1 //===- DWARFDebugFrame.h - Parsing of .debug_frame ------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9
10 #include "llvm/DebugInfo/DWARF/DWARFDebugFrame.h"
11 #include "llvm/ADT/DenseMap.h"
12 #include "llvm/ADT/Optional.h"
13 #include "llvm/ADT/StringExtras.h"
14 #include "llvm/ADT/StringRef.h"
15 #include "llvm/BinaryFormat/Dwarf.h"
16 #include "llvm/Support/Casting.h"
17 #include "llvm/Support/Compiler.h"
18 #include "llvm/Support/DataExtractor.h"
19 #include "llvm/Support/ErrorHandling.h"
20 #include "llvm/Support/Format.h"
21 #include "llvm/Support/raw_ostream.h"
22 #include <algorithm>
23 #include <cassert>
24 #include <cinttypes>
25 #include <cstdint>
26 #include <string>
27 #include <vector>
28
29 using namespace llvm;
30 using namespace dwarf;
31
32
33 // See DWARF standard v3, section 7.23
34 const uint8_t DWARF_CFI_PRIMARY_OPCODE_MASK = 0xc0;
35 const uint8_t DWARF_CFI_PRIMARY_OPERAND_MASK = 0x3f;
36
parse(DataExtractor Data,uint32_t * Offset,uint32_t EndOffset)37 Error CFIProgram::parse(DataExtractor Data, uint32_t *Offset,
38 uint32_t EndOffset) {
39 while (*Offset < EndOffset) {
40 uint8_t Opcode = Data.getU8(Offset);
41 // Some instructions have a primary opcode encoded in the top bits.
42 uint8_t Primary = Opcode & DWARF_CFI_PRIMARY_OPCODE_MASK;
43
44 if (Primary) {
45 // If it's a primary opcode, the first operand is encoded in the bottom
46 // bits of the opcode itself.
47 uint64_t Op1 = Opcode & DWARF_CFI_PRIMARY_OPERAND_MASK;
48 switch (Primary) {
49 default:
50 return make_error<StringError>(
51 "Invalid primary CFI opcode",
52 std::make_error_code(std::errc::illegal_byte_sequence));
53 case DW_CFA_advance_loc:
54 case DW_CFA_restore:
55 addInstruction(Primary, Op1);
56 break;
57 case DW_CFA_offset:
58 addInstruction(Primary, Op1, Data.getULEB128(Offset));
59 break;
60 }
61 } else {
62 // Extended opcode - its value is Opcode itself.
63 switch (Opcode) {
64 default:
65 return make_error<StringError>(
66 "Invalid extended CFI opcode",
67 std::make_error_code(std::errc::illegal_byte_sequence));
68 case DW_CFA_nop:
69 case DW_CFA_remember_state:
70 case DW_CFA_restore_state:
71 case DW_CFA_GNU_window_save:
72 // No operands
73 addInstruction(Opcode);
74 break;
75 case DW_CFA_set_loc:
76 // Operands: Address
77 addInstruction(Opcode, Data.getAddress(Offset));
78 break;
79 case DW_CFA_advance_loc1:
80 // Operands: 1-byte delta
81 addInstruction(Opcode, Data.getU8(Offset));
82 break;
83 case DW_CFA_advance_loc2:
84 // Operands: 2-byte delta
85 addInstruction(Opcode, Data.getU16(Offset));
86 break;
87 case DW_CFA_advance_loc4:
88 // Operands: 4-byte delta
89 addInstruction(Opcode, Data.getU32(Offset));
90 break;
91 case DW_CFA_restore_extended:
92 case DW_CFA_undefined:
93 case DW_CFA_same_value:
94 case DW_CFA_def_cfa_register:
95 case DW_CFA_def_cfa_offset:
96 case DW_CFA_GNU_args_size:
97 // Operands: ULEB128
98 addInstruction(Opcode, Data.getULEB128(Offset));
99 break;
100 case DW_CFA_def_cfa_offset_sf:
101 // Operands: SLEB128
102 addInstruction(Opcode, Data.getSLEB128(Offset));
103 break;
104 case DW_CFA_offset_extended:
105 case DW_CFA_register:
106 case DW_CFA_def_cfa:
107 case DW_CFA_val_offset: {
108 // Operands: ULEB128, ULEB128
109 // Note: We can not embed getULEB128 directly into function
110 // argument list. getULEB128 changes Offset and order of evaluation
111 // for arguments is unspecified.
