1 //===- ShrinkWrap.cpp - Compute safe point for prolog/epilog insertion ----===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass looks for safe point where the prologue and epilogue can be
11 // inserted.
12 // The safe point for the prologue (resp. epilogue) is called Save
13 // (resp. Restore).
14 // A point is safe for prologue (resp. epilogue) if and only if
15 // it 1) dominates (resp. post-dominates) all the frame related operations and
16 // between 2) two executions of the Save (resp. Restore) point there is an
17 // execution of the Restore (resp. Save) point.
18 //
19 // For instance, the following points are safe:
20 // for (int i = 0; i < 10; ++i) {
21 //   Save
22 //   ...
23 //   Restore
24 // }
25 // Indeed, the execution looks like Save -> Restore -> Save -> Restore ...
26 // And the following points are not:
27 // for (int i = 0; i < 10; ++i) {
28 //   Save
29 //   ...
30 // }
31 // for (int i = 0; i < 10; ++i) {
32 //   ...
33 //   Restore
34 // }
35 // Indeed, the execution looks like Save -> Save -> ... -> Restore -> Restore.
36 //
37 // This pass also ensures that the safe points are 3) cheaper than the regular
38 // entry and exits blocks.
39 //
40 // Property #1 is ensured via the use of MachineDominatorTree and
41 // MachinePostDominatorTree.
42 // Property #2 is ensured via property #1 and MachineLoopInfo, i.e., both
43 // points must be in the same loop.
44 // Property #3 is ensured via the MachineBlockFrequencyInfo.
45 //
46 // If this pass found points matching all these properties, then
47 // MachineFrameInfo is updated with this information.
48 //
49 //===----------------------------------------------------------------------===//
50 
51 #include "llvm/ADT/BitVector.h"
52 #include "llvm/ADT/PostOrderIterator.h"
53 #include "llvm/ADT/SetVector.h"
54 #include "llvm/ADT/SmallVector.h"
55 #include "llvm/ADT/Statistic.h"
56 #include "llvm/Analysis/CFG.h"
57 #include "llvm/CodeGen/MachineBasicBlock.h"
58 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
59 #include "llvm/CodeGen/MachineDominators.h"
60 #include "llvm/CodeGen/MachineFrameInfo.h"
61 #include "llvm/CodeGen/MachineFunction.h"
62 #include "llvm/CodeGen/MachineFunctionPass.h"
63 #include "llvm/CodeGen/MachineInstr.h"
64 #include "llvm/CodeGen/MachineLoopInfo.h"
65 #include "llvm/CodeGen/MachineOperand.h"
66 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h"
67 #include "llvm/CodeGen/MachinePostDominators.h"
68 #include "llvm/CodeGen/RegisterClassInfo.h"
69 #include "llvm/CodeGen/RegisterScavenging.h"
70 #include "llvm/CodeGen/TargetFrameLowering.h"
71 #include "llvm/CodeGen/TargetInstrInfo.h"
72 #include "llvm/CodeGen/TargetLowering.h"
73 #include "llvm/CodeGen/TargetRegisterInfo.h"
74 #include "llvm/CodeGen/TargetSubtargetInfo.h"
75 #include "llvm/IR/Attributes.h"
76 #include "llvm/IR/Function.h"
77 #include "llvm/MC/MCAsmInfo.h"
78 #include "llvm/Pass.h"
79 #include "llvm/Support/CommandLine.h"
80 #include "llvm/Support/Debug.h"
81 #include "llvm/Support/ErrorHandling.h"
82 #include "llvm/Support/raw_ostream.h"
83 #include "llvm/Target/TargetMachine.h"
84 #include <cassert>
85 #include <cstdint>
86 #include <memory>
87 
88 using namespace llvm;
89 
90 #define DEBUG_TYPE "shrink-wrap"
91 
92 STATISTIC(NumFunc, "Number of functions");
93 STATISTIC(NumCandidates, "Number of shrink-wrapping candidates");
94 STATISTIC(NumCandidatesDropped,
95           "Number of shrink-wrapping candidates dropped because of frequency");
96 
97 static cl::opt<cl::boolOrDefault>
98 EnableShrinkWrapOpt("enable-shrink-wrap", cl::Hidden,
99                     cl::desc("enable the shrink-wrapping pass"));
100 
101 namespace {
102 
103 /// Class to determine where the safe point to insert the
104 /// prologue and epilogue are.
