1 //===-- FunctionLoweringInfo.cpp ------------------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This implements routines for translating functions from LLVM IR into
11 // Machine IR.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/CodeGen/FunctionLoweringInfo.h"
16 #include "llvm/CodeGen/Analysis.h"
17 #include "llvm/CodeGen/MachineFrameInfo.h"
18 #include "llvm/CodeGen/MachineFunction.h"
19 #include "llvm/CodeGen/MachineInstrBuilder.h"
20 #include "llvm/CodeGen/MachineRegisterInfo.h"
21 #include "llvm/CodeGen/TargetFrameLowering.h"
22 #include "llvm/CodeGen/TargetInstrInfo.h"
23 #include "llvm/CodeGen/TargetLowering.h"
24 #include "llvm/CodeGen/TargetRegisterInfo.h"
25 #include "llvm/CodeGen/TargetSubtargetInfo.h"
26 #include "llvm/CodeGen/WasmEHFuncInfo.h"
27 #include "llvm/CodeGen/WinEHFuncInfo.h"
28 #include "llvm/IR/DataLayout.h"
29 #include "llvm/IR/DerivedTypes.h"
30 #include "llvm/IR/Function.h"
31 #include "llvm/IR/Instructions.h"
32 #include "llvm/IR/IntrinsicInst.h"
33 #include "llvm/IR/LLVMContext.h"
34 #include "llvm/IR/Module.h"
35 #include "llvm/Support/Debug.h"
36 #include "llvm/Support/ErrorHandling.h"
37 #include "llvm/Support/MathExtras.h"
38 #include "llvm/Support/raw_ostream.h"
39 #include "llvm/Target/TargetOptions.h"
40 #include <algorithm>
41 using namespace llvm;
42 
43 #define DEBUG_TYPE "function-lowering-info"
44 
45 /// isUsedOutsideOfDefiningBlock - Return true if this instruction is used by
46 /// PHI nodes or outside of the basic block that defines it, or used by a
47 /// switch or atomic instruction, which may expand to multiple basic blocks.
isUsedOutsideOfDefiningBlock(const Instruction * I)48 static bool isUsedOutsideOfDefiningBlock(const Instruction *I) {
49   if (I->use_empty()) return false;
50   if (isa<PHINode>(I)) return true;
51   const BasicBlock *BB = I->getParent();
52   for (const User *U : I->users())
53     if (cast<Instruction>(U)->getParent() != BB || isa<PHINode>(U))
54       return true;
55 
56   return false;
57 }
58 
getPreferredExtendForValue(const Value * V)59 static ISD::NodeType getPreferredExtendForValue(const Value *V) {
60   // For the users of the source value being used for compare instruction, if
61   // the number of signed predicate is greater than unsigned predicate, we
62   // prefer to use SIGN_EXTEND.
63   //
64   // With this optimization, we would be able to reduce some redundant sign or
65   // zero extension instruction, and eventually more machine CSE opportunities
66   // can be exposed.
67   ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
68   unsigned NumOfSigned = 0, NumOfUnsigned = 0;
69   for (const User *U : V->users()) {
70     if (const auto *CI = dyn_cast<CmpInst>(U)) {
71       NumOfSigned += CI->isSigned();
72       NumOfUnsigned += CI->isUnsigned();
73     }
74   }
75   if (NumOfSigned > NumOfUnsigned)
76     ExtendKind = ISD::SIGN_EXTEND;
77 
78   return ExtendKind;
79 }
80 
set(const Function & fn,MachineFunction & mf,SelectionDAG * DAG)81 void FunctionLoweringInfo::set(const Function &fn, MachineFunction &mf,
82                                SelectionDAG *DAG) {
83   Fn = &fn;
84   MF = &mf;
85   TLI = MF->getSubtarget().getTargetLowering();
86   RegInfo = &MF->getRegInfo();
87   const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering();
88   unsigned StackAlign = TFI->getStackAlignment();
89 
90   // Check whether the function can return without sret-demotion.
