1 //===- PeepholeOptimizer.cpp - Peephole Optimizations ---------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Perform peephole optimizations on the machine code:
11 //
12 // - Optimize Extensions
13 //
14 // Optimization of sign / zero extension instructions. It may be extended to
15 // handle other instructions with similar properties.
16 //
17 // On some targets, some instructions, e.g. X86 sign / zero extension, may
18 // leave the source value in the lower part of the result. This optimization
19 // will replace some uses of the pre-extension value with uses of the
20 // sub-register of the results.
21 //
22 // - Optimize Comparisons
23 //
24 // Optimization of comparison instructions. For instance, in this code:
25 //
26 // sub r1, 1
27 // cmp r1, 0
28 // bz L1
29 //
30 // If the "sub" instruction all ready sets (or could be modified to set) the
31 // same flag that the "cmp" instruction sets and that "bz" uses, then we can
32 // eliminate the "cmp" instruction.
33 //
34 // Another instance, in this code:
35 //
36 // sub r1, r3 | sub r1, imm
37 // cmp r3, r1 or cmp r1, r3 | cmp r1, imm
38 // bge L1
39 //
40 // If the branch instruction can use flag from "sub", then we can replace
41 // "sub" with "subs" and eliminate the "cmp" instruction.
42 //
43 // - Optimize Loads:
44 //
45 // Loads that can be folded into a later instruction. A load is foldable
46 // if it loads to virtual registers and the virtual register defined has
47 // a single use.
48 //
49 // - Optimize Copies and Bitcast (more generally, target specific copies):
50 //
51 // Rewrite copies and bitcasts to avoid cross register bank copies
52 // when possible.
53 // E.g., Consider the following example, where capital and lower
54 // letters denote different register file:
55 // b = copy A <-- cross-bank copy
56 // C = copy b <-- cross-bank copy
57 // =>
58 // b = copy A <-- cross-bank copy
59 // C = copy A <-- same-bank copy
60 //
61 // E.g., for bitcast:
62 // b = bitcast A <-- cross-bank copy
63 // C = bitcast b <-- cross-bank copy
64 // =>
65 // b = bitcast A <-- cross-bank copy
66 // C = copy A <-- same-bank copy
67 //===----------------------------------------------------------------------===//
68
69 #include "llvm/ADT/DenseMap.h"
70 #include "llvm/ADT/Optional.h"
71 #include "llvm/ADT/SmallPtrSet.h"
72 #include "llvm/ADT/SmallSet.h"
73 #include "llvm/ADT/SmallVector.h"
74 #include "llvm/ADT/Statistic.h"
75 #include "llvm/CodeGen/MachineBasicBlock.h"
76 #include "llvm/CodeGen/MachineDominators.h"
77 #include "llvm/CodeGen/MachineFunction.h"
78 #include "llvm/CodeGen/MachineFunctionPass.h"
79 #include "llvm/CodeGen/MachineInstr.h"
80 #include "llvm/CodeGen/MachineInstrBuilder.h"
81 #include "llvm/CodeGen/MachineLoopInfo.h"
82 #include "llvm/CodeGen/MachineOperand.h"
83 #include "llvm/CodeGen/MachineRegisterInfo.h"
84 #include "llvm/CodeGen/TargetInstrInfo.h"
85 #include "llvm/CodeGen/TargetOpcodes.h"
86 #include "llvm/CodeGen/TargetRegisterInfo.h"
87 #include "llvm/CodeGen/TargetSubtargetInfo.h"
88 #include "llvm/MC/LaneBitmask.h"
89 #include "llvm/MC/MCInstrDesc.h"
90 #include "llvm/Pass.h"
91 #include "llvm/Support/CommandLine.h"
92 #include "llvm/Support/Debug.h"
93 #include "llvm/Support/ErrorHandling.h"
94 #include "llvm/Support/raw_ostream.h"
95 #include <cassert>
96 #include <cstdint>
97 #include <memory>
98 #include <utility>
99
100 using namespace llvm;
101 using RegSubRegPair = TargetInstrInfo::RegSubRegPair;
102 using RegSubRegPairAndIdx = TargetInstrInfo::RegSubRegPairAndIdx;
103
104 #define DEBUG_TYPE "peephole-opt"
105
106 // Optimize Extensions
107 static cl::opt<bool>
108 Aggressive("aggressive-ext-opt", cl::Hidden,
109 cl::desc("Aggressive extension optimization"));
110
111 static cl::opt<bool>
112 DisablePeephole("disable-peephole", cl::Hidden, cl::init(false),
113 cl::desc("Disable the peephole optimizer"));
114
115 /// Specifiy whether or not the value tracking looks through
116 /// complex instructions. When this is true, the value tracker
117 /// bails on everything that is not a copy or a bitcast.
118 static cl::opt<bool>
119 DisableAdvCopyOpt("disable-adv-copy-opt", cl::Hidden, cl::init(false),
120 cl::desc("Disable advanced copy optimization"));
121
122 static cl::opt<bool> DisableNAPhysCopyOpt(
123 "disable-non-allocatable-phys-copy-opt", cl::Hidden, cl::init(false),
124 cl::desc("Disable non-allocatable physical register copy optimization"));
125
126 // Limit the number of PHI instructions to process
127 // in PeepholeOptimizer::getNextSource.
128 static cl::opt<unsigned> RewritePHILimit(
129 "rewrite-phi-limit", cl::Hidden, cl::init(10),
130 cl::desc("Limit the length of PHI chains to lookup"));
131
132 // Limit the length of recurrence chain when evaluating the benefit of
133 // commuting operands.
134 static cl::opt<unsigned> MaxRecurrenceChain(
135 "recurrence-chain-limit", cl::Hidden, cl::init(3),
136 cl::desc("Maximum length of recurrence chain when evaluating the benefit "
137 "of commuting operands"));
138
139
140 STATISTIC(NumReuse, "Number of extension results reused");
141 STATISTIC(NumCmps, "Number of compares eliminated");
142 STATISTIC(NumImmFold, "Number of move immediate folded");
143 STATISTIC(NumLoadFold, "Number of loads folded");
144 STATISTIC(NumSelects, "Number of selects optimized");
145 STATISTIC(NumUncoalescableCopies, "Number of uncoalescable copies optimized");
146 STATISTIC(NumRewrittenCopies, "Number of copies rewritten");
147 STATISTIC(NumNAPhysCopies, "Number of non-allocatable physical copies removed");
148
149 namespace {
150
151 class ValueTrackerResult;
152 class RecurrenceInstr;
153
154 class PeepholeOptimizer : public MachineFunctionPass {
155 const TargetInstrInfo *TII;
156 const TargetRegisterInfo *TRI;
157 MachineRegisterInfo *MRI;
158 MachineDominatorTree *DT; // Machine dominator tree
159 MachineLoopInfo *MLI;
160
161 public:
162 static char ID; // Pass identification
163
PeepholeOptimizer()164 PeepholeOptimizer() : MachineFunctionPass(ID) {
165 initializePeepholeOptimizerPass(*PassRegistry::getPassRegistry());
166 }
167
168 bool runOnMachineFunction(MachineFunction &MF) override;
169
getAnalysisUsage(AnalysisUsage & AU) const170 void getAnalysisUsage(AnalysisUsage &AU) const override {
171 AU.setPreservesCFG();
172 MachineFunctionPass::getAnalysisUsage(AU);
173 AU.addRequired<MachineLoopInfo>();
174 AU.addPreserved<MachineLoopInfo>();
175 if (Aggressive) {
176 AU.addRequired<MachineDominatorTree>();
177 AU.addPreserved<MachineDominatorTree>();
178 }
179 }
180
181 /// Track Def -> Use info used for rewriting copies.
182 using RewriteMapTy = SmallDenseMap<RegSubRegPair, ValueTrackerResult>;
183
184 /// Sequence of instructions that formulate recurrence cycle.
185 using RecurrenceCycle = SmallVector<RecurrenceInstr, 4>;
186
187 private:
188 bool optimizeCmpInstr(MachineInstr &MI);
189 bool optimizeExtInstr(MachineInstr &MI, MachineBasicBlock &MBB,
190 SmallPtrSetImpl<MachineInstr*> &LocalMIs);
191 bool optimizeSelect(MachineInstr &MI,
192 SmallPtrSetImpl<MachineInstr *> &LocalMIs);
193 bool optimizeCondBranch(MachineInstr &MI);
194 bool optimizeCoalescableCopy(MachineInstr &MI);
195 bool optimizeUncoalescableCopy(MachineInstr &MI,
196 SmallPtrSetImpl<MachineInstr *> &LocalMIs);
197 bool optimizeRecurrence(MachineInstr &PHI);
198 bool findNextSource(RegSubRegPair RegSubReg, RewriteMapTy &RewriteMap);
199 bool isMoveImmediate(MachineInstr &MI,
200 SmallSet<unsigned, 4> &ImmDefRegs,
201 DenseMap<unsigned, MachineInstr*> &ImmDefMIs);
202 bool foldImmediate(MachineInstr &MI, SmallSet<unsigned, 4> &ImmDefRegs,
203 DenseMap<unsigned, MachineInstr*> &ImmDefMIs);
204
205 /// Finds recurrence cycles, but only ones that formulated around
206 /// a def operand and a use operand that are tied. If there is a use
207 /// operand commutable with the tied use operand, find recurrence cycle
208 /// along that operand as well.
209 bool findTargetRecurrence(unsigned Reg,
210 const SmallSet<unsigned, 2> &TargetReg,
211 RecurrenceCycle &RC);
212
213 /// If copy instruction \p MI is a virtual register copy, track it in
214 /// the set \p CopySrcRegs and \p CopyMIs. If this virtual register was
215 /// previously seen as a copy, replace the uses of this copy with the
216 /// previously seen copy's destination register.
217 bool foldRedundantCopy(MachineInstr &MI,
218 SmallSet<unsigned, 4> &CopySrcRegs,
219 DenseMap<unsigned, MachineInstr *> &CopyMIs);
220
221 /// Is the register \p Reg a non-allocatable physical register?
222 bool isNAPhysCopy(unsigned Reg);
223
224 /// If copy instruction \p MI is a non-allocatable virtual<->physical
225 /// register copy, track it in the \p NAPhysToVirtMIs map. If this
226 /// non-allocatable physical register was previously copied to a virtual
227 /// registered and hasn't been clobbered, the virt->phys copy can be
228 /// deleted.
229 bool foldRedundantNAPhysCopy(MachineInstr &MI,
230 DenseMap<unsigned, MachineInstr *> &NAPhysToVirtMIs);
231
232 bool isLoadFoldable(MachineInstr &MI,
233 SmallSet<unsigned, 16> &FoldAsLoadDefCandidates);
234
235 /// Check whether \p MI is understood by the register coalescer
236 /// but may require some rewriting.
isCoalescableCopy(const MachineInstr & MI)237 bool isCoalescableCopy(const MachineInstr &MI) {
238 // SubregToRegs are not interesting, because they are already register
239 // coalescer friendly.
240 return MI.isCopy() || (!DisableAdvCopyOpt &&
241 (MI.isRegSequence() || MI.isInsertSubreg() ||
242 MI.isExtractSubreg()));
243 }
244
245 /// Check whether \p MI is a copy like instruction that is
246 /// not recognized by the register coalescer.
isUncoalescableCopy(const MachineInstr & MI)247 bool isUncoalescableCopy(const MachineInstr &MI) {
248 return MI.isBitcast() ||
249 (!DisableAdvCopyOpt &&
250 (MI.isRegSequenceLike() || MI.isInsertSubregLike() ||
251 MI.isExtractSubregLike()));
252 }
253
254 MachineInstr &rewriteSource(MachineInstr &CopyLike,
255 RegSubRegPair Def, RewriteMapTy &RewriteMap);
256 };
257
258 /// Helper class to hold instructions that are inside recurrence cycles.
259 /// The recurrence cycle is formulated around 1) a def operand and its
260 /// tied use operand, or 2) a def operand and a use operand that is commutable
261 /// with another use operand which is tied to the def operand. In the latter
262 /// case, index of the tied use operand and the commutable use operand are
263 /// maintained with CommutePair.