105 /// Unlike the paper from Fred C. Chow, PLDI'88, that introduces the
106 /// shrink-wrapping term for prologue/epilogue placement, this pass
107 /// does not rely on expensive data-flow analysis. Instead we use the
108 /// dominance properties and loop information to decide which point
109 /// are safe for such insertion.
110 class ShrinkWrap : public MachineFunctionPass {
111   /// Hold callee-saved information.
112   RegisterClassInfo RCI;
113   MachineDominatorTree *MDT;
114   MachinePostDominatorTree *MPDT;
115 
116   /// Current safe point found for the prologue.
117   /// The prologue will be inserted before the first instruction
118   /// in this basic block.
119   MachineBasicBlock *Save;
120 
121   /// Current safe point found for the epilogue.
122   /// The epilogue will be inserted before the first terminator instruction
123   /// in this basic block.
124   MachineBasicBlock *Restore;
125 
126   /// Hold the information of the basic block frequency.
127   /// Use to check the profitability of the new points.
128   MachineBlockFrequencyInfo *MBFI;
129 
130   /// Hold the loop information. Used to determine if Save and Restore
131   /// are in the same loop.
132   MachineLoopInfo *MLI;
133 
134   // Emit remarks.
135   MachineOptimizationRemarkEmitter *ORE = nullptr;
136 
137   /// Frequency of the Entry block.
138   uint64_t EntryFreq;
139 
140   /// Current opcode for frame setup.
141   unsigned FrameSetupOpcode;
142 
143   /// Current opcode for frame destroy.
144   unsigned FrameDestroyOpcode;
145 
146   /// Stack pointer register, used by llvm.{savestack,restorestack}
147   unsigned SP;
148 
149   /// Entry block.
150   const MachineBasicBlock *Entry;
151 
152   using SetOfRegs = SmallSetVector<unsigned, 16>;
153 
154   /// Registers that need to be saved for the current function.
155   mutable SetOfRegs CurrentCSRs;
156 
157   /// Current MachineFunction.
158   MachineFunction *MachineFunc;
159 
160   /// Check if \p MI uses or defines a callee-saved register or
161   /// a frame index. If this is the case, this means \p MI must happen
162   /// after Save and before Restore.
163   bool useOrDefCSROrFI(const MachineInstr &MI, RegScavenger *RS) const;
164 
getCurrentCSRs(RegScavenger * RS) const165   const SetOfRegs &getCurrentCSRs(RegScavenger *RS) const {
166     if (CurrentCSRs.empty()) {
167       BitVector SavedRegs;
168       const TargetFrameLowering *TFI =
169           MachineFunc->getSubtarget().getFrameLowering();
170 
171       TFI->determineCalleeSaves(*MachineFunc, SavedRegs, RS);
172 
173       for (int Reg = SavedRegs.find_first(); Reg != -1;
174            Reg = SavedRegs.find_next(Reg))
175         CurrentCSRs.insert((unsigned)Reg);
176     }
177     return CurrentCSRs;
178   }
179 
180   /// Update the Save and Restore points such that \p MBB is in
181   /// the region that is dominated by Save and post-dominated by Restore
182   /// and Save and Restore still match the safe point definition.
183   /// Such point may not exist and Save and/or Restore may be null after
184   /// this call.
