1 //===- FastISel.cpp - Implementation of the FastISel class ----------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains the implementation of the FastISel class.
11 //
12 // "Fast" instruction selection is designed to emit very poor code quickly.
13 // Also, it is not designed to be able to do much lowering, so most illegal
14 // types (e.g. i64 on 32-bit targets) and operations are not supported. It is
15 // also not intended to be able to do much optimization, except in a few cases
16 // where doing optimizations reduces overall compile time. For example, folding
17 // constants into immediate fields is often done, because it's cheap and it
18 // reduces the number of instructions later phases have to examine.
19 //
20 // "Fast" instruction selection is able to fail gracefully and transfer
21 // control to the SelectionDAG selector for operations that it doesn't
22 // support. In many cases, this allows us to avoid duplicating a lot of
23 // the complicated lowering logic that SelectionDAG currently has.
24 //
25 // The intended use for "fast" instruction selection is "-O0" mode
26 // compilation, where the quality of the generated code is irrelevant when
27 // weighed against the speed at which the code can be generated. Also,
28 // at -O0, the LLVM optimizers are not running, and this makes the
29 // compile time of codegen a much higher portion of the overall compile
30 // time. Despite its limitations, "fast" instruction selection is able to
31 // handle enough code on its own to provide noticeable overall speedups
32 // in -O0 compiles.
33 //
34 // Basic operations are supported in a target-independent way, by reading
35 // the same instruction descriptions that the SelectionDAG selector reads,
36 // and identifying simple arithmetic operations that can be directly selected
37 // from simple operators. More complicated operations currently require
38 // target-specific code.
39 //
40 //===----------------------------------------------------------------------===//
41
42 #include "llvm/CodeGen/FastISel.h"
43 #include "llvm/ADT/APFloat.h"
44 #include "llvm/ADT/APSInt.h"
45 #include "llvm/ADT/DenseMap.h"
46 #include "llvm/ADT/Optional.h"
47 #include "llvm/ADT/SmallPtrSet.h"
48 #include "llvm/ADT/SmallString.h"
49 #include "llvm/ADT/SmallVector.h"
50 #include "llvm/ADT/Statistic.h"
51 #include "llvm/Analysis/BranchProbabilityInfo.h"
52 #include "llvm/Analysis/TargetLibraryInfo.h"
53 #include "llvm/CodeGen/Analysis.h"
54 #include "llvm/CodeGen/FunctionLoweringInfo.h"
55 #include "llvm/CodeGen/ISDOpcodes.h"
56 #include "llvm/CodeGen/MachineBasicBlock.h"
57 #include "llvm/CodeGen/MachineFrameInfo.h"
58 #include "llvm/CodeGen/MachineInstr.h"
59 #include "llvm/CodeGen/MachineInstrBuilder.h"
60 #include "llvm/CodeGen/MachineMemOperand.h"
61 #include "llvm/CodeGen/MachineModuleInfo.h"
62 #include "llvm/CodeGen/MachineOperand.h"
63 #include "llvm/CodeGen/MachineRegisterInfo.h"
64 #include "llvm/CodeGen/StackMaps.h"
65 #include "llvm/CodeGen/TargetInstrInfo.h"
66 #include "llvm/CodeGen/TargetLowering.h"
67 #include "llvm/CodeGen/TargetSubtargetInfo.h"
68 #include "llvm/CodeGen/ValueTypes.h"
69 #include "llvm/IR/Argument.h"
70 #include "llvm/IR/Attributes.h"
71 #include "llvm/IR/BasicBlock.h"
72 #include "llvm/IR/CallSite.h"
73 #include "llvm/IR/CallingConv.h"
74 #include "llvm/IR/Constant.h"
75 #include "llvm/IR/Constants.h"
76 #include "llvm/IR/DataLayout.h"
77 #include "llvm/IR/DebugInfo.h"
78 #include "llvm/IR/DebugLoc.h"
79 #include "llvm/IR/DerivedTypes.h"
80 #include "llvm/IR/Function.h"
81 #include "llvm/IR/GetElementPtrTypeIterator.h"
82 #include "llvm/IR/GlobalValue.h"
83 #include "llvm/IR/InlineAsm.h"
84 #include "llvm/IR/InstrTypes.h"
85 #include "llvm/IR/Instruction.h"
86 #include "llvm/IR/Instructions.h"
87 #include "llvm/IR/IntrinsicInst.h"
88 #include "llvm/IR/LLVMContext.h"
89 #include "llvm/IR/Mangler.h"
90 #include "llvm/IR/Metadata.h"
91 #include "llvm/IR/Operator.h"
92 #include "llvm/IR/Type.h"
93 #include "llvm/IR/User.h"
94 #include "llvm/IR/Value.h"
95 #include "llvm/MC/MCContext.h"
96 #include "llvm/MC/MCInstrDesc.h"
97 #include "llvm/MC/MCRegisterInfo.h"
98 #include "llvm/Support/Casting.h"
99 #include "llvm/Support/Debug.h"
100 #include "llvm/Support/ErrorHandling.h"
101 #include "llvm/Support/MachineValueType.h"
102 #include "llvm/Support/MathExtras.h"
103 #include "llvm/Support/raw_ostream.h"
104 #include "llvm/Target/TargetMachine.h"
105 #include "llvm/Target/TargetOptions.h"
106 #include <algorithm>
107 #include <cassert>
108 #include <cstdint>
109 #include <iterator>
110 #include <utility>
111
112 using namespace llvm;
113
114 #define DEBUG_TYPE "isel"
115
116 // FIXME: Remove this after the feature has proven reliable.
117 static cl::opt<bool> SinkLocalValues("fast-isel-sink-local-values",
118 cl::init(true), cl::Hidden,
119 cl::desc("Sink local values in FastISel"));
120
121 STATISTIC(NumFastIselSuccessIndependent, "Number of insts selected by "
122 "target-independent selector");
123 STATISTIC(NumFastIselSuccessTarget, "Number of insts selected by "
124 "target-specific selector");
125 STATISTIC(NumFastIselDead, "Number of dead insts removed on failure");
126
127 /// Set the current block to which generated machine instructions will be
128 /// appended.
startNewBlock()129 void FastISel::startNewBlock() {
130 assert(LocalValueMap.empty() &&
131 "local values should be cleared after finishing a BB");
132
133 // Instructions are appended to FuncInfo.MBB. If the basic block already
134 // contains labels or copies, use the last instruction as the last local
135 // value.
136 EmitStartPt = nullptr;
137 if (!FuncInfo.MBB->empty())
138 EmitStartPt = &FuncInfo.MBB->back();
139 LastLocalValue = EmitStartPt;
140 }
141
142 /// Flush the local CSE map and sink anything we can.
finishBasicBlock()143 void FastISel::finishBasicBlock() { flushLocalValueMap(); }
144
lowerArguments()145 bool FastISel::lowerArguments() {
146 if (!FuncInfo.CanLowerReturn)
147 // Fallback to SDISel argument lowering code to deal with sret pointer
148 // parameter.
149 return false;
150
151 if (!fastLowerArguments())
152 return false;
153
154 // Enter arguments into ValueMap for uses in non-entry BBs.
155 for (Function::const_arg_iterator I = FuncInfo.Fn->arg_begin(),
156 E = FuncInfo.Fn->arg_end();
157 I != E; ++I) {
158 DenseMap<const Value *, unsigned>::iterator VI = LocalValueMap.find(&*I);
159 assert(VI != LocalValueMap.end() && "Missed an argument?");
160 FuncInfo.ValueMap[&*I] = VI->second;
161 }
162 return true;
163 }
164
165 /// Return the defined register if this instruction defines exactly one
166 /// virtual register and uses no other virtual registers. Otherwise return 0.
findSinkableLocalRegDef(MachineInstr & MI)167 static unsigned findSinkableLocalRegDef(MachineInstr &MI) {
168 unsigned RegDef = 0;
169 for (const MachineOperand &MO : MI.operands()) {
170 if (!MO.isReg())
171 continue;
172 if (MO.isDef()) {
173 if (RegDef)
174 return 0;
175 RegDef = MO.getReg();
176 } else if (TargetRegisterInfo::isVirtualRegister(MO.getReg())) {
177 // This is another use of a vreg. Don't try to sink it.
178 return 0;
179 }
180 }
181 return RegDef;
182 }
183
flushLocalValueMap()184 void FastISel::flushLocalValueMap() {
185 // Try to sink local values down to their first use so that we can give them a
186 // better debug location. This has the side effect of shrinking local value
187 // live ranges, which helps out fast regalloc.
188 if (SinkLocalValues && LastLocalValue != EmitStartPt) {
189 // Sink local value materialization instructions between EmitStartPt and
190 // LastLocalValue. Visit them bottom-up, starting from LastLocalValue, to
191 // avoid inserting into the range that we're iterating over.
192 MachineBasicBlock::reverse_iterator RE =
193 EmitStartPt ? MachineBasicBlock::reverse_iterator(EmitStartPt)
194 : FuncInfo.MBB->rend();
195 MachineBasicBlock::reverse_iterator RI(LastLocalValue);
196
197 InstOrderMap OrderMap;
198 for (; RI != RE;) {
199 MachineInstr &LocalMI = *RI;
200 ++RI;
201 bool Store = true;
202 if (!LocalMI.isSafeToMove(nullptr, Store))
203 continue;
204 unsigned DefReg = findSinkableLocalRegDef(LocalMI);
205 if (DefReg == 0)
206 continue;
207
208 sinkLocalValueMaterialization(LocalMI, DefReg, OrderMap);
209 }
210 }
211
212 LocalValueMap.clear();
213 LastLocalValue = EmitStartPt;
214 recomputeInsertPt();
215 SavedInsertPt = FuncInfo.InsertPt;
216 LastFlushPoint = FuncInfo.InsertPt;
217 }
218
isRegUsedByPhiNodes(unsigned DefReg,FunctionLoweringInfo & FuncInfo)219 static bool isRegUsedByPhiNodes(unsigned DefReg,
220 FunctionLoweringInfo &FuncInfo) {
221 for (auto &P : FuncInfo.PHINodesToUpdate)
222 if (P.second == DefReg)
223 return true;
224 return false;
225 }
226
227 /// Build a map of instruction orders. Return the first terminator and its
228 /// order. Consider EH_LABEL instructions to be terminators as well, since local
229 /// values for phis after invokes must be materialized before the call.
initialize(MachineBasicBlock * MBB,MachineBasicBlock::iterator LastFlushPoint)230 void FastISel::InstOrderMap::initialize(
231 MachineBasicBlock *MBB, MachineBasicBlock::iterator LastFlushPoint) {
232 unsigned Order = 0;
233 for (MachineInstr &I : *MBB) {
234 if (!FirstTerminator &&
235 (I.isTerminator() || (I.isEHLabel() && &I != &MBB->front()))) {
236 FirstTerminator = &I;
237 FirstTerminatorOrder = Order;
238 }
239 Orders[&I] = Order++;
240
241 // We don't need to order instructions past the last flush point.
242 if (I.getIterator() == LastFlushPoint)
243 break;
244 }
245 }
246
sinkLocalValueMaterialization(MachineInstr & LocalMI,unsigned DefReg,InstOrderMap & OrderMap)247 void FastISel::sinkLocalValueMaterialization(MachineInstr &LocalMI,
248 unsigned DefReg,
249 InstOrderMap &OrderMap) {
250 // If this register is used by a register fixup, MRI will not contain all
251 // the uses until after register fixups, so don't attempt to sink or DCE
252 // this instruction. Register fixups typically come from no-op cast
253 // instructions, which replace the cast instruction vreg with the local
254 // value vreg.
255 if (FuncInfo.RegsWithFixups.count(DefReg))
256 return;
257
258 // We can DCE this instruction if there are no uses and it wasn't a
259 // materialized for a successor PHI node.
260 bool UsedByPHI = isRegUsedByPhiNodes(DefReg, FuncInfo);
261 if (!UsedByPHI && MRI.use_nodbg_empty(DefReg)) {
262 if (EmitStartPt == &LocalMI)
263 EmitStartPt = EmitStartPt->getPrevNode();
264 LLVM_DEBUG(dbgs() << "removing dead local value materialization "
265 << LocalMI);
266 OrderMap.Orders.erase(&LocalMI);
267 LocalMI.eraseFromParent();
268 return;
269 }
270
271 // Number the instructions if we haven't yet so we can efficiently find the
272 // earliest use.
273 if (OrderMap.Orders.empty())
274 OrderMap.initialize(FuncInfo.MBB, LastFlushPoint);
275
276 // Find the first user in the BB.
277 MachineInstr *FirstUser = nullptr;
278 unsigned FirstOrder = std::numeric_limits<unsigned>::max();
279 for (MachineInstr &UseInst : MRI.use_nodbg_instructions(DefReg)) {
280 auto I = OrderMap.Orders.find(&UseInst);
281 assert(I != OrderMap.Orders.end() &&
282 "local value used by instruction outside local region");
283 unsigned UseOrder = I->second;
284 if (UseOrder < FirstOrder) {
285 FirstOrder = UseOrder;
286 FirstUser = &UseInst;
287 }
288 }
289
290 // The insertion point will be the first terminator or the first user,
291 // whichever came first. If there was no terminator, this must be a
292 // fallthrough block and the insertion point is the end of the block.
293 MachineBasicBlock::instr_iterator SinkPos;
294 if (UsedByPHI && OrderMap.FirstTerminatorOrder < FirstOrder) {
295 FirstOrder = OrderMap.FirstTerminatorOrder;
296 SinkPos = OrderMap.FirstTerminator->getIterator();
297 } else if (FirstUser) {
298 SinkPos = FirstUser->getIterator();
299 } else {
300 assert(UsedByPHI && "must be users if not used by a phi");
301 SinkPos = FuncInfo.MBB->instr_end();
302 }
303
304 // Collect all DBG_VALUEs before the new insertion position so that we can
305 // sink them.
306 SmallVector<MachineInstr *, 1> DbgValues;
307 for (MachineInstr &DbgVal : MRI.use_instructions(DefReg)) {
308 if (!DbgVal.isDebugValue())
309 continue;
310 unsigned UseOrder = OrderMap.Orders[&DbgVal];
311 if (UseOrder < FirstOrder)
312 DbgValues.push_back(&DbgVal);
313 }
314
315 // Sink LocalMI before SinkPos and assign it the same DebugLoc.
