3424 /// Check if we can change the instruction to use an offset value from the
3425 /// previous iteration. If so, return true and set the base and offset values
3426 /// so that we can rewrite the load, if necessary.
3427 /// v1 = Phi(v0, v3)
3428 /// v2 = load v1, 0
3429 /// v3 = post_store v1, 4, x
3430 /// This function enables the load to be rewritten as v2 = load v3, 4.
canUseLastOffsetValue(MachineInstr * MI,unsigned & BasePos,unsigned & OffsetPos,unsigned & NewBase,int64_t & Offset)3431 bool SwingSchedulerDAG::canUseLastOffsetValue(MachineInstr *MI,
3432 unsigned &BasePos,
3433 unsigned &OffsetPos,
3434 unsigned &NewBase,
3435 int64_t &Offset) {
3436 // Get the load instruction.
3437 if (TII->isPostIncrement(*MI))
3438 return false;
3439 unsigned BasePosLd, OffsetPosLd;
3440 if (!TII->getBaseAndOffsetPosition(*MI, BasePosLd, OffsetPosLd))
3441 return false;
3442 unsigned BaseReg = MI->getOperand(BasePosLd).getReg();
3443
3444 // Look for the Phi instruction.
3445 MachineRegisterInfo &MRI = MI->getMF()->getRegInfo();
3446 MachineInstr *Phi = MRI.getVRegDef(BaseReg);
3447 if (!Phi || !Phi->isPHI())
3448 return false;
3449 // Get the register defined in the loop block.
3450 unsigned PrevReg = getLoopPhiReg(*Phi, MI->getParent());
3451 if (!PrevReg)
3452 return false;
3453
3454 // Check for the post-increment load/store instruction.
3455 MachineInstr *PrevDef = MRI.getVRegDef(PrevReg);
3456 if (!PrevDef || PrevDef == MI)
3457 return false;
3458
3459 if (!TII->isPostIncrement(*PrevDef))
3460 return false;
3461
3462 unsigned BasePos1 = 0, OffsetPos1 = 0;
3463 if (!TII->getBaseAndOffsetPosition(*PrevDef, BasePos1, OffsetPos1))
3464 return false;
3465
3466 // Make sure that the instructions do not access the same memory location in
3467 // the next iteration.
3468 int64_t LoadOffset = MI->getOperand(OffsetPosLd).getImm();
3469 int64_t StoreOffset = PrevDef->getOperand(OffsetPos1).getImm();
3470 MachineInstr *NewMI = MF.CloneMachineInstr(MI);
3471 NewMI->getOperand(OffsetPosLd).setImm(LoadOffset + StoreOffset);
3472 bool Disjoint = TII->areMemAccessesTriviallyDisjoint(*NewMI, *PrevDef);
3473 MF.DeleteMachineInstr(NewMI);
3474 if (!Disjoint)
3475 return false;
3476
3477 // Set the return value once we determine that we return true.
3478 BasePos = BasePosLd;
3479 OffsetPos = OffsetPosLd;
3480 NewBase = PrevReg;
3481 Offset = StoreOffset;
3482 return true;
3483 }
3484
3485 /// Apply changes to the instruction if needed. The changes are need
3486 /// to improve the scheduling and depend up on the final schedule.
applyInstrChange(MachineInstr * MI,SMSchedule & Schedule)3487 void SwingSchedulerDAG::applyInstrChange(MachineInstr *MI,
3488 SMSchedule &Schedule) {
3489 SUnit *SU = getSUnit(MI);
3490 DenseMap<SUnit *, std::pair<unsigned, int64_t>>::iterator It =
3491 InstrChanges.find(SU);
3492 if (It != InstrChanges.end()) {
3493 std::pair<unsigned, int64_t> RegAndOffset = It->second;
3494 unsigned BasePos, OffsetPos;
3495 if (!TII->getBaseAndOffsetPosition(*MI, BasePos, OffsetPos))
3496 return;
3497 unsigned BaseReg = MI->getOperand(BasePos).getReg();
3498 MachineInstr *LoopDef = findDefInLoop(BaseReg);
3499 int DefStageNum = Schedule.stageScheduled(getSUnit(LoopDef));
3500 int DefCycleNum = Schedule.cycleScheduled(getSUnit(LoopDef));
3501 int BaseStageNum = Schedule.stageScheduled(SU);
3502 int BaseCycleNum = Schedule.cycleScheduled(SU);
3503 if (BaseStageNum < DefStageNum) {
3504 MachineInstr *NewMI = MF.CloneMachineInstr(MI);
3505 int OffsetDiff = DefStageNum - BaseStageNum;
3506 if (DefCycleNum < BaseCycleNum) {
3507 NewMI->getOperand(BasePos).setReg(RegAndOffset.first);
3508 if (OffsetDiff > 0)
3509 --OffsetDiff;
3510 }
3511 int64_t NewOffset =
3512 MI->getOperand(OffsetPos).getImm() + RegAndOffset.second * OffsetDiff;
3513 NewMI->getOperand(OffsetPos).setImm(NewOffset);
3514 SU->setInstr(NewMI);
3515 MISUnitMap[NewMI] = SU;
3516 NewMIs.insert(NewMI);
3517 }
3518 }
3519 }
3520
3521 /// Return true for an order or output dependence that is loop carried
3522 /// potentially. A dependence is loop carried if the destination defines a valu
3523 /// that may be used or defined by the source in a subsequent iteration.
