1 //===- PhiElimination.cpp - Eliminate PHI nodes by inserting copies -------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass eliminates machine instruction PHI nodes by inserting copy
11 // instructions.  This destroys SSA information, but is the desired input for
12 // some register allocators.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #include "PHIEliminationUtils.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/SmallPtrSet.h"
19 #include "llvm/ADT/Statistic.h"
20 #include "llvm/Analysis/LoopInfo.h"
21 #include "llvm/CodeGen/LiveInterval.h"
22 #include "llvm/CodeGen/LiveIntervals.h"
23 #include "llvm/CodeGen/LiveVariables.h"
24 #include "llvm/CodeGen/MachineBasicBlock.h"
25 #include "llvm/CodeGen/MachineDominators.h"
26 #include "llvm/CodeGen/MachineFunction.h"
27 #include "llvm/CodeGen/MachineFunctionPass.h"
28 #include "llvm/CodeGen/MachineInstr.h"
29 #include "llvm/CodeGen/MachineInstrBuilder.h"
30 #include "llvm/CodeGen/MachineLoopInfo.h"
31 #include "llvm/CodeGen/MachineOperand.h"
32 #include "llvm/CodeGen/MachineRegisterInfo.h"
33 #include "llvm/CodeGen/SlotIndexes.h"
34 #include "llvm/CodeGen/TargetInstrInfo.h"
35 #include "llvm/CodeGen/TargetOpcodes.h"
36 #include "llvm/CodeGen/TargetRegisterInfo.h"
37 #include "llvm/CodeGen/TargetSubtargetInfo.h"
38 #include "llvm/Pass.h"
39 #include "llvm/Support/CommandLine.h"
40 #include "llvm/Support/Debug.h"
41 #include "llvm/Support/raw_ostream.h"
42 #include <cassert>
43 #include <iterator>
44 #include <utility>
45 
46 using namespace llvm;
47 
48 #define DEBUG_TYPE "phi-node-elimination"
49 
50 static cl::opt<bool>
51 DisableEdgeSplitting("disable-phi-elim-edge-splitting", cl::init(false),
52                      cl::Hidden, cl::desc("Disable critical edge splitting "
53                                           "during PHI elimination"));
54 
55 static cl::opt<bool>
56 SplitAllCriticalEdges("phi-elim-split-all-critical-edges", cl::init(false),
57                       cl::Hidden, cl::desc("Split all critical edges during "
58                                            "PHI elimination"));
59 
60 static cl::opt<bool> NoPhiElimLiveOutEarlyExit(
61     "no-phi-elim-live-out-early-exit", cl::init(false), cl::Hidden,
62     cl::desc("Do not use an early exit if isLiveOutPastPHIs returns true."));
63 
64 namespace {
65 
66   class PHIElimination : public MachineFunctionPass {
67     MachineRegisterInfo *MRI; // Machine register information
68     LiveVariables *LV;
69     LiveIntervals *LIS;
70 
71   public:
72     static char ID; // Pass identification, replacement for typeid
73 
PHIElimination()74     PHIElimination() : MachineFunctionPass(ID) {
75       initializePHIEliminationPass(*PassRegistry::getPassRegistry());
76     }
77 
78     bool runOnMachineFunction(MachineFunction &MF) override;
79     void getAnalysisUsage(AnalysisUsage &AU) const override;
80 
81   private:
82     /// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions
83     /// in predecessor basic blocks.
84     bool EliminatePHINodes(MachineFunction &MF, MachineBasicBlock &MBB);
85 
86     void LowerPHINode(MachineBasicBlock &MBB,
87                       MachineBasicBlock::iterator LastPHIIt);
88 
89     /// analyzePHINodes - Gather information about the PHI nodes in
90     /// here. In particular, we want to map the number of uses of a virtual
91     /// register which is used in a PHI node. We map that to the BB the
92     /// vreg is coming from. This is used later to determine when the vreg
93     /// is killed in the BB.