316 LLVM_DEBUG(dbgs() << "sinking local value to first use " << LocalMI);
317 FuncInfo.MBB->remove(&LocalMI);
318 FuncInfo.MBB->insert(SinkPos, &LocalMI);
319 if (SinkPos != FuncInfo.MBB->end())
320 LocalMI.setDebugLoc(SinkPos->getDebugLoc());
321
322 // Sink any debug values that we've collected.
323 for (MachineInstr *DI : DbgValues) {
324 FuncInfo.MBB->remove(DI);
325 FuncInfo.MBB->insert(SinkPos, DI);
326 }
327 }
328
hasTrivialKill(const Value * V)329 bool FastISel::hasTrivialKill(const Value *V) {
330 // Don't consider constants or arguments to have trivial kills.
331 const Instruction *I = dyn_cast<Instruction>(V);
332 if (!I)
333 return false;
334
335 // No-op casts are trivially coalesced by fast-isel.
336 if (const auto *Cast = dyn_cast<CastInst>(I))
337 if (Cast->isNoopCast(DL) && !hasTrivialKill(Cast->getOperand(0)))
338 return false;
339
340 // Even the value might have only one use in the LLVM IR, it is possible that
341 // FastISel might fold the use into another instruction and now there is more
342 // than one use at the Machine Instruction level.
343 unsigned Reg = lookUpRegForValue(V);
344 if (Reg && !MRI.use_empty(Reg))
345 return false;
346
347 // GEPs with all zero indices are trivially coalesced by fast-isel.
348 if (const auto *GEP = dyn_cast<GetElementPtrInst>(I))
349 if (GEP->hasAllZeroIndices() && !hasTrivialKill(GEP->getOperand(0)))
350 return false;
351
352 // Only instructions with a single use in the same basic block are considered
353 // to have trivial kills.
354 return I->hasOneUse() &&
355 !(I->getOpcode() == Instruction::BitCast ||
356 I->getOpcode() == Instruction::PtrToInt ||
357 I->getOpcode() == Instruction::IntToPtr) &&
358 cast<Instruction>(*I->user_begin())->getParent() == I->getParent();
359 }
360
getRegForValue(const Value * V)361 unsigned FastISel::getRegForValue(const Value *V) {
362 EVT RealVT = TLI.getValueType(DL, V->getType(), /*AllowUnknown=*/true);
363 // Don't handle non-simple values in FastISel.
364 if (!RealVT.isSimple())
365 return 0;
366
367 // Ignore illegal types. We must do this before looking up the value
368 // in ValueMap because Arguments are given virtual registers regardless
369 // of whether FastISel can handle them.
370 MVT VT = RealVT.getSimpleVT();
371 if (!TLI.isTypeLegal(VT)) {
372 // Handle integer promotions, though, because they're common and easy.
373 if (VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16)
374 VT = TLI.getTypeToTransformTo(V->getContext(), VT).getSimpleVT();
375 else
376 return 0;
377 }
378
379 // Look up the value to see if we already have a register for it.
380 unsigned Reg = lookUpRegForValue(V);
381 if (Reg)
382 return Reg;
383
384 // In bottom-up mode, just create the virtual register which will be used
385 // to hold the value. It will be materialized later.
386 if (isa<Instruction>(V) &&
387 (!isa<AllocaInst>(V) ||
388 !FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(V))))
389 return FuncInfo.InitializeRegForValue(V);
390
391 SavePoint SaveInsertPt = enterLocalValueArea();
392
393 // Materialize the value in a register. Emit any instructions in the
394 // local value area.
395 Reg = materializeRegForValue(V, VT);
396
397 leaveLocalValueArea(SaveInsertPt);
398
399 return Reg;
400 }
401
materializeConstant(const Value * V,MVT VT)402 unsigned FastISel::materializeConstant(const Value *V, MVT VT) {
403 unsigned Reg = 0;
404 if (const auto *CI = dyn_cast<ConstantInt>(V)) {
405 if (CI->getValue().getActiveBits() <= 64)
406 Reg = fastEmit_i(VT, VT, ISD::Constant, CI->getZExtValue());
407 } else if (isa<AllocaInst>(V))
408 Reg = fastMaterializeAlloca(cast<AllocaInst>(V));
409 else if (isa<ConstantPointerNull>(V))
410 // Translate this as an integer zero so that it can be
411 // local-CSE'd with actual integer zeros.
412 Reg = getRegForValue(
413 Constant::getNullValue(DL.getIntPtrType(V->getContext())));
414 else if (const auto *CF = dyn_cast<ConstantFP>(V)) {
415 if (CF->isNullValue())
416 Reg = fastMaterializeFloatZero(CF);
417 else
418 // Try to emit the constant directly.
419 Reg = fastEmit_f(VT, VT, ISD::ConstantFP, CF);
420
421 if (!Reg) {
422 // Try to emit the constant by using an integer constant with a cast.
423 const APFloat &Flt = CF->getValueAPF();
424 EVT IntVT = TLI.getPointerTy(DL);
425 uint32_t IntBitWidth = IntVT.getSizeInBits();
426 APSInt SIntVal(IntBitWidth, /*isUnsigned=*/false);
427 bool isExact;
428 (void)Flt.convertToInteger(SIntVal, APFloat::rmTowardZero, &isExact);
429 if (isExact) {
430 unsigned IntegerReg =
431 getRegForValue(ConstantInt::get(V->getContext(), SIntVal));
432 if (IntegerReg != 0)
433 Reg = fastEmit_r(IntVT.getSimpleVT(), VT, ISD::SINT_TO_FP, IntegerReg,
434 /*Kill=*/false);
435 }
436 }
437 } else if (const auto *Op = dyn_cast<Operator>(V)) {
438 if (!selectOperator(Op, Op->getOpcode()))
439 if (!isa<Instruction>(Op) ||
440 !fastSelectInstruction(cast<Instruction>(Op)))
441 return 0;
442 Reg = lookUpRegForValue(Op);
443 } else if (isa<UndefValue>(V)) {
444 Reg = createResultReg(TLI.getRegClassFor(VT));
445 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
446 TII.get(TargetOpcode::IMPLICIT_DEF), Reg);
447 }
448 return Reg;
449 }
450
451 /// Helper for getRegForValue. This function is called when the value isn't
452 /// already available in a register and must be materialized with new
453 /// instructions.
materializeRegForValue(const Value * V,MVT VT)454 unsigned FastISel::materializeRegForValue(const Value *V, MVT VT) {
455 unsigned Reg = 0;
456 // Give the target-specific code a try first.
457 if (isa<Constant>(V))
458 Reg = fastMaterializeConstant(cast<Constant>(V));
459
460 // If target-specific code couldn't or didn't want to handle the value, then
461 // give target-independent code a try.
462 if (!Reg)
463 Reg = materializeConstant(V, VT);
464
465 // Don't cache constant materializations in the general ValueMap.
466 // To do so would require tracking what uses they dominate.
467 if (Reg) {
468 LocalValueMap[V] = Reg;
469 LastLocalValue = MRI.getVRegDef(Reg);
470 }
471 return Reg;
472 }
473
lookUpRegForValue(const Value * V)474 unsigned FastISel::lookUpRegForValue(const Value *V) {
475 // Look up the value to see if we already have a register for it. We
476 // cache values defined by Instructions across blocks, and other values
477 // only locally. This is because Instructions already have the SSA
478 // def-dominates-use requirement enforced.
479 DenseMap<const Value *, unsigned>::iterator I = FuncInfo.ValueMap.find(V);
480 if (I != FuncInfo.ValueMap.end())
481 return I->second;
482 return LocalValueMap[V];
483 }
484
updateValueMap(const Value * I,unsigned Reg,unsigned NumRegs)485 void FastISel::updateValueMap(const Value *I, unsigned Reg, unsigned NumRegs) {
486 if (!isa<Instruction>(I)) {
487 LocalValueMap[I] = Reg;
488 return;
489 }
490
491 unsigned &AssignedReg = FuncInfo.ValueMap[I];
492 if (AssignedReg == 0)
493 // Use the new register.
494 AssignedReg = Reg;
495 else if (Reg != AssignedReg) {
496 // Arrange for uses of AssignedReg to be replaced by uses of Reg.
497 for (unsigned i = 0; i < NumRegs; i++) {
498 FuncInfo.RegFixups[AssignedReg + i] = Reg + i;
499 FuncInfo.RegsWithFixups.insert(Reg + i);
500 }
501
502 AssignedReg = Reg;
503 }
504 }
505
getRegForGEPIndex(const Value * Idx)506 std::pair<unsigned, bool> FastISel::getRegForGEPIndex(const Value *Idx) {
507 unsigned IdxN = getRegForValue(Idx);
508 if (IdxN == 0)
509 // Unhandled operand. Halt "fast" selection and bail.
510 return std::pair<unsigned, bool>(0, false);
511
512 bool IdxNIsKill = hasTrivialKill(Idx);
513
514 // If the index is smaller or larger than intptr_t, truncate or extend it.
515 MVT PtrVT = TLI.getPointerTy(DL);
516 EVT IdxVT = EVT::getEVT(Idx->getType(), /*HandleUnknown=*/false);
517 if (IdxVT.bitsLT(PtrVT)) {
518 IdxN = fastEmit_r(IdxVT.getSimpleVT(), PtrVT, ISD::SIGN_EXTEND, IdxN,
519 IdxNIsKill);
520 IdxNIsKill = true;
521 } else if (IdxVT.bitsGT(PtrVT)) {
522 IdxN =
523 fastEmit_r(IdxVT.getSimpleVT(), PtrVT, ISD::TRUNCATE, IdxN, IdxNIsKill);
524 IdxNIsKill = true;
525 }
526 return std::pair<unsigned, bool>(IdxN, IdxNIsKill);
527 }
528
recomputeInsertPt()529 void FastISel::recomputeInsertPt() {
530 if (getLastLocalValue()) {
531 FuncInfo.InsertPt = getLastLocalValue();
532 FuncInfo.MBB = FuncInfo.InsertPt->getParent();
533 ++FuncInfo.InsertPt;
534 } else
535 FuncInfo.InsertPt = FuncInfo.MBB->getFirstNonPHI();
536
537 // Now skip past any EH_LABELs, which must remain at the beginning.
538 while (FuncInfo.InsertPt != FuncInfo.MBB->end() &&
539 FuncInfo.InsertPt->getOpcode() == TargetOpcode::EH_LABEL)
540 ++FuncInfo.InsertPt;
541 }
542
removeDeadCode(MachineBasicBlock::iterator I,MachineBasicBlock::iterator E)543 void FastISel::removeDeadCode(MachineBasicBlock::iterator I,
544 MachineBasicBlock::iterator E) {
545 assert(I.isValid() && E.isValid() && std::distance(I, E) > 0 &&
546 "Invalid iterator!");
547 while (I != E) {
548 MachineInstr *Dead = &*I;
549 ++I;
550 Dead->eraseFromParent();
551 ++NumFastIselDead;
552 }
553 recomputeInsertPt();
554 }
555
enterLocalValueArea()556 FastISel::SavePoint FastISel::enterLocalValueArea() {
557 MachineBasicBlock::iterator OldInsertPt = FuncInfo.InsertPt;
558 DebugLoc OldDL = DbgLoc;
559 recomputeInsertPt();
560 DbgLoc = DebugLoc();
561 SavePoint SP = {OldInsertPt, OldDL};
562 return SP;
563 }
564
leaveLocalValueArea(SavePoint OldInsertPt)565 void FastISel::leaveLocalValueArea(SavePoint OldInsertPt) {
566 if (FuncInfo.InsertPt != FuncInfo.MBB->begin())
567 LastLocalValue = &*std::prev(FuncInfo.InsertPt);
568
569 // Restore the previous insert position.
570 FuncInfo.InsertPt = OldInsertPt.InsertPt;
571 DbgLoc = OldInsertPt.DL;
572 }
573
selectBinaryOp(const User * I,unsigned ISDOpcode)574 bool FastISel::selectBinaryOp(const User *I, unsigned ISDOpcode) {
575 EVT VT = EVT::getEVT(I->getType(), /*HandleUnknown=*/true);
576 if (VT == MVT::Other || !VT.isSimple())
577 // Unhandled type. Halt "fast" selection and bail.
578 return false;
579
580 // We only handle legal types. For example, on x86-32 the instruction
581 // selector contains all of the 64-bit instructions from x86-64,
582 // under the assumption that i64 won't be used if the target doesn't
583 // support it.
584 if (!TLI.isTypeLegal(VT)) {
585 // MVT::i1 is special. Allow AND, OR, or XOR because they
586 // don't require additional zeroing, which makes them easy.
587 if (VT == MVT::i1 && (ISDOpcode == ISD::AND || ISDOpcode == ISD::OR ||
588 ISDOpcode == ISD::XOR))
589 VT = TLI.getTypeToTransformTo(I->getContext(), VT);
590 else
591 return false;
592 }
593
594 // Check if the first operand is a constant, and handle it as "ri". At -O0,
595 // we don't have anything that canonicalizes operand order.
596 if (const auto *CI = dyn_cast<ConstantInt>(I->getOperand(0)))
597 if (isa<Instruction>(I) && cast<Instruction>(I)->isCommutative()) {
598 unsigned Op1 = getRegForValue(I->getOperand(1));
599 if (!Op1)
600 return false;
601 bool Op1IsKill = hasTrivialKill(I->getOperand(1));
602
603 unsigned ResultReg =
604 fastEmit_ri_(VT.getSimpleVT(), ISDOpcode, Op1, Op1IsKill,
605 CI->getZExtValue(), VT.getSimpleVT());
606 if (!ResultReg)
607 return false;
608
609 // We successfully emitted code for the given LLVM Instruction.
610 updateValueMap(I, ResultReg);
611 return true;
612 }
613
614 unsigned Op0 = getRegForValue(I->getOperand(0));
615 if (!Op0) // Unhandled operand. Halt "fast" selection and bail.
616 return false;
617 bool Op0IsKill = hasTrivialKill(I->getOperand(0));
618
619 // Check if the second operand is a constant and handle it appropriately.
620 if (const auto *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
621 uint64_t Imm = CI->getSExtValue();
622
623 // Transform "sdiv exact X, 8" -> "sra X, 3".