isLoopCarriedDep(SUnit * Source,const SDep & Dep,bool isSucc)3524 bool SwingSchedulerDAG::isLoopCarriedDep(SUnit *Source, const SDep &Dep,
3525 bool isSucc) {
3526 if ((Dep.getKind() != SDep::Order && Dep.getKind() != SDep::Output) ||
3527 Dep.isArtificial())
3528 return false;
3529
3530 if (!SwpPruneLoopCarried)
3531 return true;
3532
3533 if (Dep.getKind() == SDep::Output)
3534 return true;
3535
3536 MachineInstr *SI = Source->getInstr();
3537 MachineInstr *DI = Dep.getSUnit()->getInstr();
3538 if (!isSucc)
3539 std::swap(SI, DI);
3540 assert(SI != nullptr && DI != nullptr && "Expecting SUnit with an MI.");
3541
3542 // Assume ordered loads and stores may have a loop carried dependence.
3543 if (SI->hasUnmodeledSideEffects() || DI->hasUnmodeledSideEffects() ||
3544 SI->hasOrderedMemoryRef() || DI->hasOrderedMemoryRef())
3545 return true;
3546
3547 // Only chain dependences between a load and store can be loop carried.
3548 if (!DI->mayStore() || !SI->mayLoad())
3549 return false;
3550
3551 unsigned DeltaS, DeltaD;
3552 if (!computeDelta(*SI, DeltaS) || !computeDelta(*DI, DeltaD))
3553 return true;
3554
3555 unsigned BaseRegS, BaseRegD;
3556 int64_t OffsetS, OffsetD;
3557 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
3558 if (!TII->getMemOpBaseRegImmOfs(*SI, BaseRegS, OffsetS, TRI) ||
3559 !TII->getMemOpBaseRegImmOfs(*DI, BaseRegD, OffsetD, TRI))
3560 return true;
3561
3562 if (BaseRegS != BaseRegD)
3563 return true;
3564
3565 // Check that the base register is incremented by a constant value for each
3566 // iteration.
3567 MachineInstr *Def = MRI.getVRegDef(BaseRegS);
3568 if (!Def || !Def->isPHI())
3569 return true;
3570 unsigned InitVal = 0;
3571 unsigned LoopVal = 0;
3572 getPhiRegs(*Def, BB, InitVal, LoopVal);
3573 MachineInstr *LoopDef = MRI.getVRegDef(LoopVal);
3574 int D = 0;
3575 if (!LoopDef || !TII->getIncrementValue(*LoopDef, D))
3576 return true;
3577
3578 uint64_t AccessSizeS = (*SI->memoperands_begin())->getSize();
3579 uint64_t AccessSizeD = (*DI->memoperands_begin())->getSize();
3580
3581 // This is the main test, which checks the offset values and the loop
3582 // increment value to determine if the accesses may be loop carried.
3583 if (OffsetS >= OffsetD)
3584 return OffsetS + AccessSizeS > DeltaS;
3585 else
3586 return OffsetD + AccessSizeD > DeltaD;
3587
3588 return true;
3589 }
3590
postprocessDAG()3591 void SwingSchedulerDAG::postprocessDAG() {
3592 for (auto &M : Mutations)
3593 M->apply(this);
3594 }
3595
3596 /// Try to schedule the node at the specified StartCycle and continue
3597 /// until the node is schedule or the EndCycle is reached. This function
3598 /// returns true if the node is scheduled. This routine may search either
3599 /// forward or backward for a place to insert the instruction based upon
3600 /// the relative values of StartCycle and EndCycle.
insert(SUnit * SU,int StartCycle,int EndCycle,int II)3601 bool SMSchedule::insert(SUnit *SU, int StartCycle, int EndCycle, int II) {
3602 bool forward = true;
3603 if (StartCycle > EndCycle)
3604 forward = false;
3605
3606 // The terminating condition depends on the direction.
3607 int termCycle = forward ? EndCycle + 1 : EndCycle - 1;
3608 for (int curCycle = StartCycle; curCycle != termCycle;
3609 forward ? ++curCycle : --curCycle) {
3610
3611 // Add the already scheduled instructions at the specified cycle to the DFA.