94     void analyzePHINodes(const MachineFunction& MF);
95 
96     /// Split critical edges where necessary for good coalescer performance.
97     bool SplitPHIEdges(MachineFunction &MF, MachineBasicBlock &MBB,
98                        MachineLoopInfo *MLI);
99 
100     // These functions are temporary abstractions around LiveVariables and
101     // LiveIntervals, so they can go away when LiveVariables does.
102     bool isLiveIn(unsigned Reg, const MachineBasicBlock *MBB);
103     bool isLiveOutPastPHIs(unsigned Reg, const MachineBasicBlock *MBB);
104 
105     using BBVRegPair = std::pair<unsigned, unsigned>;
106     using VRegPHIUse = DenseMap<BBVRegPair, unsigned>;
107 
108     VRegPHIUse VRegPHIUseCount;
109 
110     // Defs of PHI sources which are implicit_def.
111     SmallPtrSet<MachineInstr*, 4> ImpDefs;
112 
113     // Map reusable lowered PHI node -> incoming join register.
114     using LoweredPHIMap =
115         DenseMap<MachineInstr*, unsigned, MachineInstrExpressionTrait>;
116     LoweredPHIMap LoweredPHIs;
117   };
118 
119 } // end anonymous namespace
120 
121 STATISTIC(NumLowered, "Number of phis lowered");
122 STATISTIC(NumCriticalEdgesSplit, "Number of critical edges split");
123 STATISTIC(NumReused, "Number of reused lowered phis");
124 
125 char PHIElimination::ID = 0;
126 
127 char& llvm::PHIEliminationID = PHIElimination::ID;
128 
129 INITIALIZE_PASS_BEGIN(PHIElimination, DEBUG_TYPE,
130                       "Eliminate PHI nodes for register allocation",
131                       false, false)
INITIALIZE_PASS_DEPENDENCY(LiveVariables)132 INITIALIZE_PASS_DEPENDENCY(LiveVariables)
133 INITIALIZE_PASS_END(PHIElimination, DEBUG_TYPE,
134                     "Eliminate PHI nodes for register allocation", false, false)
135 
136 void PHIElimination::getAnalysisUsage(AnalysisUsage &AU) const {
137   AU.addUsedIfAvailable<LiveVariables>();
138   AU.addPreserved<LiveVariables>();
139   AU.addPreserved<SlotIndexes>();
140   AU.addPreserved<LiveIntervals>();
141   AU.addPreserved<MachineDominatorTree>();
142   AU.addPreserved<MachineLoopInfo>();
143   MachineFunctionPass::getAnalysisUsage(AU);
144 }
145 
runOnMachineFunction(MachineFunction & MF)146 bool PHIElimination::runOnMachineFunction(MachineFunction &MF) {
147   MRI = &MF.getRegInfo();
148   LV = getAnalysisIfAvailable<LiveVariables>();
149   LIS = getAnalysisIfAvailable<LiveIntervals>();
150 
151   bool Changed = false;
152 
153   // This pass takes the function out of SSA form.
154   MRI->leaveSSA();
155 
156   // Split critical edges to help the coalescer. This does not yet support
157   // updating LiveIntervals, so we disable it.
158   if (!DisableEdgeSplitting && (LV || LIS)) {
159     MachineLoopInfo *MLI = getAnalysisIfAvailable<MachineLoopInfo>();
160     for (auto &MBB : MF)
161       Changed |= SplitPHIEdges(MF, MBB, MLI);
162   }
163 
164   // Populate VRegPHIUseCount
165   analyzePHINodes(MF);
166 
167   // Eliminate PHI instructions by inserting copies into predecessor blocks.
168   for (auto &MBB : MF)
169     Changed |= EliminatePHINodes(MF, MBB);
170 
171   // Remove dead IMPLICIT_DEF instructions.
172   for (MachineInstr *DefMI : ImpDefs) {
173     unsigned DefReg = DefMI->getOperand(0).getReg();
174     if (MRI->use_nodbg_empty(DefReg)) {
175       if (LIS)
176         LIS->RemoveMachineInstrFromMaps(*DefMI);
177       DefMI->eraseFromParent();
178     }
179   }
180 
181   // Clean up the lowered PHI instructions.