91   SmallVector<ISD::OutputArg, 4> Outs;
92   CallingConv::ID CC = Fn->getCallingConv();
93 
94   GetReturnInfo(CC, Fn->getReturnType(), Fn->getAttributes(), Outs, *TLI,
95                 mf.getDataLayout());
96   CanLowerReturn =
97       TLI->CanLowerReturn(CC, *MF, Fn->isVarArg(), Outs, Fn->getContext());
98 
99   // If this personality uses funclets, we need to do a bit more work.
100   DenseMap<const AllocaInst *, TinyPtrVector<int *>> CatchObjects;
101   EHPersonality Personality = classifyEHPersonality(
102       Fn->hasPersonalityFn() ? Fn->getPersonalityFn() : nullptr);
103   if (isFuncletEHPersonality(Personality)) {
104     // Calculate state numbers if we haven't already.
105     WinEHFuncInfo &EHInfo = *MF->getWinEHFuncInfo();
106     if (Personality == EHPersonality::MSVC_CXX)
107       calculateWinCXXEHStateNumbers(&fn, EHInfo);
108     else if (isAsynchronousEHPersonality(Personality))
109       calculateSEHStateNumbers(&fn, EHInfo);
110     else if (Personality == EHPersonality::CoreCLR)
111       calculateClrEHStateNumbers(&fn, EHInfo);
112 
113     // Map all BB references in the WinEH data to MBBs.
114     for (WinEHTryBlockMapEntry &TBME : EHInfo.TryBlockMap) {
115       for (WinEHHandlerType &H : TBME.HandlerArray) {
116         if (const AllocaInst *AI = H.CatchObj.Alloca)
117           CatchObjects.insert({AI, {}}).first->second.push_back(
118               &H.CatchObj.FrameIndex);
119         else
120           H.CatchObj.FrameIndex = INT_MAX;
121       }
122     }
123   }
124   if (Personality == EHPersonality::Wasm_CXX) {
125     WasmEHFuncInfo &EHInfo = *MF->getWasmEHFuncInfo();
126     calculateWasmEHInfo(&fn, EHInfo);
127   }
128 
129   // Initialize the mapping of values to registers.  This is only set up for
130   // instruction values that are used outside of the block that defines
131   // them.
132   for (const BasicBlock &BB : *Fn) {
133     for (const Instruction &I : BB) {
134       if (const AllocaInst *AI = dyn_cast<AllocaInst>(&I)) {
135         Type *Ty = AI->getAllocatedType();
136         unsigned Align =
137           std::max((unsigned)MF->getDataLayout().getPrefTypeAlignment(Ty),
138                    AI->getAlignment());
139 
140         // Static allocas can be folded into the initial stack frame
141         // adjustment. For targets that don't realign the stack, don't
142         // do this if there is an extra alignment requirement.
143         if (AI->isStaticAlloca() &&
144             (TFI->isStackRealignable() || (Align <= StackAlign))) {
145           const ConstantInt *CUI = cast<ConstantInt>(AI->getArraySize());
146           uint64_t TySize = MF->getDataLayout().getTypeAllocSize(Ty);
147 
148           TySize *= CUI->getZExtValue();   // Get total allocated size.
149           if (TySize == 0) TySize = 1; // Don't create zero-sized stack objects.
150           int FrameIndex = INT_MAX;
151           auto Iter = CatchObjects.find(AI);
152           if (Iter != CatchObjects.end() && TLI->needsFixedCatchObjects()) {
153             FrameIndex = MF->getFrameInfo().CreateFixedObject(
154                 TySize, 0, /*Immutable=*/false, /*isAliased=*/true);
155             MF->getFrameInfo().setObjectAlignment(FrameIndex, Align);
156           } else {
157             FrameIndex =
158                 MF->getFrameInfo().CreateStackObject(TySize, Align, false, AI);
159           }
160 
161           StaticAllocaMap[AI] = FrameIndex;
162           // Update the catch handler information.
163           if (Iter != CatchObjects.end()) {
164             for (int *CatchObjPtr : Iter->second)
165               *CatchObjPtr = FrameIndex;
166           }
167         } else {
168           // FIXME: Overaligned static allocas should be grouped into
169           // a single dynamic allocation instead of using a separate
170           // stack allocation for each one.