3612 Resources->clearResources();
3613 for (int checkCycle = FirstCycle + ((curCycle - FirstCycle) % II);
3614 checkCycle <= LastCycle; checkCycle += II) {
3615 std::deque<SUnit *> &cycleInstrs = ScheduledInstrs[checkCycle];
3616
3617 for (std::deque<SUnit *>::iterator I = cycleInstrs.begin(),
3618 E = cycleInstrs.end();
3619 I != E; ++I) {
3620 if (ST.getInstrInfo()->isZeroCost((*I)->getInstr()->getOpcode()))
3621 continue;
3622 assert(Resources->canReserveResources(*(*I)->getInstr()) &&
3623 "These instructions have already been scheduled.");
3624 Resources->reserveResources(*(*I)->getInstr());
3625 }
3626 }
3627 if (ST.getInstrInfo()->isZeroCost(SU->getInstr()->getOpcode()) ||
3628 Resources->canReserveResources(*SU->getInstr())) {
3629 LLVM_DEBUG({
3630 dbgs() << "\tinsert at cycle " << curCycle << " ";
3631 SU->getInstr()->dump();
3632 });
3633
3634 ScheduledInstrs[curCycle].push_back(SU);
3635 InstrToCycle.insert(std::make_pair(SU, curCycle));
3636 if (curCycle > LastCycle)
3637 LastCycle = curCycle;
3638 if (curCycle < FirstCycle)
3639 FirstCycle = curCycle;
3640 return true;
3641 }
3642 LLVM_DEBUG({
3643 dbgs() << "\tfailed to insert at cycle " << curCycle << " ";
3644 SU->getInstr()->dump();
3645 });
3646 }
3647 return false;
3648 }
3649
3650 // Return the cycle of the earliest scheduled instruction in the chain.
earliestCycleInChain(const SDep & Dep)3651 int SMSchedule::earliestCycleInChain(const SDep &Dep) {
3652 SmallPtrSet<SUnit *, 8> Visited;
3653 SmallVector<SDep, 8> Worklist;
3654 Worklist.push_back(Dep);
3655 int EarlyCycle = INT_MAX;
3656 while (!Worklist.empty()) {
3657 const SDep &Cur = Worklist.pop_back_val();
3658 SUnit *PrevSU = Cur.getSUnit();
3659 if (Visited.count(PrevSU))
3660 continue;
3661 std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(PrevSU);
3662 if (it == InstrToCycle.end())
3663 continue;
3664 EarlyCycle = std::min(EarlyCycle, it->second);
3665 for (const auto &PI : PrevSU->Preds)
3666 if (PI.getKind() == SDep::Order || Dep.getKind() == SDep::Output)
3667 Worklist.push_back(PI);
3668 Visited.insert(PrevSU);
3669 }
3670 return EarlyCycle;
3671 }
3672
3673 // Return the cycle of the latest scheduled instruction in the chain.
latestCycleInChain(const SDep & Dep)3674 int SMSchedule::latestCycleInChain(const SDep &Dep) {
3675 SmallPtrSet<SUnit *, 8> Visited;
3676 SmallVector<SDep, 8> Worklist;
3677 Worklist.push_back(Dep);
3678 int LateCycle = INT_MIN;
3679 while (!Worklist.empty()) {
3680 const SDep &Cur = Worklist.pop_back_val();
3681 SUnit *SuccSU = Cur.getSUnit();
3682 if (Visited.count(SuccSU))
3683 continue;
3684 std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(SuccSU);
3685 if (it == InstrToCycle.end())
3686 continue;
3687 LateCycle = std::max(LateCycle, it->second);
3688 for (const auto &SI : SuccSU->Succs)
3689 if (SI.getKind() == SDep::Order || Dep.getKind() == SDep::Output)
3690 Worklist.push_back(SI);
3691 Visited.insert(SuccSU);
3692 }
3693 return LateCycle;
3694 }
3695
3696 /// If an instruction has a use that spans multiple iterations, then
3697 /// return true. These instructions are characterized by having a back-ege
3698 /// to a Phi, which contains a reference to another Phi.
multipleIterations(SUnit * SU,SwingSchedulerDAG * DAG)3699 static SUnit *multipleIterations(SUnit *SU, SwingSchedulerDAG *DAG) {
3700 for (auto &P : SU->Preds)
3701 if (DAG->isBackedge(SU, P) && P.getSUnit()->getInstr()->isPHI())
3702 for (auto &S : P.getSUnit()->Succs)
3703 if (S.getKind() == SDep::Data && S.getSUnit()->getInstr()->isPHI())
3704 return P.getSUnit();
3705 return nullptr;
3706 }
3707
3708 /// Compute the scheduling start slot for the instruction. The start slot
3709 /// depends on any predecessor or successor nodes scheduled already.
computeStart(SUnit * SU,int * MaxEarlyStart,int * MinLateStart,int * MinEnd,int * MaxStart,int II,SwingSchedulerDAG * DAG)3710 void SMSchedule::computeStart(SUnit *SU, int *MaxEarlyStart, int *MinLateStart,
3711 int *MinEnd, int *MaxStart, int II,
3712 SwingSchedulerDAG *DAG) {
3713 // Iterate over each instruction that has been scheduled already. The start
3714 // slot computation depends on whether the previously scheduled instruction
3715 // is a predecessor or successor of the specified instruction.