112 auto op1 = Data.getULEB128(Offset);
113 auto op2 = Data.getULEB128(Offset);
114 addInstruction(Opcode, op1, op2);
115 break;
116 }
117 case DW_CFA_offset_extended_sf:
118 case DW_CFA_def_cfa_sf:
119 case DW_CFA_val_offset_sf: {
120 // Operands: ULEB128, SLEB128
121 // Note: see comment for the previous case
122 auto op1 = Data.getULEB128(Offset);
123 auto op2 = (uint64_t)Data.getSLEB128(Offset);
124 addInstruction(Opcode, op1, op2);
125 break;
126 }
127 case DW_CFA_def_cfa_expression: {
128 uint32_t ExprLength = Data.getULEB128(Offset);
129 addInstruction(Opcode, 0);
130 DataExtractor Extractor(
131 Data.getData().slice(*Offset, *Offset + ExprLength),
132 Data.isLittleEndian(), Data.getAddressSize());
133 Instructions.back().Expression = DWARFExpression(
134 Extractor, Data.getAddressSize(), dwarf::DWARF_VERSION);
135 *Offset += ExprLength;
136 break;
137 }
138 case DW_CFA_expression:
139 case DW_CFA_val_expression: {
140 auto RegNum = Data.getULEB128(Offset);
141 auto BlockLength = Data.getULEB128(Offset);
142 addInstruction(Opcode, RegNum, 0);
143 DataExtractor Extractor(
144 Data.getData().slice(*Offset, *Offset + BlockLength),
145 Data.isLittleEndian(), Data.getAddressSize());
146 Instructions.back().Expression = DWARFExpression(
147 Extractor, Data.getAddressSize(), dwarf::DWARF_VERSION);
148 *Offset += BlockLength;
149 break;
150 }
151 }
152 }
153 }
154
155 return Error::success();
156 }
157
158 namespace {
159
160
161 } // end anonymous namespace
162
getOperandTypes()163 ArrayRef<CFIProgram::OperandType[2]> CFIProgram::getOperandTypes() {
164 static OperandType OpTypes[DW_CFA_restore+1][2];
165 static bool Initialized = false;
166 if (Initialized) {
167 return ArrayRef<OperandType[2]>(&OpTypes[0], DW_CFA_restore+1);
168 }
169 Initialized = true;
170
171 #define DECLARE_OP2(OP, OPTYPE0, OPTYPE1) \
172 do { \
173 OpTypes[OP][0] = OPTYPE0; \
174 OpTypes[OP][1] = OPTYPE1; \
175 } while (false)
176 #define DECLARE_OP1(OP, OPTYPE0) DECLARE_OP2(OP, OPTYPE0, OT_None)
177 #define DECLARE_OP0(OP) DECLARE_OP1(OP, OT_None)
178
179 DECLARE_OP1(DW_CFA_set_loc, OT_Address);
180 DECLARE_OP1(DW_CFA_advance_loc, OT_FactoredCodeOffset);
181 DECLARE_OP1(DW_CFA_advance_loc1, OT_FactoredCodeOffset);
182 DECLARE_OP1(DW_CFA_advance_loc2, OT_FactoredCodeOffset);
183 DECLARE_OP1(DW_CFA_advance_loc4, OT_FactoredCodeOffset);
184 DECLARE_OP1(DW_CFA_MIPS_advance_loc8, OT_FactoredCodeOffset);
185 DECLARE_OP2(DW_CFA_def_cfa, OT_Register, OT_Offset);
186 DECLARE_OP2(DW_CFA_def_cfa_sf, OT_Register, OT_SignedFactDataOffset);
187 DECLARE_OP1(DW_CFA_def_cfa_register, OT_Register);
188 DECLARE_OP1(DW_CFA_def_cfa_offset, OT_Offset);
189 DECLARE_OP1(DW_CFA_def_cfa_offset_sf, OT_SignedFactDataOffset);
190 DECLARE_OP1(DW_CFA_def_cfa_expression, OT_Expression);
191 DECLARE_OP1(DW_CFA_undefined, OT_Register);
192 DECLARE_OP1(DW_CFA_same_value, OT_Register);
193 DECLARE_OP2(DW_CFA_offset, OT_Register, OT_UnsignedFactDataOffset);
194 DECLARE_OP2(DW_CFA_offset_extended, OT_Register, OT_UnsignedFactDataOffset);
