1 //===-- FunctionLoweringInfo.cpp ------------------------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This implements routines for translating functions from LLVM IR into
11 // Machine IR.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "llvm/CodeGen/FunctionLoweringInfo.h"
16 #include "llvm/CodeGen/Analysis.h"
17 #include "llvm/CodeGen/MachineFrameInfo.h"
18 #include "llvm/CodeGen/MachineFunction.h"
19 #include "llvm/CodeGen/MachineInstrBuilder.h"
20 #include "llvm/CodeGen/MachineRegisterInfo.h"
21 #include "llvm/CodeGen/TargetFrameLowering.h"
22 #include "llvm/CodeGen/TargetInstrInfo.h"
23 #include "llvm/CodeGen/TargetLowering.h"
24 #include "llvm/CodeGen/TargetRegisterInfo.h"
25 #include "llvm/CodeGen/TargetSubtargetInfo.h"
26 #include "llvm/CodeGen/WasmEHFuncInfo.h"
27 #include "llvm/CodeGen/WinEHFuncInfo.h"
28 #include "llvm/IR/DataLayout.h"
29 #include "llvm/IR/DerivedTypes.h"
30 #include "llvm/IR/Function.h"
31 #include "llvm/IR/Instructions.h"
32 #include "llvm/IR/IntrinsicInst.h"
33 #include "llvm/IR/LLVMContext.h"
34 #include "llvm/IR/Module.h"
35 #include "llvm/Support/Debug.h"
36 #include "llvm/Support/ErrorHandling.h"
37 #include "llvm/Support/MathExtras.h"
38 #include "llvm/Support/raw_ostream.h"
39 #include "llvm/Target/TargetOptions.h"
40 #include <algorithm>
41 using namespace llvm;
42
43 #define DEBUG_TYPE "function-lowering-info"
44
45 /// isUsedOutsideOfDefiningBlock - Return true if this instruction is used by
46 /// PHI nodes or outside of the basic block that defines it, or used by a
47 /// switch or atomic instruction, which may expand to multiple basic blocks.
isUsedOutsideOfDefiningBlock(const Instruction * I)48 static bool isUsedOutsideOfDefiningBlock(const Instruction *I) {
49 if (I->use_empty()) return false;
50 if (isa<PHINode>(I)) return true;
51 const BasicBlock *BB = I->getParent();
52 for (const User *U : I->users())
53 if (cast<Instruction>(U)->getParent() != BB || isa<PHINode>(U))
54 return true;
55
56 return false;
57 }
58
getPreferredExtendForValue(const Value * V)59 static ISD::NodeType getPreferredExtendForValue(const Value *V) {
60 // For the users of the source value being used for compare instruction, if
61 // the number of signed predicate is greater than unsigned predicate, we
62 // prefer to use SIGN_EXTEND.
63 //
64 // With this optimization, we would be able to reduce some redundant sign or
65 // zero extension instruction, and eventually more machine CSE opportunities
66 // can be exposed.
67 ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
68 unsigned NumOfSigned = 0, NumOfUnsigned = 0;
69 for (const User *U : V->users()) {
70 if (const auto *CI = dyn_cast<CmpInst>(U)) {
71 NumOfSigned += CI->isSigned();
72 NumOfUnsigned += CI->isUnsigned();
73 }
74 }
75 if (NumOfSigned > NumOfUnsigned)
76 ExtendKind = ISD::SIGN_EXTEND;
77
78 return ExtendKind;
79 }
80
set(const Function & fn,MachineFunction & mf,SelectionDAG * DAG)81 void FunctionLoweringInfo::set(const Function &fn, MachineFunction &mf,
82 SelectionDAG *DAG) {
83 Fn = &fn;
84 MF = &mf;
85 TLI = MF->getSubtarget().getTargetLowering();
86 RegInfo = &MF->getRegInfo();
87 const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering();
88 unsigned StackAlign = TFI->getStackAlignment();
89
90 // Check whether the function can return without sret-demotion.