3716 for (int cycle = getFirstCycle(); cycle <= LastCycle; ++cycle) {
3717
3718 // Iterate over each instruction in the current cycle.
3719 for (SUnit *I : getInstructions(cycle)) {
3720 // Because we're processing a DAG for the dependences, we recognize
3721 // the back-edge in recurrences by anti dependences.
3722 for (unsigned i = 0, e = (unsigned)SU->Preds.size(); i != e; ++i) {
3723 const SDep &Dep = SU->Preds[i];
3724 if (Dep.getSUnit() == I) {
3725 if (!DAG->isBackedge(SU, Dep)) {
3726 int EarlyStart = cycle + Dep.getLatency() -
3727 DAG->getDistance(Dep.getSUnit(), SU, Dep) * II;
3728 *MaxEarlyStart = std::max(*MaxEarlyStart, EarlyStart);
3729 if (DAG->isLoopCarriedDep(SU, Dep, false)) {
3730 int End = earliestCycleInChain(Dep) + (II - 1);
3731 *MinEnd = std::min(*MinEnd, End);
3732 }
3733 } else {
3734 int LateStart = cycle - Dep.getLatency() +
3735 DAG->getDistance(SU, Dep.getSUnit(), Dep) * II;
3736 *MinLateStart = std::min(*MinLateStart, LateStart);
3737 }
3738 }
3739 // For instruction that requires multiple iterations, make sure that
3740 // the dependent instruction is not scheduled past the definition.
3741 SUnit *BE = multipleIterations(I, DAG);
3742 if (BE && Dep.getSUnit() == BE && !SU->getInstr()->isPHI() &&
3743 !SU->isPred(I))
3744 *MinLateStart = std::min(*MinLateStart, cycle);
3745 }
3746 for (unsigned i = 0, e = (unsigned)SU->Succs.size(); i != e; ++i) {
3747 if (SU->Succs[i].getSUnit() == I) {
3748 const SDep &Dep = SU->Succs[i];
3749 if (!DAG->isBackedge(SU, Dep)) {
3750 int LateStart = cycle - Dep.getLatency() +
3751 DAG->getDistance(SU, Dep.getSUnit(), Dep) * II;
3752 *MinLateStart = std::min(*MinLateStart, LateStart);
3753 if (DAG->isLoopCarriedDep(SU, Dep)) {
3754 int Start = latestCycleInChain(Dep) + 1 - II;
3755 *MaxStart = std::max(*MaxStart, Start);
3756 }
3757 } else {
3758 int EarlyStart = cycle + Dep.getLatency() -
3759 DAG->getDistance(Dep.getSUnit(), SU, Dep) * II;
3760 *MaxEarlyStart = std::max(*MaxEarlyStart, EarlyStart);
3761 }
3762 }
3763 }
3764 }
3765 }
3766 }
3767
3768 /// Order the instructions within a cycle so that the definitions occur
3769 /// before the uses. Returns true if the instruction is added to the start
3770 /// of the list, or false if added to the end.
orderDependence(SwingSchedulerDAG * SSD,SUnit * SU,std::deque<SUnit * > & Insts)3771 void SMSchedule::orderDependence(SwingSchedulerDAG *SSD, SUnit *SU,
3772 std::deque<SUnit *> &Insts) {
3773 MachineInstr *MI = SU->getInstr();
3774 bool OrderBeforeUse = false;
3775 bool OrderAfterDef = false;
3776 bool OrderBeforeDef = false;
3777 unsigned MoveDef = 0;
3778 unsigned MoveUse = 0;
3779 int StageInst1 = stageScheduled(SU);
3780
3781 unsigned Pos = 0;
3782 for (std::deque<SUnit *>::iterator I = Insts.begin(), E = Insts.end(); I != E;
3783 ++I, ++Pos) {
3784 for (unsigned i = 0, e = MI->getNumOperands(); i < e; ++i) {
3785 MachineOperand &MO = MI->getOperand(i);
3786 if (!MO.isReg() || !TargetRegisterInfo::isVirtualRegister(MO.getReg()))
3787 continue;
3788
3789 unsigned Reg = MO.getReg();
3790 unsigned BasePos, OffsetPos;
3791 if (ST.getInstrInfo()->getBaseAndOffsetPosition(*MI, BasePos, OffsetPos))
3792 if (MI->getOperand(BasePos).getReg() == Reg)
3793 if (unsigned NewReg = SSD->getInstrBaseReg(SU))
3794 Reg = NewReg;
3795 bool Reads, Writes;
3796 std::tie(Reads, Writes) =
3797 (*I)->getInstr()->readsWritesVirtualRegister(Reg);
3798 if (MO.isDef() && Reads && stageScheduled(*I) <= StageInst1) {
3799 OrderBeforeUse = true;
3800 if (MoveUse == 0)
3801 MoveUse = Pos;
3802 } else if (MO.isDef() && Reads && stageScheduled(*I) > StageInst1) {
3803 // Add the instruction after the scheduled instruction.
