1 //===-- RegAllocBasic.cpp - Basic Register Allocator ----------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the RABasic function pass, which provides a minimal
11 // implementation of the basic register allocator.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "AllocationOrder.h"
16 #include "LiveDebugVariables.h"
17 #include "RegAllocBase.h"
18 #include "Spiller.h"
19 #include "llvm/Analysis/AliasAnalysis.h"
20 #include "llvm/CodeGen/CalcSpillWeights.h"
21 #include "llvm/CodeGen/LiveIntervals.h"
22 #include "llvm/CodeGen/LiveRangeEdit.h"
23 #include "llvm/CodeGen/LiveRegMatrix.h"
24 #include "llvm/CodeGen/LiveStacks.h"
25 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
26 #include "llvm/CodeGen/MachineFunctionPass.h"
27 #include "llvm/CodeGen/MachineInstr.h"
28 #include "llvm/CodeGen/MachineLoopInfo.h"
29 #include "llvm/CodeGen/MachineRegisterInfo.h"
30 #include "llvm/CodeGen/Passes.h"
31 #include "llvm/CodeGen/RegAllocRegistry.h"
32 #include "llvm/CodeGen/TargetRegisterInfo.h"
33 #include "llvm/CodeGen/VirtRegMap.h"
34 #include "llvm/PassAnalysisSupport.h"
35 #include "llvm/Support/Debug.h"
36 #include "llvm/Support/raw_ostream.h"
37 #include <cstdlib>
38 #include <queue>
39
40 using namespace llvm;
41
42 #define DEBUG_TYPE "regalloc"
43
44 static RegisterRegAlloc basicRegAlloc("basic", "basic register allocator",
45 createBasicRegisterAllocator);
46
47 namespace {
48 struct CompSpillWeight {
operator ()__anon3f1903790111::CompSpillWeight49 bool operator()(LiveInterval *A, LiveInterval *B) const {
50 return A->weight < B->weight;
51 }
52 };
53 }
54
55 namespace {
56 /// RABasic provides a minimal implementation of the basic register allocation
57 /// algorithm. It prioritizes live virtual registers by spill weight and spills
58 /// whenever a register is unavailable. This is not practical in production but
59 /// provides a useful baseline both for measuring other allocators and comparing
60 /// the speed of the basic algorithm against other styles of allocators.
61 class RABasic : public MachineFunctionPass,
62 public RegAllocBase,
63 private LiveRangeEdit::Delegate {
64 // context
65 MachineFunction *MF;
66
67 // state
68 std::unique_ptr<Spiller> SpillerInstance;
69 std::priority_queue<LiveInterval*, std::vector<LiveInterval*>,
70 CompSpillWeight> Queue;
71
72 // Scratch space. Allocated here to avoid repeated malloc calls in
73 // selectOrSplit().
74 BitVector UsableRegs;
75
76 bool LRE_CanEraseVirtReg(unsigned) override;
77 void LRE_WillShrinkVirtReg(unsigned) override;
78
79 public:
80 RABasic();
81
82 /// Return the pass name.
getPassName() const83 StringRef getPassName() const override { return "Basic Register Allocator"; }
84
85 /// RABasic analysis usage.
86 void getAnalysisUsage(AnalysisUsage &AU) const override;
87
88 void releaseMemory() override;
89
spiller()90 Spiller &spiller() override { return *SpillerInstance; }
91
enqueue(LiveInterval * LI)92 void enqueue(LiveInterval *LI) override {
93 Queue.push(LI);
94 }
95
dequeue()96 LiveInterval *dequeue() override {
97 if (Queue.empty())
98 return nullptr;
99 LiveInterval *LI = Queue.top();
100 Queue.pop();
101 return LI;
102 }
103
104 unsigned selectOrSplit(LiveInterval &VirtReg,
105 SmallVectorImpl<unsigned> &SplitVRegs) override;
106
107 /// Perform register allocation.
108 bool runOnMachineFunction(MachineFunction &mf) override;
109
getRequiredProperties() const110 MachineFunctionProperties getRequiredProperties() const override {
111 return MachineFunctionProperties().set(
112 MachineFunctionProperties::Property::NoPHIs);
113 }
114
115 // Helper for spilling all live virtual registers currently unified under preg
116 // that interfere with the most recently queried lvr. Return true if spilling
117 // was successful, and append any new spilled/split intervals to splitLVRs.