182   for (auto &I : LoweredPHIs) {
183     if (LIS)
184       LIS->RemoveMachineInstrFromMaps(*I.first);
185     MF.DeleteMachineInstr(I.first);
186   }
187 
188   LoweredPHIs.clear();
189   ImpDefs.clear();
190   VRegPHIUseCount.clear();
191 
192   MF.getProperties().set(MachineFunctionProperties::Property::NoPHIs);
193 
194   return Changed;
195 }
196 
197 /// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions in
198 /// predecessor basic blocks.
EliminatePHINodes(MachineFunction & MF,MachineBasicBlock & MBB)199 bool PHIElimination::EliminatePHINodes(MachineFunction &MF,
200                                              MachineBasicBlock &MBB) {
201   if (MBB.empty() || !MBB.front().isPHI())
202     return false;   // Quick exit for basic blocks without PHIs.
203 
204   // Get an iterator to the first instruction after the last PHI node (this may
205   // also be the end of the basic block).
206   MachineBasicBlock::iterator LastPHIIt =
207     std::prev(MBB.SkipPHIsAndLabels(MBB.begin()));
208 
209   while (MBB.front().isPHI())
210     LowerPHINode(MBB, LastPHIIt);
211 
212   return true;
213 }
214 
215 /// isImplicitlyDefined - Return true if all defs of VirtReg are implicit-defs.
216 /// This includes registers with no defs.
isImplicitlyDefined(unsigned VirtReg,const MachineRegisterInfo * MRI)217 static bool isImplicitlyDefined(unsigned VirtReg,
218                                 const MachineRegisterInfo *MRI) {
219   for (MachineInstr &DI : MRI->def_instructions(VirtReg))
220     if (!DI.isImplicitDef())
221       return false;
222   return true;
223 }
224 
225 /// isSourceDefinedByImplicitDef - Return true if all sources of the phi node
226 /// are implicit_def's.
isSourceDefinedByImplicitDef(const MachineInstr * MPhi,const MachineRegisterInfo * MRI)227 static bool isSourceDefinedByImplicitDef(const MachineInstr *MPhi,
228                                          const MachineRegisterInfo *MRI) {
229   for (unsigned i = 1; i != MPhi->getNumOperands(); i += 2)
230     if (!isImplicitlyDefined(MPhi->getOperand(i).getReg(), MRI))
231       return false;
232   return true;
233 }
234 
235 /// LowerPHINode - Lower the PHI node at the top of the specified block.
LowerPHINode(MachineBasicBlock & MBB,MachineBasicBlock::iterator LastPHIIt)236 void PHIElimination::LowerPHINode(MachineBasicBlock &MBB,
237                                   MachineBasicBlock::iterator LastPHIIt) {
238   ++NumLowered;
239 
240   MachineBasicBlock::iterator AfterPHIsIt = std::next(LastPHIIt);
241 
242   // Unlink the PHI node from the basic block, but don't delete the PHI yet.
243   MachineInstr *MPhi = MBB.remove(&*MBB.begin());
244 
245   unsigned NumSrcs = (MPhi->getNumOperands() - 1) / 2;
246   unsigned DestReg = MPhi->getOperand(0).getReg();
247   assert(MPhi->getOperand(0).getSubReg() == 0 && "Can't handle sub-reg PHIs");
248   bool isDead = MPhi->getOperand(0).isDead();
249 
250   // Create a new register for the incoming PHI arguments.
251   MachineFunction &MF = *MBB.getParent();
252   unsigned IncomingReg = 0;
253   bool reusedIncoming = false;  // Is IncomingReg reused from an earlier PHI?
254 
255   // Insert a register to register copy at the top of the current block (but
256   // after any remaining phi nodes) which copies the new incoming register
257   // into the phi node destination.