91 SmallVector<ISD::OutputArg, 4> Outs;
92 CallingConv::ID CC = Fn->getCallingConv();
93
94 GetReturnInfo(CC, Fn->getReturnType(), Fn->getAttributes(), Outs, *TLI,
95 mf.getDataLayout());
96 CanLowerReturn =
97 TLI->CanLowerReturn(CC, *MF, Fn->isVarArg(), Outs, Fn->getContext());
98
99 // If this personality uses funclets, we need to do a bit more work.
100 DenseMap<const AllocaInst *, TinyPtrVector<int *>> CatchObjects;
101 EHPersonality Personality = classifyEHPersonality(
102 Fn->hasPersonalityFn() ? Fn->getPersonalityFn() : nullptr);
103 if (isFuncletEHPersonality(Personality)) {
104 // Calculate state numbers if we haven't already.
105 WinEHFuncInfo &EHInfo = *MF->getWinEHFuncInfo();
106 if (Personality == EHPersonality::MSVC_CXX)
107 calculateWinCXXEHStateNumbers(&fn, EHInfo);
108 else if (isAsynchronousEHPersonality(Personality))
109 calculateSEHStateNumbers(&fn, EHInfo);
110 else if (Personality == EHPersonality::CoreCLR)
111 calculateClrEHStateNumbers(&fn, EHInfo);
112
113 // Map all BB references in the WinEH data to MBBs.
114 for (WinEHTryBlockMapEntry &TBME : EHInfo.TryBlockMap) {
115 for (WinEHHandlerType &H : TBME.HandlerArray) {
116 if (const AllocaInst *AI = H.CatchObj.Alloca)
117 CatchObjects.insert({AI, {}}).first->second.push_back(
118 &H.CatchObj.FrameIndex);
119 else
120 H.CatchObj.FrameIndex = INT_MAX;
121 }
122 }
123 }
124 if (Personality == EHPersonality::Wasm_CXX) {
125 WasmEHFuncInfo &EHInfo = *MF->getWasmEHFuncInfo();
126 calculateWasmEHInfo(&fn, EHInfo);
127 }
128
129 // Initialize the mapping of values to registers. This is only set up for
130 // instruction values that are used outside of the block that defines
131 // them.
132 for (const BasicBlock &BB : *Fn) {
133 for (const Instruction &I : BB) {
134 if (const AllocaInst *AI = dyn_cast<AllocaInst>(&I)) {
135 Type *Ty = AI->getAllocatedType();
136 unsigned Align =
137 std::max((unsigned)MF->getDataLayout().getPrefTypeAlignment(Ty),
138 AI->getAlignment());
139
140 // Static allocas can be folded into the initial stack frame
141 // adjustment. For targets that don't realign the stack, don't
142 // do this if there is an extra alignment requirement.
143 if (AI->isStaticAlloca() &&
144 (TFI->isStackRealignable() || (Align <= StackAlign))) {
145 const ConstantInt *CUI = cast<ConstantInt>(AI->getArraySize());
146 uint64_t TySize = MF->getDataLayout().getTypeAllocSize(Ty);
147
148 TySize *= CUI->getZExtValue(); // Get total allocated size.
149 if (TySize == 0) TySize = 1; // Don't create zero-sized stack objects.
150 int FrameIndex = INT_MAX;
151 auto Iter = CatchObjects.find(AI);
152 if (Iter != CatchObjects.end() && TLI->needsFixedCatchObjects()) {
153 FrameIndex = MF->getFrameInfo().CreateFixedObject(
154 TySize, 0, /*Immutable=*/false, /*isAliased=*/true);
155 MF->getFrameInfo().setObjectAlignment(FrameIndex, Align);
156 } else {
157 FrameIndex =
158 MF->getFrameInfo().CreateStackObject(TySize, Align, false, AI);
159 }
160
161 StaticAllocaMap[AI] = FrameIndex;
162 // Update the catch handler information.
163 if (Iter != CatchObjects.end()) {
164 for (int *CatchObjPtr : Iter->second)
165 *CatchObjPtr = FrameIndex;
166 }
167 } else {
168 // FIXME: Overaligned static allocas should be grouped into
169 // a single dynamic allocation instead of using a separate
170 // stack allocation for each one.
