1 //===- MachineSSAUpdater.cpp - Unstructured SSA Update Tool ---------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the MachineSSAUpdater class. It's based on SSAUpdater
11 // class in lib/Transforms/Utils.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/CodeGen/MachineSSAUpdater.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/CodeGen/MachineBasicBlock.h"
19 #include "llvm/CodeGen/MachineFunction.h"
20 #include "llvm/CodeGen/MachineInstr.h"
21 #include "llvm/CodeGen/MachineInstrBuilder.h"
22 #include "llvm/CodeGen/MachineOperand.h"
23 #include "llvm/CodeGen/MachineRegisterInfo.h"
24 #include "llvm/CodeGen/TargetInstrInfo.h"
25 #include "llvm/CodeGen/TargetOpcodes.h"
26 #include "llvm/CodeGen/TargetSubtargetInfo.h"
27 #include "llvm/IR/DebugLoc.h"
28 #include "llvm/Support/Debug.h"
29 #include "llvm/Support/ErrorHandling.h"
30 #include "llvm/Support/raw_ostream.h"
31 #include "llvm/Transforms/Utils/SSAUpdaterImpl.h"
32 #include <utility>
33 
34 using namespace llvm;
35 
36 #define DEBUG_TYPE "machine-ssaupdater"
37 
38 using AvailableValsTy = DenseMap<MachineBasicBlock *, unsigned>;
39 
getAvailableVals(void * AV)40 static AvailableValsTy &getAvailableVals(void *AV) {
41   return *static_cast<AvailableValsTy*>(AV);
42 }
43 
MachineSSAUpdater(MachineFunction & MF,SmallVectorImpl<MachineInstr * > * NewPHI)44 MachineSSAUpdater::MachineSSAUpdater(MachineFunction &MF,
45                                      SmallVectorImpl<MachineInstr*> *NewPHI)
46   : InsertedPHIs(NewPHI), TII(MF.getSubtarget().getInstrInfo()),
47     MRI(&MF.getRegInfo()) {}
48 
~MachineSSAUpdater()49 MachineSSAUpdater::~MachineSSAUpdater() {
50   delete static_cast<AvailableValsTy*>(AV);
51 }
52 
53 /// Initialize - Reset this object to get ready for a new set of SSA
54 /// updates.  ProtoValue is the value used to name PHI nodes.
Initialize(unsigned V)55 void MachineSSAUpdater::Initialize(unsigned V) {
56   if (!AV)
57     AV = new AvailableValsTy();
58   else
59     getAvailableVals(AV).clear();
60 
61   VR = V;
62   VRC = MRI->getRegClass(VR);
63 }
64 
65 /// HasValueForBlock - Return true if the MachineSSAUpdater already has a value for
66 /// the specified block.
HasValueForBlock(MachineBasicBlock * BB) const67 bool MachineSSAUpdater::HasValueForBlock(MachineBasicBlock *BB) const {
68   return getAvailableVals(AV).count(BB);
69 }
70 
71 /// AddAvailableValue - Indicate that a rewritten value is available in the
72 /// specified block with the specified value.
AddAvailableValue(MachineBasicBlock * BB,unsigned V)73 void MachineSSAUpdater::AddAvailableValue(MachineBasicBlock *BB, unsigned V) {
74   getAvailableVals(AV)[BB] = V;
75 }
76 
77 /// GetValueAtEndOfBlock - Construct SSA form, materializing a value that is
78 /// live at the end of the specified block.
GetValueAtEndOfBlock(MachineBasicBlock * BB)79 unsigned MachineSSAUpdater::GetValueAtEndOfBlock(MachineBasicBlock *BB) {
80   return GetValueAtEndOfBlockInternal(BB);
81 }
82 
83 static
LookForIdenticalPHI(MachineBasicBlock * BB,SmallVectorImpl<std::pair<MachineBasicBlock *,unsigned>> & PredValues)84 unsigned LookForIdenticalPHI(MachineBasicBlock *BB,
85         SmallVectorImpl<std::pair<MachineBasicBlock *, unsigned>> &PredValues) {
86   if (BB->empty())
87     return 0;
88 
89   MachineBasicBlock::iterator I = BB->begin();
90   if (!I->isPHI())
91     return 0;
92 
93   AvailableValsTy AVals;
94   for (unsigned i = 0, e = PredValues.size(); i != e; ++i)
95     AVals[PredValues[i].first] = PredValues[i].second;
96   while (I != BB->end() && I->isPHI()) {
97     bool Same = true;
98     for (unsigned i = 1, e = I->getNumOperands(); i != e; i += 2) {
99       unsigned SrcReg = I->getOperand(i).getReg();
100       MachineBasicBlock *SrcBB = I->getOperand(i+1).getMBB();
101       if (AVals[SrcBB] != SrcReg) {
102         Same = false;
103         break;
104       }
105     }
106     if (Same)
107       return I->getOperand(0).getReg();
108     ++I;
109   }
110   return 0;
111 }
112 
113 /// InsertNewDef - Insert an empty PHI or IMPLICIT_DEF instruction which define
114 /// a value of the given register class at the start of the specified basic
115 /// block. It returns the virtual register defined by the instruction.