258   const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo();
259   if (isSourceDefinedByImplicitDef(MPhi, MRI))
260     // If all sources of a PHI node are implicit_def, just emit an
261     // implicit_def instead of a copy.
262     BuildMI(MBB, AfterPHIsIt, MPhi->getDebugLoc(),
263             TII->get(TargetOpcode::IMPLICIT_DEF), DestReg);
264   else {
265     // Can we reuse an earlier PHI node? This only happens for critical edges,
266     // typically those created by tail duplication.
267     unsigned &entry = LoweredPHIs[MPhi];
268     if (entry) {
269       // An identical PHI node was already lowered. Reuse the incoming register.
270       IncomingReg = entry;
271       reusedIncoming = true;
272       ++NumReused;
273       LLVM_DEBUG(dbgs() << "Reusing " << printReg(IncomingReg) << " for "
274                         << *MPhi);
275     } else {
276       const TargetRegisterClass *RC = MF.getRegInfo().getRegClass(DestReg);
277       entry = IncomingReg = MF.getRegInfo().createVirtualRegister(RC);
278     }
279     BuildMI(MBB, AfterPHIsIt, MPhi->getDebugLoc(),
280             TII->get(TargetOpcode::COPY), DestReg)
281       .addReg(IncomingReg);
282   }
283 
284   // Update live variable information if there is any.
285   if (LV) {
286     MachineInstr &PHICopy = *std::prev(AfterPHIsIt);
287 
288     if (IncomingReg) {
289       LiveVariables::VarInfo &VI = LV->getVarInfo(IncomingReg);
290 
291       // Increment use count of the newly created virtual register.
292       LV->setPHIJoin(IncomingReg);
293 
294       // When we are reusing the incoming register, it may already have been
295       // killed in this block. The old kill will also have been inserted at
296       // AfterPHIsIt, so it appears before the current PHICopy.
297       if (reusedIncoming)
298         if (MachineInstr *OldKill = VI.findKill(&MBB)) {
299           LLVM_DEBUG(dbgs() << "Remove old kill from " << *OldKill);
300           LV->removeVirtualRegisterKilled(IncomingReg, *OldKill);
301           LLVM_DEBUG(MBB.dump());
302         }
303 
304       // Add information to LiveVariables to know that the incoming value is
305       // killed.  Note that because the value is defined in several places (once
306       // each for each incoming block), the "def" block and instruction fields
307       // for the VarInfo is not filled in.
308       LV->addVirtualRegisterKilled(IncomingReg, PHICopy);
309     }
310 
311     // Since we are going to be deleting the PHI node, if it is the last use of
312     // any registers, or if the value itself is dead, we need to move this
313     // information over to the new copy we just inserted.
314     LV->removeVirtualRegistersKilled(*MPhi);
315 
316     // If the result is dead, update LV.
317     if (isDead) {
318       LV->addVirtualRegisterDead(DestReg, PHICopy);
319       LV->removeVirtualRegisterDead(DestReg, *MPhi);
320     }
321   }
322 
323   // Update LiveIntervals for the new copy or implicit def.
324   if (LIS) {
325     SlotIndex DestCopyIndex =
326         LIS->InsertMachineInstrInMaps(*std::prev(AfterPHIsIt));
327 
328     SlotIndex MBBStartIndex = LIS->getMBBStartIdx(&MBB);
329     if (IncomingReg) {
330       // Add the region from the beginning of MBB to the copy instruction to
331       // IncomingReg's live interval.
332       LiveInterval &IncomingLI = LIS->createEmptyInterval(IncomingReg);
333       VNInfo *IncomingVNI = IncomingLI.getVNInfoAt(MBBStartIndex);
334       if (!IncomingVNI)
335         IncomingVNI = IncomingLI.getNextValue(MBBStartIndex,
336                                               LIS->getVNInfoAllocator());
337       IncomingLI.addSegment(LiveInterval::Segment(MBBStartIndex,
338                                                   DestCopyIndex.getRegSlot(),
339                                                   IncomingVNI));
340     }
341 
342     LiveInterval &DestLI = LIS->getInterval(DestReg);
343     assert(DestLI.begin() != DestLI.end() &&
344            "PHIs should have nonempty LiveIntervals.");
345     if (DestLI.endIndex().isDead()) {
346       // A dead PHI's live range begins and ends at the start of the MBB, but
347       // the lowered copy, which will still be dead, needs to begin and end at
348       // the copy instruction.
