1 //===- llvm/Target/TargetSchedule.cpp - Sched Machine Model ---------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements a wrapper around MCSchedModel that allows the interface
11 // to benefit from information currently only available in TargetInstrInfo.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "llvm/CodeGen/TargetSchedule.h"
16 #include "llvm/CodeGen/MachineFunction.h"
17 #include "llvm/CodeGen/MachineInstr.h"
18 #include "llvm/CodeGen/MachineOperand.h"
19 #include "llvm/CodeGen/TargetInstrInfo.h"
20 #include "llvm/CodeGen/TargetRegisterInfo.h"
21 #include "llvm/CodeGen/TargetSubtargetInfo.h"
22 #include "llvm/MC/MCInstrDesc.h"
23 #include "llvm/MC/MCInstrItineraries.h"
24 #include "llvm/MC/MCSchedule.h"
25 #include "llvm/Support/CommandLine.h"
26 #include "llvm/Support/ErrorHandling.h"
27 #include "llvm/Support/raw_ostream.h"
28 #include <algorithm>
29 #include <cassert>
30 #include <cstdint>
31
32 using namespace llvm;
33
34 static cl::opt<bool> EnableSchedModel("schedmodel", cl::Hidden, cl::init(true),
35 cl::desc("Use TargetSchedModel for latency lookup"));
36
37 static cl::opt<bool> EnableSchedItins("scheditins", cl::Hidden, cl::init(true),
38 cl::desc("Use InstrItineraryData for latency lookup"));
39
hasInstrSchedModel() const40 bool TargetSchedModel::hasInstrSchedModel() const {
41 return EnableSchedModel && SchedModel.hasInstrSchedModel();
42 }
43
hasInstrItineraries() const44 bool TargetSchedModel::hasInstrItineraries() const {
45 return EnableSchedItins && !InstrItins.isEmpty();
46 }
47
gcd(unsigned Dividend,unsigned Divisor)48 static unsigned gcd(unsigned Dividend, unsigned Divisor) {
49 // Dividend and Divisor will be naturally swapped as needed.
50 while (Divisor) {
51 unsigned Rem = Dividend % Divisor;
52 Dividend = Divisor;
53 Divisor = Rem;
54 };
55 return Dividend;
56 }
57
lcm(unsigned A,unsigned B)58 static unsigned lcm(unsigned A, unsigned B) {
59 unsigned LCM = (uint64_t(A) * B) / gcd(A, B);
60 assert((LCM >= A && LCM >= B) && "LCM overflow");
61 return LCM;
62 }
63
init(const TargetSubtargetInfo * TSInfo)64 void TargetSchedModel::init(const TargetSubtargetInfo *TSInfo) {
65 STI = TSInfo;
66 SchedModel = TSInfo->getSchedModel();
67 TII = TSInfo->getInstrInfo();
68 STI->initInstrItins(InstrItins);
69
70 unsigned NumRes = SchedModel.getNumProcResourceKinds();
71 ResourceFactors.resize(NumRes);
72 ResourceLCM = SchedModel.IssueWidth;
73 for (unsigned Idx = 0; Idx < NumRes; ++Idx) {
74 unsigned NumUnits = SchedModel.getProcResource(Idx)->NumUnits;
75 if (NumUnits > 0)
76 ResourceLCM = lcm(ResourceLCM, NumUnits);
77 }
78 MicroOpFactor = ResourceLCM / SchedModel.IssueWidth;
79 for (unsigned Idx = 0; Idx < NumRes; ++Idx) {
80 unsigned NumUnits = SchedModel.getProcResource(Idx)->NumUnits;
81 ResourceFactors[Idx] = NumUnits ? (ResourceLCM / NumUnits) : 0;
82 }
83 }
84
85 /// Returns true only if instruction is specified as single issue.