116 static
InsertNewDef(unsigned Opcode,MachineBasicBlock * BB,MachineBasicBlock::iterator I,const TargetRegisterClass * RC,MachineRegisterInfo * MRI,const TargetInstrInfo * TII)117 MachineInstrBuilder InsertNewDef(unsigned Opcode,
118                            MachineBasicBlock *BB, MachineBasicBlock::iterator I,
119                            const TargetRegisterClass *RC,
120                            MachineRegisterInfo *MRI,
121                            const TargetInstrInfo *TII) {
122   unsigned NewVR = MRI->createVirtualRegister(RC);
123   return BuildMI(*BB, I, DebugLoc(), TII->get(Opcode), NewVR);
124 }
125 
126 /// GetValueInMiddleOfBlock - Construct SSA form, materializing a value that
127 /// is live in the middle of the specified block.
128 ///
129 /// GetValueInMiddleOfBlock is the same as GetValueAtEndOfBlock except in one
130 /// important case: if there is a definition of the rewritten value after the
131 /// 'use' in BB.  Consider code like this:
132 ///
133 ///      X1 = ...
134 ///   SomeBB:
135 ///      use(X)
136 ///      X2 = ...
137 ///      br Cond, SomeBB, OutBB
138 ///
139 /// In this case, there are two values (X1 and X2) added to the AvailableVals
140 /// set by the client of the rewriter, and those values are both live out of
141 /// their respective blocks.  However, the use of X happens in the *middle* of
142 /// a block.  Because of this, we need to insert a new PHI node in SomeBB to
143 /// merge the appropriate values, and this value isn't live out of the block.
GetValueInMiddleOfBlock(MachineBasicBlock * BB)144 unsigned MachineSSAUpdater::GetValueInMiddleOfBlock(MachineBasicBlock *BB) {
145   // If there is no definition of the renamed variable in this block, just use
146   // GetValueAtEndOfBlock to do our work.
147   if (!HasValueForBlock(BB))
148     return GetValueAtEndOfBlockInternal(BB);
149 
150   // If there are no predecessors, just return undef.
151   if (BB->pred_empty()) {
152     // Insert an implicit_def to represent an undef value.
153     MachineInstr *NewDef = InsertNewDef(TargetOpcode::IMPLICIT_DEF,
154                                         BB, BB->getFirstTerminator(),
155                                         VRC, MRI, TII);
156     return NewDef->getOperand(0).getReg();
157   }
158 
159   // Otherwise, we have the hard case.  Get the live-in values for each
160   // predecessor.
161   SmallVector<std::pair<MachineBasicBlock*, unsigned>, 8> PredValues;
162   unsigned SingularValue = 0;
163 
164   bool isFirstPred = true;
165   for (MachineBasicBlock::pred_iterator PI = BB->pred_begin(),
166          E = BB->pred_end(); PI != E; ++PI) {
167     MachineBasicBlock *PredBB = *PI;
168     unsigned PredVal = GetValueAtEndOfBlockInternal(PredBB);
169     PredValues.push_back(std::make_pair(PredBB, PredVal));
170 
171     // Compute SingularValue.
172     if (isFirstPred) {
173       SingularValue = PredVal;
174       isFirstPred = false;
175     } else if (PredVal != SingularValue)
176       SingularValue = 0;
177   }
178 
179   // Otherwise, if all the merged values are the same, just use it.
180   if (SingularValue != 0)
181     return SingularValue;
182 
183   // If an identical PHI is already in BB, just reuse it.
184   unsigned DupPHI = LookForIdenticalPHI(BB, PredValues);
185   if (DupPHI)
186     return DupPHI;
187 
188   // Otherwise, we do need a PHI: insert one now.
189   MachineBasicBlock::iterator Loc = BB->empty() ? BB->end() : BB->begin();
190   MachineInstrBuilder InsertedPHI = InsertNewDef(TargetOpcode::PHI, BB,
191                                                  Loc, VRC, MRI, TII);
192 
193   // Fill in all the predecessors of the PHI.