185   void updateSaveRestorePoints(MachineBasicBlock &MBB, RegScavenger *RS);
186 
187   /// Initialize the pass for \p MF.
init(MachineFunction & MF)188   void init(MachineFunction &MF) {
189     RCI.runOnMachineFunction(MF);
190     MDT = &getAnalysis<MachineDominatorTree>();
191     MPDT = &getAnalysis<MachinePostDominatorTree>();
192     Save = nullptr;
193     Restore = nullptr;
194     MBFI = &getAnalysis<MachineBlockFrequencyInfo>();
195     MLI = &getAnalysis<MachineLoopInfo>();
196     ORE = &getAnalysis<MachineOptimizationRemarkEmitterPass>().getORE();
197     EntryFreq = MBFI->getEntryFreq();
198     const TargetSubtargetInfo &Subtarget = MF.getSubtarget();
199     const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
200     FrameSetupOpcode = TII.getCallFrameSetupOpcode();
201     FrameDestroyOpcode = TII.getCallFrameDestroyOpcode();
202     SP = Subtarget.getTargetLowering()->getStackPointerRegisterToSaveRestore();
203     Entry = &MF.front();
204     CurrentCSRs.clear();
205     MachineFunc = &MF;
206 
207     ++NumFunc;
208   }
209 
210   /// Check whether or not Save and Restore points are still interesting for
211   /// shrink-wrapping.
ArePointsInteresting() const212   bool ArePointsInteresting() const { return Save != Entry && Save && Restore; }
213 
214   /// Check if shrink wrapping is enabled for this target and function.
215   static bool isShrinkWrapEnabled(const MachineFunction &MF);
216 
217 public:
218   static char ID;
219 
ShrinkWrap()220   ShrinkWrap() : MachineFunctionPass(ID) {
221     initializeShrinkWrapPass(*PassRegistry::getPassRegistry());
222   }
223 
getAnalysisUsage(AnalysisUsage & AU) const224   void getAnalysisUsage(AnalysisUsage &AU) const override {
225     AU.setPreservesAll();
226     AU.addRequired<MachineBlockFrequencyInfo>();
227     AU.addRequired<MachineDominatorTree>();
228     AU.addRequired<MachinePostDominatorTree>();
229     AU.addRequired<MachineLoopInfo>();
230     AU.addRequired<MachineOptimizationRemarkEmitterPass>();
231     MachineFunctionPass::getAnalysisUsage(AU);
232   }
233 
getRequiredProperties() const234   MachineFunctionProperties getRequiredProperties() const override {
235     return MachineFunctionProperties().set(
236       MachineFunctionProperties::Property::NoVRegs);
237   }
238 
getPassName() const239   StringRef getPassName() const override { return "Shrink Wrapping analysis"; }
240 
241   /// Perform the shrink-wrapping analysis and update
242   /// the MachineFrameInfo attached to \p MF with the results.
243   bool runOnMachineFunction(MachineFunction &MF) override;
244 };
245 
246 } // end anonymous namespace
247 
248 char ShrinkWrap::ID = 0;
249 
250 char &llvm::ShrinkWrapID = ShrinkWrap::ID;
251 
252 INITIALIZE_PASS_BEGIN(ShrinkWrap, DEBUG_TYPE, "Shrink Wrap Pass", false, false)
INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo)253 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo)
254 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
255 INITIALIZE_PASS_DEPENDENCY(MachinePostDominatorTree)
256 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
257 INITIALIZE_PASS_DEPENDENCY(MachineOptimizationRemarkEmitterPass)
258 INITIALIZE_PASS_END(ShrinkWrap, DEBUG_TYPE, "Shrink Wrap Pass", false, false)
259 
260 bool ShrinkWrap::useOrDefCSROrFI(const MachineInstr &MI,
261                                  RegScavenger *RS) const {
262   if (MI.getOpcode() == FrameSetupOpcode ||
263       MI.getOpcode() == FrameDestroyOpcode) {
264     LLVM_DEBUG(dbgs() << "Frame instruction: " << MI << '\n');
265     return true;
266   }
267   for (const MachineOperand &MO : MI.operands()) {
268     bool UseOrDefCSR = false;
269     if (MO.isReg()) {
270       // Ignore instructions like DBG_VALUE which don't read/def the register.