349       VNInfo *OrigDestVNI = DestLI.getVNInfoAt(MBBStartIndex);
350       assert(OrigDestVNI && "PHI destination should be live at block entry.");
351       DestLI.removeSegment(MBBStartIndex, MBBStartIndex.getDeadSlot());
352       DestLI.createDeadDef(DestCopyIndex.getRegSlot(),
353                            LIS->getVNInfoAllocator());
354       DestLI.removeValNo(OrigDestVNI);
355     } else {
356       // Otherwise, remove the region from the beginning of MBB to the copy
357       // instruction from DestReg's live interval.
358       DestLI.removeSegment(MBBStartIndex, DestCopyIndex.getRegSlot());
359       VNInfo *DestVNI = DestLI.getVNInfoAt(DestCopyIndex.getRegSlot());
360       assert(DestVNI && "PHI destination should be live at its definition.");
361       DestVNI->def = DestCopyIndex.getRegSlot();
362     }
363   }
364 
365   // Adjust the VRegPHIUseCount map to account for the removal of this PHI node.
366   for (unsigned i = 1; i != MPhi->getNumOperands(); i += 2)
367     --VRegPHIUseCount[BBVRegPair(MPhi->getOperand(i+1).getMBB()->getNumber(),
368                                  MPhi->getOperand(i).getReg())];
369 
370   // Now loop over all of the incoming arguments, changing them to copy into the
371   // IncomingReg register in the corresponding predecessor basic block.
372   SmallPtrSet<MachineBasicBlock*, 8> MBBsInsertedInto;
373   for (int i = NumSrcs - 1; i >= 0; --i) {
374     unsigned SrcReg = MPhi->getOperand(i*2+1).getReg();
375     unsigned SrcSubReg = MPhi->getOperand(i*2+1).getSubReg();
376     bool SrcUndef = MPhi->getOperand(i*2+1).isUndef() ||
377       isImplicitlyDefined(SrcReg, MRI);
378     assert(TargetRegisterInfo::isVirtualRegister(SrcReg) &&
379            "Machine PHI Operands must all be virtual registers!");
380 
381     // Get the MachineBasicBlock equivalent of the BasicBlock that is the source
382     // path the PHI.
383     MachineBasicBlock &opBlock = *MPhi->getOperand(i*2+2).getMBB();
384 
385     // Check to make sure we haven't already emitted the copy for this block.
386     // This can happen because PHI nodes may have multiple entries for the same
387     // basic block.
388     if (!MBBsInsertedInto.insert(&opBlock).second)
389       continue;  // If the copy has already been emitted, we're done.
390 
391     // Find a safe location to insert the copy, this may be the first terminator
392     // in the block (or end()).
393     MachineBasicBlock::iterator InsertPos =
394       findPHICopyInsertPoint(&opBlock, &MBB, SrcReg);
395 
396     // Insert the copy.
397     MachineInstr *NewSrcInstr = nullptr;
398     if (!reusedIncoming && IncomingReg) {
399       if (SrcUndef) {
400         // The source register is undefined, so there is no need for a real
401         // COPY, but we still need to ensure joint dominance by defs.
402         // Insert an IMPLICIT_DEF instruction.
403         NewSrcInstr = BuildMI(opBlock, InsertPos, MPhi->getDebugLoc(),
404                               TII->get(TargetOpcode::IMPLICIT_DEF),
405                               IncomingReg);
406 
407         // Clean up the old implicit-def, if there even was one.