3804 OrderAfterDef = true;
3805 MoveDef = Pos;
3806 } else if (MO.isUse() && Writes && stageScheduled(*I) == StageInst1) {
3807 if (cycleScheduled(*I) == cycleScheduled(SU) && !(*I)->isSucc(SU)) {
3808 OrderBeforeUse = true;
3809 if (MoveUse == 0)
3810 MoveUse = Pos;
3811 } else {
3812 OrderAfterDef = true;
3813 MoveDef = Pos;
3814 }
3815 } else if (MO.isUse() && Writes && stageScheduled(*I) > StageInst1) {
3816 OrderBeforeUse = true;
3817 if (MoveUse == 0)
3818 MoveUse = Pos;
3819 if (MoveUse != 0) {
3820 OrderAfterDef = true;
3821 MoveDef = Pos - 1;
3822 }
3823 } else if (MO.isUse() && Writes && stageScheduled(*I) < StageInst1) {
3824 // Add the instruction before the scheduled instruction.
3825 OrderBeforeUse = true;
3826 if (MoveUse == 0)
3827 MoveUse = Pos;
3828 } else if (MO.isUse() && stageScheduled(*I) == StageInst1 &&
3829 isLoopCarriedDefOfUse(SSD, (*I)->getInstr(), MO)) {
3830 if (MoveUse == 0) {
3831 OrderBeforeDef = true;
3832 MoveUse = Pos;
3833 }
3834 }
3835 }
3836 // Check for order dependences between instructions. Make sure the source
3837 // is ordered before the destination.
3838 for (auto &S : SU->Succs) {
3839 if (S.getSUnit() != *I)
3840 continue;
3841 if (S.getKind() == SDep::Order && stageScheduled(*I) == StageInst1) {
3842 OrderBeforeUse = true;
3843 if (Pos < MoveUse)
3844 MoveUse = Pos;
3845 }
3846 }
3847 for (auto &P : SU->Preds) {
3848 if (P.getSUnit() != *I)
3849 continue;
3850 if (P.getKind() == SDep::Order && stageScheduled(*I) == StageInst1) {
3851 OrderAfterDef = true;
3852 MoveDef = Pos;
3853 }
3854 }
3855 }
3856
3857 // A circular dependence.
3858 if (OrderAfterDef && OrderBeforeUse && MoveUse == MoveDef)
3859 OrderBeforeUse = false;
3860
3861 // OrderAfterDef takes precedences over OrderBeforeDef. The latter is due
3862 // to a loop-carried dependence.
3863 if (OrderBeforeDef)
3864 OrderBeforeUse = !OrderAfterDef || (MoveUse > MoveDef);
3865
3866 // The uncommon case when the instruction order needs to be updated because
3867 // there is both a use and def.
3868 if (OrderBeforeUse && OrderAfterDef) {
3869 SUnit *UseSU = Insts.at(MoveUse);
3870 SUnit *DefSU = Insts.at(MoveDef);
3871 if (MoveUse > MoveDef) {
3872 Insts.erase(Insts.begin() + MoveUse);
3873 Insts.erase(Insts.begin() + MoveDef);
3874 } else {
3875 Insts.erase(Insts.begin() + MoveDef);
3876 Insts.erase(Insts.begin() + MoveUse);
3877 }
3878 orderDependence(SSD, UseSU, Insts);
3879 orderDependence(SSD, SU, Insts);
3880 orderDependence(SSD, DefSU, Insts);
3881 return;
3882 }
3883 // Put the new instruction first if there is a use in the list. Otherwise,
3884 // put it at the end of the list.
3885 if (OrderBeforeUse)
3886 Insts.push_front(SU);
3887 else
3888 Insts.push_back(SU);
3889 }
3890
3891 /// Return true if the scheduled Phi has a loop carried operand.
isLoopCarried(SwingSchedulerDAG * SSD,MachineInstr & Phi)3892 bool SMSchedule::isLoopCarried(SwingSchedulerDAG *SSD, MachineInstr &Phi) {
3893 if (!Phi.isPHI())
3894 return false;
3895 assert(Phi.isPHI() && "Expecting a Phi.");
3896 SUnit *DefSU = SSD->getSUnit(&Phi);
3897 unsigned DefCycle = cycleScheduled(DefSU);
3898 int DefStage = stageScheduled(DefSU);
3899
3900 unsigned InitVal = 0;
3901 unsigned LoopVal = 0;
3902 getPhiRegs(Phi, Phi.getParent(), InitVal, LoopVal);
3903 SUnit *UseSU = SSD->getSUnit(MRI.getVRegDef(LoopVal));
3904 if (!UseSU)
3905 return true;
3906 if (UseSU->getInstr()->isPHI())
3907 return true;
3908 unsigned LoopCycle = cycleScheduled(UseSU);
3909 int LoopStage = stageScheduled(UseSU);
3910 return (LoopCycle > DefCycle) || (LoopStage <= DefStage);
3911 }
3912
3913 /// Return true if the instruction is a definition that is loop carried
3914 /// and defines the use on the next iteration.