195 DECLARE_OP2(DW_CFA_offset_extended_sf, OT_Register, OT_SignedFactDataOffset);
196 DECLARE_OP2(DW_CFA_val_offset, OT_Register, OT_UnsignedFactDataOffset);
197 DECLARE_OP2(DW_CFA_val_offset_sf, OT_Register, OT_SignedFactDataOffset);
198 DECLARE_OP2(DW_CFA_register, OT_Register, OT_Register);
199 DECLARE_OP2(DW_CFA_expression, OT_Register, OT_Expression);
200 DECLARE_OP2(DW_CFA_val_expression, OT_Register, OT_Expression);
201 DECLARE_OP1(DW_CFA_restore, OT_Register);
202 DECLARE_OP1(DW_CFA_restore_extended, OT_Register);
203 DECLARE_OP0(DW_CFA_remember_state);
204 DECLARE_OP0(DW_CFA_restore_state);
205 DECLARE_OP0(DW_CFA_GNU_window_save);
206 DECLARE_OP1(DW_CFA_GNU_args_size, OT_Offset);
207 DECLARE_OP0(DW_CFA_nop);
208
209 #undef DECLARE_OP0
210 #undef DECLARE_OP1
211 #undef DECLARE_OP2
212
213 return ArrayRef<OperandType[2]>(&OpTypes[0], DW_CFA_restore+1);
214 }
215
216 /// Print \p Opcode's operand number \p OperandIdx which has value \p Operand.
printOperand(raw_ostream & OS,const MCRegisterInfo * MRI,bool IsEH,const Instruction & Instr,unsigned OperandIdx,uint64_t Operand) const217 void CFIProgram::printOperand(raw_ostream &OS, const MCRegisterInfo *MRI,
218 bool IsEH, const Instruction &Instr,
219 unsigned OperandIdx, uint64_t Operand) const {
220 assert(OperandIdx < 2);
221 uint8_t Opcode = Instr.Opcode;
222 OperandType Type = getOperandTypes()[Opcode][OperandIdx];
223
224 switch (Type) {
225 case OT_Unset: {
226 OS << " Unsupported " << (OperandIdx ? "second" : "first") << " operand to";
227 auto OpcodeName = CallFrameString(Opcode);
228 if (!OpcodeName.empty())
229 OS << " " << OpcodeName;
230 else
231 OS << format(" Opcode %x", Opcode);
232 break;
233 }
234 case OT_None:
235 break;
236 case OT_Address:
237 OS << format(" %" PRIx64, Operand);
238 break;
239 case OT_Offset:
240 // The offsets are all encoded in a unsigned form, but in practice
241 // consumers use them signed. It's most certainly legacy due to
242 // the lack of signed variants in the first Dwarf standards.
243 OS << format(" %+" PRId64, int64_t(Operand));
244 break;
245 case OT_FactoredCodeOffset: // Always Unsigned
246 if (CodeAlignmentFactor)
247 OS << format(" %" PRId64, Operand * CodeAlignmentFactor);
248 else
249 OS << format(" %" PRId64 "*code_alignment_factor" , Operand);
250 break;
251 case OT_SignedFactDataOffset:
252 if (DataAlignmentFactor)
253 OS << format(" %" PRId64, int64_t(Operand) * DataAlignmentFactor);
254 else
255 OS << format(" %" PRId64 "*data_alignment_factor" , int64_t(Operand));
256 break;
257 case OT_UnsignedFactDataOffset:
258 if (DataAlignmentFactor)
259 OS << format(" %" PRId64, Operand * DataAlignmentFactor);
260 else
261 OS << format(" %" PRId64 "*data_alignment_factor" , Operand);
262 break;
263 case OT_Register:
264 OS << format(" reg%" PRId64, Operand);
265 break;
266 case OT_Expression:
267 assert(Instr.Expression && "missing DWARFExpression object");
268 OS << " ";
269 Instr.Expression->print(OS, MRI, IsEH);
270 break;
271 }
272 }
273
