1 //===- InlineAsm.cpp - Implement the InlineAsm class ----------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the InlineAsm class.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/IR/InlineAsm.h"
15 #include "ConstantsContext.h"
16 #include "LLVMContextImpl.h"
17 #include "llvm/ADT/StringRef.h"
18 #include "llvm/IR/DerivedTypes.h"
19 #include "llvm/IR/LLVMContext.h"
20 #include "llvm/IR/Value.h"
21 #include "llvm/Support/Casting.h"
22 #include "llvm/Support/Compiler.h"
23 #include <algorithm>
24 #include <cassert>
25 #include <cctype>
26 #include <cstddef>
27 #include <cstdlib>
28
29 using namespace llvm;
30
InlineAsm(FunctionType * FTy,const std::string & asmString,const std::string & constraints,bool hasSideEffects,bool isAlignStack,AsmDialect asmDialect)31 InlineAsm::InlineAsm(FunctionType *FTy, const std::string &asmString,
32 const std::string &constraints, bool hasSideEffects,
33 bool isAlignStack, AsmDialect asmDialect)
34 : Value(PointerType::getUnqual(FTy), Value::InlineAsmVal),
35 AsmString(asmString), Constraints(constraints), FTy(FTy),
36 HasSideEffects(hasSideEffects), IsAlignStack(isAlignStack),
37 Dialect(asmDialect) {
38 // Do various checks on the constraint string and type.
39 assert(Verify(getFunctionType(), constraints) &&
40 "Function type not legal for constraints!");
41 }
42
get(FunctionType * FTy,StringRef AsmString,StringRef Constraints,bool hasSideEffects,bool isAlignStack,AsmDialect asmDialect)43 InlineAsm *InlineAsm::get(FunctionType *FTy, StringRef AsmString,
44 StringRef Constraints, bool hasSideEffects,
45 bool isAlignStack, AsmDialect asmDialect) {
46 InlineAsmKeyType Key(AsmString, Constraints, FTy, hasSideEffects,
47 isAlignStack, asmDialect);
48 LLVMContextImpl *pImpl = FTy->getContext().pImpl;
49 return pImpl->InlineAsms.getOrCreate(PointerType::getUnqual(FTy), Key);
50 }
51
destroyConstant()52 void InlineAsm::destroyConstant() {
53 getType()->getContext().pImpl->InlineAsms.remove(this);
54 delete this;
55 }
56
getFunctionType() const57 FunctionType *InlineAsm::getFunctionType() const {
58 return FTy;
59 }
60
61 /// Parse - Analyze the specified string (e.g. "==&{eax}") and fill in the
62 /// fields in this structure. If the constraint string is not understood,
63 /// return true, otherwise return false.
Parse(StringRef Str,InlineAsm::ConstraintInfoVector & ConstraintsSoFar)64 bool InlineAsm::ConstraintInfo::Parse(StringRef Str,
65 InlineAsm::ConstraintInfoVector &ConstraintsSoFar) {
66 StringRef::iterator I = Str.begin(), E = Str.end();
67 unsigned multipleAlternativeCount = Str.count('|') + 1;
68 unsigned multipleAlternativeIndex = 0;
69 ConstraintCodeVector *pCodes = &Codes;
70
71 // Initialize
72 isMultipleAlternative = multipleAlternativeCount > 1;
73 if (isMultipleAlternative) {
74 multipleAlternatives.resize(multipleAlternativeCount);
75 pCodes = &multipleAlternatives[0].Codes;
76 }
77 Type = isInput;
78 isEarlyClobber = false;
79 MatchingInput = -1;
80 isCommutative = false;
81 isIndirect = false;
82 currentAlternativeIndex = 0;
83
84 // Parse prefixes.
85 if (*I == '~') {
86 Type = isClobber;
87 ++I;
88
89 // '{' must immediately follow '~'.
90 if (I != E && *I != '{')
91 return true;
92 } else if (*I == '=') {
93 ++I;
94 Type = isOutput;
95 }
96
97 if (*I == '*') {
98 isIndirect = true;
99 ++I;
100 }
101
102 if (I == E) return true; // Just a prefix, like "==" or "~".
103
104 // Parse the modifiers.
105 bool DoneWithModifiers = false;
106 while (!DoneWithModifiers) {
107 switch (*I) {
108 default:
109 DoneWithModifiers = true;
110 break;
111 case '&': // Early clobber.
112 if (Type != isOutput || // Cannot early clobber anything but output.
113 isEarlyClobber) // Reject &&&&&&
114 return true;
115 isEarlyClobber = true;
116 break;
117 case '%': // Commutative.
118 if (Type == isClobber || // Cannot commute clobbers.
119 isCommutative) // Reject %%%%%
120 return true;
121 isCommutative = true;
122 break;
123 case '#': // Comment.
124 case '*': // Register preferencing.
125 return true; // Not supported.
126 }
127
128 if (!DoneWithModifiers) {
129 ++I;
130 if (I == E) return true; // Just prefixes and modifiers!
131 }
132 }
133
134 // Parse the various constraints.
135 while (I != E) {
136 if (*I == '{') { // Physical register reference.
137 // Find the end of the register name.
138 StringRef::iterator ConstraintEnd = std::find(I+1, E, '}');
139 if (ConstraintEnd == E) return true; // "{foo"
140 pCodes->push_back(StringRef(I, ConstraintEnd+1 - I));
141 I = ConstraintEnd+1;
142 } else if (isdigit(static_cast<unsigned char>(*I))) { // Matching Constraint
143 // Maximal munch numbers.