271       if (!MO.isDef() && !MO.readsReg())
272         continue;
273       unsigned PhysReg = MO.getReg();
274       if (!PhysReg)
275         continue;
276       assert(TargetRegisterInfo::isPhysicalRegister(PhysReg) &&
277              "Unallocated register?!");
278       // The stack pointer is not normally described as a callee-saved register
279       // in calling convention definitions, so we need to watch for it
280       // separately. An SP mentioned by a call instruction, we can ignore,
281       // though, as it's harmless and we do not want to effectively disable tail
282       // calls by forcing the restore point to post-dominate them.
283       UseOrDefCSR = (!MI.isCall() && PhysReg == SP) ||
284                     RCI.getLastCalleeSavedAlias(PhysReg);
285     } else if (MO.isRegMask()) {
286       // Check if this regmask clobbers any of the CSRs.
287       for (unsigned Reg : getCurrentCSRs(RS)) {
288         if (MO.clobbersPhysReg(Reg)) {
289           UseOrDefCSR = true;
290           break;
291         }
292       }
293     }
294     // Skip FrameIndex operands in DBG_VALUE instructions.
295     if (UseOrDefCSR || (MO.isFI() && !MI.isDebugValue())) {
296       LLVM_DEBUG(dbgs() << "Use or define CSR(" << UseOrDefCSR << ") or FI("
297                         << MO.isFI() << "): " << MI << '\n');
298       return true;
299     }
300   }
301   return false;
302 }
303 
304 /// Helper function to find the immediate (post) dominator.
305 template <typename ListOfBBs, typename DominanceAnalysis>
FindIDom(MachineBasicBlock & Block,ListOfBBs BBs,DominanceAnalysis & Dom)306 static MachineBasicBlock *FindIDom(MachineBasicBlock &Block, ListOfBBs BBs,
307                                    DominanceAnalysis &Dom) {
308   MachineBasicBlock *IDom = &Block;
309   for (MachineBasicBlock *BB : BBs) {
310     IDom = Dom.findNearestCommonDominator(IDom, BB);
311     if (!IDom)
312       break;
313   }
314   if (IDom == &Block)
315     return nullptr;
316   return IDom;
317 }
318 
updateSaveRestorePoints(MachineBasicBlock & MBB,RegScavenger * RS)319 void ShrinkWrap::updateSaveRestorePoints(MachineBasicBlock &MBB,
320                                          RegScavenger *RS) {
321   // Get rid of the easy cases first.
322   if (!Save)
323     Save = &MBB;
324   else
325     Save = MDT->findNearestCommonDominator(Save, &MBB);
326 
327   if (!Save) {
328     LLVM_DEBUG(dbgs() << "Found a block that is not reachable from Entry\n");
329     return;
330   }
331 
332   if (!Restore)
333     Restore = &MBB;
334   else if (MPDT->getNode(&MBB)) // If the block is not in the post dom tree, it
335                                 // means the block never returns. If that's the
336                                 // case, we don't want to call
337                                 // `findNearestCommonDominator`, which will
338                                 // return `Restore`.
339     Restore = MPDT->findNearestCommonDominator(Restore, &MBB);
340   else
341     Restore = nullptr; // Abort, we can't find a restore point in this case.
342 
343   // Make sure we would be able to insert the restore code before the
344   // terminator.
345   if (Restore == &MBB) {
346     for (const MachineInstr &Terminator : MBB.terminators()) {
347       if (!useOrDefCSROrFI(Terminator, RS))
348         continue;
349       // One of the terminator needs to happen before the restore point.
350       if (MBB.succ_empty()) {
351         Restore = nullptr; // Abort, we can't find a restore point in this case.
352         break;
353       }
354       // Look for a restore point that post-dominates all the successors.
355       // The immediate post-dominator is what we are looking for.