171           if (Align <= StackAlign)
172             Align = 0;
173           // Inform the Frame Information that we have variable-sized objects.
174           MF->getFrameInfo().CreateVariableSizedObject(Align ? Align : 1, AI);
175         }
176       }
177 
178       // Look for inline asm that clobbers the SP register.
179       if (isa<CallInst>(I) || isa<InvokeInst>(I)) {
180         ImmutableCallSite CS(&I);
181         if (isa<InlineAsm>(CS.getCalledValue())) {
182           unsigned SP = TLI->getStackPointerRegisterToSaveRestore();
183           const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
184           std::vector<TargetLowering::AsmOperandInfo> Ops =
185               TLI->ParseConstraints(Fn->getParent()->getDataLayout(), TRI, CS);
186           for (TargetLowering::AsmOperandInfo &Op : Ops) {
187             if (Op.Type == InlineAsm::isClobber) {
188               // Clobbers don't have SDValue operands, hence SDValue().
189               TLI->ComputeConstraintToUse(Op, SDValue(), DAG);
190               std::pair<unsigned, const TargetRegisterClass *> PhysReg =
191                   TLI->getRegForInlineAsmConstraint(TRI, Op.ConstraintCode,
192                                                     Op.ConstraintVT);
193               if (PhysReg.first == SP)
194                 MF->getFrameInfo().setHasOpaqueSPAdjustment(true);
195             }
196           }
197         }
198       }
199 
200       // Look for calls to the @llvm.va_start intrinsic. We can omit some
201       // prologue boilerplate for variadic functions that don't examine their
202       // arguments.
203       if (const auto *II = dyn_cast<IntrinsicInst>(&I)) {
204         if (II->getIntrinsicID() == Intrinsic::vastart)
205           MF->getFrameInfo().setHasVAStart(true);
206       }
207 
208       // If we have a musttail call in a variadic function, we need to ensure we
209       // forward implicit register parameters.
210       if (const auto *CI = dyn_cast<CallInst>(&I)) {
211         if (CI->isMustTailCall() && Fn->isVarArg())
212           MF->getFrameInfo().setHasMustTailInVarArgFunc(true);
213       }
214 
215       // Mark values used outside their block as exported, by allocating
216       // a virtual register for them.
217       if (isUsedOutsideOfDefiningBlock(&I))
218         if (!isa<AllocaInst>(I) || !StaticAllocaMap.count(cast<AllocaInst>(&I)))
219           InitializeRegForValue(&I);
220 
221       // Decide the preferred extend type for a value.
222       PreferredExtendType[&I] = getPreferredExtendForValue(&I);
223     }
224   }
225 
226   // Create an initial MachineBasicBlock for each LLVM BasicBlock in F.  This
227   // also creates the initial PHI MachineInstrs, though none of the input
228   // operands are populated.
229   for (const BasicBlock &BB : *Fn) {
230     // Don't create MachineBasicBlocks for imaginary EH pad blocks. These blocks
231     // are really data, and no instructions can live here.
232     if (BB.isEHPad()) {
233       const Instruction *PadInst = BB.getFirstNonPHI();
234       // If this is a non-landingpad EH pad, mark this function as using
235       // funclets.
236       // FIXME: SEH catchpads do not create EH scope/funclets, so we could avoid
237       // setting this in such cases in order to improve frame layout.
238       if (!isa<LandingPadInst>(PadInst)) {
239         MF->setHasEHScopes(true);
240         MF->setHasEHFunclets(true);
241         MF->getFrameInfo().setHasOpaqueSPAdjustment(true);
242       }
243       if (isa<CatchSwitchInst>(PadInst)) {
244         assert(&*BB.begin() == PadInst &&
245                "WinEHPrepare failed to remove PHIs from imaginary BBs");
246         continue;
247       }
248       if (isa<FuncletPadInst>(PadInst))
249         assert(&*BB.begin() == PadInst && "WinEHPrepare failed to demote PHIs");
250     }
251 
252     MachineBasicBlock *MBB = mf.CreateMachineBasicBlock(&BB);
253     MBBMap[&BB] = MBB;
254     MF->push_back(MBB);
255 
256     // Transfer the address-taken flag. This is necessary because there could
257     // be multiple MachineBasicBlocks corresponding to one BasicBlock, and only
258     // the first one should be marked.