408         if (MachineInstr *DefMI = MRI->getVRegDef(SrcReg))
409           if (DefMI->isImplicitDef())
410             ImpDefs.insert(DefMI);
411       } else {
412         NewSrcInstr = BuildMI(opBlock, InsertPos, MPhi->getDebugLoc(),
413                             TII->get(TargetOpcode::COPY), IncomingReg)
414                         .addReg(SrcReg, 0, SrcSubReg);
415       }
416     }
417 
418     // We only need to update the LiveVariables kill of SrcReg if this was the
419     // last PHI use of SrcReg to be lowered on this CFG edge and it is not live
420     // out of the predecessor. We can also ignore undef sources.
421     if (LV && !SrcUndef &&
422         !VRegPHIUseCount[BBVRegPair(opBlock.getNumber(), SrcReg)] &&
423         !LV->isLiveOut(SrcReg, opBlock)) {
424       // We want to be able to insert a kill of the register if this PHI (aka,
425       // the copy we just inserted) is the last use of the source value. Live
426       // variable analysis conservatively handles this by saying that the value
427       // is live until the end of the block the PHI entry lives in. If the value
428       // really is dead at the PHI copy, there will be no successor blocks which
429       // have the value live-in.
430 
431       // Okay, if we now know that the value is not live out of the block, we
432       // can add a kill marker in this block saying that it kills the incoming
433       // value!
434 
435       // In our final twist, we have to decide which instruction kills the
436       // register.  In most cases this is the copy, however, terminator
437       // instructions at the end of the block may also use the value. In this
438       // case, we should mark the last such terminator as being the killing
439       // block, not the copy.
440       MachineBasicBlock::iterator KillInst = opBlock.end();
441       MachineBasicBlock::iterator FirstTerm = opBlock.getFirstTerminator();
442       for (MachineBasicBlock::iterator Term = FirstTerm;
443           Term != opBlock.end(); ++Term) {
444         if (Term->readsRegister(SrcReg))
445           KillInst = Term;
446       }
447 
448       if (KillInst == opBlock.end()) {
449         // No terminator uses the register.
450 
451         if (reusedIncoming || !IncomingReg) {
452           // We may have to rewind a bit if we didn't insert a copy this time.
453           KillInst = FirstTerm;
454           while (KillInst != opBlock.begin()) {
455             --KillInst;
456             if (KillInst->isDebugInstr())
457               continue;
458             if (KillInst->readsRegister(SrcReg))
459               break;
460           }
461         } else {
462           // We just inserted this copy.
463           KillInst = std::prev(InsertPos);
464         }
465       }
466       assert(KillInst->readsRegister(SrcReg) && "Cannot find kill instruction");
467 
468       // Finally, mark it killed.
469       LV->addVirtualRegisterKilled(SrcReg, *KillInst);
470 
471       // This vreg no longer lives all of the way through opBlock.
472       unsigned opBlockNum = opBlock.getNumber();
473       LV->getVarInfo(SrcReg).AliveBlocks.reset(opBlockNum);
474     }
475 
476     if (LIS) {
477       if (NewSrcInstr) {
478         LIS->InsertMachineInstrInMaps(*NewSrcInstr);
479         LIS->addSegmentToEndOfBlock(IncomingReg, *NewSrcInstr);
480       }
481 
482       if (!SrcUndef &&
483           !VRegPHIUseCount[BBVRegPair(opBlock.getNumber(), SrcReg)]) {
484         LiveInterval &SrcLI = LIS->getInterval(SrcReg);
485 
486         bool isLiveOut = false;
487         for (MachineBasicBlock::succ_iterator SI = opBlock.succ_begin(),
488              SE = opBlock.succ_end(); SI != SE; ++SI) {
489           SlotIndex startIdx = LIS->getMBBStartIdx(*SI);
490           VNInfo *VNI = SrcLI.getVNInfoAt(startIdx);
491 
492           // Definitions by other PHIs are not truly live-in for our purposes.