3915 /// v1 = phi(v2, v3)
3916 /// (Def) v3 = op v1
3917 /// (MO) = v1
3918 /// If MO appears before Def, then then v1 and v3 may get assigned to the same
3919 /// register.
isLoopCarriedDefOfUse(SwingSchedulerDAG * SSD,MachineInstr * Def,MachineOperand & MO)3920 bool SMSchedule::isLoopCarriedDefOfUse(SwingSchedulerDAG *SSD,
3921 MachineInstr *Def, MachineOperand &MO) {
3922 if (!MO.isReg())
3923 return false;
3924 if (Def->isPHI())
3925 return false;
3926 MachineInstr *Phi = MRI.getVRegDef(MO.getReg());
3927 if (!Phi || !Phi->isPHI() || Phi->getParent() != Def->getParent())
3928 return false;
3929 if (!isLoopCarried(SSD, *Phi))
3930 return false;
3931 unsigned LoopReg = getLoopPhiReg(*Phi, Phi->getParent());
3932 for (unsigned i = 0, e = Def->getNumOperands(); i != e; ++i) {
3933 MachineOperand &DMO = Def->getOperand(i);
3934 if (!DMO.isReg() || !DMO.isDef())
3935 continue;
3936 if (DMO.getReg() == LoopReg)
3937 return true;
3938 }
3939 return false;
3940 }
3941
3942 // Check if the generated schedule is valid. This function checks if
3943 // an instruction that uses a physical register is scheduled in a
3944 // different stage than the definition. The pipeliner does not handle
3945 // physical register values that may cross a basic block boundary.
isValidSchedule(SwingSchedulerDAG * SSD)3946 bool SMSchedule::isValidSchedule(SwingSchedulerDAG *SSD) {
3947 for (int i = 0, e = SSD->SUnits.size(); i < e; ++i) {
3948 SUnit &SU = SSD->SUnits[i];
3949 if (!SU.hasPhysRegDefs)
3950 continue;
3951 int StageDef = stageScheduled(&SU);
3952 assert(StageDef != -1 && "Instruction should have been scheduled.");
3953 for (auto &SI : SU.Succs)
3954 if (SI.isAssignedRegDep())
3955 if (ST.getRegisterInfo()->isPhysicalRegister(SI.getReg()))
3956 if (stageScheduled(SI.getSUnit()) != StageDef)
3957 return false;
3958 }
3959 return true;
3960 }
3961
3962 /// A property of the node order in swing-modulo-scheduling is
3963 /// that for nodes outside circuits the following holds:
3964 /// none of them is scheduled after both a successor and a
3965 /// predecessor.
3966 /// The method below checks whether the property is met.
3967 /// If not, debug information is printed and statistics information updated.
3968 /// Note that we do not use an assert statement.
3969 /// The reason is that although an invalid node oder may prevent
3970 /// the pipeliner from finding a pipelined schedule for arbitrary II,
3971 /// it does not lead to the generation of incorrect code.
checkValidNodeOrder(const NodeSetType & Circuits) const3972 void SwingSchedulerDAG::checkValidNodeOrder(const NodeSetType &Circuits) const {
3973
3974 // a sorted vector that maps each SUnit to its index in the NodeOrder
3975 typedef std::pair<SUnit *, unsigned> UnitIndex;
3976 std::vector<UnitIndex> Indices(NodeOrder.size(), std::make_pair(nullptr, 0));
3977
3978 for (unsigned i = 0, s = NodeOrder.size(); i < s; ++i)
3979 Indices.push_back(std::make_pair(NodeOrder[i], i));
3980
3981 auto CompareKey = [](UnitIndex i1, UnitIndex i2) {
3982 return std::get<0>(i1) < std::get<0>(i2);
3983 };
3984
3985 // sort, so that we can perform a binary search
3986 llvm::sort(Indices.begin(), Indices.end(), CompareKey);
3987
3988 bool Valid = true;
3989 (void)Valid;
3990 // for each SUnit in the NodeOrder, check whether
3991 // it appears after both a successor and a predecessor
3992 // of the SUnit. If this is the case, and the SUnit
3993 // is not part of circuit, then the NodeOrder is not
3994 // valid.