264 class RecurrenceInstr {
265 public:
266 using IndexPair = std::pair<unsigned, unsigned>;
267
RecurrenceInstr(MachineInstr * MI)268 RecurrenceInstr(MachineInstr *MI) : MI(MI) {}
RecurrenceInstr(MachineInstr * MI,unsigned Idx1,unsigned Idx2)269 RecurrenceInstr(MachineInstr *MI, unsigned Idx1, unsigned Idx2)
270 : MI(MI), CommutePair(std::make_pair(Idx1, Idx2)) {}
271
getMI() const272 MachineInstr *getMI() const { return MI; }
getCommutePair() const273 Optional<IndexPair> getCommutePair() const { return CommutePair; }
274
275 private:
276 MachineInstr *MI;
277 Optional<IndexPair> CommutePair;
278 };
279
280 /// Helper class to hold a reply for ValueTracker queries.
281 /// Contains the returned sources for a given search and the instructions
282 /// where the sources were tracked from.
283 class ValueTrackerResult {
284 private:
285 /// Track all sources found by one ValueTracker query.
286 SmallVector<RegSubRegPair, 2> RegSrcs;
287
288 /// Instruction using the sources in 'RegSrcs'.
289 const MachineInstr *Inst = nullptr;
290
291 public:
292 ValueTrackerResult() = default;
293
ValueTrackerResult(unsigned Reg,unsigned SubReg)294 ValueTrackerResult(unsigned Reg, unsigned SubReg) {
295 addSource(Reg, SubReg);
296 }
297
isValid() const298 bool isValid() const { return getNumSources() > 0; }
299
setInst(const MachineInstr * I)300 void setInst(const MachineInstr *I) { Inst = I; }
getInst() const301 const MachineInstr *getInst() const { return Inst; }
302
clear()303 void clear() {
304 RegSrcs.clear();
305 Inst = nullptr;
306 }
307
addSource(unsigned SrcReg,unsigned SrcSubReg)308 void addSource(unsigned SrcReg, unsigned SrcSubReg) {
309 RegSrcs.push_back(RegSubRegPair(SrcReg, SrcSubReg));
310 }
311
setSource(int Idx,unsigned SrcReg,unsigned SrcSubReg)312 void setSource(int Idx, unsigned SrcReg, unsigned SrcSubReg) {
313 assert(Idx < getNumSources() && "Reg pair source out of index");
314 RegSrcs[Idx] = RegSubRegPair(SrcReg, SrcSubReg);
315 }
316
getNumSources() const317 int getNumSources() const { return RegSrcs.size(); }
318
getSrc(int Idx) const319 RegSubRegPair getSrc(int Idx) const {
320 return RegSrcs[Idx];
321 }
322
getSrcReg(int Idx) const323 unsigned getSrcReg(int Idx) const {
324 assert(Idx < getNumSources() && "Reg source out of index");
325 return RegSrcs[Idx].Reg;
326 }
327
getSrcSubReg(int Idx) const328 unsigned getSrcSubReg(int Idx) const {
329 assert(Idx < getNumSources() && "SubReg source out of index");
330 return RegSrcs[Idx].SubReg;
331 }
332
operator ==(const ValueTrackerResult & Other)333 bool operator==(const ValueTrackerResult &Other) {
334 if (Other.getInst() != getInst())
335 return false;
336
337 if (Other.getNumSources() != getNumSources())
338 return false;
339
340 for (int i = 0, e = Other.getNumSources(); i != e; ++i)
341 if (Other.getSrcReg(i) != getSrcReg(i) ||
342 Other.getSrcSubReg(i) != getSrcSubReg(i))
343 return false;
344 return true;
345 }
346 };
347
348 /// Helper class to track the possible sources of a value defined by
349 /// a (chain of) copy related instructions.
350 /// Given a definition (instruction and definition index), this class
351 /// follows the use-def chain to find successive suitable sources.
352 /// The given source can be used to rewrite the definition into
353 /// def = COPY src.
354 ///
355 /// For instance, let us consider the following snippet:
356 /// v0 =
357 /// v2 = INSERT_SUBREG v1, v0, sub0
358 /// def = COPY v2.sub0
359 ///
360 /// Using a ValueTracker for def = COPY v2.sub0 will give the following
361 /// suitable sources:
362 /// v2.sub0 and v0.
363 /// Then, def can be rewritten into def = COPY v0.
364 class ValueTracker {
365 private:
366 /// The current point into the use-def chain.
367 const MachineInstr *Def = nullptr;
368
369 /// The index of the definition in Def.
370 unsigned DefIdx = 0;
371
372 /// The sub register index of the definition.
373 unsigned DefSubReg;
374
375 /// The register where the value can be found.
376 unsigned Reg;
377
378 /// MachineRegisterInfo used to perform tracking.
379 const MachineRegisterInfo &MRI;
380
381 /// Optional TargetInstrInfo used to perform some complex tracking.
382 const TargetInstrInfo *TII;
383
384 /// Dispatcher to the right underlying implementation of getNextSource.
385 ValueTrackerResult getNextSourceImpl();
386
387 /// Specialized version of getNextSource for Copy instructions.
388 ValueTrackerResult getNextSourceFromCopy();
389
390 /// Specialized version of getNextSource for Bitcast instructions.
391 ValueTrackerResult getNextSourceFromBitcast();
392
393 /// Specialized version of getNextSource for RegSequence instructions.
394 ValueTrackerResult getNextSourceFromRegSequence();
395
396 /// Specialized version of getNextSource for InsertSubreg instructions.
397 ValueTrackerResult getNextSourceFromInsertSubreg();
398
399 /// Specialized version of getNextSource for ExtractSubreg instructions.
400 ValueTrackerResult getNextSourceFromExtractSubreg();
401
402 /// Specialized version of getNextSource for SubregToReg instructions.
403 ValueTrackerResult getNextSourceFromSubregToReg();
404
405 /// Specialized version of getNextSource for PHI instructions.
406 ValueTrackerResult getNextSourceFromPHI();
407
408 public:
409 /// Create a ValueTracker instance for the value defined by \p Reg.
410 /// \p DefSubReg represents the sub register index the value tracker will
411 /// track. It does not need to match the sub register index used in the
412 /// definition of \p Reg.
413 /// If \p Reg is a physical register, a value tracker constructed with
414 /// this constructor will not find any alternative source.
415 /// Indeed, when \p Reg is a physical register that constructor does not
416 /// know which definition of \p Reg it should track.
417 /// Use the next constructor to track a physical register.
ValueTracker(unsigned Reg,unsigned DefSubReg,const MachineRegisterInfo & MRI,const TargetInstrInfo * TII=nullptr)418 ValueTracker(unsigned Reg, unsigned DefSubReg,
419 const MachineRegisterInfo &MRI,
420 const TargetInstrInfo *TII = nullptr)
421 : DefSubReg(DefSubReg), Reg(Reg), MRI(MRI), TII(TII) {
422 if (!TargetRegisterInfo::isPhysicalRegister(Reg)) {
423 Def = MRI.getVRegDef(Reg);
424 DefIdx = MRI.def_begin(Reg).getOperandNo();
425 }
426 }
427
428 /// Following the use-def chain, get the next available source
429 /// for the tracked value.
430 /// \return A ValueTrackerResult containing a set of registers
431 /// and sub registers with tracked values. A ValueTrackerResult with
432 /// an empty set of registers means no source was found.
433 ValueTrackerResult getNextSource();
434 };
435
436 } // end anonymous namespace
437
438 char PeepholeOptimizer::ID = 0;
439
440 char &llvm::PeepholeOptimizerID = PeepholeOptimizer::ID;
441
442 INITIALIZE_PASS_BEGIN(PeepholeOptimizer, DEBUG_TYPE,
443 "Peephole Optimizations", false, false)
INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)444 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
445 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
446 INITIALIZE_PASS_END(PeepholeOptimizer, DEBUG_TYPE,
447 "Peephole Optimizations", false, false)
448
449 /// If instruction is a copy-like instruction, i.e. it reads a single register
450 /// and writes a single register and it does not modify the source, and if the
451 /// source value is preserved as a sub-register of the result, then replace all
452 /// reachable uses of the source with the subreg of the result.
453 ///
454 /// Do not generate an EXTRACT that is used only in a debug use, as this changes
455 /// the code. Since this code does not currently share EXTRACTs, just ignore all
456 /// debug uses.
457 bool PeepholeOptimizer::
458 optimizeExtInstr(MachineInstr &MI, MachineBasicBlock &MBB,
459 SmallPtrSetImpl<MachineInstr*> &LocalMIs) {
460 unsigned SrcReg, DstReg, SubIdx;
461 if (!TII->isCoalescableExtInstr(MI, SrcReg, DstReg, SubIdx))
462 return false;
463
464 if (TargetRegisterInfo::isPhysicalRegister(DstReg) ||
465 TargetRegisterInfo::isPhysicalRegister(SrcReg))
466 return false;
467
468 if (MRI->hasOneNonDBGUse(SrcReg))
469 // No other uses.
470 return false;
471
472 // Ensure DstReg can get a register class that actually supports
473 // sub-registers. Don't change the class until we commit.
474 const TargetRegisterClass *DstRC = MRI->getRegClass(DstReg);
475 DstRC = TRI->getSubClassWithSubReg(DstRC, SubIdx);
476 if (!DstRC)
477 return false;
478
479 // The ext instr may be operating on a sub-register of SrcReg as well.
480 // PPC::EXTSW is a 32 -> 64-bit sign extension, but it reads a 64-bit
481 // register.
482 // If UseSrcSubIdx is Set, SubIdx also applies to SrcReg, and only uses of
483 // SrcReg:SubIdx should be replaced.
484 bool UseSrcSubIdx =
485 TRI->getSubClassWithSubReg(MRI->getRegClass(SrcReg), SubIdx) != nullptr;
486
487 // The source has other uses. See if we can replace the other uses with use of
488 // the result of the extension.
489 SmallPtrSet<MachineBasicBlock*, 4> ReachedBBs;
490 for (MachineInstr &UI : MRI->use_nodbg_instructions(DstReg))
491 ReachedBBs.insert(UI.getParent());
492
493 // Uses that are in the same BB of uses of the result of the instruction.
494 SmallVector<MachineOperand*, 8> Uses;
495
496 // Uses that the result of the instruction can reach.
497 SmallVector<MachineOperand*, 8> ExtendedUses;
498
499 bool ExtendLife = true;
500 for (MachineOperand &UseMO : MRI->use_nodbg_operands(SrcReg)) {
501 MachineInstr *UseMI = UseMO.getParent();
502 if (UseMI == &MI)
503 continue;
504
505 if (UseMI->isPHI()) {
506 ExtendLife = false;
507 continue;
508 }
509
510 // Only accept uses of SrcReg:SubIdx.
511 if (UseSrcSubIdx && UseMO.getSubReg() != SubIdx)
512 continue;
513
514 // It's an error to translate this:
515 //
516 // %reg1025 = <sext> %reg1024
517 // ...
518 // %reg1026 = SUBREG_TO_REG 0, %reg1024, 4
519 //
520 // into this:
521 //
522 // %reg1025 = <sext> %reg1024
523 // ...
524 // %reg1027 = COPY %reg1025:4
525 // %reg1026 = SUBREG_TO_REG 0, %reg1027, 4
526 //
527 // The problem here is that SUBREG_TO_REG is there to assert that an
528 // implicit zext occurs. It doesn't insert a zext instruction. If we allow
529 // the COPY here, it will give us the value after the <sext>, not the
530 // original value of %reg1024 before <sext>.
531 if (UseMI->getOpcode() == TargetOpcode::SUBREG_TO_REG)
532 continue;
533
534 MachineBasicBlock *UseMBB = UseMI->getParent();
535 if (UseMBB == &MBB) {
536 // Local uses that come after the extension.
537 if (!LocalMIs.count(UseMI))
538 Uses.push_back(&UseMO);
539 } else if (ReachedBBs.count(UseMBB)) {
540 // Non-local uses where the result of the extension is used. Always
541 // replace these unless it's a PHI.
542 Uses.push_back(&UseMO);
543 } else if (Aggressive && DT->dominates(&MBB, UseMBB)) {
544 // We may want to extend the live range of the extension result in order
545 // to replace these uses.
546 ExtendedUses.push_back(&UseMO);
547 } else {
548 // Both will be live out of the def MBB anyway. Don't extend live range of
549 // the extension result.
550 ExtendLife = false;
551 break;
552 }
553 }
554
555 if (ExtendLife && !ExtendedUses.empty())
556 // Extend the liveness of the extension result.
557 Uses.append(ExtendedUses.begin(), ExtendedUses.end());
558
559 // Now replace all uses.