118 bool spillInterferences(LiveInterval &VirtReg, unsigned PhysReg,
119 SmallVectorImpl<unsigned> &SplitVRegs);
120
121 static char ID;
122 };
123
124 char RABasic::ID = 0;
125
126 } // end anonymous namespace
127
128 char &llvm::RABasicID = RABasic::ID;
129
130 INITIALIZE_PASS_BEGIN(RABasic, "regallocbasic", "Basic Register Allocator",
131 false, false)
INITIALIZE_PASS_DEPENDENCY(LiveDebugVariables)132 INITIALIZE_PASS_DEPENDENCY(LiveDebugVariables)
133 INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
134 INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
135 INITIALIZE_PASS_DEPENDENCY(RegisterCoalescer)
136 INITIALIZE_PASS_DEPENDENCY(MachineScheduler)
137 INITIALIZE_PASS_DEPENDENCY(LiveStacks)
138 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
139 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
140 INITIALIZE_PASS_DEPENDENCY(VirtRegMap)
141 INITIALIZE_PASS_DEPENDENCY(LiveRegMatrix)
142 INITIALIZE_PASS_END(RABasic, "regallocbasic", "Basic Register Allocator", false,
143 false)
144
145 bool RABasic::LRE_CanEraseVirtReg(unsigned VirtReg) {
146 LiveInterval &LI = LIS->getInterval(VirtReg);
147 if (VRM->hasPhys(VirtReg)) {
148 Matrix->unassign(LI);
149 aboutToRemoveInterval(LI);
150 return true;
151 }
152 // Unassigned virtreg is probably in the priority queue.
153 // RegAllocBase will erase it after dequeueing.
154 // Nonetheless, clear the live-range so that the debug
155 // dump will show the right state for that VirtReg.
156 LI.clear();
157 return false;
158 }
159
LRE_WillShrinkVirtReg(unsigned VirtReg)160 void RABasic::LRE_WillShrinkVirtReg(unsigned VirtReg) {
161 if (!VRM->hasPhys(VirtReg))
162 return;
163
164 // Register is assigned, put it back on the queue for reassignment.
165 LiveInterval &LI = LIS->getInterval(VirtReg);
166 Matrix->unassign(LI);
167 enqueue(&LI);
168 }
169
RABasic()170 RABasic::RABasic(): MachineFunctionPass(ID) {
171 }
172
getAnalysisUsage(AnalysisUsage & AU) const173 void RABasic::getAnalysisUsage(AnalysisUsage &AU) const {
174 AU.setPreservesCFG();
175 AU.addRequired<AAResultsWrapperPass>();
176 AU.addPreserved<AAResultsWrapperPass>();
177 AU.addRequired<LiveIntervals>();
178 AU.addPreserved<LiveIntervals>();
179 AU.addPreserved<SlotIndexes>();
180 AU.addRequired<LiveDebugVariables>();
181 AU.addPreserved<LiveDebugVariables>();
182 AU.addRequired<LiveStacks>();
183 AU.addPreserved<LiveStacks>();
184 AU.addRequired<MachineBlockFrequencyInfo>();
185 AU.addPreserved<MachineBlockFrequencyInfo>();
186 AU.addRequiredID(MachineDominatorsID);
187 AU.addPreservedID(MachineDominatorsID);
188 AU.addRequired<MachineLoopInfo>();
189 AU.addPreserved<MachineLoopInfo>();
190 AU.addRequired<VirtRegMap>();
191 AU.addPreserved<VirtRegMap>();
192 AU.addRequired<LiveRegMatrix>();
193 AU.addPreserved<LiveRegMatrix>();
194 MachineFunctionPass::getAnalysisUsage(AU);
195 }
196
releaseMemory()197 void RABasic::releaseMemory() {
198 SpillerInstance.reset();
199 }
200
201
202 // Spill or split all live virtual registers currently unified under PhysReg
203 // that interfere with VirtReg. The newly spilled or split live intervals are
204 // returned by appending them to SplitVRegs.
spillInterferences(LiveInterval & VirtReg,unsigned PhysReg,SmallVectorImpl<unsigned> & SplitVRegs)205 bool RABasic::spillInterferences(LiveInterval &VirtReg, unsigned PhysReg,
206 SmallVectorImpl<unsigned> &SplitVRegs) {
207 // Record each interference and determine if all are spillable before mutating
208 // either the union or live intervals.
209 SmallVector<LiveInterval*, 8> Intfs;
210
211 // Collect interferences assigned to any alias of the physical register.
212 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
213 LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units);
214 Q.collectInterferingVRegs();
215 for (unsigned i = Q.interferingVRegs().size(); i; --i) {
216 LiveInterval *Intf = Q.interferingVRegs()[i - 1];
217 if (!Intf->isSpillable() || Intf->weight > VirtReg.weight)
218 return false;
219 Intfs.push_back(Intf);
220 }
221 }
222 LLVM_DEBUG(dbgs() << "spilling " << printReg(PhysReg, TRI)
223 << " interferences with " << VirtReg << "\n");
224 assert(!Intfs.empty() && "expected interference");
225
226 // Spill each interfering vreg allocated to PhysReg or an alias.