259     if (BB.hasAddressTaken())
260       MBB->setHasAddressTaken();
261 
262     // Mark landing pad blocks.
263     if (BB.isEHPad())
264       MBB->setIsEHPad();
265 
266     // Create Machine PHI nodes for LLVM PHI nodes, lowering them as
267     // appropriate.
268     for (const PHINode &PN : BB.phis()) {
269       if (PN.use_empty())
270         continue;
271 
272       // Skip empty types
273       if (PN.getType()->isEmptyTy())
274         continue;
275 
276       DebugLoc DL = PN.getDebugLoc();
277       unsigned PHIReg = ValueMap[&PN];
278       assert(PHIReg && "PHI node does not have an assigned virtual register!");
279 
280       SmallVector<EVT, 4> ValueVTs;
281       ComputeValueVTs(*TLI, MF->getDataLayout(), PN.getType(), ValueVTs);
282       for (EVT VT : ValueVTs) {
283         unsigned NumRegisters = TLI->getNumRegisters(Fn->getContext(), VT);
284         const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
285         for (unsigned i = 0; i != NumRegisters; ++i)
286           BuildMI(MBB, DL, TII->get(TargetOpcode::PHI), PHIReg + i);
287         PHIReg += NumRegisters;
288       }
289     }
290   }
291 
292   if (isFuncletEHPersonality(Personality)) {
293     WinEHFuncInfo &EHInfo = *MF->getWinEHFuncInfo();
294 
295     // Map all BB references in the WinEH data to MBBs.
296     for (WinEHTryBlockMapEntry &TBME : EHInfo.TryBlockMap) {
297       for (WinEHHandlerType &H : TBME.HandlerArray) {
298         if (H.Handler)
299           H.Handler = MBBMap[H.Handler.get<const BasicBlock *>()];
300       }
301     }
302     for (CxxUnwindMapEntry &UME : EHInfo.CxxUnwindMap)
303       if (UME.Cleanup)
304         UME.Cleanup = MBBMap[UME.Cleanup.get<const BasicBlock *>()];
305     for (SEHUnwindMapEntry &UME : EHInfo.SEHUnwindMap) {
306       const auto *BB = UME.Handler.get<const BasicBlock *>();
307       UME.Handler = MBBMap[BB];
308     }
309     for (ClrEHUnwindMapEntry &CME : EHInfo.ClrEHUnwindMap) {
310       const auto *BB = CME.Handler.get<const BasicBlock *>();
311       CME.Handler = MBBMap[BB];
312     }
313   }
314 
315   else if (Personality == EHPersonality::Wasm_CXX) {
316     WasmEHFuncInfo &EHInfo = *MF->getWasmEHFuncInfo();
317     // Map all BB references in the WinEH data to MBBs.
318     DenseMap<BBOrMBB, BBOrMBB> NewMap;
319     for (auto &KV : EHInfo.EHPadUnwindMap) {
320       const auto *Src = KV.first.get<const BasicBlock *>();
321       const auto *Dst = KV.second.get<const BasicBlock *>();
322       NewMap[MBBMap[Src]] = MBBMap[Dst];
323     }
324     EHInfo.EHPadUnwindMap = std::move(NewMap);
325     NewMap.clear();
326     for (auto &KV : EHInfo.ThrowUnwindMap) {
327       const auto *Src = KV.first.get<const BasicBlock *>();
328       const auto *Dst = KV.second.get<const BasicBlock *>();
329       NewMap[MBBMap[Src]] = MBBMap[Dst];
330     }
331     EHInfo.ThrowUnwindMap = std::move(NewMap);
332   }
333 }
334 
335 /// clear - Clear out all the function-specific state. This returns this
336 /// FunctionLoweringInfo to an empty state, ready to be used for a
337 /// different function.
clear()338 void FunctionLoweringInfo::clear() {
339   MBBMap.clear();
340   ValueMap.clear();
341   VirtReg2Value.clear();
342   StaticAllocaMap.clear();
343   LiveOutRegInfo.clear();
344   VisitedBBs.clear();
345   ArgDbgValues.clear();
346   ByValArgFrameIndexMap.clear();
347   RegFixups.clear();
348   RegsWithFixups.clear();
349   StatepointStackSlots.clear();
350   StatepointSpillMaps.clear();
351   PreferredExtendType.clear();
352 }
353 
354 /// CreateReg - Allocate a single virtual register for the given type.