356       Restore = FindIDom<>(*Restore, Restore->successors(), *MPDT);
357       break;
358     }
359   }
360 
361   if (!Restore) {
362     LLVM_DEBUG(
363         dbgs() << "Restore point needs to be spanned on several blocks\n");
364     return;
365   }
366 
367   // Make sure Save and Restore are suitable for shrink-wrapping:
368   // 1. all path from Save needs to lead to Restore before exiting.
369   // 2. all path to Restore needs to go through Save from Entry.
370   // We achieve that by making sure that:
371   // A. Save dominates Restore.
372   // B. Restore post-dominates Save.
373   // C. Save and Restore are in the same loop.
374   bool SaveDominatesRestore = false;
375   bool RestorePostDominatesSave = false;
376   while (Save && Restore &&
377          (!(SaveDominatesRestore = MDT->dominates(Save, Restore)) ||
378           !(RestorePostDominatesSave = MPDT->dominates(Restore, Save)) ||
379           // Post-dominance is not enough in loops to ensure that all uses/defs
380           // are after the prologue and before the epilogue at runtime.
381           // E.g.,
382           // while(1) {
383           //  Save
384           //  Restore
385           //   if (...)
386           //     break;
387           //  use/def CSRs
388           // }
389           // All the uses/defs of CSRs are dominated by Save and post-dominated
390           // by Restore. However, the CSRs uses are still reachable after
391           // Restore and before Save are executed.
392           //
393           // For now, just push the restore/save points outside of loops.
394           // FIXME: Refine the criteria to still find interesting cases
395           // for loops.
396           MLI->getLoopFor(Save) || MLI->getLoopFor(Restore))) {
397     // Fix (A).
398     if (!SaveDominatesRestore) {
399       Save = MDT->findNearestCommonDominator(Save, Restore);
400       continue;
401     }
402     // Fix (B).
403     if (!RestorePostDominatesSave)
404       Restore = MPDT->findNearestCommonDominator(Restore, Save);
405 
406     // Fix (C).
407     if (Save && Restore &&
408         (MLI->getLoopFor(Save) || MLI->getLoopFor(Restore))) {
409       if (MLI->getLoopDepth(Save) > MLI->getLoopDepth(Restore)) {
410         // Push Save outside of this loop if immediate dominator is different
411         // from save block. If immediate dominator is not different, bail out.
412         Save = FindIDom<>(*Save, Save->predecessors(), *MDT);
413         if (!Save)
414           break;
415       } else {
416         // If the loop does not exit, there is no point in looking
417         // for a post-dominator outside the loop.
418         SmallVector<MachineBasicBlock*, 4> ExitBlocks;
419         MLI->getLoopFor(Restore)->getExitingBlocks(ExitBlocks);
420         // Push Restore outside of this loop.
421         // Look for the immediate post-dominator of the loop exits.
422         MachineBasicBlock *IPdom = Restore;
423         for (MachineBasicBlock *LoopExitBB: ExitBlocks) {
424           IPdom = FindIDom<>(*IPdom, LoopExitBB->successors(), *MPDT);
425           if (!IPdom)
426             break;
427         }
428         // If the immediate post-dominator is not in a less nested loop,
429         // then we are stuck in a program with an infinite loop.
430         // In that case, we will not find a safe point, hence, bail out.
