1 //===- LLVMContextImpl.cpp - Implement LLVMContextImpl --------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the opaque LLVMContextImpl.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "LLVMContextImpl.h"
15 #include "llvm/IR/Module.h"
16 #include "llvm/IR/OptBisect.h"
17 #include "llvm/IR/Type.h"
18 #include "llvm/Support/ManagedStatic.h"
19 #include <cassert>
20 #include <utility>
21
22 using namespace llvm;
23
LLVMContextImpl(LLVMContext & C)24 LLVMContextImpl::LLVMContextImpl(LLVMContext &C)
25 : DiagHandler(llvm::make_unique<DiagnosticHandler>()),
26 VoidTy(C, Type::VoidTyID),
27 LabelTy(C, Type::LabelTyID),
28 HalfTy(C, Type::HalfTyID),
29 FloatTy(C, Type::FloatTyID),
30 DoubleTy(C, Type::DoubleTyID),
31 MetadataTy(C, Type::MetadataTyID),
32 TokenTy(C, Type::TokenTyID),
33 X86_FP80Ty(C, Type::X86_FP80TyID),
34 FP128Ty(C, Type::FP128TyID),
35 PPC_FP128Ty(C, Type::PPC_FP128TyID),
36 X86_MMXTy(C, Type::X86_MMXTyID),
37 Int1Ty(C, 1),
38 Int8Ty(C, 8),
39 Int16Ty(C, 16),
40 Int32Ty(C, 32),
41 Int64Ty(C, 64),
42 Int128Ty(C, 128) {}
43
~LLVMContextImpl()44 LLVMContextImpl::~LLVMContextImpl() {
45 // NOTE: We need to delete the contents of OwnedModules, but Module's dtor
46 // will call LLVMContextImpl::removeModule, thus invalidating iterators into
47 // the container. Avoid iterators during this operation:
48 while (!OwnedModules.empty())
49 delete *OwnedModules.begin();
50
51 #ifndef NDEBUG
52 // Check for metadata references from leaked Instructions.
53 for (auto &Pair : InstructionMetadata)
54 Pair.first->dump();
55 assert(InstructionMetadata.empty() &&
56 "Instructions with metadata have been leaked");
57 #endif
58
59 // Drop references for MDNodes. Do this before Values get deleted to avoid
60 // unnecessary RAUW when nodes are still unresolved.
61 for (auto *I : DistinctMDNodes)
62 I->dropAllReferences();
63 #define HANDLE_MDNODE_LEAF_UNIQUABLE(CLASS) \
64 for (auto *I : CLASS##s) \
65 I->dropAllReferences();
66 #include "llvm/IR/Metadata.def"
67
68 // Also drop references that come from the Value bridges.
69 for (auto &Pair : ValuesAsMetadata)
70 Pair.second->dropUsers();
71 for (auto &Pair : MetadataAsValues)
72 Pair.second->dropUse();
73
74 // Destroy MDNodes.
75 for (MDNode *I : DistinctMDNodes)
76 I->deleteAsSubclass();
77 #define HANDLE_MDNODE_LEAF_UNIQUABLE(CLASS) \
78 for (CLASS * I : CLASS##s) \
79 delete I;
80 #include "llvm/IR/Metadata.def"
81
82 // Free the constants.
83 for (auto *I : ExprConstants)
84 I->dropAllReferences();
85 for (auto *I : ArrayConstants)
86 I->dropAllReferences();
87 for (auto *I : StructConstants)
88 I->dropAllReferences();
89 for (auto *I : VectorConstants)
90 I->dropAllReferences();
91 ExprConstants.freeConstants();
92 ArrayConstants.freeConstants();
93 StructConstants.freeConstants();
94 VectorConstants.freeConstants();
95 InlineAsms.freeConstants();
96
97 CAZConstants.clear();
98 CPNConstants.clear();
99 UVConstants.clear();
100 IntConstants.clear();
101 FPConstants.clear();
102
103 for (auto &CDSConstant : CDSConstants)
104 delete CDSConstant.second;
105 CDSConstants.clear();
106
107 // Destroy attributes.
108 for (FoldingSetIterator<AttributeImpl> I = AttrsSet.begin(),
109 E = AttrsSet.end(); I != E; ) {
110 FoldingSetIterator<AttributeImpl> Elem = I++;
111 delete &*Elem;
112 }
113
114 // Destroy attribute lists.
115 for (FoldingSetIterator<AttributeListImpl> I = AttrsLists.begin(),
116 E = AttrsLists.end();
117 I != E;) {
118 FoldingSetIterator<AttributeListImpl> Elem = I++;
119 delete &*Elem;
120 }
121
122 // Destroy attribute node lists.
123 for (FoldingSetIterator<AttributeSetNode> I = AttrsSetNodes.begin(),
124 E = AttrsSetNodes.end(); I != E; ) {
125 FoldingSetIterator<AttributeSetNode> Elem = I++;
126 delete &*Elem;
127 }
128
129 // Destroy MetadataAsValues.
130 {
131 SmallVector<MetadataAsValue *, 8> MDVs;
132 MDVs.reserve(MetadataAsValues.size());
133 for (auto &Pair : MetadataAsValues)
134 MDVs.push_back(Pair.second);
135 MetadataAsValues.clear();
136 for (auto *V : MDVs)
137 delete V;
138 }
139
140 // Destroy ValuesAsMetadata.