dump(raw_ostream & OS,const MCRegisterInfo * MRI,bool IsEH,unsigned IndentLevel) const274 void CFIProgram::dump(raw_ostream &OS, const MCRegisterInfo *MRI, bool IsEH,
275 unsigned IndentLevel) const {
276 for (const auto &Instr : Instructions) {
277 uint8_t Opcode = Instr.Opcode;
278 if (Opcode & DWARF_CFI_PRIMARY_OPCODE_MASK)
279 Opcode &= DWARF_CFI_PRIMARY_OPCODE_MASK;
280 OS.indent(2 * IndentLevel);
281 OS << CallFrameString(Opcode) << ":";
282 for (unsigned i = 0; i < Instr.Ops.size(); ++i)
283 printOperand(OS, MRI, IsEH, Instr, i, Instr.Ops[i]);
284 OS << '\n';
285 }
286 }
287
dump(raw_ostream & OS,const MCRegisterInfo * MRI,bool IsEH) const288 void CIE::dump(raw_ostream &OS, const MCRegisterInfo *MRI, bool IsEH) const {
289 OS << format("%08x %08x %08x CIE", (uint32_t)Offset, (uint32_t)Length,
290 DW_CIE_ID)
291 << "\n";
292 OS << format(" Version: %d\n", Version);
293 OS << " Augmentation: \"" << Augmentation << "\"\n";
294 if (Version >= 4) {
295 OS << format(" Address size: %u\n", (uint32_t)AddressSize);
296 OS << format(" Segment desc size: %u\n",
297 (uint32_t)SegmentDescriptorSize);
298 }
299 OS << format(" Code alignment factor: %u\n", (uint32_t)CodeAlignmentFactor);
300 OS << format(" Data alignment factor: %d\n", (int32_t)DataAlignmentFactor);
301 OS << format(" Return address column: %d\n", (int32_t)ReturnAddressRegister);
302 if (Personality)
303 OS << format(" Personality Address: %08x\n", *Personality);
304 if (!AugmentationData.empty()) {
305 OS << " Augmentation data: ";
306 for (uint8_t Byte : AugmentationData)
307 OS << ' ' << hexdigit(Byte >> 4) << hexdigit(Byte & 0xf);
308 OS << "\n";
309 }
310 OS << "\n";
311 CFIs.dump(OS, MRI, IsEH);
312 OS << "\n";
313 }
314
dump(raw_ostream & OS,const MCRegisterInfo * MRI,bool IsEH) const315 void FDE::dump(raw_ostream &OS, const MCRegisterInfo *MRI, bool IsEH) const {
316 OS << format("%08x %08x %08x FDE ", (uint32_t)Offset, (uint32_t)Length,
317 (int32_t)LinkedCIEOffset);
318 OS << format("cie=%08x pc=%08x...%08x\n", (int32_t)LinkedCIEOffset,
319 (uint32_t)InitialLocation,
320 (uint32_t)InitialLocation + (uint32_t)AddressRange);
321 if (LSDAAddress)
322 OS << format(" LSDA Address: %08x\n", *LSDAAddress);
323 CFIs.dump(OS, MRI, IsEH);
324 OS << "\n";
325 }
326
DWARFDebugFrame(bool IsEH,uint64_t EHFrameAddress)327 DWARFDebugFrame::DWARFDebugFrame(bool IsEH, uint64_t EHFrameAddress)
328 : IsEH(IsEH), EHFrameAddress(EHFrameAddress) {}
329
330 DWARFDebugFrame::~DWARFDebugFrame() = default;
331
dumpDataAux(DataExtractor Data,uint32_t Offset,int Length)332 static void LLVM_ATTRIBUTE_UNUSED dumpDataAux(DataExtractor Data,
333 uint32_t Offset, int Length) {
334 errs() << "DUMP: ";
335 for (int i = 0; i < Length; ++i) {
336 uint8_t c = Data.getU8(&Offset);
337 errs().write_hex(c); errs() << " ";
338 }
339 errs() << "\n";
340 }
341
342 // This is a workaround for old compilers which do not allow
343 // noreturn attribute usage in lambdas. Once the support for those
344 // compilers are phased out, we can remove this and return back to
345 // a ReportError lambda: [StartOffset](const char *ErrorMsg).