171 if (Align <= StackAlign)
172 Align = 0;
173 // Inform the Frame Information that we have variable-sized objects.
174 MF->getFrameInfo().CreateVariableSizedObject(Align ? Align : 1, AI);
175 }
176 }
177
178 // Look for inline asm that clobbers the SP register.
179 if (isa<CallInst>(I) || isa<InvokeInst>(I)) {
180 ImmutableCallSite CS(&I);
181 if (isa<InlineAsm>(CS.getCalledValue())) {
182 unsigned SP = TLI->getStackPointerRegisterToSaveRestore();
183 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
184 std::vector<TargetLowering::AsmOperandInfo> Ops =
185 TLI->ParseConstraints(Fn->getParent()->getDataLayout(), TRI, CS);
186 for (TargetLowering::AsmOperandInfo &Op : Ops) {
187 if (Op.Type == InlineAsm::isClobber) {
188 // Clobbers don't have SDValue operands, hence SDValue().
189 TLI->ComputeConstraintToUse(Op, SDValue(), DAG);
190 std::pair<unsigned, const TargetRegisterClass *> PhysReg =
191 TLI->getRegForInlineAsmConstraint(TRI, Op.ConstraintCode,
192 Op.ConstraintVT);
193 if (PhysReg.first == SP)
194 MF->getFrameInfo().setHasOpaqueSPAdjustment(true);
195 }
196 }
197 }
198 }
199
200 // Look for calls to the @llvm.va_start intrinsic. We can omit some
201 // prologue boilerplate for variadic functions that don't examine their
202 // arguments.
203 if (const auto *II = dyn_cast<IntrinsicInst>(&I)) {
204 if (II->getIntrinsicID() == Intrinsic::vastart)
205 MF->getFrameInfo().setHasVAStart(true);
206 }
207
208 // If we have a musttail call in a variadic function, we need to ensure we
209 // forward implicit register parameters.
210 if (const auto *CI = dyn_cast<CallInst>(&I)) {
211 if (CI->isMustTailCall() && Fn->isVarArg())
212 MF->getFrameInfo().setHasMustTailInVarArgFunc(true);
213 }
214
215 // Mark values used outside their block as exported, by allocating
216 // a virtual register for them.
217 if (isUsedOutsideOfDefiningBlock(&I))
218 if (!isa<AllocaInst>(I) || !StaticAllocaMap.count(cast<AllocaInst>(&I)))
219 InitializeRegForValue(&I);
220
221 // Decide the preferred extend type for a value.
222 PreferredExtendType[&I] = getPreferredExtendForValue(&I);
223 }
224 }
225
226 // Create an initial MachineBasicBlock for each LLVM BasicBlock in F. This
227 // also creates the initial PHI MachineInstrs, though none of the input
228 // operands are populated.
229 for (const BasicBlock &BB : *Fn) {
230 // Don't create MachineBasicBlocks for imaginary EH pad blocks. These blocks
231 // are really data, and no instructions can live here.
232 if (BB.isEHPad()) {
233 const Instruction *PadInst = BB.getFirstNonPHI();
234 // If this is a non-landingpad EH pad, mark this function as using
235 // funclets.
236 // FIXME: SEH catchpads do not create EH scope/funclets, so we could avoid
237 // setting this in such cases in order to improve frame layout.
238 if (!isa<LandingPadInst>(PadInst)) {
239 MF->setHasEHScopes(true);
240 MF->setHasEHFunclets(true);
241 MF->getFrameInfo().setHasOpaqueSPAdjustment(true);
242 }
243 if (isa<CatchSwitchInst>(PadInst)) {
244 assert(&*BB.begin() == PadInst &&
245 "WinEHPrepare failed to remove PHIs from imaginary BBs");
246 continue;
247 }
248 if (isa<FuncletPadInst>(PadInst))
249 assert(&*BB.begin() == PadInst && "WinEHPrepare failed to demote PHIs");
250 }
251
252 MachineBasicBlock *MBB = mf.CreateMachineBasicBlock(&BB);
253 MBBMap[&BB] = MBB;
254 MF->push_back(MBB);
255
256 // Transfer the address-taken flag. This is necessary because there could
257 // be multiple MachineBasicBlocks corresponding to one BasicBlock, and only
258 // the first one should be marked.