194   for (unsigned i = 0, e = PredValues.size(); i != e; ++i)
195     InsertedPHI.addReg(PredValues[i].second).addMBB(PredValues[i].first);
196 
197   // See if the PHI node can be merged to a single value.  This can happen in
198   // loop cases when we get a PHI of itself and one other value.
199   if (unsigned ConstVal = InsertedPHI->isConstantValuePHI()) {
200     InsertedPHI->eraseFromParent();
201     return ConstVal;
202   }
203 
204   // If the client wants to know about all new instructions, tell it.
205   if (InsertedPHIs) InsertedPHIs->push_back(InsertedPHI);
206 
207   LLVM_DEBUG(dbgs() << "  Inserted PHI: " << *InsertedPHI << "\n");
208   return InsertedPHI->getOperand(0).getReg();
209 }
210 
211 static
findCorrespondingPred(const MachineInstr * MI,MachineOperand * U)212 MachineBasicBlock *findCorrespondingPred(const MachineInstr *MI,
213                                          MachineOperand *U) {
214   for (unsigned i = 1, e = MI->getNumOperands(); i != e; i += 2) {
215     if (&MI->getOperand(i) == U)
216       return MI->getOperand(i+1).getMBB();
217   }
218 
219   llvm_unreachable("MachineOperand::getParent() failure?");
220 }
221 
222 /// RewriteUse - Rewrite a use of the symbolic value.  This handles PHI nodes,
223 /// which use their value in the corresponding predecessor.
RewriteUse(MachineOperand & U)224 void MachineSSAUpdater::RewriteUse(MachineOperand &U) {
225   MachineInstr *UseMI = U.getParent();
226   unsigned NewVR = 0;
227   if (UseMI->isPHI()) {
228     MachineBasicBlock *SourceBB = findCorrespondingPred(UseMI, &U);
229     NewVR = GetValueAtEndOfBlockInternal(SourceBB);
230   } else {
231     NewVR = GetValueInMiddleOfBlock(UseMI->getParent());
232   }
233 
234   U.setReg(NewVR);
235 }
236 
237 /// SSAUpdaterTraits<MachineSSAUpdater> - Traits for the SSAUpdaterImpl
238 /// template, specialized for MachineSSAUpdater.
239 namespace llvm {
240 
241 template<>
242 class SSAUpdaterTraits<MachineSSAUpdater> {
243 public:
244   using BlkT = MachineBasicBlock;
245   using ValT = unsigned;
246   using PhiT = MachineInstr;
247   using BlkSucc_iterator = MachineBasicBlock::succ_iterator;
248 
BlkSucc_begin(BlkT * BB)249   static BlkSucc_iterator BlkSucc_begin(BlkT *BB) { return BB->succ_begin(); }
BlkSucc_end(BlkT * BB)250   static BlkSucc_iterator BlkSucc_end(BlkT *BB) { return BB->succ_end(); }
251 
252   /// Iterator for PHI operands.
253   class PHI_iterator {
254   private:
255     MachineInstr *PHI;
256     unsigned idx;
257 
258   public:
PHI_iterator(MachineInstr * P)259     explicit PHI_iterator(MachineInstr *P) // begin iterator
260       : PHI(P), idx(1) {}
PHI_iterator(MachineInstr * P,bool)261     PHI_iterator(MachineInstr *P, bool) // end iterator
262       : PHI(P), idx(PHI->getNumOperands()) {}
263 
operator ++()264     PHI_iterator &operator++() { idx += 2; return *this; }
operator ==(const PHI_iterator & x) const265     bool operator==(const PHI_iterator& x) const { return idx == x.idx; }
operator !=(const PHI_iterator & x) const266     bool operator!=(const PHI_iterator& x) const { return !operator==(x); }
267 
getIncomingValue()268     unsigned getIncomingValue() { return PHI->getOperand(idx).getReg(); }
269 
getIncomingBlock()270     MachineBasicBlock *getIncomingBlock() {
271       return PHI->getOperand(idx+1).getMBB();
272     }
273   };
274 
PHI_begin(PhiT * PHI)275   static inline PHI_iterator PHI_begin(PhiT *PHI) { return PHI_iterator(PHI); }
276 
PHI_end(PhiT * PHI)277   static inline PHI_iterator PHI_end(PhiT *PHI) {
278     return PHI_iterator(PHI, true);
279   }
280 
281   /// FindPredecessorBlocks - Put the predecessors of BB into the Preds
282   /// vector.