mustBeginGroup(const MachineInstr * MI,const MCSchedClassDesc * SC) const86 bool TargetSchedModel::mustBeginGroup(const MachineInstr *MI,
87 const MCSchedClassDesc *SC) const {
88 if (hasInstrSchedModel()) {
89 if (!SC)
90 SC = resolveSchedClass(MI);
91 if (SC->isValid())
92 return SC->BeginGroup;
93 }
94 return false;
95 }
96
mustEndGroup(const MachineInstr * MI,const MCSchedClassDesc * SC) const97 bool TargetSchedModel::mustEndGroup(const MachineInstr *MI,
98 const MCSchedClassDesc *SC) const {
99 if (hasInstrSchedModel()) {
100 if (!SC)
101 SC = resolveSchedClass(MI);
102 if (SC->isValid())
103 return SC->EndGroup;
104 }
105 return false;
106 }
107
getNumMicroOps(const MachineInstr * MI,const MCSchedClassDesc * SC) const108 unsigned TargetSchedModel::getNumMicroOps(const MachineInstr *MI,
109 const MCSchedClassDesc *SC) const {
110 if (hasInstrItineraries()) {
111 int UOps = InstrItins.getNumMicroOps(MI->getDesc().getSchedClass());
112 return (UOps >= 0) ? UOps : TII->getNumMicroOps(&InstrItins, *MI);
113 }
114 if (hasInstrSchedModel()) {
115 if (!SC)
116 SC = resolveSchedClass(MI);
117 if (SC->isValid())
118 return SC->NumMicroOps;
119 }
120 return MI->isTransient() ? 0 : 1;
121 }
122
123 // The machine model may explicitly specify an invalid latency, which
124 // effectively means infinite latency. Since users of the TargetSchedule API
125 // don't know how to handle this, we convert it to a very large latency that is
126 // easy to distinguish when debugging the DAG but won't induce overflow.
capLatency(int Cycles)127 static unsigned capLatency(int Cycles) {
128 return Cycles >= 0 ? Cycles : 1000;
129 }
130
131 /// Return the MCSchedClassDesc for this instruction. Some SchedClasses require
132 /// evaluation of predicates that depend on instruction operands or flags.
133 const MCSchedClassDesc *TargetSchedModel::
resolveSchedClass(const MachineInstr * MI) const134 resolveSchedClass(const MachineInstr *MI) const {
135 // Get the definition's scheduling class descriptor from this machine model.
136 unsigned SchedClass = MI->getDesc().getSchedClass();
137 const MCSchedClassDesc *SCDesc = SchedModel.getSchedClassDesc(SchedClass);
138 if (!SCDesc->isValid())
139 return SCDesc;
140
141 #ifndef NDEBUG
142 unsigned NIter = 0;
143 #endif
144 while (SCDesc->isVariant()) {
145 assert(++NIter < 6 && "Variants are nested deeper than the magic number");
146
147 SchedClass = STI->resolveSchedClass(SchedClass, MI, this);
148 SCDesc = SchedModel.getSchedClassDesc(SchedClass);
149 }
150 return SCDesc;
151 }
152
153 /// Find the def index of this operand. This index maps to the machine model and
154 /// is independent of use operands. Def operands may be reordered with uses or
155 /// merged with uses without affecting the def index (e.g. before/after
156 /// regalloc). However, an instruction's def operands must never be reordered
157 /// with respect to each other.
findDefIdx(const MachineInstr * MI,unsigned DefOperIdx)158 static unsigned findDefIdx(const MachineInstr *MI, unsigned DefOperIdx) {
159 unsigned DefIdx = 0;
160 for (unsigned i = 0; i != DefOperIdx; ++i) {
161 const MachineOperand &MO = MI->getOperand(i);
162 if (MO.isReg() && MO.isDef())
163 ++DefIdx;
164 }
165 return DefIdx;
166 }
167
168 /// Find the use index of this operand. This is independent of the instruction's
169 /// def operands.
170 ///
171 /// Note that uses are not determined by the operand's isUse property, which
172 /// is simply the inverse of isDef. Here we consider any readsReg operand to be
173 /// a "use". The machine model allows an operand to be both a Def and Use.
findUseIdx(const MachineInstr * MI,unsigned UseOperIdx)174 static unsigned findUseIdx(const MachineInstr *MI, unsigned UseOperIdx) {
175 unsigned UseIdx = 0;
176 for (unsigned i = 0; i != UseOperIdx; ++i) {
177 const MachineOperand &MO = MI->getOperand(i);
178 if (MO.isReg() && MO.readsReg() && !MO.isDef())
179 ++UseIdx;
180 }
181 return UseIdx;
182 }
183
184 // Top-level API for clients that know the operand indices.