227 for (unsigned i = 0, e = Intfs.size(); i != e; ++i) {
228 LiveInterval &Spill = *Intfs[i];
229
230 // Skip duplicates.
231 if (!VRM->hasPhys(Spill.reg))
232 continue;
233
234 // Deallocate the interfering vreg by removing it from the union.
235 // A LiveInterval instance may not be in a union during modification!
236 Matrix->unassign(Spill);
237
238 // Spill the extracted interval.
239 LiveRangeEdit LRE(&Spill, SplitVRegs, *MF, *LIS, VRM, this, &DeadRemats);
240 spiller().spill(LRE);
241 }
242 return true;
243 }
244
245 // Driver for the register assignment and splitting heuristics.
246 // Manages iteration over the LiveIntervalUnions.
247 //
248 // This is a minimal implementation of register assignment and splitting that
249 // spills whenever we run out of registers.
250 //
251 // selectOrSplit can only be called once per live virtual register. We then do a
252 // single interference test for each register the correct class until we find an
253 // available register. So, the number of interference tests in the worst case is
254 // |vregs| * |machineregs|. And since the number of interference tests is
255 // minimal, there is no value in caching them outside the scope of
256 // selectOrSplit().
selectOrSplit(LiveInterval & VirtReg,SmallVectorImpl<unsigned> & SplitVRegs)257 unsigned RABasic::selectOrSplit(LiveInterval &VirtReg,
258 SmallVectorImpl<unsigned> &SplitVRegs) {
259 // Populate a list of physical register spill candidates.
260 SmallVector<unsigned, 8> PhysRegSpillCands;
261
262 // Check for an available register in this class.
263 AllocationOrder Order(VirtReg.reg, *VRM, RegClassInfo, Matrix);
264 while (unsigned PhysReg = Order.next()) {
265 // Check for interference in PhysReg
266 switch (Matrix->checkInterference(VirtReg, PhysReg)) {
267 case LiveRegMatrix::IK_Free:
268 // PhysReg is available, allocate it.
269 return PhysReg;
270
271 case LiveRegMatrix::IK_VirtReg:
272 // Only virtual registers in the way, we may be able to spill them.
273 PhysRegSpillCands.push_back(PhysReg);
274 continue;
275
276 default:
277 // RegMask or RegUnit interference.
278 continue;
279 }
280 }
281
282 // Try to spill another interfering reg with less spill weight.
283 for (SmallVectorImpl<unsigned>::iterator PhysRegI = PhysRegSpillCands.begin(),
284 PhysRegE = PhysRegSpillCands.end(); PhysRegI != PhysRegE; ++PhysRegI) {
285 if (!spillInterferences(VirtReg, *PhysRegI, SplitVRegs))
286 continue;
287
288 assert(!Matrix->checkInterference(VirtReg, *PhysRegI) &&
289 "Interference after spill.");
290 // Tell the caller to allocate to this newly freed physical register.
291 return *PhysRegI;
292 }
293
294 // No other spill candidates were found, so spill the current VirtReg.
295 LLVM_DEBUG(dbgs() << "spilling: " << VirtReg << '\n');
296 if (!VirtReg.isSpillable())
297 return ~0u;
298 LiveRangeEdit LRE(&VirtReg, SplitVRegs, *MF, *LIS, VRM, this, &DeadRemats);
299 spiller().spill(LRE);
300
301 // The live virtual register requesting allocation was spilled, so tell
302 // the caller not to allocate anything during this round.
303 return 0;
304 }
305
runOnMachineFunction(MachineFunction & mf)306 bool RABasic::runOnMachineFunction(MachineFunction &mf) {
307 LLVM_DEBUG(dbgs() << "********** BASIC REGISTER ALLOCATION **********\n"
308 << "********** Function: " << mf.getName() << '\n');
309
310 MF = &mf;
311 RegAllocBase::init(getAnalysis<VirtRegMap>(),
312 getAnalysis<LiveIntervals>(),
313 getAnalysis<LiveRegMatrix>());
314
315 calculateSpillWeightsAndHints(*LIS, *MF, VRM,
316 getAnalysis<MachineLoopInfo>(),
317 getAnalysis<MachineBlockFrequencyInfo>());
318
319 SpillerInstance.reset(createInlineSpiller(*this, *MF, *VRM));
320
321 allocatePhysRegs();
322 postOptimization();
323
324 // Diagnostic output before rewriting
325 LLVM_DEBUG(dbgs() << "Post alloc VirtRegMap:\n" << *VRM << "\n");
326
327 releaseMemory();
328 return true;
329 }
330
createBasicRegisterAllocator()331 FunctionPass* llvm::createBasicRegisterAllocator()
332 {
333 return new RABasic();
334 }
335