624 if (ISDOpcode == ISD::SDIV && isa<BinaryOperator>(I) &&
625 cast<BinaryOperator>(I)->isExact() && isPowerOf2_64(Imm)) {
626 Imm = Log2_64(Imm);
627 ISDOpcode = ISD::SRA;
628 }
629
630 // Transform "urem x, pow2" -> "and x, pow2-1".
631 if (ISDOpcode == ISD::UREM && isa<BinaryOperator>(I) &&
632 isPowerOf2_64(Imm)) {
633 --Imm;
634 ISDOpcode = ISD::AND;
635 }
636
637 unsigned ResultReg = fastEmit_ri_(VT.getSimpleVT(), ISDOpcode, Op0,
638 Op0IsKill, Imm, VT.getSimpleVT());
639 if (!ResultReg)
640 return false;
641
642 // We successfully emitted code for the given LLVM Instruction.
643 updateValueMap(I, ResultReg);
644 return true;
645 }
646
647 unsigned Op1 = getRegForValue(I->getOperand(1));
648 if (!Op1) // Unhandled operand. Halt "fast" selection and bail.
649 return false;
650 bool Op1IsKill = hasTrivialKill(I->getOperand(1));
651
652 // Now we have both operands in registers. Emit the instruction.
653 unsigned ResultReg = fastEmit_rr(VT.getSimpleVT(), VT.getSimpleVT(),
654 ISDOpcode, Op0, Op0IsKill, Op1, Op1IsKill);
655 if (!ResultReg)
656 // Target-specific code wasn't able to find a machine opcode for
657 // the given ISD opcode and type. Halt "fast" selection and bail.
658 return false;
659
660 // We successfully emitted code for the given LLVM Instruction.
661 updateValueMap(I, ResultReg);
662 return true;
663 }
664
selectGetElementPtr(const User * I)665 bool FastISel::selectGetElementPtr(const User *I) {
666 unsigned N = getRegForValue(I->getOperand(0));
667 if (!N) // Unhandled operand. Halt "fast" selection and bail.
668 return false;
669 bool NIsKill = hasTrivialKill(I->getOperand(0));
670
671 // Keep a running tab of the total offset to coalesce multiple N = N + Offset
672 // into a single N = N + TotalOffset.
673 uint64_t TotalOffs = 0;
674 // FIXME: What's a good SWAG number for MaxOffs?
675 uint64_t MaxOffs = 2048;
676 MVT VT = TLI.getPointerTy(DL);
677 for (gep_type_iterator GTI = gep_type_begin(I), E = gep_type_end(I);
678 GTI != E; ++GTI) {
679 const Value *Idx = GTI.getOperand();
680 if (StructType *StTy = GTI.getStructTypeOrNull()) {
681 uint64_t Field = cast<ConstantInt>(Idx)->getZExtValue();
682 if (Field) {
683 // N = N + Offset
684 TotalOffs += DL.getStructLayout(StTy)->getElementOffset(Field);
685 if (TotalOffs >= MaxOffs) {
686 N = fastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT);
687 if (!N) // Unhandled operand. Halt "fast" selection and bail.
688 return false;
689 NIsKill = true;
690 TotalOffs = 0;
691 }
692 }
693 } else {
694 Type *Ty = GTI.getIndexedType();
695
696 // If this is a constant subscript, handle it quickly.
697 if (const auto *CI = dyn_cast<ConstantInt>(Idx)) {
698 if (CI->isZero())
699 continue;
700 // N = N + Offset
701 uint64_t IdxN = CI->getValue().sextOrTrunc(64).getSExtValue();
702 TotalOffs += DL.getTypeAllocSize(Ty) * IdxN;
703 if (TotalOffs >= MaxOffs) {
704 N = fastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT);
705 if (!N) // Unhandled operand. Halt "fast" selection and bail.
706 return false;
707 NIsKill = true;
708 TotalOffs = 0;
709 }
710 continue;
711 }
712 if (TotalOffs) {
713 N = fastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT);
714 if (!N) // Unhandled operand. Halt "fast" selection and bail.
715 return false;
716 NIsKill = true;
717 TotalOffs = 0;
718 }
719
720 // N = N + Idx * ElementSize;
721 uint64_t ElementSize = DL.getTypeAllocSize(Ty);
722 std::pair<unsigned, bool> Pair = getRegForGEPIndex(Idx);
723 unsigned IdxN = Pair.first;
724 bool IdxNIsKill = Pair.second;
725 if (!IdxN) // Unhandled operand. Halt "fast" selection and bail.
726 return false;
727
728 if (ElementSize != 1) {
729 IdxN = fastEmit_ri_(VT, ISD::MUL, IdxN, IdxNIsKill, ElementSize, VT);
730 if (!IdxN) // Unhandled operand. Halt "fast" selection and bail.
731 return false;
732 IdxNIsKill = true;
733 }
734 N = fastEmit_rr(VT, VT, ISD::ADD, N, NIsKill, IdxN, IdxNIsKill);
735 if (!N) // Unhandled operand. Halt "fast" selection and bail.
736 return false;
737 }
738 }
739 if (TotalOffs) {
740 N = fastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT);
741 if (!N) // Unhandled operand. Halt "fast" selection and bail.
742 return false;
743 }
744
745 // We successfully emitted code for the given LLVM Instruction.
746 updateValueMap(I, N);
747 return true;
748 }
749
addStackMapLiveVars(SmallVectorImpl<MachineOperand> & Ops,const CallInst * CI,unsigned StartIdx)750 bool FastISel::addStackMapLiveVars(SmallVectorImpl<MachineOperand> &Ops,
751 const CallInst *CI, unsigned StartIdx) {
752 for (unsigned i = StartIdx, e = CI->getNumArgOperands(); i != e; ++i) {
753 Value *Val = CI->getArgOperand(i);
754 // Check for constants and encode them with a StackMaps::ConstantOp prefix.
755 if (const auto *C = dyn_cast<ConstantInt>(Val)) {
756 Ops.push_back(MachineOperand::CreateImm(StackMaps::ConstantOp));
757 Ops.push_back(MachineOperand::CreateImm(C->getSExtValue()));
758 } else if (isa<ConstantPointerNull>(Val)) {
759 Ops.push_back(MachineOperand::CreateImm(StackMaps::ConstantOp));
760 Ops.push_back(MachineOperand::CreateImm(0));
761 } else if (auto *AI = dyn_cast<AllocaInst>(Val)) {
762 // Values coming from a stack location also require a special encoding,
763 // but that is added later on by the target specific frame index
764 // elimination implementation.
765 auto SI = FuncInfo.StaticAllocaMap.find(AI);
766 if (SI != FuncInfo.StaticAllocaMap.end())
767 Ops.push_back(MachineOperand::CreateFI(SI->second));
768 else
769 return false;
770 } else {
771 unsigned Reg = getRegForValue(Val);
772 if (!Reg)
773 return false;
774 Ops.push_back(MachineOperand::CreateReg(Reg, /*IsDef=*/false));
775 }
776 }
777 return true;
778 }
779
selectStackmap(const CallInst * I)780 bool FastISel::selectStackmap(const CallInst *I) {
781 // void @llvm.experimental.stackmap(i64 <id>, i32 <numShadowBytes>,
782 // [live variables...])
783 assert(I->getCalledFunction()->getReturnType()->isVoidTy() &&
784 "Stackmap cannot return a value.");
785
786 // The stackmap intrinsic only records the live variables (the arguments
787 // passed to it) and emits NOPS (if requested). Unlike the patchpoint
788 // intrinsic, this won't be lowered to a function call. This means we don't
789 // have to worry about calling conventions and target-specific lowering code.
790 // Instead we perform the call lowering right here.
791 //
792 // CALLSEQ_START(0, 0...)
793 // STACKMAP(id, nbytes, ...)
794 // CALLSEQ_END(0, 0)
795 //
796 SmallVector<MachineOperand, 32> Ops;
797
798 // Add the <id> and <numBytes> constants.
799 assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::IDPos)) &&
800 "Expected a constant integer.");
801 const auto *ID = cast<ConstantInt>(I->getOperand(PatchPointOpers::IDPos));
802 Ops.push_back(MachineOperand::CreateImm(ID->getZExtValue()));
803
804 assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::NBytesPos)) &&
805 "Expected a constant integer.");
806 const auto *NumBytes =
807 cast<ConstantInt>(I->getOperand(PatchPointOpers::NBytesPos));
808 Ops.push_back(MachineOperand::CreateImm(NumBytes->getZExtValue()));
809
810 // Push live variables for the stack map (skipping the first two arguments
811 // <id> and <numBytes>).
812 if (!addStackMapLiveVars(Ops, I, 2))
813 return false;
814
815 // We are not adding any register mask info here, because the stackmap doesn't
816 // clobber anything.
817
818 // Add scratch registers as implicit def and early clobber.
819 CallingConv::ID CC = I->getCallingConv();
820 const MCPhysReg *ScratchRegs = TLI.getScratchRegisters(CC);
821 for (unsigned i = 0; ScratchRegs[i]; ++i)
822 Ops.push_back(MachineOperand::CreateReg(
823 ScratchRegs[i], /*IsDef=*/true, /*IsImp=*/true, /*IsKill=*/false,
824 /*IsDead=*/false, /*IsUndef=*/false, /*IsEarlyClobber=*/true));
825
826 // Issue CALLSEQ_START
827 unsigned AdjStackDown = TII.getCallFrameSetupOpcode();
828 auto Builder =
829 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AdjStackDown));
830 const MCInstrDesc &MCID = Builder.getInstr()->getDesc();
831 for (unsigned I = 0, E = MCID.getNumOperands(); I < E; ++I)
832 Builder.addImm(0);
833
834 // Issue STACKMAP.
835 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
836 TII.get(TargetOpcode::STACKMAP));
837 for (auto const &MO : Ops)
838 MIB.add(MO);
839
840 // Issue CALLSEQ_END
841 unsigned AdjStackUp = TII.getCallFrameDestroyOpcode();
842 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AdjStackUp))
843 .addImm(0)
844 .addImm(0);
845
846 // Inform the Frame Information that we have a stackmap in this function.
847 FuncInfo.MF->getFrameInfo().setHasStackMap();
848
849 return true;
850 }
851
852 /// Lower an argument list according to the target calling convention.
853 ///
854 /// This is a helper for lowering intrinsics that follow a target calling
855 /// convention or require stack pointer adjustment. Only a subset of the
856 /// intrinsic's operands need to participate in the calling convention.
lowerCallOperands(const CallInst * CI,unsigned ArgIdx,unsigned NumArgs,const Value * Callee,bool ForceRetVoidTy,CallLoweringInfo & CLI)857 bool FastISel::lowerCallOperands(const CallInst *CI, unsigned ArgIdx,
858 unsigned NumArgs, const Value *Callee,
859 bool ForceRetVoidTy, CallLoweringInfo &CLI) {
860 ArgListTy Args;
861 Args.reserve(NumArgs);
862
863 // Populate the argument list.
864 ImmutableCallSite CS(CI);
865 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs; ArgI != ArgE; ++ArgI) {
866 Value *V = CI->getOperand(ArgI);
867
868 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic.");
869
870 ArgListEntry Entry;
871 Entry.Val = V;
872 Entry.Ty = V->getType();
873 Entry.setAttributes(&CS, ArgI);
874 Args.push_back(Entry);
875 }
876
877 Type *RetTy = ForceRetVoidTy ? Type::getVoidTy(CI->getType()->getContext())
878 : CI->getType();
879 CLI.setCallee(CI->getCallingConv(), RetTy, Callee, std::move(Args), NumArgs);
880
881 return lowerCallTo(CLI);
882 }
883
setCallee(const DataLayout & DL,MCContext & Ctx,CallingConv::ID CC,Type * ResultTy,StringRef Target,ArgListTy && ArgsList,unsigned FixedArgs)884 FastISel::CallLoweringInfo &FastISel::CallLoweringInfo::setCallee(
885 const DataLayout &DL, MCContext &Ctx, CallingConv::ID CC, Type *ResultTy,
886 StringRef Target, ArgListTy &&ArgsList, unsigned FixedArgs) {
887 SmallString<32> MangledName;
888 Mangler::getNameWithPrefix(MangledName, Target, DL);
889 MCSymbol *Sym = Ctx.getOrCreateSymbol(MangledName);
890 return setCallee(CC, ResultTy, Sym, std::move(ArgsList), FixedArgs);
891 }
892
selectPatchpoint(const CallInst * I)893 bool FastISel::selectPatchpoint(const CallInst *I) {
894 // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>,
895 // i32 <numBytes>,
896 // i8* <target>,
897 // i32 <numArgs>,
898 // [Args...],
899 // [live variables...])
900 CallingConv::ID CC = I->getCallingConv();
901 bool IsAnyRegCC = CC == CallingConv::AnyReg;
902 bool HasDef = !I->getType()->isVoidTy();
903 Value *Callee = I->getOperand(PatchPointOpers::TargetPos)->stripPointerCasts();
904
905 // Get the real number of arguments participating in the call <numArgs>
906 assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::NArgPos)) &&
907 "Expected a constant integer.");
908 const auto *NumArgsVal =
909 cast<ConstantInt>(I->getOperand(PatchPointOpers::NArgPos));
910 unsigned NumArgs = NumArgsVal->getZExtValue();
911
912 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs>
913 // This includes all meta-operands up to but not including CC.
914 unsigned NumMetaOpers = PatchPointOpers::CCPos;
915 assert(I->getNumArgOperands() >= NumMetaOpers + NumArgs &&
916 "Not enough arguments provided to the patchpoint intrinsic");
917
918 // For AnyRegCC the arguments are lowered later on manually.
919 unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs;
920 CallLoweringInfo CLI;
921 CLI.setIsPatchPoint();
922 if (!lowerCallOperands(I, NumMetaOpers, NumCallArgs, Callee, IsAnyRegCC, CLI))
923 return false;
924
925 assert(CLI.Call && "No call instruction specified.");
926
927 SmallVector<MachineOperand, 32> Ops;
928
929 // Add an explicit result reg if we use the anyreg calling convention.
930 if (IsAnyRegCC && HasDef) {
931 assert(CLI.NumResultRegs == 0 && "Unexpected result register.");
932 CLI.ResultReg = createResultReg(TLI.getRegClassFor(MVT::i64));
933 CLI.NumResultRegs = 1;
934 Ops.push_back(MachineOperand::CreateReg(CLI.ResultReg, /*IsDef=*/true));
935 }
936
937 // Add the <id> and <numBytes> constants.