CreateReg(MVT VT)355 unsigned FunctionLoweringInfo::CreateReg(MVT VT) {
356   return RegInfo->createVirtualRegister(
357       MF->getSubtarget().getTargetLowering()->getRegClassFor(VT));
358 }
359 
360 /// CreateRegs - Allocate the appropriate number of virtual registers of
361 /// the correctly promoted or expanded types.  Assign these registers
362 /// consecutive vreg numbers and return the first assigned number.
363 ///
364 /// In the case that the given value has struct or array type, this function
365 /// will assign registers for each member or element.
366 ///
CreateRegs(Type * Ty)367 unsigned FunctionLoweringInfo::CreateRegs(Type *Ty) {
368   const TargetLowering *TLI = MF->getSubtarget().getTargetLowering();
369 
370   SmallVector<EVT, 4> ValueVTs;
371   ComputeValueVTs(*TLI, MF->getDataLayout(), Ty, ValueVTs);
372 
373   unsigned FirstReg = 0;
374   for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
375     EVT ValueVT = ValueVTs[Value];
376     MVT RegisterVT = TLI->getRegisterType(Ty->getContext(), ValueVT);
377 
378     unsigned NumRegs = TLI->getNumRegisters(Ty->getContext(), ValueVT);
379     for (unsigned i = 0; i != NumRegs; ++i) {
380       unsigned R = CreateReg(RegisterVT);
381       if (!FirstReg) FirstReg = R;
382     }
383   }
384   return FirstReg;
385 }
386 
387 /// GetLiveOutRegInfo - Gets LiveOutInfo for a register, returning NULL if the
388 /// register is a PHI destination and the PHI's LiveOutInfo is not valid. If
389 /// the register's LiveOutInfo is for a smaller bit width, it is extended to
390 /// the larger bit width by zero extension. The bit width must be no smaller
391 /// than the LiveOutInfo's existing bit width.
392 const FunctionLoweringInfo::LiveOutInfo *
GetLiveOutRegInfo(unsigned Reg,unsigned BitWidth)393 FunctionLoweringInfo::GetLiveOutRegInfo(unsigned Reg, unsigned BitWidth) {
394   if (!LiveOutRegInfo.inBounds(Reg))
395     return nullptr;
396 
397   LiveOutInfo *LOI = &LiveOutRegInfo[Reg];
398   if (!LOI->IsValid)
399     return nullptr;
400 
401   if (BitWidth > LOI->Known.getBitWidth()) {
402     LOI->NumSignBits = 1;
403     LOI->Known = LOI->Known.zextOrTrunc(BitWidth);
404   }
405 
406   return LOI;
407 }
408 
409 /// ComputePHILiveOutRegInfo - Compute LiveOutInfo for a PHI's destination
410 /// register based on the LiveOutInfo of its operands.