259 if (BB.hasAddressTaken())
260 MBB->setHasAddressTaken();
261
262 // Mark landing pad blocks.
263 if (BB.isEHPad())
264 MBB->setIsEHPad();
265
266 // Create Machine PHI nodes for LLVM PHI nodes, lowering them as
267 // appropriate.
268 for (const PHINode &PN : BB.phis()) {
269 if (PN.use_empty())
270 continue;
271
272 // Skip empty types
273 if (PN.getType()->isEmptyTy())
274 continue;
275
276 DebugLoc DL = PN.getDebugLoc();
277 unsigned PHIReg = ValueMap[&PN];
278 assert(PHIReg && "PHI node does not have an assigned virtual register!");
279
280 SmallVector<EVT, 4> ValueVTs;
281 ComputeValueVTs(*TLI, MF->getDataLayout(), PN.getType(), ValueVTs);
282 for (EVT VT : ValueVTs) {
283 unsigned NumRegisters = TLI->getNumRegisters(Fn->getContext(), VT);
284 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
285 for (unsigned i = 0; i != NumRegisters; ++i)
286 BuildMI(MBB, DL, TII->get(TargetOpcode::PHI), PHIReg + i);
287 PHIReg += NumRegisters;
288 }
289 }
290 }
291
292 if (isFuncletEHPersonality(Personality)) {
293 WinEHFuncInfo &EHInfo = *MF->getWinEHFuncInfo();
294
295 // Map all BB references in the WinEH data to MBBs.
296 for (WinEHTryBlockMapEntry &TBME : EHInfo.TryBlockMap) {
297 for (WinEHHandlerType &H : TBME.HandlerArray) {
298 if (H.Handler)
299 H.Handler = MBBMap[H.Handler.get<const BasicBlock *>()];
300 }
301 }
302 for (CxxUnwindMapEntry &UME : EHInfo.CxxUnwindMap)
303 if (UME.Cleanup)
304 UME.Cleanup = MBBMap[UME.Cleanup.get<const BasicBlock *>()];
305 for (SEHUnwindMapEntry &UME : EHInfo.SEHUnwindMap) {
306 const auto *BB = UME.Handler.get<const BasicBlock *>();
307 UME.Handler = MBBMap[BB];
308 }
309 for (ClrEHUnwindMapEntry &CME : EHInfo.ClrEHUnwindMap) {
310 const auto *BB = CME.Handler.get<const BasicBlock *>();
311 CME.Handler = MBBMap[BB];
312 }
313 }
314
315 else if (Personality == EHPersonality::Wasm_CXX) {
316 WasmEHFuncInfo &EHInfo = *MF->getWasmEHFuncInfo();
317 // Map all BB references in the WinEH data to MBBs.
318 DenseMap<BBOrMBB, BBOrMBB> NewMap;
319 for (auto &KV : EHInfo.EHPadUnwindMap) {
320 const auto *Src = KV.first.get<const BasicBlock *>();
321 const auto *Dst = KV.second.get<const BasicBlock *>();
322 NewMap[MBBMap[Src]] = MBBMap[Dst];
323 }
324 EHInfo.EHPadUnwindMap = std::move(NewMap);
325 NewMap.clear();
326 for (auto &KV : EHInfo.ThrowUnwindMap) {
327 const auto *Src = KV.first.get<const BasicBlock *>();
328 const auto *Dst = KV.second.get<const BasicBlock *>();
329 NewMap[MBBMap[Src]] = MBBMap[Dst];
330 }
331 EHInfo.ThrowUnwindMap = std::move(NewMap);
332 }
333 }
334
335 /// clear - Clear out all the function-specific state. This returns this
336 /// FunctionLoweringInfo to an empty state, ready to be used for a
337 /// different function.
clear()338 void FunctionLoweringInfo::clear() {
339 MBBMap.clear();
340 ValueMap.clear();
341 VirtReg2Value.clear();
342 StaticAllocaMap.clear();
343 LiveOutRegInfo.clear();
344 VisitedBBs.clear();
345 ArgDbgValues.clear();
346 ByValArgFrameIndexMap.clear();
347 RegFixups.clear();
348 RegsWithFixups.clear();
349 StatepointStackSlots.clear();
350 StatepointSpillMaps.clear();
351 PreferredExtendType.clear();
352 }
353
354 /// CreateReg - Allocate a single virtual register for the given type.