938 assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::IDPos)) &&
939 "Expected a constant integer.");
940 const auto *ID = cast<ConstantInt>(I->getOperand(PatchPointOpers::IDPos));
941 Ops.push_back(MachineOperand::CreateImm(ID->getZExtValue()));
942
943 assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::NBytesPos)) &&
944 "Expected a constant integer.");
945 const auto *NumBytes =
946 cast<ConstantInt>(I->getOperand(PatchPointOpers::NBytesPos));
947 Ops.push_back(MachineOperand::CreateImm(NumBytes->getZExtValue()));
948
949 // Add the call target.
950 if (const auto *C = dyn_cast<IntToPtrInst>(Callee)) {
951 uint64_t CalleeConstAddr =
952 cast<ConstantInt>(C->getOperand(0))->getZExtValue();
953 Ops.push_back(MachineOperand::CreateImm(CalleeConstAddr));
954 } else if (const auto *C = dyn_cast<ConstantExpr>(Callee)) {
955 if (C->getOpcode() == Instruction::IntToPtr) {
956 uint64_t CalleeConstAddr =
957 cast<ConstantInt>(C->getOperand(0))->getZExtValue();
958 Ops.push_back(MachineOperand::CreateImm(CalleeConstAddr));
959 } else
960 llvm_unreachable("Unsupported ConstantExpr.");
961 } else if (const auto *GV = dyn_cast<GlobalValue>(Callee)) {
962 Ops.push_back(MachineOperand::CreateGA(GV, 0));
963 } else if (isa<ConstantPointerNull>(Callee))
964 Ops.push_back(MachineOperand::CreateImm(0));
965 else
966 llvm_unreachable("Unsupported callee address.");
967
968 // Adjust <numArgs> to account for any arguments that have been passed on
969 // the stack instead.
970 unsigned NumCallRegArgs = IsAnyRegCC ? NumArgs : CLI.OutRegs.size();
971 Ops.push_back(MachineOperand::CreateImm(NumCallRegArgs));
972
973 // Add the calling convention
974 Ops.push_back(MachineOperand::CreateImm((unsigned)CC));
975
976 // Add the arguments we omitted previously. The register allocator should
977 // place these in any free register.
978 if (IsAnyRegCC) {
979 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) {
980 unsigned Reg = getRegForValue(I->getArgOperand(i));
981 if (!Reg)
982 return false;
983 Ops.push_back(MachineOperand::CreateReg(Reg, /*IsDef=*/false));
984 }
985 }
986
987 // Push the arguments from the call instruction.
988 for (auto Reg : CLI.OutRegs)
989 Ops.push_back(MachineOperand::CreateReg(Reg, /*IsDef=*/false));
990
991 // Push live variables for the stack map.
992 if (!addStackMapLiveVars(Ops, I, NumMetaOpers + NumArgs))
993 return false;
994
995 // Push the register mask info.
996 Ops.push_back(MachineOperand::CreateRegMask(
997 TRI.getCallPreservedMask(*FuncInfo.MF, CC)));
998
999 // Add scratch registers as implicit def and early clobber.
1000 const MCPhysReg *ScratchRegs = TLI.getScratchRegisters(CC);
1001 for (unsigned i = 0; ScratchRegs[i]; ++i)
1002 Ops.push_back(MachineOperand::CreateReg(
1003 ScratchRegs[i], /*IsDef=*/true, /*IsImp=*/true, /*IsKill=*/false,
1004 /*IsDead=*/false, /*IsUndef=*/false, /*IsEarlyClobber=*/true));
1005
1006 // Add implicit defs (return values).
1007 for (auto Reg : CLI.InRegs)
1008 Ops.push_back(MachineOperand::CreateReg(Reg, /*IsDef=*/true,
1009 /*IsImpl=*/true));
1010
1011 // Insert the patchpoint instruction before the call generated by the target.
1012 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, CLI.Call, DbgLoc,
1013 TII.get(TargetOpcode::PATCHPOINT));
1014
1015 for (auto &MO : Ops)
1016 MIB.add(MO);
1017
1018 MIB->setPhysRegsDeadExcept(CLI.InRegs, TRI);
1019
1020 // Delete the original call instruction.
1021 CLI.Call->eraseFromParent();
1022
1023 // Inform the Frame Information that we have a patchpoint in this function.
1024 FuncInfo.MF->getFrameInfo().setHasPatchPoint();
1025
1026 if (CLI.NumResultRegs)
1027 updateValueMap(I, CLI.ResultReg, CLI.NumResultRegs);
1028 return true;
1029 }
1030
selectXRayCustomEvent(const CallInst * I)1031 bool FastISel::selectXRayCustomEvent(const CallInst *I) {
1032 const auto &Triple = TM.getTargetTriple();
1033 if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux())
1034 return true; // don't do anything to this instruction.
1035 SmallVector<MachineOperand, 8> Ops;
1036 Ops.push_back(MachineOperand::CreateReg(getRegForValue(I->getArgOperand(0)),
1037 /*IsDef=*/false));
1038 Ops.push_back(MachineOperand::CreateReg(getRegForValue(I->getArgOperand(1)),
1039 /*IsDef=*/false));
1040 MachineInstrBuilder MIB =
1041 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1042 TII.get(TargetOpcode::PATCHABLE_EVENT_CALL));
1043 for (auto &MO : Ops)
1044 MIB.add(MO);
1045
1046 // Insert the Patchable Event Call instruction, that gets lowered properly.
1047 return true;
1048 }
1049
selectXRayTypedEvent(const CallInst * I)1050 bool FastISel::selectXRayTypedEvent(const CallInst *I) {
1051 const auto &Triple = TM.getTargetTriple();
1052 if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux())
1053 return true; // don't do anything to this instruction.
1054 SmallVector<MachineOperand, 8> Ops;
1055 Ops.push_back(MachineOperand::CreateReg(getRegForValue(I->getArgOperand(0)),
1056 /*IsDef=*/false));
1057 Ops.push_back(MachineOperand::CreateReg(getRegForValue(I->getArgOperand(1)),
1058 /*IsDef=*/false));
1059 Ops.push_back(MachineOperand::CreateReg(getRegForValue(I->getArgOperand(2)),
1060 /*IsDef=*/false));
1061 MachineInstrBuilder MIB =
1062 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1063 TII.get(TargetOpcode::PATCHABLE_TYPED_EVENT_CALL));
1064 for (auto &MO : Ops)
1065 MIB.add(MO);
1066
1067 // Insert the Patchable Typed Event Call instruction, that gets lowered properly.
1068 return true;
1069 }
1070
1071 /// Returns an AttributeList representing the attributes applied to the return
1072 /// value of the given call.
getReturnAttrs(FastISel::CallLoweringInfo & CLI)1073 static AttributeList getReturnAttrs(FastISel::CallLoweringInfo &CLI) {
1074 SmallVector<Attribute::AttrKind, 2> Attrs;
1075 if (CLI.RetSExt)
1076 Attrs.push_back(Attribute::SExt);
1077 if (CLI.RetZExt)
1078 Attrs.push_back(Attribute::ZExt);
1079 if (CLI.IsInReg)
1080 Attrs.push_back(Attribute::InReg);
1081
1082 return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex,
1083 Attrs);
1084 }
1085
lowerCallTo(const CallInst * CI,const char * SymName,unsigned NumArgs)1086 bool FastISel::lowerCallTo(const CallInst *CI, const char *SymName,
1087 unsigned NumArgs) {
1088 MCContext &Ctx = MF->getContext();
1089 SmallString<32> MangledName;
1090 Mangler::getNameWithPrefix(MangledName, SymName, DL);
1091 MCSymbol *Sym = Ctx.getOrCreateSymbol(MangledName);
1092 return lowerCallTo(CI, Sym, NumArgs);
1093 }
1094
lowerCallTo(const CallInst * CI,MCSymbol * Symbol,unsigned NumArgs)1095 bool FastISel::lowerCallTo(const CallInst *CI, MCSymbol *Symbol,
1096 unsigned NumArgs) {
1097 ImmutableCallSite CS(CI);
1098
1099 FunctionType *FTy = CS.getFunctionType();
1100 Type *RetTy = CS.getType();
1101
1102 ArgListTy Args;
1103 Args.reserve(NumArgs);
1104
1105 // Populate the argument list.
1106 // Attributes for args start at offset 1, after the return attribute.
1107 for (unsigned ArgI = 0; ArgI != NumArgs; ++ArgI) {
1108 Value *V = CI->getOperand(ArgI);
1109
1110 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic.");
1111
1112 ArgListEntry Entry;
1113 Entry.Val = V;
1114 Entry.Ty = V->getType();
1115 Entry.setAttributes(&CS, ArgI);
1116 Args.push_back(Entry);
1117 }
1118 TLI.markLibCallAttributes(MF, CS.getCallingConv(), Args);
1119
1120 CallLoweringInfo CLI;
1121 CLI.setCallee(RetTy, FTy, Symbol, std::move(Args), CS, NumArgs);
1122
1123 return lowerCallTo(CLI);
1124 }
1125
lowerCallTo(CallLoweringInfo & CLI)1126 bool FastISel::lowerCallTo(CallLoweringInfo &CLI) {
1127 // Handle the incoming return values from the call.
1128 CLI.clearIns();
1129 SmallVector<EVT, 4> RetTys;
1130 ComputeValueVTs(TLI, DL, CLI.RetTy, RetTys);
1131
1132 SmallVector<ISD::OutputArg, 4> Outs;
1133 GetReturnInfo(CLI.CallConv, CLI.RetTy, getReturnAttrs(CLI), Outs, TLI, DL);
1134
1135 bool CanLowerReturn = TLI.CanLowerReturn(
1136 CLI.CallConv, *FuncInfo.MF, CLI.IsVarArg, Outs, CLI.RetTy->getContext());
1137
1138 // FIXME: sret demotion isn't supported yet - bail out.
1139 if (!CanLowerReturn)
1140 return false;
1141
1142 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
1143 EVT VT = RetTys[I];
1144 MVT RegisterVT = TLI.getRegisterType(CLI.RetTy->getContext(), VT);
1145 unsigned NumRegs = TLI.getNumRegisters(CLI.RetTy->getContext(), VT);
1146 for (unsigned i = 0; i != NumRegs; ++i) {
1147 ISD::InputArg MyFlags;
1148 MyFlags.VT = RegisterVT;
1149 MyFlags.ArgVT = VT;
1150 MyFlags.Used = CLI.IsReturnValueUsed;
1151 if (CLI.RetSExt)
1152 MyFlags.Flags.setSExt();
1153 if (CLI.RetZExt)
1154 MyFlags.Flags.setZExt();
1155 if (CLI.IsInReg)
1156 MyFlags.Flags.setInReg();
1157 CLI.Ins.push_back(MyFlags);
1158 }
1159 }
1160
1161 // Handle all of the outgoing arguments.
1162 CLI.clearOuts();
1163 for (auto &Arg : CLI.getArgs()) {
1164 Type *FinalType = Arg.Ty;
1165 if (Arg.IsByVal)
1166 FinalType = cast<PointerType>(Arg.Ty)->getElementType();
1167 bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters(
1168 FinalType, CLI.CallConv, CLI.IsVarArg);
1169
1170 ISD::ArgFlagsTy Flags;
1171 if (Arg.IsZExt)
1172 Flags.setZExt();
1173 if (Arg.IsSExt)
1174 Flags.setSExt();
1175 if (Arg.IsInReg)
1176 Flags.setInReg();
1177 if (Arg.IsSRet)
1178 Flags.setSRet();
1179 if (Arg.IsSwiftSelf)
1180 Flags.setSwiftSelf();
1181 if (Arg.IsSwiftError)
1182 Flags.setSwiftError();
1183 if (Arg.IsByVal)
1184 Flags.setByVal();
1185 if (Arg.IsInAlloca) {
1186 Flags.setInAlloca();
1187 // Set the byval flag for CCAssignFn callbacks that don't know about
1188 // inalloca. This way we can know how many bytes we should've allocated
1189 // and how many bytes a callee cleanup function will pop. If we port
1190 // inalloca to more targets, we'll have to add custom inalloca handling in
1191 // the various CC lowering callbacks.
1192 Flags.setByVal();
1193 }
1194 if (Arg.IsByVal || Arg.IsInAlloca) {
1195 PointerType *Ty = cast<PointerType>(Arg.Ty);
1196 Type *ElementTy = Ty->getElementType();
1197 unsigned FrameSize = DL.getTypeAllocSize(ElementTy);
1198 // For ByVal, alignment should come from FE. BE will guess if this info is
1199 // not there, but there are cases it cannot get right.
1200 unsigned FrameAlign = Arg.Alignment;
1201 if (!FrameAlign)
1202 FrameAlign = TLI.getByValTypeAlignment(ElementTy, DL);
1203 Flags.setByValSize(FrameSize);
1204 Flags.setByValAlign(FrameAlign);
1205 }
1206 if (Arg.IsNest)
1207 Flags.setNest();
1208 if (NeedsRegBlock)
1209 Flags.setInConsecutiveRegs();
1210 unsigned OriginalAlignment = DL.getABITypeAlignment(Arg.Ty);
1211 Flags.setOrigAlign(OriginalAlignment);
1212
1213 CLI.OutVals.push_back(Arg.Val);
1214 CLI.OutFlags.push_back(Flags);
1215 }
1216
1217 if (!fastLowerCall(CLI))
1218 return false;
1219
1220 // Set all unused physreg defs as dead.
1221 assert(CLI.Call && "No call instruction specified.");
1222 CLI.Call->setPhysRegsDeadExcept(CLI.InRegs, TRI);
1223
1224 if (CLI.NumResultRegs && CLI.CS)
1225 updateValueMap(CLI.CS->getInstruction(), CLI.ResultReg, CLI.NumResultRegs);
1226
1227 return true;
1228 }
1229
lowerCall(const CallInst * CI)1230 bool FastISel::lowerCall(const CallInst *CI) {
1231 ImmutableCallSite CS(CI);
1232
1233 FunctionType *FuncTy = CS.getFunctionType();
1234 Type *RetTy = CS.getType();
1235
1236 ArgListTy Args;
1237 ArgListEntry Entry;
1238 Args.reserve(CS.arg_size());
1239
1240 for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
1241 i != e; ++i) {
1242 Value *V = *i;
1243
1244 // Skip empty types
1245 if (V->getType()->isEmptyTy())
1246 continue;
1247
1248 Entry.Val = V;
1249 Entry.Ty = V->getType();
1250
1251 // Skip the first return-type Attribute to get to params.