ComputePHILiveOutRegInfo(const PHINode * PN)411 void FunctionLoweringInfo::ComputePHILiveOutRegInfo(const PHINode *PN) {
412   Type *Ty = PN->getType();
413   if (!Ty->isIntegerTy() || Ty->isVectorTy())
414     return;
415 
416   SmallVector<EVT, 1> ValueVTs;
417   ComputeValueVTs(*TLI, MF->getDataLayout(), Ty, ValueVTs);
418   assert(ValueVTs.size() == 1 &&
419          "PHIs with non-vector integer types should have a single VT.");
420   EVT IntVT = ValueVTs[0];
421 
422   if (TLI->getNumRegisters(PN->getContext(), IntVT) != 1)
423     return;
424   IntVT = TLI->getTypeToTransformTo(PN->getContext(), IntVT);
425   unsigned BitWidth = IntVT.getSizeInBits();
426 
427   unsigned DestReg = ValueMap[PN];
428   if (!TargetRegisterInfo::isVirtualRegister(DestReg))
429     return;
430   LiveOutRegInfo.grow(DestReg);
431   LiveOutInfo &DestLOI = LiveOutRegInfo[DestReg];
432 
433   Value *V = PN->getIncomingValue(0);
434   if (isa<UndefValue>(V) || isa<ConstantExpr>(V)) {
435     DestLOI.NumSignBits = 1;
436     DestLOI.Known = KnownBits(BitWidth);
437     return;
438   }
439 
440   if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
441     APInt Val = CI->getValue().zextOrTrunc(BitWidth);
442     DestLOI.NumSignBits = Val.getNumSignBits();
443     DestLOI.Known.Zero = ~Val;
444     DestLOI.Known.One = Val;
445   } else {
446     assert(ValueMap.count(V) && "V should have been placed in ValueMap when its"
447                                 "CopyToReg node was created.");
448     unsigned SrcReg = ValueMap[V];
449     if (!TargetRegisterInfo::isVirtualRegister(SrcReg)) {
450       DestLOI.IsValid = false;
451       return;
452     }
453     const LiveOutInfo *SrcLOI = GetLiveOutRegInfo(SrcReg, BitWidth);
454     if (!SrcLOI) {
455       DestLOI.IsValid = false;
456       return;
457     }
458     DestLOI = *SrcLOI;
459   }
460 
461   assert(DestLOI.Known.Zero.getBitWidth() == BitWidth &&
462          DestLOI.Known.One.getBitWidth() == BitWidth &&
463          "Masks should have the same bit width as the type.");
464 
465   for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i) {
466     Value *V = PN->getIncomingValue(i);
467     if (isa<UndefValue>(V) || isa<ConstantExpr>(V)) {
468       DestLOI.NumSignBits = 1;
469       DestLOI.Known = KnownBits(BitWidth);
470       return;
471     }
472 
473     if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
474       APInt Val = CI->getValue().zextOrTrunc(BitWidth);
475       DestLOI.NumSignBits = std::min(DestLOI.NumSignBits, Val.getNumSignBits());
476       DestLOI.Known.Zero &= ~Val;
477       DestLOI.Known.One &= Val;
478       continue;
479     }
480 
481     assert(ValueMap.count(V) && "V should have been placed in ValueMap when "
482                                 "its CopyToReg node was created.");
483     unsigned SrcReg = ValueMap[V];
484     if (!TargetRegisterInfo::isVirtualRegister(SrcReg)) {
485       DestLOI.IsValid = false;
486       return;
487     }
488     const LiveOutInfo *SrcLOI = GetLiveOutRegInfo(SrcReg, BitWidth);
489     if (!SrcLOI) {
490       DestLOI.IsValid = false;
491       return;
492     }
493     DestLOI.NumSignBits = std::min(DestLOI.NumSignBits, SrcLOI->NumSignBits);
494     DestLOI.Known.Zero &= SrcLOI->Known.Zero;
495     DestLOI.Known.One &= SrcLOI->Known.One;
496   }
497 }
498 
499 /// setArgumentFrameIndex - Record frame index for the byval
500 /// argument. This overrides previous frame index entry for this argument,
501 /// if any.
setArgumentFrameIndex(const Argument * A,int FI)502 void FunctionLoweringInfo::setArgumentFrameIndex(const Argument *A,
503                                                  int FI) {
504   ByValArgFrameIndexMap[A] = FI;
505 }
506 
507 /// getArgumentFrameIndex - Get frame index for the byval argument.