560 bool Changed = false;
561 if (!Uses.empty()) {
562 SmallPtrSet<MachineBasicBlock*, 4> PHIBBs;
563
564 // Look for PHI uses of the extended result, we don't want to extend the
565 // liveness of a PHI input. It breaks all kinds of assumptions down
566 // stream. A PHI use is expected to be the kill of its source values.
567 for (MachineInstr &UI : MRI->use_nodbg_instructions(DstReg))
568 if (UI.isPHI())
569 PHIBBs.insert(UI.getParent());
570
571 const TargetRegisterClass *RC = MRI->getRegClass(SrcReg);
572 for (unsigned i = 0, e = Uses.size(); i != e; ++i) {
573 MachineOperand *UseMO = Uses[i];
574 MachineInstr *UseMI = UseMO->getParent();
575 MachineBasicBlock *UseMBB = UseMI->getParent();
576 if (PHIBBs.count(UseMBB))
577 continue;
578
579 // About to add uses of DstReg, clear DstReg's kill flags.
580 if (!Changed) {
581 MRI->clearKillFlags(DstReg);
582 MRI->constrainRegClass(DstReg, DstRC);
583 }
584
585 unsigned NewVR = MRI->createVirtualRegister(RC);
586 MachineInstr *Copy = BuildMI(*UseMBB, UseMI, UseMI->getDebugLoc(),
587 TII->get(TargetOpcode::COPY), NewVR)
588 .addReg(DstReg, 0, SubIdx);
589 // SubIdx applies to both SrcReg and DstReg when UseSrcSubIdx is set.
590 if (UseSrcSubIdx) {
591 Copy->getOperand(0).setSubReg(SubIdx);
592 Copy->getOperand(0).setIsUndef();
593 }
594 UseMO->setReg(NewVR);
595 ++NumReuse;
596 Changed = true;
597 }
598 }
599
600 return Changed;
601 }
602
603 /// If the instruction is a compare and the previous instruction it's comparing
604 /// against already sets (or could be modified to set) the same flag as the
605 /// compare, then we can remove the comparison and use the flag from the
606 /// previous instruction.
optimizeCmpInstr(MachineInstr & MI)607 bool PeepholeOptimizer::optimizeCmpInstr(MachineInstr &MI) {
608 // If this instruction is a comparison against zero and isn't comparing a
609 // physical register, we can try to optimize it.
610 unsigned SrcReg, SrcReg2;
611 int CmpMask, CmpValue;
612 if (!TII->analyzeCompare(MI, SrcReg, SrcReg2, CmpMask, CmpValue) ||
613 TargetRegisterInfo::isPhysicalRegister(SrcReg) ||
614 (SrcReg2 != 0 && TargetRegisterInfo::isPhysicalRegister(SrcReg2)))
615 return false;
616
617 // Attempt to optimize the comparison instruction.
618 if (TII->optimizeCompareInstr(MI, SrcReg, SrcReg2, CmpMask, CmpValue, MRI)) {
619 ++NumCmps;
620 return true;
621 }
622
623 return false;
624 }
625
626 /// Optimize a select instruction.
optimizeSelect(MachineInstr & MI,SmallPtrSetImpl<MachineInstr * > & LocalMIs)627 bool PeepholeOptimizer::optimizeSelect(MachineInstr &MI,
628 SmallPtrSetImpl<MachineInstr *> &LocalMIs) {
629 unsigned TrueOp = 0;
630 unsigned FalseOp = 0;
631 bool Optimizable = false;
632 SmallVector<MachineOperand, 4> Cond;
633 if (TII->analyzeSelect(MI, Cond, TrueOp, FalseOp, Optimizable))
634 return false;
635 if (!Optimizable)
636 return false;
637 if (!TII->optimizeSelect(MI, LocalMIs))
638 return false;
639 MI.eraseFromParent();
640 ++NumSelects;
641 return true;
642 }
643
644 /// Check if a simpler conditional branch can be generated.
optimizeCondBranch(MachineInstr & MI)645 bool PeepholeOptimizer::optimizeCondBranch(MachineInstr &MI) {
646 return TII->optimizeCondBranch(MI);
647 }
648
649 /// Try to find the next source that share the same register file
650 /// for the value defined by \p Reg and \p SubReg.
651 /// When true is returned, the \p RewriteMap can be used by the client to
652 /// retrieve all Def -> Use along the way up to the next source. Any found
653 /// Use that is not itself a key for another entry, is the next source to
654 /// use. During the search for the next source, multiple sources can be found
655 /// given multiple incoming sources of a PHI instruction. In this case, we
656 /// look in each PHI source for the next source; all found next sources must
657 /// share the same register file as \p Reg and \p SubReg. The client should
658 /// then be capable to rewrite all intermediate PHIs to get the next source.
659 /// \return False if no alternative sources are available. True otherwise.
findNextSource(RegSubRegPair RegSubReg,RewriteMapTy & RewriteMap)660 bool PeepholeOptimizer::findNextSource(RegSubRegPair RegSubReg,
661 RewriteMapTy &RewriteMap) {
662 // Do not try to find a new source for a physical register.
663 // So far we do not have any motivating example for doing that.
664 // Thus, instead of maintaining untested code, we will revisit that if
665 // that changes at some point.
666 unsigned Reg = RegSubReg.Reg;
667 if (TargetRegisterInfo::isPhysicalRegister(Reg))
668 return false;
669 const TargetRegisterClass *DefRC = MRI->getRegClass(Reg);
670
671 SmallVector<RegSubRegPair, 4> SrcToLook;
672 RegSubRegPair CurSrcPair = RegSubReg;
673 SrcToLook.push_back(CurSrcPair);
674
675 unsigned PHICount = 0;
676 do {
677 CurSrcPair = SrcToLook.pop_back_val();
678 // As explained above, do not handle physical registers
679 if (TargetRegisterInfo::isPhysicalRegister(CurSrcPair.Reg))
680 return false;
681
682 ValueTracker ValTracker(CurSrcPair.Reg, CurSrcPair.SubReg, *MRI, TII);
683
684 // Follow the chain of copies until we find a more suitable source, a phi
685 // or have to abort.
686 while (true) {
687 ValueTrackerResult Res = ValTracker.getNextSource();
688 // Abort at the end of a chain (without finding a suitable source).
689 if (!Res.isValid())
690 return false;
691
692 // Insert the Def -> Use entry for the recently found source.
693 ValueTrackerResult CurSrcRes = RewriteMap.lookup(CurSrcPair);
694 if (CurSrcRes.isValid()) {
695 assert(CurSrcRes == Res && "ValueTrackerResult found must match");
696 // An existent entry with multiple sources is a PHI cycle we must avoid.
697 // Otherwise it's an entry with a valid next source we already found.
698 if (CurSrcRes.getNumSources() > 1) {
699 LLVM_DEBUG(dbgs()
700 << "findNextSource: found PHI cycle, aborting...\n");
701 return false;
702 }
703 break;
704 }
705 RewriteMap.insert(std::make_pair(CurSrcPair, Res));
706
707 // ValueTrackerResult usually have one source unless it's the result from
708 // a PHI instruction. Add the found PHI edges to be looked up further.
709 unsigned NumSrcs = Res.getNumSources();
710 if (NumSrcs > 1) {
711 PHICount++;
712 if (PHICount >= RewritePHILimit) {
713 LLVM_DEBUG(dbgs() << "findNextSource: PHI limit reached\n");
714 return false;
715 }
716
717 for (unsigned i = 0; i < NumSrcs; ++i)
718 SrcToLook.push_back(Res.getSrc(i));
719 break;
720 }
721
722 CurSrcPair = Res.getSrc(0);
723 // Do not extend the live-ranges of physical registers as they add
724 // constraints to the register allocator. Moreover, if we want to extend
725 // the live-range of a physical register, unlike SSA virtual register,
726 // we will have to check that they aren't redefine before the related use.
727 if (TargetRegisterInfo::isPhysicalRegister(CurSrcPair.Reg))
728 return false;
729
730 // Keep following the chain if the value isn't any better yet.
731 const TargetRegisterClass *SrcRC = MRI->getRegClass(CurSrcPair.Reg);
732 if (!TRI->shouldRewriteCopySrc(DefRC, RegSubReg.SubReg, SrcRC,
733 CurSrcPair.SubReg))
734 continue;
735
736 // We currently cannot deal with subreg operands on PHI instructions
737 // (see insertPHI()).
738 if (PHICount > 0 && CurSrcPair.SubReg != 0)
739 continue;
740
741 // We found a suitable source, and are done with this chain.
742 break;
743 }
744 } while (!SrcToLook.empty());
745
746 // If we did not find a more suitable source, there is nothing to optimize.
747 return CurSrcPair.Reg != Reg;
748 }
749
750 /// Insert a PHI instruction with incoming edges \p SrcRegs that are
751 /// guaranteed to have the same register class. This is necessary whenever we
752 /// successfully traverse a PHI instruction and find suitable sources coming
753 /// from its edges. By inserting a new PHI, we provide a rewritten PHI def
754 /// suitable to be used in a new COPY instruction.
755 static MachineInstr &
insertPHI(MachineRegisterInfo & MRI,const TargetInstrInfo & TII,const SmallVectorImpl<RegSubRegPair> & SrcRegs,MachineInstr & OrigPHI)756 insertPHI(MachineRegisterInfo &MRI, const TargetInstrInfo &TII,
757 const SmallVectorImpl<RegSubRegPair> &SrcRegs,
758 MachineInstr &OrigPHI) {
759 assert(!SrcRegs.empty() && "No sources to create a PHI instruction?");
760
761 const TargetRegisterClass *NewRC = MRI.getRegClass(SrcRegs[0].Reg);
762 // NewRC is only correct if no subregisters are involved. findNextSource()
763 // should have rejected those cases already.
764 assert(SrcRegs[0].SubReg == 0 && "should not have subreg operand");
765 unsigned NewVR = MRI.createVirtualRegister(NewRC);
766 MachineBasicBlock *MBB = OrigPHI.getParent();
767 MachineInstrBuilder MIB = BuildMI(*MBB, &OrigPHI, OrigPHI.getDebugLoc(),
768 TII.get(TargetOpcode::PHI), NewVR);
769
770 unsigned MBBOpIdx = 2;
771 for (const RegSubRegPair &RegPair : SrcRegs) {
772 MIB.addReg(RegPair.Reg, 0, RegPair.SubReg);
773 MIB.addMBB(OrigPHI.getOperand(MBBOpIdx).getMBB());
774 // Since we're extended the lifetime of RegPair.Reg, clear the
775 // kill flags to account for that and make RegPair.Reg reaches
776 // the new PHI.
777 MRI.clearKillFlags(RegPair.Reg);
778 MBBOpIdx += 2;
779 }
780
781 return *MIB;
782 }
783
784 namespace {
785
786 /// Interface to query instructions amenable to copy rewriting.
787 class Rewriter {
788 protected:
789 MachineInstr &CopyLike;
790 unsigned CurrentSrcIdx = 0; ///< The index of the source being rewritten.
791 public:
Rewriter(MachineInstr & CopyLike)792 Rewriter(MachineInstr &CopyLike) : CopyLike(CopyLike) {}
~Rewriter()793 virtual ~Rewriter() {}
794
795 /// Get the next rewritable source (SrcReg, SrcSubReg) and
796 /// the related value that it affects (DstReg, DstSubReg).
797 /// A source is considered rewritable if its register class and the
798 /// register class of the related DstReg may not be register
799 /// coalescer friendly. In other words, given a copy-like instruction
800 /// not all the arguments may be returned at rewritable source, since
801 /// some arguments are none to be register coalescer friendly.
802 ///
803 /// Each call of this method moves the current source to the next
804 /// rewritable source.
805 /// For instance, let CopyLike be the instruction to rewrite.
806 /// CopyLike has one definition and one source:
807 /// dst.dstSubIdx = CopyLike src.srcSubIdx.
808 ///
809 /// The first call will give the first rewritable source, i.e.,
810 /// the only source this instruction has:
811 /// (SrcReg, SrcSubReg) = (src, srcSubIdx).
812 /// This source defines the whole definition, i.e.,
813 /// (DstReg, DstSubReg) = (dst, dstSubIdx).
814 ///
815 /// The second and subsequent calls will return false, as there is only one
816 /// rewritable source.
817 ///
818 /// \return True if a rewritable source has been found, false otherwise.
819 /// The output arguments are valid if and only if true is returned.
820 virtual bool getNextRewritableSource(RegSubRegPair &Src,
821 RegSubRegPair &Dst) = 0;
822
823 /// Rewrite the current source with \p NewReg and \p NewSubReg if possible.