ReportError(uint32_t StartOffset,const char * ErrorMsg)346 static void LLVM_ATTRIBUTE_NORETURN ReportError(uint32_t StartOffset,
347 const char *ErrorMsg) {
348 std::string Str;
349 raw_string_ostream OS(Str);
350 OS << format(ErrorMsg, StartOffset);
351 OS.flush();
352 report_fatal_error(Str);
353 }
354
parse(DWARFDataExtractor Data)355 void DWARFDebugFrame::parse(DWARFDataExtractor Data) {
356 uint32_t Offset = 0;
357 DenseMap<uint32_t, CIE *> CIEs;
358
359 while (Data.isValidOffset(Offset)) {
360 uint32_t StartOffset = Offset;
361
362 bool IsDWARF64 = false;
363 uint64_t Length = Data.getU32(&Offset);
364 uint64_t Id;
365
366 if (Length == UINT32_MAX) {
367 // DWARF-64 is distinguished by the first 32 bits of the initial length
368 // field being 0xffffffff. Then, the next 64 bits are the actual entry
369 // length.
370 IsDWARF64 = true;
371 Length = Data.getU64(&Offset);
372 }
373
374 // At this point, Offset points to the next field after Length.
375 // Length is the structure size excluding itself. Compute an offset one
376 // past the end of the structure (needed to know how many instructions to
377 // read).
378 // TODO: For honest DWARF64 support, DataExtractor will have to treat
379 // offset_ptr as uint64_t*
380 uint32_t StartStructureOffset = Offset;
381 uint32_t EndStructureOffset = Offset + static_cast<uint32_t>(Length);
382
383 // The Id field's size depends on the DWARF format
384 Id = Data.getUnsigned(&Offset, (IsDWARF64 && !IsEH) ? 8 : 4);
385 bool IsCIE =
386 ((IsDWARF64 && Id == DW64_CIE_ID) || Id == DW_CIE_ID || (IsEH && !Id));
387
388 if (IsCIE) {
389 uint8_t Version = Data.getU8(&Offset);
390 const char *Augmentation = Data.getCStr(&Offset);
391 StringRef AugmentationString(Augmentation ? Augmentation : "");
392 uint8_t AddressSize = Version < 4 ? Data.getAddressSize() :
393 Data.getU8(&Offset);
394 Data.setAddressSize(AddressSize);
395 uint8_t SegmentDescriptorSize = Version < 4 ? 0 : Data.getU8(&Offset);
396 uint64_t CodeAlignmentFactor = Data.getULEB128(&Offset);
397 int64_t DataAlignmentFactor = Data.getSLEB128(&Offset);
398 uint64_t ReturnAddressRegister = Data.getULEB128(&Offset);
399
400 // Parse the augmentation data for EH CIEs
401 StringRef AugmentationData("");
402 uint32_t FDEPointerEncoding = DW_EH_PE_absptr;
403 uint32_t LSDAPointerEncoding = DW_EH_PE_omit;
404 Optional<uint64_t> Personality;
405 Optional<uint32_t> PersonalityEncoding;
406 if (IsEH) {
407 Optional<uint64_t> AugmentationLength;
408 uint32_t StartAugmentationOffset;
409 uint32_t EndAugmentationOffset;
410
411 // Walk the augmentation string to get all the augmentation data.
412 for (unsigned i = 0, e = AugmentationString.size(); i != e; ++i) {
413 switch (AugmentationString[i]) {
414 default:
415 ReportError(StartOffset,
416 "Unknown augmentation character in entry at %lx");
417 case 'L':
418 LSDAPointerEncoding = Data.getU8(&Offset);
419 break;
420 case 'P': {
421 if (Personality)
422 ReportError(StartOffset,
423 "Duplicate personality in entry at %lx");
424 PersonalityEncoding = Data.getU8(&Offset);
425 Personality = Data.getEncodedPointer(
426 &Offset, *PersonalityEncoding,
427 EHFrameAddress ? EHFrameAddress + Offset : 0);
428 break;
429 }
430 case 'R':
431 FDEPointerEncoding = Data.getU8(&Offset);
432 break;
433 case 'S':
434 // Current frame is a signal trampoline.
435 break;
436 case 'z':
437 if (i)
438 ReportError(StartOffset,
439 "'z' must be the first character at %lx");
440 // Parse the augmentation length first. We only parse it if
441 // the string contains a 'z'.