1252 Entry.setAttributes(&CS, i - CS.arg_begin());
1253 Args.push_back(Entry);
1254 }
1255
1256 // Check if target-independent constraints permit a tail call here.
1257 // Target-dependent constraints are checked within fastLowerCall.
1258 bool IsTailCall = CI->isTailCall();
1259 if (IsTailCall && !isInTailCallPosition(CS, TM))
1260 IsTailCall = false;
1261
1262 CallLoweringInfo CLI;
1263 CLI.setCallee(RetTy, FuncTy, CI->getCalledValue(), std::move(Args), CS)
1264 .setTailCall(IsTailCall);
1265
1266 return lowerCallTo(CLI);
1267 }
1268
selectCall(const User * I)1269 bool FastISel::selectCall(const User *I) {
1270 const CallInst *Call = cast<CallInst>(I);
1271
1272 // Handle simple inline asms.
1273 if (const InlineAsm *IA = dyn_cast<InlineAsm>(Call->getCalledValue())) {
1274 // If the inline asm has side effects, then make sure that no local value
1275 // lives across by flushing the local value map.
1276 if (IA->hasSideEffects())
1277 flushLocalValueMap();
1278
1279 // Don't attempt to handle constraints.
1280 if (!IA->getConstraintString().empty())
1281 return false;
1282
1283 unsigned ExtraInfo = 0;
1284 if (IA->hasSideEffects())
1285 ExtraInfo |= InlineAsm::Extra_HasSideEffects;
1286 if (IA->isAlignStack())
1287 ExtraInfo |= InlineAsm::Extra_IsAlignStack;
1288
1289 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1290 TII.get(TargetOpcode::INLINEASM))
1291 .addExternalSymbol(IA->getAsmString().c_str())
1292 .addImm(ExtraInfo);
1293 return true;
1294 }
1295
1296 MachineModuleInfo &MMI = FuncInfo.MF->getMMI();
1297 computeUsesVAFloatArgument(*Call, MMI);
1298
1299 // Handle intrinsic function calls.
1300 if (const auto *II = dyn_cast<IntrinsicInst>(Call))
1301 return selectIntrinsicCall(II);
1302
1303 // Usually, it does not make sense to initialize a value,
1304 // make an unrelated function call and use the value, because
1305 // it tends to be spilled on the stack. So, we move the pointer
1306 // to the last local value to the beginning of the block, so that
1307 // all the values which have already been materialized,
1308 // appear after the call. It also makes sense to skip intrinsics
1309 // since they tend to be inlined.
1310 flushLocalValueMap();
1311
1312 return lowerCall(Call);
1313 }
1314
selectIntrinsicCall(const IntrinsicInst * II)1315 bool FastISel::selectIntrinsicCall(const IntrinsicInst *II) {
1316 switch (II->getIntrinsicID()) {
1317 default:
1318 break;
1319 // At -O0 we don't care about the lifetime intrinsics.
1320 case Intrinsic::lifetime_start:
1321 case Intrinsic::lifetime_end:
1322 // The donothing intrinsic does, well, nothing.
1323 case Intrinsic::donothing:
1324 // Neither does the sideeffect intrinsic.
1325 case Intrinsic::sideeffect:
1326 // Neither does the assume intrinsic; it's also OK not to codegen its operand.
1327 case Intrinsic::assume:
1328 return true;
1329 case Intrinsic::dbg_declare: {
1330 const DbgDeclareInst *DI = cast<DbgDeclareInst>(II);
1331 assert(DI->getVariable() && "Missing variable");
1332 if (!FuncInfo.MF->getMMI().hasDebugInfo()) {
1333 LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
1334 return true;
1335 }
1336
1337 const Value *Address = DI->getAddress();
1338 if (!Address || isa<UndefValue>(Address)) {
1339 LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
1340 return true;
1341 }
1342
1343 // Byval arguments with frame indices were already handled after argument
1344 // lowering and before isel.
1345 const auto *Arg =
1346 dyn_cast<Argument>(Address->stripInBoundsConstantOffsets());
1347 if (Arg && FuncInfo.getArgumentFrameIndex(Arg) != INT_MAX)
1348 return true;
1349
1350 Optional<MachineOperand> Op;
1351 if (unsigned Reg = lookUpRegForValue(Address))
1352 Op = MachineOperand::CreateReg(Reg, false);
1353
1354 // If we have a VLA that has a "use" in a metadata node that's then used
1355 // here but it has no other uses, then we have a problem. E.g.,
1356 //
1357 // int foo (const int *x) {
1358 // char a[*x];
1359 // return 0;
1360 // }
1361 //
1362 // If we assign 'a' a vreg and fast isel later on has to use the selection
1363 // DAG isel, it will want to copy the value to the vreg. However, there are
1364 // no uses, which goes counter to what selection DAG isel expects.
1365 if (!Op && !Address->use_empty() && isa<Instruction>(Address) &&
1366 (!isa<AllocaInst>(Address) ||
1367 !FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(Address))))
1368 Op = MachineOperand::CreateReg(FuncInfo.InitializeRegForValue(Address),
1369 false);
1370
1371 if (Op) {
1372 assert(DI->getVariable()->isValidLocationForIntrinsic(DbgLoc) &&
1373 "Expected inlined-at fields to agree");
1374 // A dbg.declare describes the address of a source variable, so lower it
1375 // into an indirect DBG_VALUE.
1376 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1377 TII.get(TargetOpcode::DBG_VALUE), /*IsIndirect*/ true,
1378 *Op, DI->getVariable(), DI->getExpression());
1379 } else {
1380 // We can't yet handle anything else here because it would require
1381 // generating code, thus altering codegen because of debug info.
1382 LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
1383 }
1384 return true;
1385 }
1386 case Intrinsic::dbg_value: {
1387 // This form of DBG_VALUE is target-independent.
1388 const DbgValueInst *DI = cast<DbgValueInst>(II);
1389 const MCInstrDesc &II = TII.get(TargetOpcode::DBG_VALUE);
1390 const Value *V = DI->getValue();
1391 assert(DI->getVariable()->isValidLocationForIntrinsic(DbgLoc) &&
1392 "Expected inlined-at fields to agree");
1393 if (!V) {
1394 // Currently the optimizer can produce this; insert an undef to
1395 // help debugging. Probably the optimizer should not do this.
1396 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, false, 0U,
1397 DI->getVariable(), DI->getExpression());
1398 } else if (const auto *CI = dyn_cast<ConstantInt>(V)) {
1399 if (CI->getBitWidth() > 64)
1400 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
1401 .addCImm(CI)
1402 .addImm(0U)
1403 .addMetadata(DI->getVariable())
1404 .addMetadata(DI->getExpression());
1405 else
1406 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
1407 .addImm(CI->getZExtValue())
1408 .addImm(0U)
1409 .addMetadata(DI->getVariable())
1410 .addMetadata(DI->getExpression());
1411 } else if (const auto *CF = dyn_cast<ConstantFP>(V)) {
1412 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
1413 .addFPImm(CF)
1414 .addImm(0U)
1415 .addMetadata(DI->getVariable())
1416 .addMetadata(DI->getExpression());
1417 } else if (unsigned Reg = lookUpRegForValue(V)) {
1418 // FIXME: This does not handle register-indirect values at offset 0.
1419 bool IsIndirect = false;
1420 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, IsIndirect, Reg,
1421 DI->getVariable(), DI->getExpression());
1422 } else {
1423 // We can't yet handle anything else here because it would require
1424 // generating code, thus altering codegen because of debug info.
1425 LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
1426 }
1427 return true;
1428 }
1429 case Intrinsic::objectsize: {
1430 ConstantInt *CI = cast<ConstantInt>(II->getArgOperand(1));
1431 unsigned long long Res = CI->isZero() ? -1ULL : 0;
1432 Constant *ResCI = ConstantInt::get(II->getType(), Res);
1433 unsigned ResultReg = getRegForValue(ResCI);
1434 if (!ResultReg)
1435 return false;
1436 updateValueMap(II, ResultReg);
1437 return true;
1438 }
1439 case Intrinsic::launder_invariant_group:
1440 case Intrinsic::strip_invariant_group:
1441 case Intrinsic::expect: {
1442 unsigned ResultReg = getRegForValue(II->getArgOperand(0));
1443 if (!ResultReg)
1444 return false;
1445 updateValueMap(II, ResultReg);
1446 return true;
1447 }
1448 case Intrinsic::experimental_stackmap:
1449 return selectStackmap(II);
1450 case Intrinsic::experimental_patchpoint_void:
1451 case Intrinsic::experimental_patchpoint_i64:
1452 return selectPatchpoint(II);
1453
1454 case Intrinsic::xray_customevent:
1455 return selectXRayCustomEvent(II);
1456 case Intrinsic::xray_typedevent:
1457 return selectXRayTypedEvent(II);
1458 }
1459
1460 return fastLowerIntrinsicCall(II);
1461 }
1462
selectCast(const User * I,unsigned Opcode)1463 bool FastISel::selectCast(const User *I, unsigned Opcode) {
1464 EVT SrcVT = TLI.getValueType(DL, I->getOperand(0)->getType());
1465 EVT DstVT = TLI.getValueType(DL, I->getType());
1466
1467 if (SrcVT == MVT::Other || !SrcVT.isSimple() || DstVT == MVT::Other ||
1468 !DstVT.isSimple())
1469 // Unhandled type. Halt "fast" selection and bail.
1470 return false;
1471
1472 // Check if the destination type is legal.
1473 if (!TLI.isTypeLegal(DstVT))
1474 return false;
1475
1476 // Check if the source operand is legal.
1477 if (!TLI.isTypeLegal(SrcVT))
1478 return false;
1479
1480 unsigned InputReg = getRegForValue(I->getOperand(0));
1481 if (!InputReg)
1482 // Unhandled operand. Halt "fast" selection and bail.
1483 return false;
1484
1485 bool InputRegIsKill = hasTrivialKill(I->getOperand(0));
1486
1487 unsigned ResultReg = fastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(),
1488 Opcode, InputReg, InputRegIsKill);
1489 if (!ResultReg)
1490 return false;
1491
1492 updateValueMap(I, ResultReg);
1493 return true;
1494 }
1495
selectBitCast(const User * I)1496 bool FastISel::selectBitCast(const User *I) {
1497 // If the bitcast doesn't change the type, just use the operand value.
1498 if (I->getType() == I->getOperand(0)->getType()) {
1499 unsigned Reg = getRegForValue(I->getOperand(0));
1500 if (!Reg)
1501 return false;
1502 updateValueMap(I, Reg);
1503 return true;
1504 }
1505
1506 // Bitcasts of other values become reg-reg copies or BITCAST operators.
1507 EVT SrcEVT = TLI.getValueType(DL, I->getOperand(0)->getType());
1508 EVT DstEVT = TLI.getValueType(DL, I->getType());
1509 if (SrcEVT == MVT::Other || DstEVT == MVT::Other ||
1510 !TLI.isTypeLegal(SrcEVT) || !TLI.isTypeLegal(DstEVT))
1511 // Unhandled type. Halt "fast" selection and bail.
1512 return false;
1513
1514 MVT SrcVT = SrcEVT.getSimpleVT();
1515 MVT DstVT = DstEVT.getSimpleVT();
1516 unsigned Op0 = getRegForValue(I->getOperand(0));
1517 if (!Op0) // Unhandled operand. Halt "fast" selection and bail.
1518 return false;
1519 bool Op0IsKill = hasTrivialKill(I->getOperand(0));
1520
1521 // First, try to perform the bitcast by inserting a reg-reg copy.
1522 unsigned ResultReg = 0;
1523 if (SrcVT == DstVT) {
1524 const TargetRegisterClass *SrcClass = TLI.getRegClassFor(SrcVT);
1525 const TargetRegisterClass *DstClass = TLI.getRegClassFor(DstVT);
1526 // Don't attempt a cross-class copy. It will likely fail.
1527 if (SrcClass == DstClass) {
1528 ResultReg = createResultReg(DstClass);
1529 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1530 TII.get(TargetOpcode::COPY), ResultReg).addReg(Op0);
1531 }
1532 }
1533
1534 // If the reg-reg copy failed, select a BITCAST opcode.
1535 if (!ResultReg)
1536 ResultReg = fastEmit_r(SrcVT, DstVT, ISD::BITCAST, Op0, Op0IsKill);
1537
1538 if (!ResultReg)
1539 return false;
1540
1541 updateValueMap(I, ResultReg);
1542 return true;
1543 }
1544
1545 // Remove local value instructions starting from the instruction after
1546 // SavedLastLocalValue to the current function insert point.
removeDeadLocalValueCode(MachineInstr * SavedLastLocalValue)1547 void FastISel::removeDeadLocalValueCode(MachineInstr *SavedLastLocalValue)
1548 {
1549 MachineInstr *CurLastLocalValue = getLastLocalValue();
1550 if (CurLastLocalValue != SavedLastLocalValue) {
1551 // Find the first local value instruction to be deleted.
1552 // This is the instruction after SavedLastLocalValue if it is non-NULL.
1553 // Otherwise it's the first instruction in the block.
1554 MachineBasicBlock::iterator FirstDeadInst(SavedLastLocalValue);
1555 if (SavedLastLocalValue)
1556 ++FirstDeadInst;
1557 else
1558 FirstDeadInst = FuncInfo.MBB->getFirstNonPHI();
1559 setLastLocalValue(SavedLastLocalValue);
1560 removeDeadCode(FirstDeadInst, FuncInfo.InsertPt);
1561 }
1562 }
1563
selectInstruction(const Instruction * I)1564 bool FastISel::selectInstruction(const Instruction *I) {
1565 MachineInstr *SavedLastLocalValue = getLastLocalValue();
1566 // Just before the terminator instruction, insert instructions to
1567 // feed PHI nodes in successor blocks.