824 /// \return True if the rewriting was possible, false otherwise.
825 virtual bool RewriteCurrentSource(unsigned NewReg, unsigned NewSubReg) = 0;
826 };
827
828 /// Rewriter for COPY instructions.
829 class CopyRewriter : public Rewriter {
830 public:
CopyRewriter(MachineInstr & MI)831 CopyRewriter(MachineInstr &MI) : Rewriter(MI) {
832 assert(MI.isCopy() && "Expected copy instruction");
833 }
834 virtual ~CopyRewriter() = default;
835
getNextRewritableSource(RegSubRegPair & Src,RegSubRegPair & Dst)836 bool getNextRewritableSource(RegSubRegPair &Src,
837 RegSubRegPair &Dst) override {
838 // CurrentSrcIdx > 0 means this function has already been called.
839 if (CurrentSrcIdx > 0)
840 return false;
841 // This is the first call to getNextRewritableSource.
842 // Move the CurrentSrcIdx to remember that we made that call.
843 CurrentSrcIdx = 1;
844 // The rewritable source is the argument.
845 const MachineOperand &MOSrc = CopyLike.getOperand(1);
846 Src = RegSubRegPair(MOSrc.getReg(), MOSrc.getSubReg());
847 // What we track are the alternative sources of the definition.
848 const MachineOperand &MODef = CopyLike.getOperand(0);
849 Dst = RegSubRegPair(MODef.getReg(), MODef.getSubReg());
850 return true;
851 }
852
RewriteCurrentSource(unsigned NewReg,unsigned NewSubReg)853 bool RewriteCurrentSource(unsigned NewReg, unsigned NewSubReg) override {
854 if (CurrentSrcIdx != 1)
855 return false;
856 MachineOperand &MOSrc = CopyLike.getOperand(CurrentSrcIdx);
857 MOSrc.setReg(NewReg);
858 MOSrc.setSubReg(NewSubReg);
859 return true;
860 }
861 };
862
863 /// Helper class to rewrite uncoalescable copy like instructions
864 /// into new COPY (coalescable friendly) instructions.
865 class UncoalescableRewriter : public Rewriter {
866 unsigned NumDefs; ///< Number of defs in the bitcast.
867
868 public:
UncoalescableRewriter(MachineInstr & MI)869 UncoalescableRewriter(MachineInstr &MI) : Rewriter(MI) {
870 NumDefs = MI.getDesc().getNumDefs();
871 }
872
873 /// \see See Rewriter::getNextRewritableSource()
874 /// All such sources need to be considered rewritable in order to
875 /// rewrite a uncoalescable copy-like instruction. This method return
876 /// each definition that must be checked if rewritable.
getNextRewritableSource(RegSubRegPair & Src,RegSubRegPair & Dst)877 bool getNextRewritableSource(RegSubRegPair &Src,
878 RegSubRegPair &Dst) override {
879 // Find the next non-dead definition and continue from there.
880 if (CurrentSrcIdx == NumDefs)
881 return false;
882
883 while (CopyLike.getOperand(CurrentSrcIdx).isDead()) {
884 ++CurrentSrcIdx;
885 if (CurrentSrcIdx == NumDefs)
886 return false;
887 }
888
889 // What we track are the alternative sources of the definition.
890 Src = RegSubRegPair(0, 0);
891 const MachineOperand &MODef = CopyLike.getOperand(CurrentSrcIdx);
892 Dst = RegSubRegPair(MODef.getReg(), MODef.getSubReg());
893
894 CurrentSrcIdx++;
895 return true;
896 }
897
RewriteCurrentSource(unsigned NewReg,unsigned NewSubReg)898 bool RewriteCurrentSource(unsigned NewReg, unsigned NewSubReg) override {
899 return false;
900 }
901 };
902
903 /// Specialized rewriter for INSERT_SUBREG instruction.
904 class InsertSubregRewriter : public Rewriter {
905 public:
InsertSubregRewriter(MachineInstr & MI)906 InsertSubregRewriter(MachineInstr &MI) : Rewriter(MI) {
907 assert(MI.isInsertSubreg() && "Invalid instruction");
908 }
909
910 /// \see See Rewriter::getNextRewritableSource()
911 /// Here CopyLike has the following form:
912 /// dst = INSERT_SUBREG Src1, Src2.src2SubIdx, subIdx.
913 /// Src1 has the same register class has dst, hence, there is
914 /// nothing to rewrite.
915 /// Src2.src2SubIdx, may not be register coalescer friendly.
916 /// Therefore, the first call to this method returns:
917 /// (SrcReg, SrcSubReg) = (Src2, src2SubIdx).
918 /// (DstReg, DstSubReg) = (dst, subIdx).
919 ///
920 /// Subsequence calls will return false.
getNextRewritableSource(RegSubRegPair & Src,RegSubRegPair & Dst)921 bool getNextRewritableSource(RegSubRegPair &Src,
922 RegSubRegPair &Dst) override {
923 // If we already get the only source we can rewrite, return false.
924 if (CurrentSrcIdx == 2)
925 return false;
926 // We are looking at v2 = INSERT_SUBREG v0, v1, sub0.
927 CurrentSrcIdx = 2;
928 const MachineOperand &MOInsertedReg = CopyLike.getOperand(2);
929 Src = RegSubRegPair(MOInsertedReg.getReg(), MOInsertedReg.getSubReg());
930 const MachineOperand &MODef = CopyLike.getOperand(0);
931
932 // We want to track something that is compatible with the
933 // partial definition.
934 if (MODef.getSubReg())
935 // Bail if we have to compose sub-register indices.
936 return false;
937 Dst = RegSubRegPair(MODef.getReg(),
938 (unsigned)CopyLike.getOperand(3).getImm());
939 return true;
940 }
941
RewriteCurrentSource(unsigned NewReg,unsigned NewSubReg)942 bool RewriteCurrentSource(unsigned NewReg, unsigned NewSubReg) override {
943 if (CurrentSrcIdx != 2)
944 return false;
945 // We are rewriting the inserted reg.
946 MachineOperand &MO = CopyLike.getOperand(CurrentSrcIdx);
947 MO.setReg(NewReg);
948 MO.setSubReg(NewSubReg);
949 return true;
950 }
951 };
952
953 /// Specialized rewriter for EXTRACT_SUBREG instruction.
954 class ExtractSubregRewriter : public Rewriter {
955 const TargetInstrInfo &TII;
956
957 public:
ExtractSubregRewriter(MachineInstr & MI,const TargetInstrInfo & TII)958 ExtractSubregRewriter(MachineInstr &MI, const TargetInstrInfo &TII)
959 : Rewriter(MI), TII(TII) {
960 assert(MI.isExtractSubreg() && "Invalid instruction");
961 }
962
963 /// \see Rewriter::getNextRewritableSource()
964 /// Here CopyLike has the following form:
965 /// dst.dstSubIdx = EXTRACT_SUBREG Src, subIdx.
966 /// There is only one rewritable source: Src.subIdx,
967 /// which defines dst.dstSubIdx.
getNextRewritableSource(RegSubRegPair & Src,RegSubRegPair & Dst)968 bool getNextRewritableSource(RegSubRegPair &Src,
969 RegSubRegPair &Dst) override {
970 // If we already get the only source we can rewrite, return false.
971 if (CurrentSrcIdx == 1)
972 return false;
973 // We are looking at v1 = EXTRACT_SUBREG v0, sub0.
974 CurrentSrcIdx = 1;
975 const MachineOperand &MOExtractedReg = CopyLike.getOperand(1);
976 // If we have to compose sub-register indices, bail out.
977 if (MOExtractedReg.getSubReg())
978 return false;
979
980 Src = RegSubRegPair(MOExtractedReg.getReg(),
981 CopyLike.getOperand(2).getImm());
982
983 // We want to track something that is compatible with the definition.
984 const MachineOperand &MODef = CopyLike.getOperand(0);
985 Dst = RegSubRegPair(MODef.getReg(), MODef.getSubReg());
986 return true;
987 }
988
RewriteCurrentSource(unsigned NewReg,unsigned NewSubReg)989 bool RewriteCurrentSource(unsigned NewReg, unsigned NewSubReg) override {
990 // The only source we can rewrite is the input register.
991 if (CurrentSrcIdx != 1)
992 return false;
993
994 CopyLike.getOperand(CurrentSrcIdx).setReg(NewReg);
995
996 // If we find a source that does not require to extract something,
997 // rewrite the operation with a copy.
998 if (!NewSubReg) {
999 // Move the current index to an invalid position.
1000 // We do not want another call to this method to be able
1001 // to do any change.
1002 CurrentSrcIdx = -1;
1003 // Rewrite the operation as a COPY.
1004 // Get rid of the sub-register index.
1005 CopyLike.RemoveOperand(2);
1006 // Morph the operation into a COPY.
1007 CopyLike.setDesc(TII.get(TargetOpcode::COPY));
1008 return true;
1009 }
1010 CopyLike.getOperand(CurrentSrcIdx + 1).setImm(NewSubReg);
1011 return true;
1012 }
1013 };
1014
1015 /// Specialized rewriter for REG_SEQUENCE instruction.
1016 class RegSequenceRewriter : public Rewriter {
1017 public:
RegSequenceRewriter(MachineInstr & MI)1018 RegSequenceRewriter(MachineInstr &MI) : Rewriter(MI) {
1019 assert(MI.isRegSequence() && "Invalid instruction");
1020 }
1021
1022 /// \see Rewriter::getNextRewritableSource()
1023 /// Here CopyLike has the following form:
1024 /// dst = REG_SEQUENCE Src1.src1SubIdx, subIdx1, Src2.src2SubIdx, subIdx2.
1025 /// Each call will return a different source, walking all the available
1026 /// source.
1027 ///
1028 /// The first call returns:
1029 /// (SrcReg, SrcSubReg) = (Src1, src1SubIdx).
1030 /// (DstReg, DstSubReg) = (dst, subIdx1).
1031 ///
1032 /// The second call returns:
1033 /// (SrcReg, SrcSubReg) = (Src2, src2SubIdx).
1034 /// (DstReg, DstSubReg) = (dst, subIdx2).
1035 ///
1036 /// And so on, until all the sources have been traversed, then
1037 /// it returns false.
getNextRewritableSource(RegSubRegPair & Src,RegSubRegPair & Dst)1038 bool getNextRewritableSource(RegSubRegPair &Src,
1039 RegSubRegPair &Dst) override {
1040 // We are looking at v0 = REG_SEQUENCE v1, sub1, v2, sub2, etc.
1041
1042 // If this is the first call, move to the first argument.
1043 if (CurrentSrcIdx == 0) {
1044 CurrentSrcIdx = 1;
1045 } else {
1046 // Otherwise, move to the next argument and check that it is valid.
1047 CurrentSrcIdx += 2;
1048 if (CurrentSrcIdx >= CopyLike.getNumOperands())
1049 return false;
1050 }
1051 const MachineOperand &MOInsertedReg = CopyLike.getOperand(CurrentSrcIdx);
1052 Src.Reg = MOInsertedReg.getReg();
1053 // If we have to compose sub-register indices, bail out.
1054 if ((Src.SubReg = MOInsertedReg.getSubReg()))
1055 return false;
1056
1057 // We want to track something that is compatible with the related
1058 // partial definition.
1059 Dst.SubReg = CopyLike.getOperand(CurrentSrcIdx + 1).getImm();
1060
1061 const MachineOperand &MODef = CopyLike.getOperand(0);
1062 Dst.Reg = MODef.getReg();
1063 // If we have to compose sub-registers, bail.
1064 return MODef.getSubReg() == 0;
1065 }
1066
RewriteCurrentSource(unsigned NewReg,unsigned NewSubReg)1067 bool RewriteCurrentSource(unsigned NewReg, unsigned NewSubReg) override {
1068 // We cannot rewrite out of bound operands.
1069 // Moreover, rewritable sources are at odd positions.
1070 if ((CurrentSrcIdx & 1) != 1 || CurrentSrcIdx > CopyLike.getNumOperands())
1071 return false;
1072
1073 MachineOperand &MO = CopyLike.getOperand(CurrentSrcIdx);
1074 MO.setReg(NewReg);
1075 MO.setSubReg(NewSubReg);
1076 return true;
1077 }
1078 };
1079
1080 } // end anonymous namespace
1081
1082 /// Get the appropriated Rewriter for \p MI.