431         if (IPdom && MLI->getLoopDepth(IPdom) < MLI->getLoopDepth(Restore))
432           Restore = IPdom;
433         else {
434           Restore = nullptr;
435           break;
436         }
437       }
438     }
439   }
440 }
441 
giveUpWithRemarks(MachineOptimizationRemarkEmitter * ORE,StringRef RemarkName,StringRef RemarkMessage,const DiagnosticLocation & Loc,const MachineBasicBlock * MBB)442 static bool giveUpWithRemarks(MachineOptimizationRemarkEmitter *ORE,
443                               StringRef RemarkName, StringRef RemarkMessage,
444                               const DiagnosticLocation &Loc,
445                               const MachineBasicBlock *MBB) {
446   ORE->emit([&]() {
447     return MachineOptimizationRemarkMissed(DEBUG_TYPE, RemarkName, Loc, MBB)
448            << RemarkMessage;
449   });
450 
451   LLVM_DEBUG(dbgs() << RemarkMessage << '\n');
452   return false;
453 }
454 
runOnMachineFunction(MachineFunction & MF)455 bool ShrinkWrap::runOnMachineFunction(MachineFunction &MF) {
456   if (skipFunction(MF.getFunction()) || MF.empty() || !isShrinkWrapEnabled(MF))
457     return false;
458 
459   LLVM_DEBUG(dbgs() << "**** Analysing " << MF.getName() << '\n');
460 
461   init(MF);
462 
463   ReversePostOrderTraversal<MachineBasicBlock *> RPOT(&*MF.begin());
464   if (containsIrreducibleCFG<MachineBasicBlock *>(RPOT, *MLI)) {
465     // If MF is irreducible, a block may be in a loop without
466     // MachineLoopInfo reporting it. I.e., we may use the
467     // post-dominance property in loops, which lead to incorrect
468     // results. Moreover, we may miss that the prologue and
469     // epilogue are not in the same loop, leading to unbalanced
470     // construction/deconstruction of the stack frame.
471     return giveUpWithRemarks(ORE, "UnsupportedIrreducibleCFG",
472                              "Irreducible CFGs are not supported yet.",
473                              MF.getFunction().getSubprogram(), &MF.front());
474   }
475 
476   const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
477   std::unique_ptr<RegScavenger> RS(
478       TRI->requiresRegisterScavenging(MF) ? new RegScavenger() : nullptr);
479 
480   for (MachineBasicBlock &MBB : MF) {
481     LLVM_DEBUG(dbgs() << "Look into: " << MBB.getNumber() << ' '
482                       << MBB.getName() << '\n');
483 
484     if (MBB.isEHFuncletEntry())
485       return giveUpWithRemarks(ORE, "UnsupportedEHFunclets",
486                                "EH Funclets are not supported yet.",
487                                MBB.front().getDebugLoc(), &MBB);
488 
489     if (MBB.isEHPad()) {
490       // Push the prologue and epilogue outside of
491       // the region that may throw by making sure
492       // that all the landing pads are at least at the
493       // boundary of the save and restore points.
494       // The problem with exceptions is that the throw
495       // is not properly modeled and in particular, a
496       // basic block can jump out from the middle.
497       updateSaveRestorePoints(MBB, RS.get());
498       if (!ArePointsInteresting()) {
499         LLVM_DEBUG(dbgs() << "EHPad prevents shrink-wrapping\n");
500         return false;
501       }
502       continue;
503     }
504 
505     for (const MachineInstr &MI : MBB) {
506       if (!useOrDefCSROrFI(MI, RS.get()))
507         continue;
508       // Save (resp. restore) point must dominate (resp. post dominate)
509       // MI. Look for the proper basic block for those.
510       updateSaveRestorePoints(MBB, RS.get());
511       // If we are at a point where we cannot improve the placement of
512       // save/restore instructions, just give up.
513       if (!ArePointsInteresting()) {
514         LLVM_DEBUG(dbgs() << "No Shrink wrap candidate found\n");
515         return false;
516       }
517       // No need to look for other instructions, this basic block
518       // will already be part of the handled region.
519       break;
520     }
521   }
522   if (!ArePointsInteresting()) {
523     // If the points are not interesting at this point, then they must be null
524     // because it means we did not encounter any frame/CSR related code.
525     // Otherwise, we would have returned from the previous loop.