CreateReg(MVT VT)355 unsigned FunctionLoweringInfo::CreateReg(MVT VT) {
356 return RegInfo->createVirtualRegister(
357 MF->getSubtarget().getTargetLowering()->getRegClassFor(VT));
358 }
359
360 /// CreateRegs - Allocate the appropriate number of virtual registers of
361 /// the correctly promoted or expanded types. Assign these registers
362 /// consecutive vreg numbers and return the first assigned number.
363 ///
364 /// In the case that the given value has struct or array type, this function
365 /// will assign registers for each member or element.
366 ///
CreateRegs(Type * Ty)367 unsigned FunctionLoweringInfo::CreateRegs(Type *Ty) {
368 const TargetLowering *TLI = MF->getSubtarget().getTargetLowering();
369
370 SmallVector<EVT, 4> ValueVTs;
371 ComputeValueVTs(*TLI, MF->getDataLayout(), Ty, ValueVTs);
372
373 unsigned FirstReg = 0;
374 for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
375 EVT ValueVT = ValueVTs[Value];
376 MVT RegisterVT = TLI->getRegisterType(Ty->getContext(), ValueVT);
377
378 unsigned NumRegs = TLI->getNumRegisters(Ty->getContext(), ValueVT);
379 for (unsigned i = 0; i != NumRegs; ++i) {
380 unsigned R = CreateReg(RegisterVT);
381 if (!FirstReg) FirstReg = R;
382 }
383 }
384 return FirstReg;
385 }
386
387 /// GetLiveOutRegInfo - Gets LiveOutInfo for a register, returning NULL if the
388 /// register is a PHI destination and the PHI's LiveOutInfo is not valid. If
389 /// the register's LiveOutInfo is for a smaller bit width, it is extended to
390 /// the larger bit width by zero extension. The bit width must be no smaller
391 /// than the LiveOutInfo's existing bit width.
392 const FunctionLoweringInfo::LiveOutInfo *
GetLiveOutRegInfo(unsigned Reg,unsigned BitWidth)393 FunctionLoweringInfo::GetLiveOutRegInfo(unsigned Reg, unsigned BitWidth) {
394 if (!LiveOutRegInfo.inBounds(Reg))
395 return nullptr;
396
397 LiveOutInfo *LOI = &LiveOutRegInfo[Reg];
398 if (!LOI->IsValid)
399 return nullptr;
400
401 if (BitWidth > LOI->Known.getBitWidth()) {
402 LOI->NumSignBits = 1;
403 LOI->Known = LOI->Known.zextOrTrunc(BitWidth);
404 }
405
406 return LOI;
407 }
408
409 /// ComputePHILiveOutRegInfo - Compute LiveOutInfo for a PHI's destination
410 /// register based on the LiveOutInfo of its operands.