493           if (VNI && VNI->def != startIdx) {
494             isLiveOut = true;
495             break;
496           }
497         }
498 
499         if (!isLiveOut) {
500           MachineBasicBlock::iterator KillInst = opBlock.end();
501           MachineBasicBlock::iterator FirstTerm = opBlock.getFirstTerminator();
502           for (MachineBasicBlock::iterator Term = FirstTerm;
503               Term != opBlock.end(); ++Term) {
504             if (Term->readsRegister(SrcReg))
505               KillInst = Term;
506           }
507 
508           if (KillInst == opBlock.end()) {
509             // No terminator uses the register.
510 
511             if (reusedIncoming || !IncomingReg) {
512               // We may have to rewind a bit if we didn't just insert a copy.
513               KillInst = FirstTerm;
514               while (KillInst != opBlock.begin()) {
515                 --KillInst;
516                 if (KillInst->isDebugInstr())
517                   continue;
518                 if (KillInst->readsRegister(SrcReg))
519                   break;
520               }
521             } else {
522               // We just inserted this copy.
523               KillInst = std::prev(InsertPos);
524             }
525           }
526           assert(KillInst->readsRegister(SrcReg) &&
527                  "Cannot find kill instruction");
528 
529           SlotIndex LastUseIndex = LIS->getInstructionIndex(*KillInst);
530           SrcLI.removeSegment(LastUseIndex.getRegSlot(),
531                               LIS->getMBBEndIdx(&opBlock));
532         }
533       }
534     }
535   }
536 
537   // Really delete the PHI instruction now, if it is not in the LoweredPHIs map.
538   if (reusedIncoming || !IncomingReg) {
539     if (LIS)
540       LIS->RemoveMachineInstrFromMaps(*MPhi);
541     MF.DeleteMachineInstr(MPhi);
542   }
543 }
544 
545 /// analyzePHINodes - Gather information about the PHI nodes in here. In
546 /// particular, we want to map the number of uses of a virtual register which is
547 /// used in a PHI node. We map that to the BB the vreg is coming from. This is
548 /// used later to determine when the vreg is killed in the BB.
analyzePHINodes(const MachineFunction & MF)549 void PHIElimination::analyzePHINodes(const MachineFunction& MF) {
550   for (const auto &MBB : MF)
551     for (const auto &BBI : MBB) {
552       if (!BBI.isPHI())
553         break;
554       for (unsigned i = 1, e = BBI.getNumOperands(); i != e; i += 2)
555         ++VRegPHIUseCount[BBVRegPair(BBI.getOperand(i+1).getMBB()->getNumber(),
556                                      BBI.getOperand(i).getReg())];
557     }
558 }
559 
SplitPHIEdges(MachineFunction & MF,MachineBasicBlock & MBB,MachineLoopInfo * MLI)560 bool PHIElimination::SplitPHIEdges(MachineFunction &MF,
561                                    MachineBasicBlock &MBB,
562                                    MachineLoopInfo *MLI) {
563   if (MBB.empty() || !MBB.front().isPHI() || MBB.isEHPad())
564     return false;   // Quick exit for basic blocks without PHIs.
565 
566   const MachineLoop *CurLoop = MLI ? MLI->getLoopFor(&MBB) : nullptr;
567   bool IsLoopHeader = CurLoop && &MBB == CurLoop->getHeader();
568 
569   bool Changed = false;
570   for (MachineBasicBlock::iterator BBI = MBB.begin(), BBE = MBB.end();
571        BBI != BBE && BBI->isPHI(); ++BBI) {
572     for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2) {
573       unsigned Reg = BBI->getOperand(i).getReg();
574       MachineBasicBlock *PreMBB = BBI->getOperand(i+1).getMBB();
575       // Is there a critical edge from PreMBB to MBB?
576       if (PreMBB->succ_size() == 1)
577         continue;
578 
579       // Avoid splitting backedges of loops. It would introduce small
580       // out-of-line blocks into the loop which is very bad for code placement.