1083 /// \return A pointer to a dynamically allocated Rewriter or nullptr if no
1084 /// rewriter works for \p MI.
getCopyRewriter(MachineInstr & MI,const TargetInstrInfo & TII)1085 static Rewriter *getCopyRewriter(MachineInstr &MI, const TargetInstrInfo &TII) {
1086 // Handle uncoalescable copy-like instructions.
1087 if (MI.isBitcast() || MI.isRegSequenceLike() || MI.isInsertSubregLike() ||
1088 MI.isExtractSubregLike())
1089 return new UncoalescableRewriter(MI);
1090
1091 switch (MI.getOpcode()) {
1092 default:
1093 return nullptr;
1094 case TargetOpcode::COPY:
1095 return new CopyRewriter(MI);
1096 case TargetOpcode::INSERT_SUBREG:
1097 return new InsertSubregRewriter(MI);
1098 case TargetOpcode::EXTRACT_SUBREG:
1099 return new ExtractSubregRewriter(MI, TII);
1100 case TargetOpcode::REG_SEQUENCE:
1101 return new RegSequenceRewriter(MI);
1102 }
1103 }
1104
1105 /// Given a \p Def.Reg and Def.SubReg pair, use \p RewriteMap to find
1106 /// the new source to use for rewrite. If \p HandleMultipleSources is true and
1107 /// multiple sources for a given \p Def are found along the way, we found a
1108 /// PHI instructions that needs to be rewritten.
1109 /// TODO: HandleMultipleSources should be removed once we test PHI handling
1110 /// with coalescable copies.
1111 static RegSubRegPair
getNewSource(MachineRegisterInfo * MRI,const TargetInstrInfo * TII,RegSubRegPair Def,const PeepholeOptimizer::RewriteMapTy & RewriteMap,bool HandleMultipleSources=true)1112 getNewSource(MachineRegisterInfo *MRI, const TargetInstrInfo *TII,
1113 RegSubRegPair Def,
1114 const PeepholeOptimizer::RewriteMapTy &RewriteMap,
1115 bool HandleMultipleSources = true) {
1116 RegSubRegPair LookupSrc(Def.Reg, Def.SubReg);
1117 while (true) {
1118 ValueTrackerResult Res = RewriteMap.lookup(LookupSrc);
1119 // If there are no entries on the map, LookupSrc is the new source.
1120 if (!Res.isValid())
1121 return LookupSrc;
1122
1123 // There's only one source for this definition, keep searching...
1124 unsigned NumSrcs = Res.getNumSources();
1125 if (NumSrcs == 1) {
1126 LookupSrc.Reg = Res.getSrcReg(0);
1127 LookupSrc.SubReg = Res.getSrcSubReg(0);
1128 continue;
1129 }
1130
1131 // TODO: Remove once multiple srcs w/ coalescable copies are supported.
1132 if (!HandleMultipleSources)
1133 break;
1134
1135 // Multiple sources, recurse into each source to find a new source
1136 // for it. Then, rewrite the PHI accordingly to its new edges.
1137 SmallVector<RegSubRegPair, 4> NewPHISrcs;
1138 for (unsigned i = 0; i < NumSrcs; ++i) {
1139 RegSubRegPair PHISrc(Res.getSrcReg(i), Res.getSrcSubReg(i));
1140 NewPHISrcs.push_back(
1141 getNewSource(MRI, TII, PHISrc, RewriteMap, HandleMultipleSources));
1142 }
1143
1144 // Build the new PHI node and return its def register as the new source.
1145 MachineInstr &OrigPHI = const_cast<MachineInstr &>(*Res.getInst());
1146 MachineInstr &NewPHI = insertPHI(*MRI, *TII, NewPHISrcs, OrigPHI);
1147 LLVM_DEBUG(dbgs() << "-- getNewSource\n");
1148 LLVM_DEBUG(dbgs() << " Replacing: " << OrigPHI);
1149 LLVM_DEBUG(dbgs() << " With: " << NewPHI);
1150 const MachineOperand &MODef = NewPHI.getOperand(0);
1151 return RegSubRegPair(MODef.getReg(), MODef.getSubReg());
1152 }
1153
1154 return RegSubRegPair(0, 0);
1155 }
1156
1157 /// Optimize generic copy instructions to avoid cross register bank copy.
1158 /// The optimization looks through a chain of copies and tries to find a source
1159 /// that has a compatible register class.
1160 /// Two register classes are considered to be compatible if they share the same
1161 /// register bank.
1162 /// New copies issued by this optimization are register allocator
1163 /// friendly. This optimization does not remove any copy as it may
1164 /// overconstrain the register allocator, but replaces some operands
1165 /// when possible.
1166 /// \pre isCoalescableCopy(*MI) is true.
1167 /// \return True, when \p MI has been rewritten. False otherwise.
optimizeCoalescableCopy(MachineInstr & MI)1168 bool PeepholeOptimizer::optimizeCoalescableCopy(MachineInstr &MI) {
1169 assert(isCoalescableCopy(MI) && "Invalid argument");
1170 assert(MI.getDesc().getNumDefs() == 1 &&
1171 "Coalescer can understand multiple defs?!");
1172 const MachineOperand &MODef = MI.getOperand(0);
1173 // Do not rewrite physical definitions.
1174 if (TargetRegisterInfo::isPhysicalRegister(MODef.getReg()))
1175 return false;
1176
1177 bool Changed = false;
1178 // Get the right rewriter for the current copy.
1179 std::unique_ptr<Rewriter> CpyRewriter(getCopyRewriter(MI, *TII));
1180 // If none exists, bail out.
1181 if (!CpyRewriter)
1182 return false;
1183 // Rewrite each rewritable source.
1184 RegSubRegPair Src;
1185 RegSubRegPair TrackPair;
1186 while (CpyRewriter->getNextRewritableSource(Src, TrackPair)) {
1187 // Keep track of PHI nodes and its incoming edges when looking for sources.
1188 RewriteMapTy RewriteMap;
1189 // Try to find a more suitable source. If we failed to do so, or get the
1190 // actual source, move to the next source.
1191 if (!findNextSource(TrackPair, RewriteMap))
1192 continue;
1193
1194 // Get the new source to rewrite. TODO: Only enable handling of multiple
1195 // sources (PHIs) once we have a motivating example and testcases for it.
1196 RegSubRegPair NewSrc = getNewSource(MRI, TII, TrackPair, RewriteMap,
1197 /*HandleMultipleSources=*/false);
1198 if (Src.Reg == NewSrc.Reg || NewSrc.Reg == 0)
1199 continue;
1200
1201 // Rewrite source.
1202 if (CpyRewriter->RewriteCurrentSource(NewSrc.Reg, NewSrc.SubReg)) {
1203 // We may have extended the live-range of NewSrc, account for that.
1204 MRI->clearKillFlags(NewSrc.Reg);
1205 Changed = true;
1206 }
1207 }
1208 // TODO: We could have a clean-up method to tidy the instruction.
1209 // E.g., v0 = INSERT_SUBREG v1, v1.sub0, sub0
1210 // => v0 = COPY v1
1211 // Currently we haven't seen motivating example for that and we
1212 // want to avoid untested code.
1213 NumRewrittenCopies += Changed;
1214 return Changed;
1215 }
1216
1217 /// Rewrite the source found through \p Def, by using the \p RewriteMap
1218 /// and create a new COPY instruction. More info about RewriteMap in
1219 /// PeepholeOptimizer::findNextSource. Right now this is only used to handle
1220 /// Uncoalescable copies, since they are copy like instructions that aren't
1221 /// recognized by the register allocator.
1222 MachineInstr &
rewriteSource(MachineInstr & CopyLike,RegSubRegPair Def,RewriteMapTy & RewriteMap)1223 PeepholeOptimizer::rewriteSource(MachineInstr &CopyLike,
1224 RegSubRegPair Def, RewriteMapTy &RewriteMap) {
1225 assert(!TargetRegisterInfo::isPhysicalRegister(Def.Reg) &&
1226 "We do not rewrite physical registers");
1227
1228 // Find the new source to use in the COPY rewrite.
1229 RegSubRegPair NewSrc = getNewSource(MRI, TII, Def, RewriteMap);
1230
1231 // Insert the COPY.
1232 const TargetRegisterClass *DefRC = MRI->getRegClass(Def.Reg);
1233 unsigned NewVReg = MRI->createVirtualRegister(DefRC);
1234
1235 MachineInstr *NewCopy =
1236 BuildMI(*CopyLike.getParent(), &CopyLike, CopyLike.getDebugLoc(),
1237 TII->get(TargetOpcode::COPY), NewVReg)
1238 .addReg(NewSrc.Reg, 0, NewSrc.SubReg);
1239
1240 if (Def.SubReg) {
1241 NewCopy->getOperand(0).setSubReg(Def.SubReg);
1242 NewCopy->getOperand(0).setIsUndef();
1243 }
1244
1245 LLVM_DEBUG(dbgs() << "-- RewriteSource\n");
1246 LLVM_DEBUG(dbgs() << " Replacing: " << CopyLike);
1247 LLVM_DEBUG(dbgs() << " With: " << *NewCopy);
1248 MRI->replaceRegWith(Def.Reg, NewVReg);
1249 MRI->clearKillFlags(NewVReg);
1250
1251 // We extended the lifetime of NewSrc.Reg, clear the kill flags to
1252 // account for that.
1253 MRI->clearKillFlags(NewSrc.Reg);
1254
1255 return *NewCopy;
1256 }
1257
1258 /// Optimize copy-like instructions to create
1259 /// register coalescer friendly instruction.
1260 /// The optimization tries to kill-off the \p MI by looking
1261 /// through a chain of copies to find a source that has a compatible
1262 /// register class.
1263 /// If such a source is found, it replace \p MI by a generic COPY
1264 /// operation.
1265 /// \pre isUncoalescableCopy(*MI) is true.
1266 /// \return True, when \p MI has been optimized. In that case, \p MI has
1267 /// been removed from its parent.
1268 /// All COPY instructions created, are inserted in \p LocalMIs.
optimizeUncoalescableCopy(MachineInstr & MI,SmallPtrSetImpl<MachineInstr * > & LocalMIs)1269 bool PeepholeOptimizer::optimizeUncoalescableCopy(
1270 MachineInstr &MI, SmallPtrSetImpl<MachineInstr *> &LocalMIs) {
1271 assert(isUncoalescableCopy(MI) && "Invalid argument");
1272 UncoalescableRewriter CpyRewriter(MI);
1273
1274 // Rewrite each rewritable source by generating new COPYs. This works
1275 // differently from optimizeCoalescableCopy since it first makes sure that all
1276 // definitions can be rewritten.
1277 RewriteMapTy RewriteMap;
1278 RegSubRegPair Src;
1279 RegSubRegPair Def;
1280 SmallVector<RegSubRegPair, 4> RewritePairs;
1281 while (CpyRewriter.getNextRewritableSource(Src, Def)) {
1282 // If a physical register is here, this is probably for a good reason.
1283 // Do not rewrite that.
1284 if (TargetRegisterInfo::isPhysicalRegister(Def.Reg))
1285 return false;
1286
1287 // If we do not know how to rewrite this definition, there is no point
1288 // in trying to kill this instruction.
1289 if (!findNextSource(Def, RewriteMap))
1290 return false;
1291
1292 RewritePairs.push_back(Def);
1293 }
1294
1295 // The change is possible for all defs, do it.
1296 for (const RegSubRegPair &Def : RewritePairs) {
1297 // Rewrite the "copy" in a way the register coalescer understands.
1298 MachineInstr &NewCopy = rewriteSource(MI, Def, RewriteMap);
1299 LocalMIs.insert(&NewCopy);
1300 }
1301
1302 // MI is now dead.
1303 MI.eraseFromParent();
1304 ++NumUncoalescableCopies;
1305 return true;
1306 }
1307
1308 /// Check whether MI is a candidate for folding into a later instruction.
1309 /// We only fold loads to virtual registers and the virtual register defined
1310 /// has a single use.
isLoadFoldable(MachineInstr & MI,SmallSet<unsigned,16> & FoldAsLoadDefCandidates)1311 bool PeepholeOptimizer::isLoadFoldable(
1312 MachineInstr &MI, SmallSet<unsigned, 16> &FoldAsLoadDefCandidates) {
1313 if (!MI.canFoldAsLoad() || !MI.mayLoad())
1314 return false;
1315 const MCInstrDesc &MCID = MI.getDesc();
1316 if (MCID.getNumDefs() != 1)
1317 return false;
1318
1319 unsigned Reg = MI.getOperand(0).getReg();
1320 // To reduce compilation time, we check MRI->hasOneNonDBGUse when inserting
1321 // loads. It should be checked when processing uses of the load, since
1322 // uses can be removed during peephole.