442 AugmentationLength = Data.getULEB128(&Offset);
443 StartAugmentationOffset = Offset;
444 EndAugmentationOffset = Offset +
445 static_cast<uint32_t>(*AugmentationLength);
446 }
447 }
448
449 if (AugmentationLength.hasValue()) {
450 if (Offset != EndAugmentationOffset)
451 ReportError(StartOffset, "Parsing augmentation data at %lx failed");
452
453 AugmentationData = Data.getData().slice(StartAugmentationOffset,
454 EndAugmentationOffset);
455 }
456 }
457
458 auto Cie = llvm::make_unique<CIE>(
459 StartOffset, Length, Version, AugmentationString, AddressSize,
460 SegmentDescriptorSize, CodeAlignmentFactor, DataAlignmentFactor,
461 ReturnAddressRegister, AugmentationData, FDEPointerEncoding,
462 LSDAPointerEncoding, Personality, PersonalityEncoding);
463 CIEs[StartOffset] = Cie.get();
464 Entries.emplace_back(std::move(Cie));
465 } else {
466 // FDE
467 uint64_t CIEPointer = Id;
468 uint64_t InitialLocation = 0;
469 uint64_t AddressRange = 0;
470 Optional<uint64_t> LSDAAddress;
471 CIE *Cie = CIEs[IsEH ? (StartStructureOffset - CIEPointer) : CIEPointer];
472
473 if (IsEH) {
474 // The address size is encoded in the CIE we reference.
475 if (!Cie)
476 ReportError(StartOffset,
477 "Parsing FDE data at %lx failed due to missing CIE");
478
479 if (auto Val = Data.getEncodedPointer(
480 &Offset, Cie->getFDEPointerEncoding(),
481 EHFrameAddress ? EHFrameAddress + Offset : 0)) {
482 InitialLocation = *Val;
483 }
484 if (auto Val = Data.getEncodedPointer(
485 &Offset, Cie->getFDEPointerEncoding(), 0)) {
486 AddressRange = *Val;
487 }
488
489 StringRef AugmentationString = Cie->getAugmentationString();
490 if (!AugmentationString.empty()) {
491 // Parse the augmentation length and data for this FDE.
492 uint64_t AugmentationLength = Data.getULEB128(&Offset);
493
494 uint32_t EndAugmentationOffset =
495 Offset + static_cast<uint32_t>(AugmentationLength);
496
497 // Decode the LSDA if the CIE augmentation string said we should.
498 if (Cie->getLSDAPointerEncoding() != DW_EH_PE_omit) {
499 LSDAAddress = Data.getEncodedPointer(
500 &Offset, Cie->getLSDAPointerEncoding(),
501 EHFrameAddress ? Offset + EHFrameAddress : 0);
502 }
503
504 if (Offset != EndAugmentationOffset)
505 ReportError(StartOffset, "Parsing augmentation data at %lx failed");
506 }
507 } else {
508 InitialLocation = Data.getAddress(&Offset);
509 AddressRange = Data.getAddress(&Offset);
510 }
511
512 Entries.emplace_back(new FDE(StartOffset, Length, CIEPointer,
513 InitialLocation, AddressRange,
514 Cie, LSDAAddress));
515 }
516
517 if (Error E =
518 Entries.back()->cfis().parse(Data, &Offset, EndStructureOffset)) {
519 report_fatal_error(toString(std::move(E)));
520 }
521
522 if (Offset != EndStructureOffset)
523 ReportError(StartOffset, "Parsing entry instructions at %lx failed");
524 }
525 }
526
getEntryAtOffset(uint64_t Offset) const527 FrameEntry *DWARFDebugFrame::getEntryAtOffset(uint64_t Offset) const {
528 auto It =
529 std::lower_bound(Entries.begin(), Entries.end(), Offset,
530 [](const std::unique_ptr<FrameEntry> &E,
531 uint64_t Offset) { return E->getOffset() < Offset; });
532 if (It != Entries.end() && (*It)->getOffset() == Offset)
533 return It->get();
534 return nullptr;
535 }
536
dump(raw_ostream & OS,const MCRegisterInfo * MRI,Optional<uint64_t> Offset) const537 void DWARFDebugFrame::dump(raw_ostream &OS, const MCRegisterInfo *MRI,
538 Optional<uint64_t> Offset) const {
539 if (Offset) {
540 if (auto *Entry = getEntryAtOffset(*Offset))
541 Entry->dump(OS, MRI, IsEH);
542 return;
543 }
544
545 OS << "\n";
546 for (const auto &Entry : Entries)
547 Entry->dump(OS, MRI, IsEH);
548 }
549