ComputePHILiveOutRegInfo(const PHINode * PN)411 void FunctionLoweringInfo::ComputePHILiveOutRegInfo(const PHINode *PN) {
412 Type *Ty = PN->getType();
413 if (!Ty->isIntegerTy() || Ty->isVectorTy())
414 return;
415
416 SmallVector<EVT, 1> ValueVTs;
417 ComputeValueVTs(*TLI, MF->getDataLayout(), Ty, ValueVTs);
418 assert(ValueVTs.size() == 1 &&
419 "PHIs with non-vector integer types should have a single VT.");
420 EVT IntVT = ValueVTs[0];
421
422 if (TLI->getNumRegisters(PN->getContext(), IntVT) != 1)
423 return;
424 IntVT = TLI->getTypeToTransformTo(PN->getContext(), IntVT);
425 unsigned BitWidth = IntVT.getSizeInBits();
426
427 unsigned DestReg = ValueMap[PN];
428 if (!TargetRegisterInfo::isVirtualRegister(DestReg))
429 return;
430 LiveOutRegInfo.grow(DestReg);
431 LiveOutInfo &DestLOI = LiveOutRegInfo[DestReg];
432
433 Value *V = PN->getIncomingValue(0);
434 if (isa<UndefValue>(V) || isa<ConstantExpr>(V)) {
435 DestLOI.NumSignBits = 1;
436 DestLOI.Known = KnownBits(BitWidth);
437 return;
438 }
439
440 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
441 APInt Val = CI->getValue().zextOrTrunc(BitWidth);
442 DestLOI.NumSignBits = Val.getNumSignBits();
443 DestLOI.Known.Zero = ~Val;
444 DestLOI.Known.One = Val;
445 } else {
446 assert(ValueMap.count(V) && "V should have been placed in ValueMap when its"
447 "CopyToReg node was created.");
448 unsigned SrcReg = ValueMap[V];
449 if (!TargetRegisterInfo::isVirtualRegister(SrcReg)) {
450 DestLOI.IsValid = false;
451 return;
452 }
453 const LiveOutInfo *SrcLOI = GetLiveOutRegInfo(SrcReg, BitWidth);
454 if (!SrcLOI) {
455 DestLOI.IsValid = false;
456 return;
457 }
458 DestLOI = *SrcLOI;
459 }
460
461 assert(DestLOI.Known.Zero.getBitWidth() == BitWidth &&
462 DestLOI.Known.One.getBitWidth() == BitWidth &&
463 "Masks should have the same bit width as the type.");
464
465 for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i) {
466 Value *V = PN->getIncomingValue(i);
467 if (isa<UndefValue>(V) || isa<ConstantExpr>(V)) {
468 DestLOI.NumSignBits = 1;
469 DestLOI.Known = KnownBits(BitWidth);
470 return;
471 }
472
473 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
474 APInt Val = CI->getValue().zextOrTrunc(BitWidth);
475 DestLOI.NumSignBits = std::min(DestLOI.NumSignBits, Val.getNumSignBits());
476 DestLOI.Known.Zero &= ~Val;
477 DestLOI.Known.One &= Val;
478 continue;
479 }
480
481 assert(ValueMap.count(V) && "V should have been placed in ValueMap when "
482 "its CopyToReg node was created.");
483 unsigned SrcReg = ValueMap[V];
484 if (!TargetRegisterInfo::isVirtualRegister(SrcReg)) {
485 DestLOI.IsValid = false;
486 return;
487 }
488 const LiveOutInfo *SrcLOI = GetLiveOutRegInfo(SrcReg, BitWidth);
489 if (!SrcLOI) {
490 DestLOI.IsValid = false;
491 return;
492 }
493 DestLOI.NumSignBits = std::min(DestLOI.NumSignBits, SrcLOI->NumSignBits);
494 DestLOI.Known.Zero &= SrcLOI->Known.Zero;
495 DestLOI.Known.One &= SrcLOI->Known.One;
496 }
497 }
498
499 /// setArgumentFrameIndex - Record frame index for the byval
500 /// argument. This overrides previous frame index entry for this argument,
501 /// if any.
setArgumentFrameIndex(const Argument * A,int FI)502 void FunctionLoweringInfo::setArgumentFrameIndex(const Argument *A,
503 int FI) {
504 ByValArgFrameIndexMap[A] = FI;
505 }
506
507 /// getArgumentFrameIndex - Get frame index for the byval argument.