141 for (auto &Pair : ValuesAsMetadata)
142 delete Pair.second;
143 }
144
dropTriviallyDeadConstantArrays()145 void LLVMContextImpl::dropTriviallyDeadConstantArrays() {
146 bool Changed;
147 do {
148 Changed = false;
149
150 for (auto I = ArrayConstants.begin(), E = ArrayConstants.end(); I != E;) {
151 auto *C = *I++;
152 if (C->use_empty()) {
153 Changed = true;
154 C->destroyConstant();
155 }
156 }
157 } while (Changed);
158 }
159
dropTriviallyDeadConstantArrays()160 void Module::dropTriviallyDeadConstantArrays() {
161 Context.pImpl->dropTriviallyDeadConstantArrays();
162 }
163
164 namespace llvm {
165
166 /// Make MDOperand transparent for hashing.
167 ///
168 /// This overload of an implementation detail of the hashing library makes
169 /// MDOperand hash to the same value as a \a Metadata pointer.
170 ///
171 /// Note that overloading \a hash_value() as follows:
172 ///
173 /// \code
174 /// size_t hash_value(const MDOperand &X) { return hash_value(X.get()); }
175 /// \endcode
176 ///
177 /// does not cause MDOperand to be transparent. In particular, a bare pointer
178 /// doesn't get hashed before it's combined, whereas \a MDOperand would.
get_hashable_data(const MDOperand & X)179 static const Metadata *get_hashable_data(const MDOperand &X) { return X.get(); }
180
181 } // end namespace llvm
182
calculateHash(MDNode * N,unsigned Offset)183 unsigned MDNodeOpsKey::calculateHash(MDNode *N, unsigned Offset) {
184 unsigned Hash = hash_combine_range(N->op_begin() + Offset, N->op_end());
185 #ifndef NDEBUG
186 {
187 SmallVector<Metadata *, 8> MDs(N->op_begin() + Offset, N->op_end());
188 unsigned RawHash = calculateHash(MDs);
189 assert(Hash == RawHash &&
190 "Expected hash of MDOperand to equal hash of Metadata*");
191 }
192 #endif
193 return Hash;
194 }
195
calculateHash(ArrayRef<Metadata * > Ops)196 unsigned MDNodeOpsKey::calculateHash(ArrayRef<Metadata *> Ops) {
197 return hash_combine_range(Ops.begin(), Ops.end());
198 }
199
getOrInsertBundleTag(StringRef Tag)200 StringMapEntry<uint32_t> *LLVMContextImpl::getOrInsertBundleTag(StringRef Tag) {
201 uint32_t NewIdx = BundleTagCache.size();
202 return &*(BundleTagCache.insert(std::make_pair(Tag, NewIdx)).first);
203 }
204
getOperandBundleTags(SmallVectorImpl<StringRef> & Tags) const205 void LLVMContextImpl::getOperandBundleTags(SmallVectorImpl<StringRef> &Tags) const {
206 Tags.resize(BundleTagCache.size());
207 for (const auto &T : BundleTagCache)
208 Tags[T.second] = T.first();
209 }
210
getOperandBundleTagID(StringRef Tag) const211 uint32_t LLVMContextImpl::getOperandBundleTagID(StringRef Tag) const {
212 auto I = BundleTagCache.find(Tag);
213 assert(I != BundleTagCache.end() && "Unknown tag!");
214 return I->second;
215 }
216
getOrInsertSyncScopeID(StringRef SSN)217 SyncScope::ID LLVMContextImpl::getOrInsertSyncScopeID(StringRef SSN) {
218 auto NewSSID = SSC.size();
219 assert(NewSSID < std::numeric_limits<SyncScope::ID>::max() &&
220 "Hit the maximum number of synchronization scopes allowed!");
221 return SSC.insert(std::make_pair(SSN, SyncScope::ID(NewSSID))).first->second;
222 }
223
getSyncScopeNames(SmallVectorImpl<StringRef> & SSNs) const224 void LLVMContextImpl::getSyncScopeNames(
225 SmallVectorImpl<StringRef> &SSNs) const {
226 SSNs.resize(SSC.size());
227 for (const auto &SSE : SSC)
228 SSNs[SSE.second] = SSE.first();
229 }
230
231 /// Singleton instance of the OptBisect class.
232 ///
233 /// This singleton is accessed via the LLVMContext::getOptPassGate() function.
234 /// It provides a mechanism to disable passes and individual optimizations at
235 /// compile time based on a command line option (-opt-bisect-limit) in order to
236 /// perform a bisecting search for optimization-related problems.
237 ///
238 /// Even if multiple LLVMContext objects are created, they will all return the
239 /// same instance of OptBisect in order to provide a single bisect count. Any
240 /// code that uses the OptBisect object should be serialized when bisection is
241 /// enabled in order to enable a consistent bisect count.
242 static ManagedStatic<OptBisect> OptBisector;
243
getOptPassGate() const244 OptPassGate &LLVMContextImpl::getOptPassGate() const {
245 if (!OPG)
246 OPG = &(*OptBisector);
247 return *OPG;
248 }
249
setOptPassGate(OptPassGate & OPG)250 void LLVMContextImpl::setOptPassGate(OptPassGate& OPG) {
251 this->OPG = &OPG;
252 }
253