1568 if (isa<TerminatorInst>(I)) {
1569 if (!handlePHINodesInSuccessorBlocks(I->getParent())) {
1570 // PHI node handling may have generated local value instructions,
1571 // even though it failed to handle all PHI nodes.
1572 // We remove these instructions because SelectionDAGISel will generate
1573 // them again.
1574 removeDeadLocalValueCode(SavedLastLocalValue);
1575 return false;
1576 }
1577 }
1578
1579 // FastISel does not handle any operand bundles except OB_funclet.
1580 if (ImmutableCallSite CS = ImmutableCallSite(I))
1581 for (unsigned i = 0, e = CS.getNumOperandBundles(); i != e; ++i)
1582 if (CS.getOperandBundleAt(i).getTagID() != LLVMContext::OB_funclet)
1583 return false;
1584
1585 DbgLoc = I->getDebugLoc();
1586
1587 SavedInsertPt = FuncInfo.InsertPt;
1588
1589 if (const auto *Call = dyn_cast<CallInst>(I)) {
1590 const Function *F = Call->getCalledFunction();
1591 LibFunc Func;
1592
1593 // As a special case, don't handle calls to builtin library functions that
1594 // may be translated directly to target instructions.
1595 if (F && !F->hasLocalLinkage() && F->hasName() &&
1596 LibInfo->getLibFunc(F->getName(), Func) &&
1597 LibInfo->hasOptimizedCodeGen(Func))
1598 return false;
1599
1600 // Don't handle Intrinsic::trap if a trap function is specified.
1601 if (F && F->getIntrinsicID() == Intrinsic::trap &&
1602 Call->hasFnAttr("trap-func-name"))
1603 return false;
1604 }
1605
1606 // First, try doing target-independent selection.
1607 if (!SkipTargetIndependentISel) {
1608 if (selectOperator(I, I->getOpcode())) {
1609 ++NumFastIselSuccessIndependent;
1610 DbgLoc = DebugLoc();
1611 return true;
1612 }
1613 // Remove dead code.
1614 recomputeInsertPt();
1615 if (SavedInsertPt != FuncInfo.InsertPt)
1616 removeDeadCode(FuncInfo.InsertPt, SavedInsertPt);
1617 SavedInsertPt = FuncInfo.InsertPt;
1618 }
1619 // Next, try calling the target to attempt to handle the instruction.
1620 if (fastSelectInstruction(I)) {
1621 ++NumFastIselSuccessTarget;
1622 DbgLoc = DebugLoc();
1623 return true;
1624 }
1625 // Remove dead code.
1626 recomputeInsertPt();
1627 if (SavedInsertPt != FuncInfo.InsertPt)
1628 removeDeadCode(FuncInfo.InsertPt, SavedInsertPt);
1629
1630 DbgLoc = DebugLoc();
1631 // Undo phi node updates, because they will be added again by SelectionDAG.
1632 if (isa<TerminatorInst>(I)) {
1633 // PHI node handling may have generated local value instructions.
1634 // We remove them because SelectionDAGISel will generate them again.
1635 removeDeadLocalValueCode(SavedLastLocalValue);
1636 FuncInfo.PHINodesToUpdate.resize(FuncInfo.OrigNumPHINodesToUpdate);
1637 }
1638 return false;
1639 }
1640
1641 /// Emit an unconditional branch to the given block, unless it is the immediate
1642 /// (fall-through) successor, and update the CFG.
fastEmitBranch(MachineBasicBlock * MSucc,const DebugLoc & DbgLoc)1643 void FastISel::fastEmitBranch(MachineBasicBlock *MSucc,
1644 const DebugLoc &DbgLoc) {
1645 if (FuncInfo.MBB->getBasicBlock()->size() > 1 &&
1646 FuncInfo.MBB->isLayoutSuccessor(MSucc)) {
1647 // For more accurate line information if this is the only instruction
1648 // in the block then emit it, otherwise we have the unconditional
1649 // fall-through case, which needs no instructions.
1650 } else {
1651 // The unconditional branch case.
1652 TII.insertBranch(*FuncInfo.MBB, MSucc, nullptr,
1653 SmallVector<MachineOperand, 0>(), DbgLoc);
1654 }
1655 if (FuncInfo.BPI) {
1656 auto BranchProbability = FuncInfo.BPI->getEdgeProbability(
1657 FuncInfo.MBB->getBasicBlock(), MSucc->getBasicBlock());
1658 FuncInfo.MBB->addSuccessor(MSucc, BranchProbability);
1659 } else
1660 FuncInfo.MBB->addSuccessorWithoutProb(MSucc);
1661 }
1662
finishCondBranch(const BasicBlock * BranchBB,MachineBasicBlock * TrueMBB,MachineBasicBlock * FalseMBB)1663 void FastISel::finishCondBranch(const BasicBlock *BranchBB,
1664 MachineBasicBlock *TrueMBB,
1665 MachineBasicBlock *FalseMBB) {
1666 // Add TrueMBB as successor unless it is equal to the FalseMBB: This can
1667 // happen in degenerate IR and MachineIR forbids to have a block twice in the
1668 // successor/predecessor lists.
1669 if (TrueMBB != FalseMBB) {
1670 if (FuncInfo.BPI) {
1671 auto BranchProbability =
1672 FuncInfo.BPI->getEdgeProbability(BranchBB, TrueMBB->getBasicBlock());
1673 FuncInfo.MBB->addSuccessor(TrueMBB, BranchProbability);
1674 } else
1675 FuncInfo.MBB->addSuccessorWithoutProb(TrueMBB);
1676 }
1677
1678 fastEmitBranch(FalseMBB, DbgLoc);
1679 }
1680
1681 /// Emit an FNeg operation.
selectFNeg(const User * I)1682 bool FastISel::selectFNeg(const User *I) {
1683 unsigned OpReg = getRegForValue(BinaryOperator::getFNegArgument(I));
1684 if (!OpReg)
1685 return false;
1686 bool OpRegIsKill = hasTrivialKill(I);
1687
1688 // If the target has ISD::FNEG, use it.
1689 EVT VT = TLI.getValueType(DL, I->getType());
1690 unsigned ResultReg = fastEmit_r(VT.getSimpleVT(), VT.getSimpleVT(), ISD::FNEG,
1691 OpReg, OpRegIsKill);
1692 if (ResultReg) {
1693 updateValueMap(I, ResultReg);
1694 return true;
1695 }
1696
1697 // Bitcast the value to integer, twiddle the sign bit with xor,
1698 // and then bitcast it back to floating-point.
1699 if (VT.getSizeInBits() > 64)
1700 return false;
1701 EVT IntVT = EVT::getIntegerVT(I->getContext(), VT.getSizeInBits());
1702 if (!TLI.isTypeLegal(IntVT))
1703 return false;
1704
1705 unsigned IntReg = fastEmit_r(VT.getSimpleVT(), IntVT.getSimpleVT(),
1706 ISD::BITCAST, OpReg, OpRegIsKill);
1707 if (!IntReg)
1708 return false;
1709
1710 unsigned IntResultReg = fastEmit_ri_(
1711 IntVT.getSimpleVT(), ISD::XOR, IntReg, /*IsKill=*/true,
1712 UINT64_C(1) << (VT.getSizeInBits() - 1), IntVT.getSimpleVT());
1713 if (!IntResultReg)
1714 return false;
1715
1716 ResultReg = fastEmit_r(IntVT.getSimpleVT(), VT.getSimpleVT(), ISD::BITCAST,
1717 IntResultReg, /*IsKill=*/true);
1718 if (!ResultReg)
1719 return false;
1720
1721 updateValueMap(I, ResultReg);
1722 return true;
1723 }
1724
selectExtractValue(const User * U)1725 bool FastISel::selectExtractValue(const User *U) {
1726 const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(U);
1727 if (!EVI)
1728 return false;
1729
1730 // Make sure we only try to handle extracts with a legal result. But also
1731 // allow i1 because it's easy.
1732 EVT RealVT = TLI.getValueType(DL, EVI->getType(), /*AllowUnknown=*/true);
1733 if (!RealVT.isSimple())
1734 return false;
1735 MVT VT = RealVT.getSimpleVT();
1736 if (!TLI.isTypeLegal(VT) && VT != MVT::i1)
1737 return false;
1738
1739 const Value *Op0 = EVI->getOperand(0);
1740 Type *AggTy = Op0->getType();
1741
1742 // Get the base result register.
1743 unsigned ResultReg;
1744 DenseMap<const Value *, unsigned>::iterator I = FuncInfo.ValueMap.find(Op0);
1745 if (I != FuncInfo.ValueMap.end())
1746 ResultReg = I->second;
1747 else if (isa<Instruction>(Op0))
1748 ResultReg = FuncInfo.InitializeRegForValue(Op0);
1749 else
1750 return false; // fast-isel can't handle aggregate constants at the moment
1751
1752 // Get the actual result register, which is an offset from the base register.
1753 unsigned VTIndex = ComputeLinearIndex(AggTy, EVI->getIndices());
1754
1755 SmallVector<EVT, 4> AggValueVTs;
1756 ComputeValueVTs(TLI, DL, AggTy, AggValueVTs);
1757
1758 for (unsigned i = 0; i < VTIndex; i++)
1759 ResultReg += TLI.getNumRegisters(FuncInfo.Fn->getContext(), AggValueVTs[i]);
1760
1761 updateValueMap(EVI, ResultReg);
1762 return true;
1763 }
1764
selectOperator(const User * I,unsigned Opcode)1765 bool FastISel::selectOperator(const User *I, unsigned Opcode) {
1766 switch (Opcode) {
1767 case Instruction::Add:
1768 return selectBinaryOp(I, ISD::ADD);
1769 case Instruction::FAdd:
1770 return selectBinaryOp(I, ISD::FADD);
1771 case Instruction::Sub:
1772 return selectBinaryOp(I, ISD::SUB);
1773 case Instruction::FSub:
1774 // FNeg is currently represented in LLVM IR as a special case of FSub.
1775 if (BinaryOperator::isFNeg(I))
1776 return selectFNeg(I);
1777 return selectBinaryOp(I, ISD::FSUB);
1778 case Instruction::Mul:
1779 return selectBinaryOp(I, ISD::MUL);
1780 case Instruction::FMul:
1781 return selectBinaryOp(I, ISD::FMUL);
1782 case Instruction::SDiv:
1783 return selectBinaryOp(I, ISD::SDIV);
1784 case Instruction::UDiv:
1785 return selectBinaryOp(I, ISD::UDIV);
1786 case Instruction::FDiv:
1787 return selectBinaryOp(I, ISD::FDIV);
1788 case Instruction::SRem:
1789 return selectBinaryOp(I, ISD::SREM);
1790 case Instruction::URem:
1791 return selectBinaryOp(I, ISD::UREM);
1792 case Instruction::FRem:
1793 return selectBinaryOp(I, ISD::FREM);
1794 case Instruction::Shl:
1795 return selectBinaryOp(I, ISD::SHL);
1796 case Instruction::LShr:
1797 return selectBinaryOp(I, ISD::SRL);
1798 case Instruction::AShr:
1799 return selectBinaryOp(I, ISD::SRA);
1800 case Instruction::And:
1801 return selectBinaryOp(I, ISD::AND);
1802 case Instruction::Or:
1803 return selectBinaryOp(I, ISD::OR);
1804 case Instruction::Xor:
1805 return selectBinaryOp(I, ISD::XOR);
1806
1807 case Instruction::GetElementPtr:
1808 return selectGetElementPtr(I);
1809
1810 case Instruction::Br: {
1811 const BranchInst *BI = cast<BranchInst>(I);
1812
1813 if (BI->isUnconditional()) {
1814 const BasicBlock *LLVMSucc = BI->getSuccessor(0);
1815 MachineBasicBlock *MSucc = FuncInfo.MBBMap[LLVMSucc];
1816 fastEmitBranch(MSucc, BI->getDebugLoc());
1817 return true;
1818 }
1819
1820 // Conditional branches are not handed yet.
1821 // Halt "fast" selection and bail.
1822 return false;
1823 }
1824
1825 case Instruction::Unreachable:
1826 if (TM.Options.TrapUnreachable)
1827 return fastEmit_(MVT::Other, MVT::Other, ISD::TRAP) != 0;
1828 else
1829 return true;
1830
1831 case Instruction::Alloca:
1832 // FunctionLowering has the static-sized case covered.
1833 if (FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(I)))
1834 return true;
1835
1836 // Dynamic-sized alloca is not handled yet.
1837 return false;
1838
1839 case Instruction::Call:
1840 return selectCall(I);
1841
1842 case Instruction::BitCast:
1843 return selectBitCast(I);
1844
1845 case Instruction::FPToSI:
1846 return selectCast(I, ISD::FP_TO_SINT);
1847 case Instruction::ZExt:
1848 return selectCast(I, ISD::ZERO_EXTEND);
1849 case Instruction::SExt:
1850 return selectCast(I, ISD::SIGN_EXTEND);
1851 case Instruction::Trunc:
1852 return selectCast(I, ISD::TRUNCATE);
1853 case Instruction::SIToFP:
1854 return selectCast(I, ISD::SINT_TO_FP);
1855
1856 case Instruction::IntToPtr: // Deliberate fall-through.
1857 case Instruction::PtrToInt: {
1858 EVT SrcVT = TLI.getValueType(DL, I->getOperand(0)->getType());
1859 EVT DstVT = TLI.getValueType(DL, I->getType());
1860 if (DstVT.bitsGT(SrcVT))
1861 return selectCast(I, ISD::ZERO_EXTEND);
1862 if (DstVT.bitsLT(SrcVT))
1863 return selectCast(I, ISD::TRUNCATE);
1864 unsigned Reg = getRegForValue(I->getOperand(0));
1865 if (!Reg)
1866 return false;
1867 updateValueMap(I, Reg);
1868 return true;
1869 }
1870
1871 case Instruction::ExtractValue:
1872 return selectExtractValue(I);
1873
1874 case Instruction::PHI:
1875 llvm_unreachable("FastISel shouldn't visit PHI nodes!");
1876
1877 default:
1878 // Unhandled instruction. Halt "fast" selection and bail.