3995 for (unsigned i = 0, s = NodeOrder.size(); i < s; ++i) {
3996 SUnit *SU = NodeOrder[i];
3997 unsigned Index = i;
3998
3999 bool PredBefore = false;
4000 bool SuccBefore = false;
4001
4002 SUnit *Succ;
4003 SUnit *Pred;
4004 (void)Succ;
4005 (void)Pred;
4006
4007 for (SDep &PredEdge : SU->Preds) {
4008 SUnit *PredSU = PredEdge.getSUnit();
4009 unsigned PredIndex =
4010 std::get<1>(*std::lower_bound(Indices.begin(), Indices.end(),
4011 std::make_pair(PredSU, 0), CompareKey));
4012 if (!PredSU->getInstr()->isPHI() && PredIndex < Index) {
4013 PredBefore = true;
4014 Pred = PredSU;
4015 break;
4016 }
4017 }
4018
4019 for (SDep &SuccEdge : SU->Succs) {
4020 SUnit *SuccSU = SuccEdge.getSUnit();
4021 unsigned SuccIndex =
4022 std::get<1>(*std::lower_bound(Indices.begin(), Indices.end(),
4023 std::make_pair(SuccSU, 0), CompareKey));
4024 if (!SuccSU->getInstr()->isPHI() && SuccIndex < Index) {
4025 SuccBefore = true;
4026 Succ = SuccSU;
4027 break;
4028 }
4029 }
4030
4031 if (PredBefore && SuccBefore && !SU->getInstr()->isPHI()) {
4032 // instructions in circuits are allowed to be scheduled
4033 // after both a successor and predecessor.
4034 bool InCircuit = std::any_of(
4035 Circuits.begin(), Circuits.end(),
4036 [SU](const NodeSet &Circuit) { return Circuit.count(SU); });
4037 if (InCircuit)
4038 LLVM_DEBUG(dbgs() << "In a circuit, predecessor ";);
4039 else {
4040 Valid = false;
4041 NumNodeOrderIssues++;
4042 LLVM_DEBUG(dbgs() << "Predecessor ";);
4043 }
4044 LLVM_DEBUG(dbgs() << Pred->NodeNum << " and successor " << Succ->NodeNum
4045 << " are scheduled before node " << SU->NodeNum
4046 << "\n";);
4047 }
4048 }
4049
4050 LLVM_DEBUG({
4051 if (!Valid)
4052 dbgs() << "Invalid node order found!\n";
4053 });
4054 }
4055
4056 /// Attempt to fix the degenerate cases when the instruction serialization
4057 /// causes the register lifetimes to overlap. For example,
4058 /// p' = store_pi(p, b)
4059 /// = load p, offset
4060 /// In this case p and p' overlap, which means that two registers are needed.
4061 /// Instead, this function changes the load to use p' and updates the offset.
fixupRegisterOverlaps(std::deque<SUnit * > & Instrs)4062 void SwingSchedulerDAG::fixupRegisterOverlaps(std::deque<SUnit *> &Instrs) {
4063 unsigned OverlapReg = 0;
4064 unsigned NewBaseReg = 0;
4065 for (SUnit *SU : Instrs) {
4066 MachineInstr *MI = SU->getInstr();
4067 for (unsigned i = 0, e = MI->getNumOperands(); i < e; ++i) {
4068 const MachineOperand &MO = MI->getOperand(i);
4069 // Look for an instruction that uses p. The instruction occurs in the
4070 // same cycle but occurs later in the serialized order.
4071 if (MO.isReg() && MO.isUse() && MO.getReg() == OverlapReg) {
4072 // Check that the instruction appears in the InstrChanges structure,
4073 // which contains instructions that can have the offset updated.
4074 DenseMap<SUnit *, std::pair<unsigned, int64_t>>::iterator It =
4075 InstrChanges.find(SU);
4076 if (It != InstrChanges.end()) {
4077 unsigned BasePos, OffsetPos;
4078 // Update the base register and adjust the offset.
4079 if (TII->getBaseAndOffsetPosition(*MI, BasePos, OffsetPos)) {
4080 MachineInstr *NewMI = MF.CloneMachineInstr(MI);
4081 NewMI->getOperand(BasePos).setReg(NewBaseReg);
4082 int64_t NewOffset =
4083 MI->getOperand(OffsetPos).getImm() - It->second.second;
4084 NewMI->getOperand(OffsetPos).setImm(NewOffset);
4085 SU->setInstr(NewMI);
4086 MISUnitMap[NewMI] = SU;
4087 NewMIs.insert(NewMI);
4088 }
4089 }
4090 OverlapReg = 0;
4091 NewBaseReg = 0;
4092 break;
4093 }
4094 // Look for an instruction of the form p' = op(p), which uses and defines
4095 // two virtual registers that get allocated to the same physical register.
4096 unsigned TiedUseIdx = 0;
4097 if (MI->isRegTiedToUseOperand(i, &TiedUseIdx)) {
4098 // OverlapReg is p in the example above.
4099 OverlapReg = MI->getOperand(TiedUseIdx).getReg();
4100 // NewBaseReg is p' in the example above.
4101 NewBaseReg = MI->getOperand(i).getReg();
4102 break;
4103 }
4104 }
4105 }
4106 }
4107
4108 /// After the schedule has been formed, call this function to combine
4109 /// the instructions from the different stages/cycles. That is, this
4110 /// function creates a schedule that represents a single iteration.
finalizeSchedule(SwingSchedulerDAG * SSD)4111 void SMSchedule::finalizeSchedule(SwingSchedulerDAG *SSD) {
4112 // Move all instructions to the first stage from later stages.