FindPredecessorBlocks(MachineBasicBlock * BB,SmallVectorImpl<MachineBasicBlock * > * Preds)283   static void FindPredecessorBlocks(MachineBasicBlock *BB,
284                                     SmallVectorImpl<MachineBasicBlock*> *Preds){
285     for (MachineBasicBlock::pred_iterator PI = BB->pred_begin(),
286            E = BB->pred_end(); PI != E; ++PI)
287       Preds->push_back(*PI);
288   }
289 
290   /// GetUndefVal - Create an IMPLICIT_DEF instruction with a new register.
291   /// Add it into the specified block and return the register.
GetUndefVal(MachineBasicBlock * BB,MachineSSAUpdater * Updater)292   static unsigned GetUndefVal(MachineBasicBlock *BB,
293                               MachineSSAUpdater *Updater) {
294     // Insert an implicit_def to represent an undef value.
295     MachineInstr *NewDef = InsertNewDef(TargetOpcode::IMPLICIT_DEF,
296                                         BB, BB->getFirstTerminator(),
297                                         Updater->VRC, Updater->MRI,
298                                         Updater->TII);
299     return NewDef->getOperand(0).getReg();
300   }
301 
302   /// CreateEmptyPHI - Create a PHI instruction that defines a new register.
303   /// Add it into the specified block and return the register.
CreateEmptyPHI(MachineBasicBlock * BB,unsigned NumPreds,MachineSSAUpdater * Updater)304   static unsigned CreateEmptyPHI(MachineBasicBlock *BB, unsigned NumPreds,
305                                  MachineSSAUpdater *Updater) {
306     MachineBasicBlock::iterator Loc = BB->empty() ? BB->end() : BB->begin();
307     MachineInstr *PHI = InsertNewDef(TargetOpcode::PHI, BB, Loc,
308                                      Updater->VRC, Updater->MRI,
309                                      Updater->TII);
310     return PHI->getOperand(0).getReg();
311   }
312 
313   /// AddPHIOperand - Add the specified value as an operand of the PHI for
314   /// the specified predecessor block.
AddPHIOperand(MachineInstr * PHI,unsigned Val,MachineBasicBlock * Pred)315   static void AddPHIOperand(MachineInstr *PHI, unsigned Val,
316                             MachineBasicBlock *Pred) {
317     MachineInstrBuilder(*Pred->getParent(), PHI).addReg(Val).addMBB(Pred);
318   }
319 
320   /// InstrIsPHI - Check if an instruction is a PHI.
InstrIsPHI(MachineInstr * I)321   static MachineInstr *InstrIsPHI(MachineInstr *I) {
322     if (I && I->isPHI())
323       return I;
324     return nullptr;
325   }
326 
327   /// ValueIsPHI - Check if the instruction that defines the specified register
328   /// is a PHI instruction.
ValueIsPHI(unsigned Val,MachineSSAUpdater * Updater)329   static MachineInstr *ValueIsPHI(unsigned Val, MachineSSAUpdater *Updater) {
330     return InstrIsPHI(Updater->MRI->getVRegDef(Val));
331   }
332 
333   /// ValueIsNewPHI - Like ValueIsPHI but also check if the PHI has no source
334   /// operands, i.e., it was just added.
ValueIsNewPHI(unsigned Val,MachineSSAUpdater * Updater)335   static MachineInstr *ValueIsNewPHI(unsigned Val, MachineSSAUpdater *Updater) {
336     MachineInstr *PHI = ValueIsPHI(Val, Updater);
337     if (PHI && PHI->getNumOperands() <= 1)
338       return PHI;
339     return nullptr;
340   }
341 
342   /// GetPHIValue - For the specified PHI instruction, return the register
343   /// that it defines.
GetPHIValue(MachineInstr * PHI)344   static unsigned GetPHIValue(MachineInstr *PHI) {
345     return PHI->getOperand(0).getReg();
346   }
347 };
348 
349 } // end namespace llvm
350 
351 /// GetValueAtEndOfBlockInternal - Check to see if AvailableVals has an entry
352 /// for the specified BB and if so, return it.  If not, construct SSA form by
353 /// first calculating the required placement of PHIs and then inserting new
354 /// PHIs where needed.
GetValueAtEndOfBlockInternal(MachineBasicBlock * BB)355 unsigned MachineSSAUpdater::GetValueAtEndOfBlockInternal(MachineBasicBlock *BB){
356   AvailableValsTy &AvailableVals = getAvailableVals(AV);
357   if (unsigned V = AvailableVals[BB])
358     return V;
359 
360   SSAUpdaterImpl<MachineSSAUpdater> Impl(this, &AvailableVals, InsertedPHIs);
361   return Impl.GetValue(BB);
362 }
363