1323 if (!MI.getOperand(0).getSubReg() &&
1324 TargetRegisterInfo::isVirtualRegister(Reg) &&
1325 MRI->hasOneNonDBGUse(Reg)) {
1326 FoldAsLoadDefCandidates.insert(Reg);
1327 return true;
1328 }
1329 return false;
1330 }
1331
isMoveImmediate(MachineInstr & MI,SmallSet<unsigned,4> & ImmDefRegs,DenseMap<unsigned,MachineInstr * > & ImmDefMIs)1332 bool PeepholeOptimizer::isMoveImmediate(
1333 MachineInstr &MI, SmallSet<unsigned, 4> &ImmDefRegs,
1334 DenseMap<unsigned, MachineInstr *> &ImmDefMIs) {
1335 const MCInstrDesc &MCID = MI.getDesc();
1336 if (!MI.isMoveImmediate())
1337 return false;
1338 if (MCID.getNumDefs() != 1)
1339 return false;
1340 unsigned Reg = MI.getOperand(0).getReg();
1341 if (TargetRegisterInfo::isVirtualRegister(Reg)) {
1342 ImmDefMIs.insert(std::make_pair(Reg, &MI));
1343 ImmDefRegs.insert(Reg);
1344 return true;
1345 }
1346
1347 return false;
1348 }
1349
1350 /// Try folding register operands that are defined by move immediate
1351 /// instructions, i.e. a trivial constant folding optimization, if
1352 /// and only if the def and use are in the same BB.
foldImmediate(MachineInstr & MI,SmallSet<unsigned,4> & ImmDefRegs,DenseMap<unsigned,MachineInstr * > & ImmDefMIs)1353 bool PeepholeOptimizer::foldImmediate(MachineInstr &MI,
1354 SmallSet<unsigned, 4> &ImmDefRegs,
1355 DenseMap<unsigned, MachineInstr *> &ImmDefMIs) {
1356 for (unsigned i = 0, e = MI.getDesc().getNumOperands(); i != e; ++i) {
1357 MachineOperand &MO = MI.getOperand(i);
1358 if (!MO.isReg() || MO.isDef())
1359 continue;
1360 // Ignore dead implicit defs.
1361 if (MO.isImplicit() && MO.isDead())
1362 continue;
1363 unsigned Reg = MO.getReg();
1364 if (!TargetRegisterInfo::isVirtualRegister(Reg))
1365 continue;
1366 if (ImmDefRegs.count(Reg) == 0)
1367 continue;
1368 DenseMap<unsigned, MachineInstr*>::iterator II = ImmDefMIs.find(Reg);
1369 assert(II != ImmDefMIs.end() && "couldn't find immediate definition");
1370 if (TII->FoldImmediate(MI, *II->second, Reg, MRI)) {
1371 ++NumImmFold;
1372 return true;
1373 }
1374 }
1375 return false;
1376 }
1377
1378 // FIXME: This is very simple and misses some cases which should be handled when
1379 // motivating examples are found.
1380 //
1381 // The copy rewriting logic should look at uses as well as defs and be able to
1382 // eliminate copies across blocks.
1383 //
1384 // Later copies that are subregister extracts will also not be eliminated since
1385 // only the first copy is considered.
1386 //
1387 // e.g.
1388 // %1 = COPY %0
1389 // %2 = COPY %0:sub1
1390 //
1391 // Should replace %2 uses with %1:sub1
foldRedundantCopy(MachineInstr & MI,SmallSet<unsigned,4> & CopySrcRegs,DenseMap<unsigned,MachineInstr * > & CopyMIs)1392 bool PeepholeOptimizer::foldRedundantCopy(MachineInstr &MI,
1393 SmallSet<unsigned, 4> &CopySrcRegs,
1394 DenseMap<unsigned, MachineInstr *> &CopyMIs) {
1395 assert(MI.isCopy() && "expected a COPY machine instruction");
1396
1397 unsigned SrcReg = MI.getOperand(1).getReg();
1398 if (!TargetRegisterInfo::isVirtualRegister(SrcReg))
1399 return false;
1400
1401 unsigned DstReg = MI.getOperand(0).getReg();
1402 if (!TargetRegisterInfo::isVirtualRegister(DstReg))
1403 return false;
1404
1405 if (CopySrcRegs.insert(SrcReg).second) {
1406 // First copy of this reg seen.
1407 CopyMIs.insert(std::make_pair(SrcReg, &MI));
1408 return false;
1409 }
1410
1411 MachineInstr *PrevCopy = CopyMIs.find(SrcReg)->second;
1412
1413 unsigned SrcSubReg = MI.getOperand(1).getSubReg();
1414 unsigned PrevSrcSubReg = PrevCopy->getOperand(1).getSubReg();
1415
1416 // Can't replace different subregister extracts.
1417 if (SrcSubReg != PrevSrcSubReg)
1418 return false;
1419
1420 unsigned PrevDstReg = PrevCopy->getOperand(0).getReg();
1421
1422 // Only replace if the copy register class is the same.
1423 //
1424 // TODO: If we have multiple copies to different register classes, we may want
1425 // to track multiple copies of the same source register.
1426 if (MRI->getRegClass(DstReg) != MRI->getRegClass(PrevDstReg))
1427 return false;
1428
1429 MRI->replaceRegWith(DstReg, PrevDstReg);
1430
1431 // Lifetime of the previous copy has been extended.
1432 MRI->clearKillFlags(PrevDstReg);
1433 return true;
1434 }
1435
isNAPhysCopy(unsigned Reg)1436 bool PeepholeOptimizer::isNAPhysCopy(unsigned Reg) {
1437 return TargetRegisterInfo::isPhysicalRegister(Reg) &&
1438 !MRI->isAllocatable(Reg);
1439 }
1440
foldRedundantNAPhysCopy(MachineInstr & MI,DenseMap<unsigned,MachineInstr * > & NAPhysToVirtMIs)1441 bool PeepholeOptimizer::foldRedundantNAPhysCopy(
1442 MachineInstr &MI, DenseMap<unsigned, MachineInstr *> &NAPhysToVirtMIs) {
1443 assert(MI.isCopy() && "expected a COPY machine instruction");
1444
1445 if (DisableNAPhysCopyOpt)
1446 return false;
1447
1448 unsigned DstReg = MI.getOperand(0).getReg();
1449 unsigned SrcReg = MI.getOperand(1).getReg();
1450 if (isNAPhysCopy(SrcReg) && TargetRegisterInfo::isVirtualRegister(DstReg)) {
1451 // %vreg = COPY %physreg
1452 // Avoid using a datastructure which can track multiple live non-allocatable
1453 // phys->virt copies since LLVM doesn't seem to do this.
1454 NAPhysToVirtMIs.insert({SrcReg, &MI});
1455 return false;
1456 }
1457
1458 if (!(TargetRegisterInfo::isVirtualRegister(SrcReg) && isNAPhysCopy(DstReg)))
1459 return false;
1460
1461 // %physreg = COPY %vreg
1462 auto PrevCopy = NAPhysToVirtMIs.find(DstReg);
1463 if (PrevCopy == NAPhysToVirtMIs.end()) {
1464 // We can't remove the copy: there was an intervening clobber of the
1465 // non-allocatable physical register after the copy to virtual.
1466 LLVM_DEBUG(dbgs() << "NAPhysCopy: intervening clobber forbids erasing "
1467 << MI);
1468 return false;
1469 }
1470
1471 unsigned PrevDstReg = PrevCopy->second->getOperand(0).getReg();
1472 if (PrevDstReg == SrcReg) {
1473 // Remove the virt->phys copy: we saw the virtual register definition, and
1474 // the non-allocatable physical register's state hasn't changed since then.
1475 LLVM_DEBUG(dbgs() << "NAPhysCopy: erasing " << MI);
1476 ++NumNAPhysCopies;
1477 return true;
1478 }
1479
1480 // Potential missed optimization opportunity: we saw a different virtual
1481 // register get a copy of the non-allocatable physical register, and we only
1482 // track one such copy. Avoid getting confused by this new non-allocatable
1483 // physical register definition, and remove it from the tracked copies.
1484 LLVM_DEBUG(dbgs() << "NAPhysCopy: missed opportunity " << MI);
1485 NAPhysToVirtMIs.erase(PrevCopy);
1486 return false;
1487 }
1488
1489 /// \bried Returns true if \p MO is a virtual register operand.
isVirtualRegisterOperand(MachineOperand & MO)1490 static bool isVirtualRegisterOperand(MachineOperand &MO) {
1491 if (!MO.isReg())
1492 return false;
1493 return TargetRegisterInfo::isVirtualRegister(MO.getReg());
1494 }
1495
findTargetRecurrence(unsigned Reg,const SmallSet<unsigned,2> & TargetRegs,RecurrenceCycle & RC)1496 bool PeepholeOptimizer::findTargetRecurrence(
1497 unsigned Reg, const SmallSet<unsigned, 2> &TargetRegs,
1498 RecurrenceCycle &RC) {
1499 // Recurrence found if Reg is in TargetRegs.
1500 if (TargetRegs.count(Reg))
1501 return true;
1502
1503 // TODO: Curerntly, we only allow the last instruction of the recurrence
1504 // cycle (the instruction that feeds the PHI instruction) to have more than
1505 // one uses to guarantee that commuting operands does not tie registers
1506 // with overlapping live range. Once we have actual live range info of
1507 // each register, this constraint can be relaxed.
1508 if (!MRI->hasOneNonDBGUse(Reg))
1509 return false;
1510
1511 // Give up if the reccurrence chain length is longer than the limit.
1512 if (RC.size() >= MaxRecurrenceChain)
1513 return false;
1514
1515 MachineInstr &MI = *(MRI->use_instr_nodbg_begin(Reg));
1516 unsigned Idx = MI.findRegisterUseOperandIdx(Reg);
1517
1518 // Only interested in recurrences whose instructions have only one def, which
1519 // is a virtual register.
1520 if (MI.getDesc().getNumDefs() != 1)
1521 return false;
1522
1523 MachineOperand &DefOp = MI.getOperand(0);
1524 if (!isVirtualRegisterOperand(DefOp))
1525 return false;
1526
1527 // Check if def operand of MI is tied to any use operand. We are only
1528 // interested in the case that all the instructions in the recurrence chain
1529 // have there def operand tied with one of the use operand.
1530 unsigned TiedUseIdx;
1531 if (!MI.isRegTiedToUseOperand(0, &TiedUseIdx))
1532 return false;
1533
1534 if (Idx == TiedUseIdx) {
1535 RC.push_back(RecurrenceInstr(&MI));
1536 return findTargetRecurrence(DefOp.getReg(), TargetRegs, RC);
1537 } else {
1538 // If Idx is not TiedUseIdx, check if Idx is commutable with TiedUseIdx.
1539 unsigned CommIdx = TargetInstrInfo::CommuteAnyOperandIndex;
1540 if (TII->findCommutedOpIndices(MI, Idx, CommIdx) && CommIdx == TiedUseIdx) {
1541 RC.push_back(RecurrenceInstr(&MI, Idx, CommIdx));
1542 return findTargetRecurrence(DefOp.getReg(), TargetRegs, RC);
1543 }
1544 }
1545
1546 return false;
1547 }
1548
1549 /// Phi instructions will eventually be lowered to copy instructions.
1550 /// If phi is in a loop header, a recurrence may formulated around the source
1551 /// and destination of the phi. For such case commuting operands of the
1552 /// instructions in the recurrence may enable coalescing of the copy instruction
1553 /// generated from the phi. For example, if there is a recurrence of
1554 ///
1555 /// LoopHeader:
1556 /// %1 = phi(%0, %100)
1557 /// LoopLatch:
1558 /// %0<def, tied1> = ADD %2<def, tied0>, %1
1559 ///
1560 /// , the fact that %0 and %2 are in the same tied operands set makes
1561 /// the coalescing of copy instruction generated from the phi in
1562 /// LoopHeader(i.e. %1 = COPY %0) impossible, because %1 and
1563 /// %2 have overlapping live range. This introduces additional move
1564 /// instruction to the final assembly. However, if we commute %2 and
1565 /// %1 of ADD instruction, the redundant move instruction can be
1566 /// avoided.
optimizeRecurrence(MachineInstr & PHI)1567 bool PeepholeOptimizer::optimizeRecurrence(MachineInstr &PHI) {
1568 SmallSet<unsigned, 2> TargetRegs;
1569 for (unsigned Idx = 1; Idx < PHI.getNumOperands(); Idx += 2) {
1570 MachineOperand &MO = PHI.getOperand(Idx);
1571 assert(isVirtualRegisterOperand(MO) && "Invalid PHI instruction");
1572 TargetRegs.insert(MO.getReg());
1573 }
1574
1575 bool Changed = false;
1576 RecurrenceCycle RC;
1577 if (findTargetRecurrence(PHI.getOperand(0).getReg(), TargetRegs, RC)) {
1578 // Commutes operands of instructions in RC if necessary so that the copy to
1579 // be generated from PHI can be coalesced.