526     assert(!Save && !Restore && "We miss a shrink-wrap opportunity?!");
527     LLVM_DEBUG(dbgs() << "Nothing to shrink-wrap\n");
528     return false;
529   }
530 
531   LLVM_DEBUG(dbgs() << "\n ** Results **\nFrequency of the Entry: " << EntryFreq
532                     << '\n');
533 
534   const TargetFrameLowering *TFI = MF.getSubtarget().getFrameLowering();
535   do {
536     LLVM_DEBUG(dbgs() << "Shrink wrap candidates (#, Name, Freq):\nSave: "
537                       << Save->getNumber() << ' ' << Save->getName() << ' '
538                       << MBFI->getBlockFreq(Save).getFrequency()
539                       << "\nRestore: " << Restore->getNumber() << ' '
540                       << Restore->getName() << ' '
541                       << MBFI->getBlockFreq(Restore).getFrequency() << '\n');
542 
543     bool IsSaveCheap, TargetCanUseSaveAsPrologue = false;
544     if (((IsSaveCheap = EntryFreq >= MBFI->getBlockFreq(Save).getFrequency()) &&
545          EntryFreq >= MBFI->getBlockFreq(Restore).getFrequency()) &&
546         ((TargetCanUseSaveAsPrologue = TFI->canUseAsPrologue(*Save)) &&
547          TFI->canUseAsEpilogue(*Restore)))
548       break;
549     LLVM_DEBUG(
550         dbgs() << "New points are too expensive or invalid for the target\n");
551     MachineBasicBlock *NewBB;
552     if (!IsSaveCheap || !TargetCanUseSaveAsPrologue) {
553       Save = FindIDom<>(*Save, Save->predecessors(), *MDT);
554       if (!Save)
555         break;
556       NewBB = Save;
557     } else {
558       // Restore is expensive.
559       Restore = FindIDom<>(*Restore, Restore->successors(), *MPDT);
560       if (!Restore)
561         break;
562       NewBB = Restore;
563     }
564     updateSaveRestorePoints(*NewBB, RS.get());
565   } while (Save && Restore);
566 
567   if (!ArePointsInteresting()) {
568     ++NumCandidatesDropped;
569     return false;
570   }
571 
572   LLVM_DEBUG(dbgs() << "Final shrink wrap candidates:\nSave: "
573                     << Save->getNumber() << ' ' << Save->getName()
574                     << "\nRestore: " << Restore->getNumber() << ' '
575                     << Restore->getName() << '\n');
576 
577   MachineFrameInfo &MFI = MF.getFrameInfo();
578   MFI.setSavePoint(Save);
579   MFI.setRestorePoint(Restore);
580   ++NumCandidates;
581   return false;
582 }
583 
isShrinkWrapEnabled(const MachineFunction & MF)584 bool ShrinkWrap::isShrinkWrapEnabled(const MachineFunction &MF) {
585   const TargetFrameLowering *TFI = MF.getSubtarget().getFrameLowering();
586 
587   switch (EnableShrinkWrapOpt) {
588   case cl::BOU_UNSET:
589     return TFI->enableShrinkWrapping(MF) &&
590            // Windows with CFI has some limitations that make it impossible
591            // to use shrink-wrapping.
592            !MF.getTarget().getMCAsmInfo()->usesWindowsCFI() &&
593            // Sanitizers look at the value of the stack at the location
594            // of the crash. Since a crash can happen anywhere, the
595            // frame must be lowered before anything else happen for the
596            // sanitizers to be able to get a correct stack frame.
597            !(MF.getFunction().hasFnAttribute(Attribute::SanitizeAddress) ||
598              MF.getFunction().hasFnAttribute(Attribute::SanitizeThread) ||
599              MF.getFunction().hasFnAttribute(Attribute::SanitizeMemory) ||
600              MF.getFunction().hasFnAttribute(Attribute::SanitizeHWAddress));
601   // If EnableShrinkWrap is set, it takes precedence on whatever the
602   // target sets. The rational is that we assume we want to test
603   // something related to shrink-wrapping.
604   case cl::BOU_TRUE:
605     return true;
606   case cl::BOU_FALSE:
607     return false;
608   }
609   llvm_unreachable("Invalid shrink-wrapping state");
610 }
611