581       if (PreMBB == &MBB && !SplitAllCriticalEdges)
582         continue;
583       const MachineLoop *PreLoop = MLI ? MLI->getLoopFor(PreMBB) : nullptr;
584       if (IsLoopHeader && PreLoop == CurLoop && !SplitAllCriticalEdges)
585         continue;
586 
587       // LV doesn't consider a phi use live-out, so isLiveOut only returns true
588       // when the source register is live-out for some other reason than a phi
589       // use. That means the copy we will insert in PreMBB won't be a kill, and
590       // there is a risk it may not be coalesced away.
591       //
592       // If the copy would be a kill, there is no need to split the edge.
593       bool ShouldSplit = isLiveOutPastPHIs(Reg, PreMBB);
594       if (!ShouldSplit && !NoPhiElimLiveOutEarlyExit)
595         continue;
596       if (ShouldSplit) {
597         LLVM_DEBUG(dbgs() << printReg(Reg) << " live-out before critical edge "
598                           << printMBBReference(*PreMBB) << " -> "
599                           << printMBBReference(MBB) << ": " << *BBI);
600       }
601 
602       // If Reg is not live-in to MBB, it means it must be live-in to some
603       // other PreMBB successor, and we can avoid the interference by splitting
604       // the edge.
605       //
606       // If Reg *is* live-in to MBB, the interference is inevitable and a copy
607       // is likely to be left after coalescing. If we are looking at a loop
608       // exiting edge, split it so we won't insert code in the loop, otherwise
609       // don't bother.
610       ShouldSplit = ShouldSplit && !isLiveIn(Reg, &MBB);
611 
612       // Check for a loop exiting edge.
613       if (!ShouldSplit && CurLoop != PreLoop) {
614         LLVM_DEBUG({
615           dbgs() << "Split wouldn't help, maybe avoid loop copies?\n";
616           if (PreLoop)
617             dbgs() << "PreLoop: " << *PreLoop;
618           if (CurLoop)
619             dbgs() << "CurLoop: " << *CurLoop;
620         });
621         // This edge could be entering a loop, exiting a loop, or it could be
622         // both: Jumping directly form one loop to the header of a sibling
623         // loop.
624         // Split unless this edge is entering CurLoop from an outer loop.
625         ShouldSplit = PreLoop && !PreLoop->contains(CurLoop);
626       }
627       if (!ShouldSplit && !SplitAllCriticalEdges)
628         continue;
629       if (!PreMBB->SplitCriticalEdge(&MBB, *this)) {
630         LLVM_DEBUG(dbgs() << "Failed to split critical edge.\n");
631         continue;
632       }
633       Changed = true;
634       ++NumCriticalEdgesSplit;
635     }
636   }
637   return Changed;
638 }
639 
isLiveIn(unsigned Reg,const MachineBasicBlock * MBB)640 bool PHIElimination::isLiveIn(unsigned Reg, const MachineBasicBlock *MBB) {
641   assert((LV || LIS) &&
642          "isLiveIn() requires either LiveVariables or LiveIntervals");
643   if (LIS)
644     return LIS->isLiveInToMBB(LIS->getInterval(Reg), MBB);
645   else
646     return LV->isLiveIn(Reg, *MBB);
647 }
648 
isLiveOutPastPHIs(unsigned Reg,const MachineBasicBlock * MBB)649 bool PHIElimination::isLiveOutPastPHIs(unsigned Reg,
650                                        const MachineBasicBlock *MBB) {
651   assert((LV || LIS) &&
652          "isLiveOutPastPHIs() requires either LiveVariables or LiveIntervals");
653   // LiveVariables considers uses in PHIs to be in the predecessor basic block,
654   // so that a register used only in a PHI is not live out of the block. In
655   // contrast, LiveIntervals considers uses in PHIs to be on the edge rather than
656   // in the predecessor basic block, so that a register used only in a PHI is live
657   // out of the block.
658   if (LIS) {
659     const LiveInterval &LI = LIS->getInterval(Reg);
660     for (const MachineBasicBlock *SI : MBB->successors())
661       if (LI.liveAt(LIS->getMBBStartIdx(SI)))
662         return true;
663     return false;
664   } else {
665     return LV->isLiveOut(Reg, *MBB);
666   }
667 }
668