1580 LLVM_DEBUG(dbgs() << "Optimize recurrence chain from " << PHI);
1581 for (auto &RI : RC) {
1582 LLVM_DEBUG(dbgs() << "\tInst: " << *(RI.getMI()));
1583 auto CP = RI.getCommutePair();
1584 if (CP) {
1585 Changed = true;
1586 TII->commuteInstruction(*(RI.getMI()), false, (*CP).first,
1587 (*CP).second);
1588 LLVM_DEBUG(dbgs() << "\t\tCommuted: " << *(RI.getMI()));
1589 }
1590 }
1591 }
1592
1593 return Changed;
1594 }
1595
runOnMachineFunction(MachineFunction & MF)1596 bool PeepholeOptimizer::runOnMachineFunction(MachineFunction &MF) {
1597 if (skipFunction(MF.getFunction()))
1598 return false;
1599
1600 LLVM_DEBUG(dbgs() << "********** PEEPHOLE OPTIMIZER **********\n");
1601 LLVM_DEBUG(dbgs() << "********** Function: " << MF.getName() << '\n');
1602
1603 if (DisablePeephole)
1604 return false;
1605
1606 TII = MF.getSubtarget().getInstrInfo();
1607 TRI = MF.getSubtarget().getRegisterInfo();
1608 MRI = &MF.getRegInfo();
1609 DT = Aggressive ? &getAnalysis<MachineDominatorTree>() : nullptr;
1610 MLI = &getAnalysis<MachineLoopInfo>();
1611
1612 bool Changed = false;
1613
1614 for (MachineBasicBlock &MBB : MF) {
1615 bool SeenMoveImm = false;
1616
1617 // During this forward scan, at some point it needs to answer the question
1618 // "given a pointer to an MI in the current BB, is it located before or
1619 // after the current instruction".
1620 // To perform this, the following set keeps track of the MIs already seen
1621 // during the scan, if a MI is not in the set, it is assumed to be located
1622 // after. Newly created MIs have to be inserted in the set as well.
1623 SmallPtrSet<MachineInstr*, 16> LocalMIs;
1624 SmallSet<unsigned, 4> ImmDefRegs;
1625 DenseMap<unsigned, MachineInstr*> ImmDefMIs;
1626 SmallSet<unsigned, 16> FoldAsLoadDefCandidates;
1627
1628 // Track when a non-allocatable physical register is copied to a virtual
1629 // register so that useless moves can be removed.
1630 //
1631 // %physreg is the map index; MI is the last valid `%vreg = COPY %physreg`
1632 // without any intervening re-definition of %physreg.
1633 DenseMap<unsigned, MachineInstr *> NAPhysToVirtMIs;
1634
1635 // Set of virtual registers that are copied from.
1636 SmallSet<unsigned, 4> CopySrcRegs;
1637 DenseMap<unsigned, MachineInstr *> CopySrcMIs;
1638
1639 bool IsLoopHeader = MLI->isLoopHeader(&MBB);
1640
1641 for (MachineBasicBlock::iterator MII = MBB.begin(), MIE = MBB.end();
1642 MII != MIE; ) {
1643 MachineInstr *MI = &*MII;
1644 // We may be erasing MI below, increment MII now.
1645 ++MII;
1646 LocalMIs.insert(MI);
1647
1648 // Skip debug instructions. They should not affect this peephole optimization.
1649 if (MI->isDebugInstr())
1650 continue;
1651
1652 if (MI->isPosition())
1653 continue;
1654
1655 if (IsLoopHeader && MI->isPHI()) {
1656 if (optimizeRecurrence(*MI)) {
1657 Changed = true;
1658 continue;
1659 }
1660 }
1661
1662 if (!MI->isCopy()) {
1663 for (const MachineOperand &MO : MI->operands()) {
1664 // Visit all operands: definitions can be implicit or explicit.
1665 if (MO.isReg()) {
1666 unsigned Reg = MO.getReg();
1667 if (MO.isDef() && isNAPhysCopy(Reg)) {
1668 const auto &Def = NAPhysToVirtMIs.find(Reg);
1669 if (Def != NAPhysToVirtMIs.end()) {
1670 // A new definition of the non-allocatable physical register
1671 // invalidates previous copies.
1672 LLVM_DEBUG(dbgs()
1673 << "NAPhysCopy: invalidating because of " << *MI);
1674 NAPhysToVirtMIs.erase(Def);
1675 }
1676 }
1677 } else if (MO.isRegMask()) {
1678 const uint32_t *RegMask = MO.getRegMask();
1679 for (auto &RegMI : NAPhysToVirtMIs) {
1680 unsigned Def = RegMI.first;
1681 if (MachineOperand::clobbersPhysReg(RegMask, Def)) {
1682 LLVM_DEBUG(dbgs()
1683 << "NAPhysCopy: invalidating because of " << *MI);
1684 NAPhysToVirtMIs.erase(Def);
1685 }
1686 }
1687 }
1688 }
1689 }
1690
1691 if (MI->isImplicitDef() || MI->isKill())
1692 continue;
1693
1694 if (MI->isInlineAsm() || MI->hasUnmodeledSideEffects()) {
1695 // Blow away all non-allocatable physical registers knowledge since we
1696 // don't know what's correct anymore.
1697 //
1698 // FIXME: handle explicit asm clobbers.
1699 LLVM_DEBUG(dbgs() << "NAPhysCopy: blowing away all info due to "
1700 << *MI);
1701 NAPhysToVirtMIs.clear();
1702 }
1703
1704 if ((isUncoalescableCopy(*MI) &&
1705 optimizeUncoalescableCopy(*MI, LocalMIs)) ||
1706 (MI->isCompare() && optimizeCmpInstr(*MI)) ||
1707 (MI->isSelect() && optimizeSelect(*MI, LocalMIs))) {
1708 // MI is deleted.
1709 LocalMIs.erase(MI);
1710 Changed = true;
1711 continue;
1712 }
1713
1714 if (MI->isConditionalBranch() && optimizeCondBranch(*MI)) {
1715 Changed = true;
1716 continue;
1717 }
1718
1719 if (isCoalescableCopy(*MI) && optimizeCoalescableCopy(*MI)) {
1720 // MI is just rewritten.
1721 Changed = true;
1722 continue;
1723 }
1724
1725 if (MI->isCopy() &&
1726 (foldRedundantCopy(*MI, CopySrcRegs, CopySrcMIs) ||
1727 foldRedundantNAPhysCopy(*MI, NAPhysToVirtMIs))) {
1728 LocalMIs.erase(MI);
1729 MI->eraseFromParent();
1730 Changed = true;
1731 continue;
1732 }
1733
1734 if (isMoveImmediate(*MI, ImmDefRegs, ImmDefMIs)) {
1735 SeenMoveImm = true;
1736 } else {
1737 Changed |= optimizeExtInstr(*MI, MBB, LocalMIs);
1738 // optimizeExtInstr might have created new instructions after MI
1739 // and before the already incremented MII. Adjust MII so that the
1740 // next iteration sees the new instructions.
1741 MII = MI;
1742 ++MII;
1743 if (SeenMoveImm)
1744 Changed |= foldImmediate(*MI, ImmDefRegs, ImmDefMIs);
1745 }
1746
1747 // Check whether MI is a load candidate for folding into a later
1748 // instruction. If MI is not a candidate, check whether we can fold an
1749 // earlier load into MI.
1750 if (!isLoadFoldable(*MI, FoldAsLoadDefCandidates) &&
1751 !FoldAsLoadDefCandidates.empty()) {
1752
1753 // We visit each operand even after successfully folding a previous
1754 // one. This allows us to fold multiple loads into a single
1755 // instruction. We do assume that optimizeLoadInstr doesn't insert
1756 // foldable uses earlier in the argument list. Since we don't restart
1757 // iteration, we'd miss such cases.
1758 const MCInstrDesc &MIDesc = MI->getDesc();
1759 for (unsigned i = MIDesc.getNumDefs(); i != MI->getNumOperands();
1760 ++i) {
1761 const MachineOperand &MOp = MI->getOperand(i);
1762 if (!MOp.isReg())
1763 continue;
1764 unsigned FoldAsLoadDefReg = MOp.getReg();
1765 if (FoldAsLoadDefCandidates.count(FoldAsLoadDefReg)) {
1766 // We need to fold load after optimizeCmpInstr, since
1767 // optimizeCmpInstr can enable folding by converting SUB to CMP.
1768 // Save FoldAsLoadDefReg because optimizeLoadInstr() resets it and
1769 // we need it for markUsesInDebugValueAsUndef().
1770 unsigned FoldedReg = FoldAsLoadDefReg;
1771 MachineInstr *DefMI = nullptr;
1772 if (MachineInstr *FoldMI =
1773 TII->optimizeLoadInstr(*MI, MRI, FoldAsLoadDefReg, DefMI)) {
1774 // Update LocalMIs since we replaced MI with FoldMI and deleted
1775 // DefMI.
1776 LLVM_DEBUG(dbgs() << "Replacing: " << *MI);
1777 LLVM_DEBUG(dbgs() << " With: " << *FoldMI);
1778 LocalMIs.erase(MI);
1779 LocalMIs.erase(DefMI);
1780 LocalMIs.insert(FoldMI);
1781 MI->eraseFromParent();
1782 DefMI->eraseFromParent();
1783 MRI->markUsesInDebugValueAsUndef(FoldedReg);
1784 FoldAsLoadDefCandidates.erase(FoldedReg);
1785 ++NumLoadFold;
1786
1787 // MI is replaced with FoldMI so we can continue trying to fold
1788 Changed = true;
1789 MI = FoldMI;
1790 }
1791 }
1792 }
1793 }
1794
1795 // If we run into an instruction we can't fold across, discard
1796 // the load candidates. Note: We might be able to fold *into* this
1797 // instruction, so this needs to be after the folding logic.
1798 if (MI->isLoadFoldBarrier()) {
1799 LLVM_DEBUG(dbgs() << "Encountered load fold barrier on " << *MI);
1800 FoldAsLoadDefCandidates.clear();
1801 }
1802 }
1803 }
1804
1805 return Changed;
1806 }
1807
getNextSourceFromCopy()1808 ValueTrackerResult ValueTracker::getNextSourceFromCopy() {
1809 assert(Def->isCopy() && "Invalid definition");
1810 // Copy instruction are supposed to be: Def = Src.
1811 // If someone breaks this assumption, bad things will happen everywhere.
1812 assert(Def->getNumOperands() == 2 && "Invalid number of operands");
1813
1814 if (Def->getOperand(DefIdx).getSubReg() != DefSubReg)
1815 // If we look for a different subreg, it means we want a subreg of src.
1816 // Bails as we do not support composing subregs yet.
1817 return ValueTrackerResult();
1818 // Otherwise, we want the whole source.
1819 const MachineOperand &Src = Def->getOperand(1);
1820 if (Src.isUndef())
1821 return ValueTrackerResult();
1822 return ValueTrackerResult(Src.getReg(), Src.getSubReg());
1823 }
1824
getNextSourceFromBitcast()1825 ValueTrackerResult ValueTracker::getNextSourceFromBitcast() {
1826 assert(Def->isBitcast() && "Invalid definition");
1827
1828 // Bail if there are effects that a plain copy will not expose.
1829 if (Def->hasUnmodeledSideEffects())
1830 return ValueTrackerResult();
1831
1832 // Bitcasts with more than one def are not supported.
1833 if (Def->getDesc().getNumDefs() != 1)
1834 return ValueTrackerResult();
1835 const MachineOperand DefOp = Def->getOperand(DefIdx);
1836 if (DefOp.getSubReg() != DefSubReg)
1837 // If we look for a different subreg, it means we want a subreg of the src.
1838 // Bails as we do not support composing subregs yet.