508 /// If the argument does not have any assigned frame index then 0 is
509 /// returned.
getArgumentFrameIndex(const Argument * A)510 int FunctionLoweringInfo::getArgumentFrameIndex(const Argument *A) {
511   auto I = ByValArgFrameIndexMap.find(A);
512   if (I != ByValArgFrameIndexMap.end())
513     return I->second;
514   LLVM_DEBUG(dbgs() << "Argument does not have assigned frame index!\n");
515   return INT_MAX;
516 }
517 
getCatchPadExceptionPointerVReg(const Value * CPI,const TargetRegisterClass * RC)518 unsigned FunctionLoweringInfo::getCatchPadExceptionPointerVReg(
519     const Value *CPI, const TargetRegisterClass *RC) {
520   MachineRegisterInfo &MRI = MF->getRegInfo();
521   auto I = CatchPadExceptionPointers.insert({CPI, 0});
522   unsigned &VReg = I.first->second;
523   if (I.second)
524     VReg = MRI.createVirtualRegister(RC);
525   assert(VReg && "null vreg in exception pointer table!");
526   return VReg;
527 }
528 
529 unsigned
getOrCreateSwiftErrorVReg(const MachineBasicBlock * MBB,const Value * Val)530 FunctionLoweringInfo::getOrCreateSwiftErrorVReg(const MachineBasicBlock *MBB,
531                                                 const Value *Val) {
532   auto Key = std::make_pair(MBB, Val);
533   auto It = SwiftErrorVRegDefMap.find(Key);
534   // If this is the first use of this swifterror value in this basic block,
535   // create a new virtual register.
536   // After we processed all basic blocks we will satisfy this "upwards exposed
537   // use" by inserting a copy or phi at the beginning of this block.
538   if (It == SwiftErrorVRegDefMap.end()) {
539     auto &DL = MF->getDataLayout();
540     const TargetRegisterClass *RC = TLI->getRegClassFor(TLI->getPointerTy(DL));
541     auto VReg = MF->getRegInfo().createVirtualRegister(RC);
542     SwiftErrorVRegDefMap[Key] = VReg;
543     SwiftErrorVRegUpwardsUse[Key] = VReg;
544     return VReg;
545   } else return It->second;
546 }
547 
setCurrentSwiftErrorVReg(const MachineBasicBlock * MBB,const Value * Val,unsigned VReg)548 void FunctionLoweringInfo::setCurrentSwiftErrorVReg(
549     const MachineBasicBlock *MBB, const Value *Val, unsigned VReg) {
550   SwiftErrorVRegDefMap[std::make_pair(MBB, Val)] = VReg;
551 }
552 
553 std::pair<unsigned, bool>
getOrCreateSwiftErrorVRegDefAt(const Instruction * I)554 FunctionLoweringInfo::getOrCreateSwiftErrorVRegDefAt(const Instruction *I) {
555   auto Key = PointerIntPair<const Instruction *, 1, bool>(I, true);
556   auto It = SwiftErrorVRegDefUses.find(Key);
557   if (It == SwiftErrorVRegDefUses.end()) {
558     auto &DL = MF->getDataLayout();
559     const TargetRegisterClass *RC = TLI->getRegClassFor(TLI->getPointerTy(DL));
560     unsigned VReg =  MF->getRegInfo().createVirtualRegister(RC);
561     SwiftErrorVRegDefUses[Key] = VReg;
562     return std::make_pair(VReg, true);
563   }
564   return std::make_pair(It->second, false);
565 }
566 
567 std::pair<unsigned, bool>
getOrCreateSwiftErrorVRegUseAt(const Instruction * I,const MachineBasicBlock * MBB,const Value * Val)568 FunctionLoweringInfo::getOrCreateSwiftErrorVRegUseAt(const Instruction *I, const MachineBasicBlock *MBB, const Value *Val) {
569   auto Key = PointerIntPair<const Instruction *, 1, bool>(I, false);
570   auto It = SwiftErrorVRegDefUses.find(Key);
571   if (It == SwiftErrorVRegDefUses.end()) {
572     unsigned VReg = getOrCreateSwiftErrorVReg(MBB, Val);
573     SwiftErrorVRegDefUses[Key] = VReg;
574     return std::make_pair(VReg, true);
575   }
576   return std::make_pair(It->second, false);
577 }
578 
579 const Value *
getValueFromVirtualReg(unsigned Vreg)580 FunctionLoweringInfo::getValueFromVirtualReg(unsigned Vreg) {
581   if (VirtReg2Value.empty()) {
582     for (auto &P : ValueMap) {
583       VirtReg2Value[P.second] = P.first;
584     }
585   }
586   return VirtReg2Value[Vreg];
587 }
588