1879 return false;
1880 }
1881 }
1882
FastISel(FunctionLoweringInfo & FuncInfo,const TargetLibraryInfo * LibInfo,bool SkipTargetIndependentISel)1883 FastISel::FastISel(FunctionLoweringInfo &FuncInfo,
1884 const TargetLibraryInfo *LibInfo,
1885 bool SkipTargetIndependentISel)
1886 : FuncInfo(FuncInfo), MF(FuncInfo.MF), MRI(FuncInfo.MF->getRegInfo()),
1887 MFI(FuncInfo.MF->getFrameInfo()), MCP(*FuncInfo.MF->getConstantPool()),
1888 TM(FuncInfo.MF->getTarget()), DL(MF->getDataLayout()),
1889 TII(*MF->getSubtarget().getInstrInfo()),
1890 TLI(*MF->getSubtarget().getTargetLowering()),
1891 TRI(*MF->getSubtarget().getRegisterInfo()), LibInfo(LibInfo),
1892 SkipTargetIndependentISel(SkipTargetIndependentISel) {}
1893
1894 FastISel::~FastISel() = default;
1895
fastLowerArguments()1896 bool FastISel::fastLowerArguments() { return false; }
1897
fastLowerCall(CallLoweringInfo &)1898 bool FastISel::fastLowerCall(CallLoweringInfo & /*CLI*/) { return false; }
1899
fastLowerIntrinsicCall(const IntrinsicInst *)1900 bool FastISel::fastLowerIntrinsicCall(const IntrinsicInst * /*II*/) {
1901 return false;
1902 }
1903
fastEmit_(MVT,MVT,unsigned)1904 unsigned FastISel::fastEmit_(MVT, MVT, unsigned) { return 0; }
1905
fastEmit_r(MVT,MVT,unsigned,unsigned,bool)1906 unsigned FastISel::fastEmit_r(MVT, MVT, unsigned, unsigned /*Op0*/,
1907 bool /*Op0IsKill*/) {
1908 return 0;
1909 }
1910
fastEmit_rr(MVT,MVT,unsigned,unsigned,bool,unsigned,bool)1911 unsigned FastISel::fastEmit_rr(MVT, MVT, unsigned, unsigned /*Op0*/,
1912 bool /*Op0IsKill*/, unsigned /*Op1*/,
1913 bool /*Op1IsKill*/) {
1914 return 0;
1915 }
1916
fastEmit_i(MVT,MVT,unsigned,uint64_t)1917 unsigned FastISel::fastEmit_i(MVT, MVT, unsigned, uint64_t /*Imm*/) {
1918 return 0;
1919 }
1920
fastEmit_f(MVT,MVT,unsigned,const ConstantFP *)1921 unsigned FastISel::fastEmit_f(MVT, MVT, unsigned,
1922 const ConstantFP * /*FPImm*/) {
1923 return 0;
1924 }
1925
fastEmit_ri(MVT,MVT,unsigned,unsigned,bool,uint64_t)1926 unsigned FastISel::fastEmit_ri(MVT, MVT, unsigned, unsigned /*Op0*/,
1927 bool /*Op0IsKill*/, uint64_t /*Imm*/) {
1928 return 0;
1929 }
1930
1931 /// This method is a wrapper of fastEmit_ri. It first tries to emit an
1932 /// instruction with an immediate operand using fastEmit_ri.
1933 /// If that fails, it materializes the immediate into a register and try
1934 /// fastEmit_rr instead.
fastEmit_ri_(MVT VT,unsigned Opcode,unsigned Op0,bool Op0IsKill,uint64_t Imm,MVT ImmType)1935 unsigned FastISel::fastEmit_ri_(MVT VT, unsigned Opcode, unsigned Op0,
1936 bool Op0IsKill, uint64_t Imm, MVT ImmType) {
1937 // If this is a multiply by a power of two, emit this as a shift left.
1938 if (Opcode == ISD::MUL && isPowerOf2_64(Imm)) {
1939 Opcode = ISD::SHL;
1940 Imm = Log2_64(Imm);
1941 } else if (Opcode == ISD::UDIV && isPowerOf2_64(Imm)) {
1942 // div x, 8 -> srl x, 3
1943 Opcode = ISD::SRL;
1944 Imm = Log2_64(Imm);
1945 }
1946
1947 // Horrible hack (to be removed), check to make sure shift amounts are
1948 // in-range.
1949 if ((Opcode == ISD::SHL || Opcode == ISD::SRA || Opcode == ISD::SRL) &&
1950 Imm >= VT.getSizeInBits())
1951 return 0;
1952
1953 // First check if immediate type is legal. If not, we can't use the ri form.
1954 unsigned ResultReg = fastEmit_ri(VT, VT, Opcode, Op0, Op0IsKill, Imm);
1955 if (ResultReg)
1956 return ResultReg;
1957 unsigned MaterialReg = fastEmit_i(ImmType, ImmType, ISD::Constant, Imm);
1958 bool IsImmKill = true;
1959 if (!MaterialReg) {
1960 // This is a bit ugly/slow, but failing here means falling out of
1961 // fast-isel, which would be very slow.
1962 IntegerType *ITy =
1963 IntegerType::get(FuncInfo.Fn->getContext(), VT.getSizeInBits());
1964 MaterialReg = getRegForValue(ConstantInt::get(ITy, Imm));
1965 if (!MaterialReg)
1966 return 0;
1967 // FIXME: If the materialized register here has no uses yet then this
1968 // will be the first use and we should be able to mark it as killed.
1969 // However, the local value area for materialising constant expressions
1970 // grows down, not up, which means that any constant expressions we generate
1971 // later which also use 'Imm' could be after this instruction and therefore
1972 // after this kill.
1973 IsImmKill = false;
1974 }
1975 return fastEmit_rr(VT, VT, Opcode, Op0, Op0IsKill, MaterialReg, IsImmKill);
1976 }
1977
createResultReg(const TargetRegisterClass * RC)1978 unsigned FastISel::createResultReg(const TargetRegisterClass *RC) {
1979 return MRI.createVirtualRegister(RC);
1980 }
1981
constrainOperandRegClass(const MCInstrDesc & II,unsigned Op,unsigned OpNum)1982 unsigned FastISel::constrainOperandRegClass(const MCInstrDesc &II, unsigned Op,
1983 unsigned OpNum) {
1984 if (TargetRegisterInfo::isVirtualRegister(Op)) {
1985 const TargetRegisterClass *RegClass =
1986 TII.getRegClass(II, OpNum, &TRI, *FuncInfo.MF);
1987 if (!MRI.constrainRegClass(Op, RegClass)) {
1988 // If it's not legal to COPY between the register classes, something
1989 // has gone very wrong before we got here.
1990 unsigned NewOp = createResultReg(RegClass);
1991 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1992 TII.get(TargetOpcode::COPY), NewOp).addReg(Op);
1993 return NewOp;
1994 }
1995 }
1996 return Op;
1997 }
1998
fastEmitInst_(unsigned MachineInstOpcode,const TargetRegisterClass * RC)1999 unsigned FastISel::fastEmitInst_(unsigned MachineInstOpcode,
2000 const TargetRegisterClass *RC) {
2001 unsigned ResultReg = createResultReg(RC);
2002 const MCInstrDesc &II = TII.get(MachineInstOpcode);
2003
2004 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg);
2005 return ResultReg;
2006 }
2007
fastEmitInst_r(unsigned MachineInstOpcode,const TargetRegisterClass * RC,unsigned Op0,bool Op0IsKill)2008 unsigned FastISel::fastEmitInst_r(unsigned MachineInstOpcode,
2009 const TargetRegisterClass *RC, unsigned Op0,
2010 bool Op0IsKill) {
2011 const MCInstrDesc &II = TII.get(MachineInstOpcode);
2012
2013 unsigned ResultReg = createResultReg(RC);
2014 Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs());
2015
2016 if (II.getNumDefs() >= 1)
2017 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
2018 .addReg(Op0, getKillRegState(Op0IsKill));
2019 else {
2020 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
2021 .addReg(Op0, getKillRegState(Op0IsKill));
2022 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2023 TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]);
2024 }
2025
2026 return ResultReg;
2027 }
2028
fastEmitInst_rr(unsigned MachineInstOpcode,const TargetRegisterClass * RC,unsigned Op0,bool Op0IsKill,unsigned Op1,bool Op1IsKill)2029 unsigned FastISel::fastEmitInst_rr(unsigned MachineInstOpcode,
2030 const TargetRegisterClass *RC, unsigned Op0,
2031 bool Op0IsKill, unsigned Op1,
2032 bool Op1IsKill) {
2033 const MCInstrDesc &II = TII.get(MachineInstOpcode);
2034
2035 unsigned ResultReg = createResultReg(RC);
2036 Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs());
2037 Op1 = constrainOperandRegClass(II, Op1, II.getNumDefs() + 1);
2038
2039 if (II.getNumDefs() >= 1)
2040 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
2041 .addReg(Op0, getKillRegState(Op0IsKill))
2042 .addReg(Op1, getKillRegState(Op1IsKill));
2043 else {
2044 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
2045 .addReg(Op0, getKillRegState(Op0IsKill))
2046 .addReg(Op1, getKillRegState(Op1IsKill));
2047 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2048 TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]);
2049 }
2050 return ResultReg;
2051 }
2052
fastEmitInst_rrr(unsigned MachineInstOpcode,const TargetRegisterClass * RC,unsigned Op0,bool Op0IsKill,unsigned Op1,bool Op1IsKill,unsigned Op2,bool Op2IsKill)2053 unsigned FastISel::fastEmitInst_rrr(unsigned MachineInstOpcode,
2054 const TargetRegisterClass *RC, unsigned Op0,
2055 bool Op0IsKill, unsigned Op1,
2056 bool Op1IsKill, unsigned Op2,
2057 bool Op2IsKill) {
2058 const MCInstrDesc &II = TII.get(MachineInstOpcode);
2059
2060 unsigned ResultReg = createResultReg(RC);
2061 Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs());
2062 Op1 = constrainOperandRegClass(II, Op1, II.getNumDefs() + 1);
2063 Op2 = constrainOperandRegClass(II, Op2, II.getNumDefs() + 2);
2064
2065 if (II.getNumDefs() >= 1)
2066 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
2067 .addReg(Op0, getKillRegState(Op0IsKill))
2068 .addReg(Op1, getKillRegState(Op1IsKill))
2069 .addReg(Op2, getKillRegState(Op2IsKill));
2070 else {
2071 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
2072 .addReg(Op0, getKillRegState(Op0IsKill))
2073 .addReg(Op1, getKillRegState(Op1IsKill))
2074 .addReg(Op2, getKillRegState(Op2IsKill));
2075 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2076 TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]);
2077 }
2078 return ResultReg;
2079 }
2080
fastEmitInst_ri(unsigned MachineInstOpcode,const TargetRegisterClass * RC,unsigned Op0,bool Op0IsKill,uint64_t Imm)2081 unsigned FastISel::fastEmitInst_ri(unsigned MachineInstOpcode,
2082 const TargetRegisterClass *RC, unsigned Op0,
2083 bool Op0IsKill, uint64_t Imm) {
2084 const MCInstrDesc &II = TII.get(MachineInstOpcode);
2085
2086 unsigned ResultReg = createResultReg(RC);
2087 Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs());
2088
2089 if (II.getNumDefs() >= 1)
2090 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
2091 .addReg(Op0, getKillRegState(Op0IsKill))
2092 .addImm(Imm);
2093 else {
2094 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
2095 .addReg(Op0, getKillRegState(Op0IsKill))
2096 .addImm(Imm);
2097 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2098 TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]);
2099 }
2100 return ResultReg;
2101 }
2102
fastEmitInst_rii(unsigned MachineInstOpcode,const TargetRegisterClass * RC,unsigned Op0,bool Op0IsKill,uint64_t Imm1,uint64_t Imm2)2103 unsigned FastISel::fastEmitInst_rii(unsigned MachineInstOpcode,
2104 const TargetRegisterClass *RC, unsigned Op0,
2105 bool Op0IsKill, uint64_t Imm1,
2106 uint64_t Imm2) {
2107 const MCInstrDesc &II = TII.get(MachineInstOpcode);
2108
2109 unsigned ResultReg = createResultReg(RC);
2110 Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs());
2111
2112 if (II.getNumDefs() >= 1)
2113 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
2114 .addReg(Op0, getKillRegState(Op0IsKill))
2115 .addImm(Imm1)
2116 .addImm(Imm2);
2117 else {
2118 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
2119 .addReg(Op0, getKillRegState(Op0IsKill))
2120 .addImm(Imm1)
2121 .addImm(Imm2);
2122 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2123 TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]);
2124 }
2125 return ResultReg;
2126 }
2127
fastEmitInst_f(unsigned MachineInstOpcode,const TargetRegisterClass * RC,const ConstantFP * FPImm)2128 unsigned FastISel::fastEmitInst_f(unsigned MachineInstOpcode,
2129 const TargetRegisterClass *RC,
2130 const ConstantFP *FPImm) {
2131 const MCInstrDesc &II = TII.get(MachineInstOpcode);
2132
2133 unsigned ResultReg = createResultReg(RC);
2134
2135 if (II.getNumDefs() >= 1)
2136 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
2137 .addFPImm(FPImm);
2138 else {
2139 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
2140 .addFPImm(FPImm);
2141 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2142 TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]);
2143 }
2144 return ResultReg;
2145 }
2146
fastEmitInst_rri(unsigned MachineInstOpcode,const TargetRegisterClass * RC,unsigned Op0,bool Op0IsKill,unsigned Op1,bool Op1IsKill,uint64_t Imm)2147 unsigned FastISel::fastEmitInst_rri(unsigned MachineInstOpcode,
2148 const TargetRegisterClass *RC, unsigned Op0,
2149 bool Op0IsKill, unsigned Op1,
2150 bool Op1IsKill, uint64_t Imm) {
2151 const MCInstrDesc &II = TII.get(MachineInstOpcode);
2152
2153 unsigned ResultReg = createResultReg(RC);
2154 Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs());
2155 Op1 = constrainOperandRegClass(II, Op1, II.getNumDefs() + 1);
2156
2157 if (II.getNumDefs() >= 1)
2158 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
2159 .addReg(Op0, getKillRegState(Op0IsKill))
2160 .addReg(Op1, getKillRegState(Op1IsKill))
2161 .addImm(Imm);
2162 else {
2163 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
2164 .addReg(Op0, getKillRegState(Op0IsKill))
2165 .addReg(Op1, getKillRegState(Op1IsKill))
2166 .addImm(Imm);
2167 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2168 TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]);
2169 }
2170 return ResultReg;
2171 }
2172
fastEmitInst_i(unsigned MachineInstOpcode,const TargetRegisterClass * RC,uint64_t Imm)2173 unsigned FastISel::fastEmitInst_i(unsigned MachineInstOpcode,
2174 const TargetRegisterClass *RC, uint64_t Imm) {
2175 unsigned ResultReg = createResultReg(RC);
2176 const MCInstrDesc &II = TII.get(MachineInstOpcode);
2177
2178 if (II.getNumDefs() >= 1)
2179 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
2180 .addImm(Imm);
2181 else {
2182 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II).addImm(Imm);
2183 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2184 TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]);
2185 }
2186 return ResultReg;
2187 }
2188
fastEmitInst_extractsubreg(MVT RetVT,unsigned Op0,bool Op0IsKill,uint32_t Idx)2189 unsigned FastISel::fastEmitInst_extractsubreg(MVT RetVT, unsigned Op0,
2190 bool Op0IsKill, uint32_t Idx) {
2191 unsigned ResultReg = createResultReg(TLI.getRegClassFor(RetVT));
2192 assert(TargetRegisterInfo::isVirtualRegister(Op0) &&
2193 "Cannot yet extract from physregs");
2194 const TargetRegisterClass *RC = MRI.getRegClass(Op0);
2195 MRI.constrainRegClass(Op0, TRI.getSubClassWithSubReg(RC, Idx));
2196 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TargetOpcode::COPY),
2197 ResultReg).addReg(Op0, getKillRegState(Op0IsKill), Idx);
2198 return ResultReg;
2199 }
2200
2201 /// Emit MachineInstrs to compute the value of Op with all but the least
2202 /// significant bit set to zero.