1839 return ValueTrackerResult();
1840
1841 unsigned SrcIdx = Def->getNumOperands();
1842 for (unsigned OpIdx = DefIdx + 1, EndOpIdx = SrcIdx; OpIdx != EndOpIdx;
1843 ++OpIdx) {
1844 const MachineOperand &MO = Def->getOperand(OpIdx);
1845 if (!MO.isReg() || !MO.getReg())
1846 continue;
1847 // Ignore dead implicit defs.
1848 if (MO.isImplicit() && MO.isDead())
1849 continue;
1850 assert(!MO.isDef() && "We should have skipped all the definitions by now");
1851 if (SrcIdx != EndOpIdx)
1852 // Multiple sources?
1853 return ValueTrackerResult();
1854 SrcIdx = OpIdx;
1855 }
1856
1857 // Stop when any user of the bitcast is a SUBREG_TO_REG, replacing with a COPY
1858 // will break the assumed guarantees for the upper bits.
1859 for (const MachineInstr &UseMI : MRI.use_nodbg_instructions(DefOp.getReg())) {
1860 if (UseMI.isSubregToReg())
1861 return ValueTrackerResult();
1862 }
1863
1864 const MachineOperand &Src = Def->getOperand(SrcIdx);
1865 if (Src.isUndef())
1866 return ValueTrackerResult();
1867 return ValueTrackerResult(Src.getReg(), Src.getSubReg());
1868 }
1869
getNextSourceFromRegSequence()1870 ValueTrackerResult ValueTracker::getNextSourceFromRegSequence() {
1871 assert((Def->isRegSequence() || Def->isRegSequenceLike()) &&
1872 "Invalid definition");
1873
1874 if (Def->getOperand(DefIdx).getSubReg())
1875 // If we are composing subregs, bail out.
1876 // The case we are checking is Def.<subreg> = REG_SEQUENCE.
1877 // This should almost never happen as the SSA property is tracked at
1878 // the register level (as opposed to the subreg level).
1879 // I.e.,
1880 // Def.sub0 =
1881 // Def.sub1 =
1882 // is a valid SSA representation for Def.sub0 and Def.sub1, but not for
1883 // Def. Thus, it must not be generated.
1884 // However, some code could theoretically generates a single
1885 // Def.sub0 (i.e, not defining the other subregs) and we would
1886 // have this case.
1887 // If we can ascertain (or force) that this never happens, we could
1888 // turn that into an assertion.
1889 return ValueTrackerResult();
1890
1891 if (!TII)
1892 // We could handle the REG_SEQUENCE here, but we do not want to
1893 // duplicate the code from the generic TII.
1894 return ValueTrackerResult();
1895
1896 SmallVector<RegSubRegPairAndIdx, 8> RegSeqInputRegs;
1897 if (!TII->getRegSequenceInputs(*Def, DefIdx, RegSeqInputRegs))
1898 return ValueTrackerResult();
1899
1900 // We are looking at:
1901 // Def = REG_SEQUENCE v0, sub0, v1, sub1, ...
1902 // Check if one of the operand defines the subreg we are interested in.
1903 for (const RegSubRegPairAndIdx &RegSeqInput : RegSeqInputRegs) {
1904 if (RegSeqInput.SubIdx == DefSubReg) {
1905 if (RegSeqInput.SubReg)
1906 // Bail if we have to compose sub registers.
1907 return ValueTrackerResult();
1908
1909 return ValueTrackerResult(RegSeqInput.Reg, RegSeqInput.SubReg);
1910 }
1911 }
1912
1913 // If the subreg we are tracking is super-defined by another subreg,
1914 // we could follow this value. However, this would require to compose
1915 // the subreg and we do not do that for now.
1916 return ValueTrackerResult();
1917 }
1918
getNextSourceFromInsertSubreg()1919 ValueTrackerResult ValueTracker::getNextSourceFromInsertSubreg() {
1920 assert((Def->isInsertSubreg() || Def->isInsertSubregLike()) &&
1921 "Invalid definition");
1922
1923 if (Def->getOperand(DefIdx).getSubReg())
1924 // If we are composing subreg, bail out.
1925 // Same remark as getNextSourceFromRegSequence.
1926 // I.e., this may be turned into an assert.
1927 return ValueTrackerResult();
1928
1929 if (!TII)
1930 // We could handle the REG_SEQUENCE here, but we do not want to
1931 // duplicate the code from the generic TII.
1932 return ValueTrackerResult();
1933
1934 RegSubRegPair BaseReg;
1935 RegSubRegPairAndIdx InsertedReg;
1936 if (!TII->getInsertSubregInputs(*Def, DefIdx, BaseReg, InsertedReg))
1937 return ValueTrackerResult();
1938
1939 // We are looking at:
1940 // Def = INSERT_SUBREG v0, v1, sub1
1941 // There are two cases:
1942 // 1. DefSubReg == sub1, get v1.
1943 // 2. DefSubReg != sub1, the value may be available through v0.
1944
1945 // #1 Check if the inserted register matches the required sub index.
1946 if (InsertedReg.SubIdx == DefSubReg) {
1947 return ValueTrackerResult(InsertedReg.Reg, InsertedReg.SubReg);
1948 }
1949 // #2 Otherwise, if the sub register we are looking for is not partial
1950 // defined by the inserted element, we can look through the main
1951 // register (v0).
1952 const MachineOperand &MODef = Def->getOperand(DefIdx);
1953 // If the result register (Def) and the base register (v0) do not
1954 // have the same register class or if we have to compose
1955 // subregisters, bail out.
1956 if (MRI.getRegClass(MODef.getReg()) != MRI.getRegClass(BaseReg.Reg) ||
1957 BaseReg.SubReg)
1958 return ValueTrackerResult();
1959
1960 // Get the TRI and check if the inserted sub-register overlaps with the
1961 // sub-register we are tracking.
1962 const TargetRegisterInfo *TRI = MRI.getTargetRegisterInfo();
1963 if (!TRI ||
1964 !(TRI->getSubRegIndexLaneMask(DefSubReg) &
1965 TRI->getSubRegIndexLaneMask(InsertedReg.SubIdx)).none())
1966 return ValueTrackerResult();
1967 // At this point, the value is available in v0 via the same subreg
1968 // we used for Def.
1969 return ValueTrackerResult(BaseReg.Reg, DefSubReg);
1970 }
1971
getNextSourceFromExtractSubreg()1972 ValueTrackerResult ValueTracker::getNextSourceFromExtractSubreg() {
1973 assert((Def->isExtractSubreg() ||
1974 Def->isExtractSubregLike()) && "Invalid definition");
1975 // We are looking at:
1976 // Def = EXTRACT_SUBREG v0, sub0
1977
1978 // Bail if we have to compose sub registers.
1979 // Indeed, if DefSubReg != 0, we would have to compose it with sub0.
1980 if (DefSubReg)
1981 return ValueTrackerResult();
1982
1983 if (!TII)
1984 // We could handle the EXTRACT_SUBREG here, but we do not want to
1985 // duplicate the code from the generic TII.
1986 return ValueTrackerResult();
1987
1988 RegSubRegPairAndIdx ExtractSubregInputReg;
1989 if (!TII->getExtractSubregInputs(*Def, DefIdx, ExtractSubregInputReg))
1990 return ValueTrackerResult();
1991
1992 // Bail if we have to compose sub registers.
1993 // Likewise, if v0.subreg != 0, we would have to compose v0.subreg with sub0.
1994 if (ExtractSubregInputReg.SubReg)
1995 return ValueTrackerResult();
1996 // Otherwise, the value is available in the v0.sub0.
1997 return ValueTrackerResult(ExtractSubregInputReg.Reg,
1998 ExtractSubregInputReg.SubIdx);
1999 }
2000
getNextSourceFromSubregToReg()2001 ValueTrackerResult ValueTracker::getNextSourceFromSubregToReg() {
2002 assert(Def->isSubregToReg() && "Invalid definition");
2003 // We are looking at:
2004 // Def = SUBREG_TO_REG Imm, v0, sub0
2005
2006 // Bail if we have to compose sub registers.
2007 // If DefSubReg != sub0, we would have to check that all the bits
2008 // we track are included in sub0 and if yes, we would have to
2009 // determine the right subreg in v0.
2010 if (DefSubReg != Def->getOperand(3).getImm())
2011 return ValueTrackerResult();
2012 // Bail if we have to compose sub registers.
2013 // Likewise, if v0.subreg != 0, we would have to compose it with sub0.
2014 if (Def->getOperand(2).getSubReg())
2015 return ValueTrackerResult();
2016
2017 return ValueTrackerResult(Def->getOperand(2).getReg(),
2018 Def->getOperand(3).getImm());
2019 }
2020
2021 /// Explore each PHI incoming operand and return its sources.
getNextSourceFromPHI()2022 ValueTrackerResult ValueTracker::getNextSourceFromPHI() {
2023 assert(Def->isPHI() && "Invalid definition");
2024 ValueTrackerResult Res;
2025
2026 // If we look for a different subreg, bail as we do not support composing
2027 // subregs yet.
2028 if (Def->getOperand(0).getSubReg() != DefSubReg)
2029 return ValueTrackerResult();
2030
2031 // Return all register sources for PHI instructions.
2032 for (unsigned i = 1, e = Def->getNumOperands(); i < e; i += 2) {
2033 const MachineOperand &MO = Def->getOperand(i);
2034 assert(MO.isReg() && "Invalid PHI instruction");
2035 // We have no code to deal with undef operands. They shouldn't happen in
2036 // normal programs anyway.
2037 if (MO.isUndef())
2038 return ValueTrackerResult();
2039 Res.addSource(MO.getReg(), MO.getSubReg());
2040 }
2041
2042 return Res;
2043 }
2044
getNextSourceImpl()2045 ValueTrackerResult ValueTracker::getNextSourceImpl() {
2046 assert(Def && "This method needs a valid definition");
2047
2048 assert(((Def->getOperand(DefIdx).isDef() &&
2049 (DefIdx < Def->getDesc().getNumDefs() ||
2050 Def->getDesc().isVariadic())) ||
2051 Def->getOperand(DefIdx).isImplicit()) &&
2052 "Invalid DefIdx");
2053 if (Def->isCopy())
2054 return getNextSourceFromCopy();
2055 if (Def->isBitcast())
2056 return getNextSourceFromBitcast();
2057 // All the remaining cases involve "complex" instructions.
2058 // Bail if we did not ask for the advanced tracking.
2059 if (DisableAdvCopyOpt)
2060 return ValueTrackerResult();
2061 if (Def->isRegSequence() || Def->isRegSequenceLike())
2062 return getNextSourceFromRegSequence();
2063 if (Def->isInsertSubreg() || Def->isInsertSubregLike())
2064 return getNextSourceFromInsertSubreg();
2065 if (Def->isExtractSubreg() || Def->isExtractSubregLike())
2066 return getNextSourceFromExtractSubreg();
2067 if (Def->isSubregToReg())
2068 return getNextSourceFromSubregToReg();
2069 if (Def->isPHI())
2070 return getNextSourceFromPHI();
2071 return ValueTrackerResult();
2072 }
2073
getNextSource()2074 ValueTrackerResult ValueTracker::getNextSource() {
2075 // If we reach a point where we cannot move up in the use-def chain,
2076 // there is nothing we can get.
2077 if (!Def)
2078 return ValueTrackerResult();
2079
2080 ValueTrackerResult Res = getNextSourceImpl();
2081 if (Res.isValid()) {
2082 // Update definition, definition index, and subregister for the
2083 // next call of getNextSource.
2084 // Update the current register.
2085 bool OneRegSrc = Res.getNumSources() == 1;
2086 if (OneRegSrc)
2087 Reg = Res.getSrcReg(0);
2088 // Update the result before moving up in the use-def chain
2089 // with the instruction containing the last found sources.
2090 Res.setInst(Def);
2091
2092 // If we can still move up in the use-def chain, move to the next
2093 // definition.
2094 if (!TargetRegisterInfo::isPhysicalRegister(Reg) && OneRegSrc) {
2095 MachineRegisterInfo::def_iterator DI = MRI.def_begin(Reg);
2096 if (DI != MRI.def_end()) {
2097 Def = DI->getParent();
2098 DefIdx = DI.getOperandNo();
2099 DefSubReg = Res.getSrcSubReg(0);
2100 } else {
2101 Def = nullptr;
2102 }
2103 return Res;
2104 }
2105 }
2106 // If we end up here, this means we will not be able to find another source
2107 // for the next iteration. Make sure any new call to getNextSource bails out
2108 // early by cutting the use-def chain.
2109 Def = nullptr;
2110 return Res;
2111 }
2112