computeOperandLatency(const MachineInstr * DefMI,unsigned DefOperIdx,const MachineInstr * UseMI,unsigned UseOperIdx) const185 unsigned TargetSchedModel::computeOperandLatency(
186 const MachineInstr *DefMI, unsigned DefOperIdx,
187 const MachineInstr *UseMI, unsigned UseOperIdx) const {
188
189 if (!hasInstrSchedModel() && !hasInstrItineraries())
190 return TII->defaultDefLatency(SchedModel, *DefMI);
191
192 if (hasInstrItineraries()) {
193 int OperLatency = 0;
194 if (UseMI) {
195 OperLatency = TII->getOperandLatency(&InstrItins, *DefMI, DefOperIdx,
196 *UseMI, UseOperIdx);
197 }
198 else {
199 unsigned DefClass = DefMI->getDesc().getSchedClass();
200 OperLatency = InstrItins.getOperandCycle(DefClass, DefOperIdx);
201 }
202 if (OperLatency >= 0)
203 return OperLatency;
204
205 // No operand latency was found.
206 unsigned InstrLatency = TII->getInstrLatency(&InstrItins, *DefMI);
207
208 // Expected latency is the max of the stage latency and itinerary props.
209 // Rather than directly querying InstrItins stage latency, we call a TII
210 // hook to allow subtargets to specialize latency. This hook is only
211 // applicable to the InstrItins model. InstrSchedModel should model all
212 // special cases without TII hooks.
213 InstrLatency =
214 std::max(InstrLatency, TII->defaultDefLatency(SchedModel, *DefMI));
215 return InstrLatency;
216 }
217 // hasInstrSchedModel()
218 const MCSchedClassDesc *SCDesc = resolveSchedClass(DefMI);
219 unsigned DefIdx = findDefIdx(DefMI, DefOperIdx);
220 if (DefIdx < SCDesc->NumWriteLatencyEntries) {
221 // Lookup the definition's write latency in SubtargetInfo.
222 const MCWriteLatencyEntry *WLEntry =
223 STI->getWriteLatencyEntry(SCDesc, DefIdx);
224 unsigned WriteID = WLEntry->WriteResourceID;
225 unsigned Latency = capLatency(WLEntry->Cycles);
226 if (!UseMI)
227 return Latency;
228
229 // Lookup the use's latency adjustment in SubtargetInfo.
230 const MCSchedClassDesc *UseDesc = resolveSchedClass(UseMI);
231 if (UseDesc->NumReadAdvanceEntries == 0)
232 return Latency;
233 unsigned UseIdx = findUseIdx(UseMI, UseOperIdx);
234 int Advance = STI->getReadAdvanceCycles(UseDesc, UseIdx, WriteID);
235 if (Advance > 0 && (unsigned)Advance > Latency) // unsigned wrap
236 return 0;
237 return Latency - Advance;
238 }
239 // If DefIdx does not exist in the model (e.g. implicit defs), then return
240 // unit latency (defaultDefLatency may be too conservative).
241 #ifndef NDEBUG
242 if (SCDesc->isValid() && !DefMI->getOperand(DefOperIdx).isImplicit()
243 && !DefMI->getDesc().OpInfo[DefOperIdx].isOptionalDef()
244 && SchedModel.isComplete()) {
245 errs() << "DefIdx " << DefIdx << " exceeds machine model writes for "
246 << *DefMI << " (Try with MCSchedModel.CompleteModel set to false)";
247 llvm_unreachable("incomplete machine model");
248 }
249 #endif
250 // FIXME: Automatically giving all implicit defs defaultDefLatency is
251 // undesirable. We should only do it for defs that are known to the MC
252 // desc like flags. Truly implicit defs should get 1 cycle latency.
253 return DefMI->isTransient() ? 0 : TII->defaultDefLatency(SchedModel, *DefMI);
254 }
255
256 unsigned
computeInstrLatency(const MCSchedClassDesc & SCDesc) const257 TargetSchedModel::computeInstrLatency(const MCSchedClassDesc &SCDesc) const {
258 return capLatency(MCSchedModel::computeInstrLatency(*STI, SCDesc));
259 }
260
computeInstrLatency(unsigned Opcode) const261 unsigned TargetSchedModel::computeInstrLatency(unsigned Opcode) const {
262 assert(hasInstrSchedModel() && "Only call this function with a SchedModel");
263 unsigned SCIdx = TII->get(Opcode).getSchedClass();
264 return capLatency(SchedModel.computeInstrLatency(*STI, SCIdx));
265 }
266
computeInstrLatency(const MCInst & Inst) const267 unsigned TargetSchedModel::computeInstrLatency(const MCInst &Inst) const {
268 if (hasInstrSchedModel())
269 return capLatency(SchedModel.computeInstrLatency(*STI, *TII, Inst));
270 return computeInstrLatency(Inst.getOpcode());
271 }
272
273 unsigned
computeInstrLatency(const MachineInstr * MI,bool UseDefaultDefLatency) const274 TargetSchedModel::computeInstrLatency(const MachineInstr *MI,
275 bool UseDefaultDefLatency) const {
276 // For the itinerary model, fall back to the old subtarget hook.