508 /// If the argument does not have any assigned frame index then 0 is
509 /// returned.
getArgumentFrameIndex(const Argument * A)510 int FunctionLoweringInfo::getArgumentFrameIndex(const Argument *A) {
511 auto I = ByValArgFrameIndexMap.find(A);
512 if (I != ByValArgFrameIndexMap.end())
513 return I->second;
514 LLVM_DEBUG(dbgs() << "Argument does not have assigned frame index!\n");
515 return INT_MAX;
516 }
517
getCatchPadExceptionPointerVReg(const Value * CPI,const TargetRegisterClass * RC)518 unsigned FunctionLoweringInfo::getCatchPadExceptionPointerVReg(
519 const Value *CPI, const TargetRegisterClass *RC) {
520 MachineRegisterInfo &MRI = MF->getRegInfo();
521 auto I = CatchPadExceptionPointers.insert({CPI, 0});
522 unsigned &VReg = I.first->second;
523 if (I.second)
524 VReg = MRI.createVirtualRegister(RC);
525 assert(VReg && "null vreg in exception pointer table!");
526 return VReg;
527 }
528
529 unsigned
getOrCreateSwiftErrorVReg(const MachineBasicBlock * MBB,const Value * Val)530 FunctionLoweringInfo::getOrCreateSwiftErrorVReg(const MachineBasicBlock *MBB,
531 const Value *Val) {
532 auto Key = std::make_pair(MBB, Val);
533 auto It = SwiftErrorVRegDefMap.find(Key);
534 // If this is the first use of this swifterror value in this basic block,
535 // create a new virtual register.
536 // After we processed all basic blocks we will satisfy this "upwards exposed
537 // use" by inserting a copy or phi at the beginning of this block.
538 if (It == SwiftErrorVRegDefMap.end()) {
539 auto &DL = MF->getDataLayout();
540 const TargetRegisterClass *RC = TLI->getRegClassFor(TLI->getPointerTy(DL));
541 auto VReg = MF->getRegInfo().createVirtualRegister(RC);
542 SwiftErrorVRegDefMap[Key] = VReg;
543 SwiftErrorVRegUpwardsUse[Key] = VReg;
544 return VReg;
545 } else return It->second;
546 }
547
setCurrentSwiftErrorVReg(const MachineBasicBlock * MBB,const Value * Val,unsigned VReg)548 void FunctionLoweringInfo::setCurrentSwiftErrorVReg(
549 const MachineBasicBlock *MBB, const Value *Val, unsigned VReg) {
550 SwiftErrorVRegDefMap[std::make_pair(MBB, Val)] = VReg;
551 }
552
553 std::pair<unsigned, bool>
getOrCreateSwiftErrorVRegDefAt(const Instruction * I)554 FunctionLoweringInfo::getOrCreateSwiftErrorVRegDefAt(const Instruction *I) {
555 auto Key = PointerIntPair<const Instruction *, 1, bool>(I, true);
556 auto It = SwiftErrorVRegDefUses.find(Key);
557 if (It == SwiftErrorVRegDefUses.end()) {
558 auto &DL = MF->getDataLayout();
559 const TargetRegisterClass *RC = TLI->getRegClassFor(TLI->getPointerTy(DL));
560 unsigned VReg = MF->getRegInfo().createVirtualRegister(RC);
561 SwiftErrorVRegDefUses[Key] = VReg;
562 return std::make_pair(VReg, true);
563 }
564 return std::make_pair(It->second, false);
565 }
566
567 std::pair<unsigned, bool>
getOrCreateSwiftErrorVRegUseAt(const Instruction * I,const MachineBasicBlock * MBB,const Value * Val)568 FunctionLoweringInfo::getOrCreateSwiftErrorVRegUseAt(const Instruction *I, const MachineBasicBlock *MBB, const Value *Val) {
569 auto Key = PointerIntPair<const Instruction *, 1, bool>(I, false);
570 auto It = SwiftErrorVRegDefUses.find(Key);
571 if (It == SwiftErrorVRegDefUses.end()) {
572 unsigned VReg = getOrCreateSwiftErrorVReg(MBB, Val);
573 SwiftErrorVRegDefUses[Key] = VReg;
574 return std::make_pair(VReg, true);
575 }
576 return std::make_pair(It->second, false);
577 }
578
579 const Value *
getValueFromVirtualReg(unsigned Vreg)580 FunctionLoweringInfo::getValueFromVirtualReg(unsigned Vreg) {
581 if (VirtReg2Value.empty()) {
582 for (auto &P : ValueMap) {
583 VirtReg2Value[P.second] = P.first;
584 }
585 }
586 return VirtReg2Value[Vreg];
587 }
588