fastEmitZExtFromI1(MVT VT,unsigned Op0,bool Op0IsKill)2203 unsigned FastISel::fastEmitZExtFromI1(MVT VT, unsigned Op0, bool Op0IsKill) {
2204 return fastEmit_ri(VT, VT, ISD::AND, Op0, Op0IsKill, 1);
2205 }
2206
2207 /// HandlePHINodesInSuccessorBlocks - Handle PHI nodes in successor blocks.
2208 /// Emit code to ensure constants are copied into registers when needed.
2209 /// Remember the virtual registers that need to be added to the Machine PHI
2210 /// nodes as input. We cannot just directly add them, because expansion
2211 /// might result in multiple MBB's for one BB. As such, the start of the
2212 /// BB might correspond to a different MBB than the end.
handlePHINodesInSuccessorBlocks(const BasicBlock * LLVMBB)2213 bool FastISel::handlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
2214 const TerminatorInst *TI = LLVMBB->getTerminator();
2215
2216 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
2217 FuncInfo.OrigNumPHINodesToUpdate = FuncInfo.PHINodesToUpdate.size();
2218
2219 // Check successor nodes' PHI nodes that expect a constant to be available
2220 // from this block.
2221 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
2222 const BasicBlock *SuccBB = TI->getSuccessor(succ);
2223 if (!isa<PHINode>(SuccBB->begin()))
2224 continue;
2225 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
2226
2227 // If this terminator has multiple identical successors (common for
2228 // switches), only handle each succ once.
2229 if (!SuccsHandled.insert(SuccMBB).second)
2230 continue;
2231
2232 MachineBasicBlock::iterator MBBI = SuccMBB->begin();
2233
2234 // At this point we know that there is a 1-1 correspondence between LLVM PHI
2235 // nodes and Machine PHI nodes, but the incoming operands have not been
2236 // emitted yet.
2237 for (const PHINode &PN : SuccBB->phis()) {
2238 // Ignore dead phi's.
2239 if (PN.use_empty())
2240 continue;
2241
2242 // Only handle legal types. Two interesting things to note here. First,
2243 // by bailing out early, we may leave behind some dead instructions,
2244 // since SelectionDAG's HandlePHINodesInSuccessorBlocks will insert its
2245 // own moves. Second, this check is necessary because FastISel doesn't
2246 // use CreateRegs to create registers, so it always creates
2247 // exactly one register for each non-void instruction.
2248 EVT VT = TLI.getValueType(DL, PN.getType(), /*AllowUnknown=*/true);
2249 if (VT == MVT::Other || !TLI.isTypeLegal(VT)) {
2250 // Handle integer promotions, though, because they're common and easy.
2251 if (!(VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16)) {
2252 FuncInfo.PHINodesToUpdate.resize(FuncInfo.OrigNumPHINodesToUpdate);
2253 return false;
2254 }
2255 }
2256
2257 const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB);
2258
2259 // Set the DebugLoc for the copy. Prefer the location of the operand
2260 // if there is one; use the location of the PHI otherwise.
2261 DbgLoc = PN.getDebugLoc();
2262 if (const auto *Inst = dyn_cast<Instruction>(PHIOp))
2263 DbgLoc = Inst->getDebugLoc();
2264
2265 unsigned Reg = getRegForValue(PHIOp);
2266 if (!Reg) {
2267 FuncInfo.PHINodesToUpdate.resize(FuncInfo.OrigNumPHINodesToUpdate);
2268 return false;
2269 }
2270 FuncInfo.PHINodesToUpdate.push_back(std::make_pair(&*MBBI++, Reg));
2271 DbgLoc = DebugLoc();
2272 }
2273 }
2274
2275 return true;
2276 }
2277
tryToFoldLoad(const LoadInst * LI,const Instruction * FoldInst)2278 bool FastISel::tryToFoldLoad(const LoadInst *LI, const Instruction *FoldInst) {
2279 assert(LI->hasOneUse() &&
2280 "tryToFoldLoad expected a LoadInst with a single use");
2281 // We know that the load has a single use, but don't know what it is. If it
2282 // isn't one of the folded instructions, then we can't succeed here. Handle
2283 // this by scanning the single-use users of the load until we get to FoldInst.
2284 unsigned MaxUsers = 6; // Don't scan down huge single-use chains of instrs.
2285
2286 const Instruction *TheUser = LI->user_back();
2287 while (TheUser != FoldInst && // Scan up until we find FoldInst.
2288 // Stay in the right block.
2289 TheUser->getParent() == FoldInst->getParent() &&
2290 --MaxUsers) { // Don't scan too far.
2291 // If there are multiple or no uses of this instruction, then bail out.
2292 if (!TheUser->hasOneUse())
2293 return false;
2294
2295 TheUser = TheUser->user_back();
2296 }
2297
2298 // If we didn't find the fold instruction, then we failed to collapse the
2299 // sequence.
2300 if (TheUser != FoldInst)
2301 return false;
2302
2303 // Don't try to fold volatile loads. Target has to deal with alignment
2304 // constraints.
2305 if (LI->isVolatile())
2306 return false;
2307
2308 // Figure out which vreg this is going into. If there is no assigned vreg yet
2309 // then there actually was no reference to it. Perhaps the load is referenced
2310 // by a dead instruction.
2311 unsigned LoadReg = getRegForValue(LI);
2312 if (!LoadReg)
2313 return false;
2314
2315 // We can't fold if this vreg has no uses or more than one use. Multiple uses
2316 // may mean that the instruction got lowered to multiple MIs, or the use of
2317 // the loaded value ended up being multiple operands of the result.
2318 if (!MRI.hasOneUse(LoadReg))
2319 return false;
2320
2321 MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(LoadReg);
2322 MachineInstr *User = RI->getParent();
2323
2324 // Set the insertion point properly. Folding the load can cause generation of
2325 // other random instructions (like sign extends) for addressing modes; make
2326 // sure they get inserted in a logical place before the new instruction.
2327 FuncInfo.InsertPt = User;
2328 FuncInfo.MBB = User->getParent();
2329
2330 // Ask the target to try folding the load.
2331 return tryToFoldLoadIntoMI(User, RI.getOperandNo(), LI);
2332 }
2333
canFoldAddIntoGEP(const User * GEP,const Value * Add)2334 bool FastISel::canFoldAddIntoGEP(const User *GEP, const Value *Add) {
2335 // Must be an add.
2336 if (!isa<AddOperator>(Add))
2337 return false;
2338 // Type size needs to match.
2339 if (DL.getTypeSizeInBits(GEP->getType()) !=
2340 DL.getTypeSizeInBits(Add->getType()))
2341 return false;
2342 // Must be in the same basic block.
2343 if (isa<Instruction>(Add) &&
2344 FuncInfo.MBBMap[cast<Instruction>(Add)->getParent()] != FuncInfo.MBB)
2345 return false;
2346 // Must have a constant operand.
2347 return isa<ConstantInt>(cast<AddOperator>(Add)->getOperand(1));
2348 }
2349
2350 MachineMemOperand *
createMachineMemOperandFor(const Instruction * I) const2351 FastISel::createMachineMemOperandFor(const Instruction *I) const {
2352 const Value *Ptr;
2353 Type *ValTy;
2354 unsigned Alignment;
2355 MachineMemOperand::Flags Flags;
2356 bool IsVolatile;
2357
2358 if (const auto *LI = dyn_cast<LoadInst>(I)) {
2359 Alignment = LI->getAlignment();
2360 IsVolatile = LI->isVolatile();
2361 Flags = MachineMemOperand::MOLoad;
2362 Ptr = LI->getPointerOperand();
2363 ValTy = LI->getType();
2364 } else if (const auto *SI = dyn_cast<StoreInst>(I)) {
2365 Alignment = SI->getAlignment();
2366 IsVolatile = SI->isVolatile();
2367 Flags = MachineMemOperand::MOStore;
2368 Ptr = SI->getPointerOperand();
2369 ValTy = SI->getValueOperand()->getType();
2370 } else
2371 return nullptr;
2372
2373 bool IsNonTemporal = I->getMetadata(LLVMContext::MD_nontemporal) != nullptr;
2374 bool IsInvariant = I->getMetadata(LLVMContext::MD_invariant_load) != nullptr;
2375 bool IsDereferenceable =
2376 I->getMetadata(LLVMContext::MD_dereferenceable) != nullptr;
2377 const MDNode *Ranges = I->getMetadata(LLVMContext::MD_range);
2378
2379 AAMDNodes AAInfo;
2380 I->getAAMetadata(AAInfo);
2381
2382 if (Alignment == 0) // Ensure that codegen never sees alignment 0.
2383 Alignment = DL.getABITypeAlignment(ValTy);
2384
2385 unsigned Size = DL.getTypeStoreSize(ValTy);
2386
2387 if (IsVolatile)
2388 Flags |= MachineMemOperand::MOVolatile;
2389 if (IsNonTemporal)
2390 Flags |= MachineMemOperand::MONonTemporal;
2391 if (IsDereferenceable)
2392 Flags |= MachineMemOperand::MODereferenceable;
2393 if (IsInvariant)
2394 Flags |= MachineMemOperand::MOInvariant;
2395
2396 return FuncInfo.MF->getMachineMemOperand(MachinePointerInfo(Ptr), Flags, Size,
2397 Alignment, AAInfo, Ranges);
2398 }
2399
optimizeCmpPredicate(const CmpInst * CI) const2400 CmpInst::Predicate FastISel::optimizeCmpPredicate(const CmpInst *CI) const {
2401 // If both operands are the same, then try to optimize or fold the cmp.
2402 CmpInst::Predicate Predicate = CI->getPredicate();
2403 if (CI->getOperand(0) != CI->getOperand(1))
2404 return Predicate;
2405
2406 switch (Predicate) {
2407 default: llvm_unreachable("Invalid predicate!");
2408 case CmpInst::FCMP_FALSE: Predicate = CmpInst::FCMP_FALSE; break;
2409 case CmpInst::FCMP_OEQ: Predicate = CmpInst::FCMP_ORD; break;
2410 case CmpInst::FCMP_OGT: Predicate = CmpInst::FCMP_FALSE; break;
2411 case CmpInst::FCMP_OGE: Predicate = CmpInst::FCMP_ORD; break;
2412 case CmpInst::FCMP_OLT: Predicate = CmpInst::FCMP_FALSE; break;
2413 case CmpInst::FCMP_OLE: Predicate = CmpInst::FCMP_ORD; break;
2414 case CmpInst::FCMP_ONE: Predicate = CmpInst::FCMP_FALSE; break;
2415 case CmpInst::FCMP_ORD: Predicate = CmpInst::FCMP_ORD; break;
2416 case CmpInst::FCMP_UNO: Predicate = CmpInst::FCMP_UNO; break;
2417 case CmpInst::FCMP_UEQ: Predicate = CmpInst::FCMP_TRUE; break;
2418 case CmpInst::FCMP_UGT: Predicate = CmpInst::FCMP_UNO; break;
2419 case CmpInst::FCMP_UGE: Predicate = CmpInst::FCMP_TRUE; break;
2420 case CmpInst::FCMP_ULT: Predicate = CmpInst::FCMP_UNO; break;
2421 case CmpInst::FCMP_ULE: Predicate = CmpInst::FCMP_TRUE; break;
2422 case CmpInst::FCMP_UNE: Predicate = CmpInst::FCMP_UNO; break;
2423 case CmpInst::FCMP_TRUE: Predicate = CmpInst::FCMP_TRUE; break;
2424
2425 case CmpInst::ICMP_EQ: Predicate = CmpInst::FCMP_TRUE; break;
2426 case CmpInst::ICMP_NE: Predicate = CmpInst::FCMP_FALSE; break;
2427 case CmpInst::ICMP_UGT: Predicate = CmpInst::FCMP_FALSE; break;
2428 case CmpInst::ICMP_UGE: Predicate = CmpInst::FCMP_TRUE; break;
2429 case CmpInst::ICMP_ULT: Predicate = CmpInst::FCMP_FALSE; break;
2430 case CmpInst::ICMP_ULE: Predicate = CmpInst::FCMP_TRUE; break;
2431 case CmpInst::ICMP_SGT: Predicate = CmpInst::FCMP_FALSE; break;
2432 case CmpInst::ICMP_SGE: Predicate = CmpInst::FCMP_TRUE; break;
2433 case CmpInst::ICMP_SLT: Predicate = CmpInst::FCMP_FALSE; break;
2434 case CmpInst::ICMP_SLE: Predicate = CmpInst::FCMP_TRUE; break;
2435 }
2436
2437 return Predicate;
2438 }
2439