277 // Allow subtargets to compute Bundle latencies outside the machine model.
278 if (hasInstrItineraries() || MI->isBundle() ||
279 (!hasInstrSchedModel() && !UseDefaultDefLatency))
280 return TII->getInstrLatency(&InstrItins, *MI);
281
282 if (hasInstrSchedModel()) {
283 const MCSchedClassDesc *SCDesc = resolveSchedClass(MI);
284 if (SCDesc->isValid())
285 return computeInstrLatency(*SCDesc);
286 }
287 return TII->defaultDefLatency(SchedModel, *MI);
288 }
289
290 unsigned TargetSchedModel::
computeOutputLatency(const MachineInstr * DefMI,unsigned DefOperIdx,const MachineInstr * DepMI) const291 computeOutputLatency(const MachineInstr *DefMI, unsigned DefOperIdx,
292 const MachineInstr *DepMI) const {
293 if (!SchedModel.isOutOfOrder())
294 return 1;
295
296 // Out-of-order processor can dispatch WAW dependencies in the same cycle.
297
298 // Treat predication as a data dependency for out-of-order cpus. In-order
299 // cpus do not need to treat predicated writes specially.
300 //
301 // TODO: The following hack exists because predication passes do not
302 // correctly append imp-use operands, and readsReg() strangely returns false
303 // for predicated defs.
304 unsigned Reg = DefMI->getOperand(DefOperIdx).getReg();
305 const MachineFunction &MF = *DefMI->getMF();
306 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
307 if (!DepMI->readsRegister(Reg, TRI) && TII->isPredicated(*DepMI))
308 return computeInstrLatency(DefMI);
309
310 // If we have a per operand scheduling model, check if this def is writing
311 // an unbuffered resource. If so, it treated like an in-order cpu.
312 if (hasInstrSchedModel()) {
313 const MCSchedClassDesc *SCDesc = resolveSchedClass(DefMI);
314 if (SCDesc->isValid()) {
315 for (const MCWriteProcResEntry *PRI = STI->getWriteProcResBegin(SCDesc),
316 *PRE = STI->getWriteProcResEnd(SCDesc); PRI != PRE; ++PRI) {
317 if (!SchedModel.getProcResource(PRI->ProcResourceIdx)->BufferSize)
318 return 1;
319 }
320 }
321 }
322 return 0;
323 }
324
325 double
computeReciprocalThroughput(const MachineInstr * MI) const326 TargetSchedModel::computeReciprocalThroughput(const MachineInstr *MI) const {
327 if (hasInstrItineraries()) {
328 unsigned SchedClass = MI->getDesc().getSchedClass();
329 return MCSchedModel::getReciprocalThroughput(SchedClass,
330 *getInstrItineraries());
331 }
332
333 if (hasInstrSchedModel())
334 return MCSchedModel::getReciprocalThroughput(*STI, *resolveSchedClass(MI));
335
336 return 0.0;
337 }
338
339 double
computeReciprocalThroughput(unsigned Opcode) const340 TargetSchedModel::computeReciprocalThroughput(unsigned Opcode) const {
341 unsigned SchedClass = TII->get(Opcode).getSchedClass();
342 if (hasInstrItineraries())
343 return MCSchedModel::getReciprocalThroughput(SchedClass,
344 *getInstrItineraries());
345 if (hasInstrSchedModel()) {
346 const MCSchedClassDesc &SCDesc = *SchedModel.getSchedClassDesc(SchedClass);
347 if (SCDesc.isValid() && !SCDesc.isVariant())
348 return MCSchedModel::getReciprocalThroughput(*STI, SCDesc);
349 }
350
351 return 0.0;
352 }
353
354 double
computeReciprocalThroughput(const MCInst & MI) const355 TargetSchedModel::computeReciprocalThroughput(const MCInst &MI) const {
356 if (hasInstrSchedModel())
357 return SchedModel.getReciprocalThroughput(*STI, *TII, MI);
358 return computeReciprocalThroughput(MI.getOpcode());
359 }
360
361