144 StringRef::iterator NumStart = I;
145 while (I != E && isdigit(static_cast<unsigned char>(*I)))
146 ++I;
147 pCodes->push_back(StringRef(NumStart, I - NumStart));
148 unsigned N = atoi(pCodes->back().c_str());
149 // Check that this is a valid matching constraint!
150 if (N >= ConstraintsSoFar.size() || ConstraintsSoFar[N].Type != isOutput||
151 Type != isInput)
152 return true; // Invalid constraint number.
153
154 // If Operand N already has a matching input, reject this. An output
155 // can't be constrained to the same value as multiple inputs.
156 if (isMultipleAlternative) {
157 if (multipleAlternativeIndex >=
158 ConstraintsSoFar[N].multipleAlternatives.size())
159 return true;
160 InlineAsm::SubConstraintInfo &scInfo =
161 ConstraintsSoFar[N].multipleAlternatives[multipleAlternativeIndex];
162 if (scInfo.MatchingInput != -1)
163 return true;
164 // Note that operand #n has a matching input.
165 scInfo.MatchingInput = ConstraintsSoFar.size();
166 assert(scInfo.MatchingInput >= 0);
167 } else {
168 if (ConstraintsSoFar[N].hasMatchingInput() &&
169 (size_t)ConstraintsSoFar[N].MatchingInput !=
170 ConstraintsSoFar.size())
171 return true;
172 // Note that operand #n has a matching input.
173 ConstraintsSoFar[N].MatchingInput = ConstraintsSoFar.size();
174 assert(ConstraintsSoFar[N].MatchingInput >= 0);
175 }
176 } else if (*I == '|') {
177 multipleAlternativeIndex++;
178 pCodes = &multipleAlternatives[multipleAlternativeIndex].Codes;
179 ++I;
180 } else if (*I == '^') {
181 // Multi-letter constraint
182 // FIXME: For now assuming these are 2-character constraints.
183 pCodes->push_back(StringRef(I+1, 2));
184 I += 3;
185 } else {
186 // Single letter constraint.
187 pCodes->push_back(StringRef(I, 1));
188 ++I;
189 }
190 }
191
192 return false;
193 }
194
195 /// selectAlternative - Point this constraint to the alternative constraint
196 /// indicated by the index.
selectAlternative(unsigned index)197 void InlineAsm::ConstraintInfo::selectAlternative(unsigned index) {
198 if (index < multipleAlternatives.size()) {
199 currentAlternativeIndex = index;
200 InlineAsm::SubConstraintInfo &scInfo =
201 multipleAlternatives[currentAlternativeIndex];
202 MatchingInput = scInfo.MatchingInput;
203 Codes = scInfo.Codes;
204 }
205 }
206
207 InlineAsm::ConstraintInfoVector
ParseConstraints(StringRef Constraints)208 InlineAsm::ParseConstraints(StringRef Constraints) {
209 ConstraintInfoVector Result;
210
211 // Scan the constraints string.
212 for (StringRef::iterator I = Constraints.begin(),
213 E = Constraints.end(); I != E; ) {
214 ConstraintInfo Info;
215
216 // Find the end of this constraint.
217 StringRef::iterator ConstraintEnd = std::find(I, E, ',');
218
219 if (ConstraintEnd == I || // Empty constraint like ",,"
220 Info.Parse(StringRef(I, ConstraintEnd-I), Result)) {
221 Result.clear(); // Erroneous constraint?
222 break;
223 }
224
225 Result.push_back(Info);
226
227 // ConstraintEnd may be either the next comma or the end of the string. In
228 // the former case, we skip the comma.
229 I = ConstraintEnd;
230 if (I != E) {
231 ++I;
232 if (I == E) {
233 Result.clear();
234 break;
235 } // don't allow "xyz,"
236 }
237 }
238
239 return Result;
240 }
241
242 /// Verify - Verify that the specified constraint string is reasonable for the
243 /// specified function type, and otherwise validate the constraint string.
Verify(FunctionType * Ty,StringRef ConstStr)244 bool InlineAsm::Verify(FunctionType *Ty, StringRef ConstStr) {
245 if (Ty->isVarArg()) return false;
246
247 ConstraintInfoVector Constraints = ParseConstraints(ConstStr);
248
249 // Error parsing constraints.
250 if (Constraints.empty() && !ConstStr.empty()) return false;
251
252 unsigned NumOutputs = 0, NumInputs = 0, NumClobbers = 0;
253 unsigned NumIndirect = 0;
254
255 for (unsigned i = 0, e = Constraints.size(); i != e; ++i) {
256 switch (Constraints[i].Type) {
257 case InlineAsm::isOutput:
258 if ((NumInputs-NumIndirect) != 0 || NumClobbers != 0)
259 return false; // outputs before inputs and clobbers.
260 if (!Constraints[i].isIndirect) {
261 ++NumOutputs;
262 break;
263 }
264 ++NumIndirect;
265 LLVM_FALLTHROUGH; // We fall through for Indirect Outputs.
266 case InlineAsm::isInput:
267 if (NumClobbers) return false; // inputs before clobbers.
268 ++NumInputs;
269 break;
270 case InlineAsm::isClobber:
271 ++NumClobbers;
272 break;
273 }
274 }
275
276 switch (NumOutputs) {
277 case 0:
278 if (!Ty->getReturnType()->isVoidTy()) return false;
279 break;
280 case 1:
281 if (Ty->getReturnType()->isStructTy()) return false;
282 break;
283 default:
284 StructType *STy = dyn_cast<StructType>(Ty->getReturnType());
285 if (!STy || STy->getNumElements() != NumOutputs)
286 return false;
287 break;
288 }
289
290 if (Ty->getNumParams() != NumInputs) return false;
291 return true;
292 }
293