4113 for (int cycle = getFirstCycle(); cycle <= getFinalCycle(); ++cycle) {
4114 for (int stage = 1, lastStage = getMaxStageCount(); stage <= lastStage;
4115 ++stage) {
4116 std::deque<SUnit *> &cycleInstrs =
4117 ScheduledInstrs[cycle + (stage * InitiationInterval)];
4118 for (std::deque<SUnit *>::reverse_iterator I = cycleInstrs.rbegin(),
4119 E = cycleInstrs.rend();
4120 I != E; ++I)
4121 ScheduledInstrs[cycle].push_front(*I);
4122 }
4123 }
4124 // Iterate over the definitions in each instruction, and compute the
4125 // stage difference for each use. Keep the maximum value.
4126 for (auto &I : InstrToCycle) {
4127 int DefStage = stageScheduled(I.first);
4128 MachineInstr *MI = I.first->getInstr();
4129 for (unsigned i = 0, e = MI->getNumOperands(); i < e; ++i) {
4130 MachineOperand &Op = MI->getOperand(i);
4131 if (!Op.isReg() || !Op.isDef())
4132 continue;
4133
4134 unsigned Reg = Op.getReg();
4135 unsigned MaxDiff = 0;
4136 bool PhiIsSwapped = false;
4137 for (MachineRegisterInfo::use_iterator UI = MRI.use_begin(Reg),
4138 EI = MRI.use_end();
4139 UI != EI; ++UI) {
4140 MachineOperand &UseOp = *UI;
4141 MachineInstr *UseMI = UseOp.getParent();
4142 SUnit *SUnitUse = SSD->getSUnit(UseMI);
4143 int UseStage = stageScheduled(SUnitUse);
4144 unsigned Diff = 0;
4145 if (UseStage != -1 && UseStage >= DefStage)
4146 Diff = UseStage - DefStage;
4147 if (MI->isPHI()) {
4148 if (isLoopCarried(SSD, *MI))
4149 ++Diff;
4150 else
4151 PhiIsSwapped = true;
4152 }
4153 MaxDiff = std::max(Diff, MaxDiff);
4154 }
4155 RegToStageDiff[Reg] = std::make_pair(MaxDiff, PhiIsSwapped);
4156 }
4157 }
4158
4159 // Erase all the elements in the later stages. Only one iteration should
4160 // remain in the scheduled list, and it contains all the instructions.
4161 for (int cycle = getFinalCycle() + 1; cycle <= LastCycle; ++cycle)
4162 ScheduledInstrs.erase(cycle);
4163
4164 // Change the registers in instruction as specified in the InstrChanges
4165 // map. We need to use the new registers to create the correct order.
4166 for (int i = 0, e = SSD->SUnits.size(); i != e; ++i) {
4167 SUnit *SU = &SSD->SUnits[i];
4168 SSD->applyInstrChange(SU->getInstr(), *this);
4169 }
4170
4171 // Reorder the instructions in each cycle to fix and improve the
4172 // generated code.
4173 for (int Cycle = getFirstCycle(), E = getFinalCycle(); Cycle <= E; ++Cycle) {
4174 std::deque<SUnit *> &cycleInstrs = ScheduledInstrs[Cycle];
4175 std::deque<SUnit *> newOrderPhi;
4176 for (unsigned i = 0, e = cycleInstrs.size(); i < e; ++i) {
4177 SUnit *SU = cycleInstrs[i];
4178 if (SU->getInstr()->isPHI())
4179 newOrderPhi.push_back(SU);
4180 }
4181 std::deque<SUnit *> newOrderI;
4182 for (unsigned i = 0, e = cycleInstrs.size(); i < e; ++i) {
4183 SUnit *SU = cycleInstrs[i];
4184 if (!SU->getInstr()->isPHI())
4185 orderDependence(SSD, SU, newOrderI);
4186 }
4187 // Replace the old order with the new order.
4188 cycleInstrs.swap(newOrderPhi);
4189 cycleInstrs.insert(cycleInstrs.end(), newOrderI.begin(), newOrderI.end());
4190 SSD->fixupRegisterOverlaps(cycleInstrs);
4191 }
4192
4193 LLVM_DEBUG(dump(););
4194 }
4195
4196 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4197 /// Print the schedule information to the given output.
print(raw_ostream & os) const4198 void SMSchedule::print(raw_ostream &os) const {
4199 // Iterate over each cycle.
4200 for (int cycle = getFirstCycle(); cycle <= getFinalCycle(); ++cycle) {
4201 // Iterate over each instruction in the cycle.
4202 const_sched_iterator cycleInstrs = ScheduledInstrs.find(cycle);
4203 for (SUnit *CI : cycleInstrs->second) {
4204 os << "cycle " << cycle << " (" << stageScheduled(CI) << ") ";
4205 os << "(" << CI->NodeNum << ") ";
4206 CI->getInstr()->print(os);
4207 os << "\n";
4208 }
4209 }
4210 }
4211
4212 /// Utility function used for debugging to print the schedule.
dump() const4213 LLVM_DUMP_METHOD void SMSchedule::dump() const { print(dbgs()); }
4214 #endif
4215