1 //===-- SafepointIRVerifier.cpp - Verify gc.statepoint invariants ---------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Run a sanity check on the IR to ensure that Safepoints - if they've been
11 // inserted - were inserted correctly. In particular, look for use of
12 // non-relocated values after a safepoint. It's primary use is to check the
13 // correctness of safepoint insertion immediately after insertion, but it can
14 // also be used to verify that later transforms have not found a way to break
15 // safepoint semenatics.
16 //
17 // In its current form, this verify checks a property which is sufficient, but
18 // not neccessary for correctness. There are some cases where an unrelocated
19 // pointer can be used after the safepoint. Consider this example:
20 //
21 // a = ...
22 // b = ...
23 // (a',b') = safepoint(a,b)
24 // c = cmp eq a b
25 // br c, ..., ....
26 //
27 // Because it is valid to reorder 'c' above the safepoint, this is legal. In
28 // practice, this is a somewhat uncommon transform, but CodeGenPrep does create
29 // idioms like this. The verifier knows about these cases and avoids reporting
30 // false positives.
31 //
32 //===----------------------------------------------------------------------===//
33
34 #include "llvm/ADT/DenseSet.h"
35 #include "llvm/ADT/PostOrderIterator.h"
36 #include "llvm/ADT/SetOperations.h"
37 #include "llvm/ADT/SetVector.h"
38 #include "llvm/IR/BasicBlock.h"
39 #include "llvm/IR/Dominators.h"
40 #include "llvm/IR/Function.h"
41 #include "llvm/IR/Instructions.h"
42 #include "llvm/IR/Intrinsics.h"
43 #include "llvm/IR/IntrinsicInst.h"
44 #include "llvm/IR/Module.h"
45 #include "llvm/IR/Value.h"
46 #include "llvm/IR/SafepointIRVerifier.h"
47 #include "llvm/IR/Statepoint.h"
48 #include "llvm/Support/Debug.h"
49 #include "llvm/Support/CommandLine.h"
50 #include "llvm/Support/raw_ostream.h"
51
52 #define DEBUG_TYPE "safepoint-ir-verifier"
53
54 using namespace llvm;
55
56 /// This option is used for writing test cases. Instead of crashing the program
57 /// when verification fails, report a message to the console (for FileCheck
58 /// usage) and continue execution as if nothing happened.
59 static cl::opt<bool> PrintOnly("safepoint-ir-verifier-print-only",
60 cl::init(false));
61
62 namespace {
63
64 /// This CFG Deadness finds dead blocks and edges. Algorithm starts with a set
65 /// of blocks unreachable from entry then propagates deadness using foldable
66 /// conditional branches without modifying CFG. So GVN does but it changes CFG
67 /// by splitting critical edges. In most cases passes rely on SimplifyCFG to
68 /// clean up dead blocks, but in some cases, like verification or loop passes
69 /// it's not possible.
70 class CFGDeadness {
71 const DominatorTree *DT = nullptr;
72 SetVector<const BasicBlock *> DeadBlocks;
73 SetVector<const Use *> DeadEdges; // Contains all dead edges from live blocks.
74
75 public:
76 /// Return the edge that coresponds to the predecessor.
getEdge(const_pred_iterator & PredIt)77 static const Use& getEdge(const_pred_iterator &PredIt) {
78 auto &PU = PredIt.getUse();
79 return PU.getUser()->getOperandUse(PU.getOperandNo());
80 }
81
82 /// Return true if there is at least one live edge that corresponds to the
83 /// basic block InBB listed in the phi node.
hasLiveIncomingEdge(const PHINode * PN,const BasicBlock * InBB) const84 bool hasLiveIncomingEdge(const PHINode *PN, const BasicBlock *InBB) const {
85 assert(!isDeadBlock(InBB) && "block must be live");
86 const BasicBlock* BB = PN->getParent();
87 bool Listed = false;
88 for (const_pred_iterator PredIt(BB), End(BB, true); PredIt != End; ++PredIt) {
89 if (InBB == *PredIt) {
90 if (!isDeadEdge(&getEdge(PredIt)))
91 return true;
92 Listed = true;
93 }
94 }
95 assert(Listed && "basic block is not found among incoming blocks");
96 return false;
97 }
98
99
isDeadBlock(const BasicBlock * BB) const100 bool isDeadBlock(const BasicBlock *BB) const {
101 return DeadBlocks.count(BB);
102 }
103
isDeadEdge(const Use * U) const104 bool isDeadEdge(const Use *U) const {
105 assert(dyn_cast<Instruction>(U->getUser())->isTerminator() &&
106 "edge must be operand of terminator");
107 assert(cast_or_null<BasicBlock>(U->get()) &&
108 "edge must refer to basic block");
109 assert(!isDeadBlock(dyn_cast<Instruction>(U->getUser())->getParent()) &&
110 "isDeadEdge() must be applied to edge from live block");
111 return DeadEdges.count(U);
112 }
113
hasLiveIncomingEdges(const BasicBlock * BB) const114 bool hasLiveIncomingEdges(const BasicBlock *BB) const {
115 // Check if all incoming edges are dead.
116 for (const_pred_iterator PredIt(BB), End(BB, true); PredIt != End; ++PredIt) {
117 auto &PU = PredIt.getUse();
118 const Use &U = PU.getUser()->getOperandUse(PU.getOperandNo());
119 if (!isDeadBlock(*PredIt) && !isDeadEdge(&U))
120 return true; // Found a live edge.
121 }
122 return false;
123 }
124
processFunction(const Function & F,const DominatorTree & DT)125 void processFunction(const Function &F, const DominatorTree &DT) {
126 this->DT = &DT;
127
128 // Start with all blocks unreachable from entry.
129 for (const BasicBlock &BB : F)
130 if (!DT.isReachableFromEntry(&BB))
131 DeadBlocks.insert(&BB);
132
133 // Top-down walk of the dominator tree
134 ReversePostOrderTraversal<const Function *> RPOT(&F);
135 for (const BasicBlock *BB : RPOT) {
136 const TerminatorInst *TI = BB->getTerminator();
137 assert(TI && "blocks must be well formed");
138
139 // For conditional branches, we can perform simple conditional propagation on
140 // the condition value itself.
141 const BranchInst *BI = dyn_cast<BranchInst>(TI);
142 if (!BI || !BI->isConditional() || !isa<Constant>(BI->getCondition()))
143 continue;
144
145 // If a branch has two identical successors, we cannot declare either dead.
146 if (BI->getSuccessor(0) == BI->getSuccessor(1))
147 continue;
148
149 ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition());
150 if (!Cond)
151 continue;
152
153 addDeadEdge(BI->getOperandUse(Cond->getZExtValue() ? 1 : 2));
154 }
155 }
156
157 protected:
addDeadBlock(const BasicBlock * BB)158 void addDeadBlock(const BasicBlock *BB) {
159 SmallVector<const BasicBlock *, 4> NewDead;
160 SmallSetVector<const BasicBlock *, 4> DF;
161
162 NewDead.push_back(BB);
163 while (!NewDead.empty()) {
164 const BasicBlock *D = NewDead.pop_back_val();
165 if (isDeadBlock(D))
166 continue;
167
168 // All blocks dominated by D are dead.
169 SmallVector<BasicBlock *, 8> Dom;
170 DT->getDescendants(const_cast<BasicBlock*>(D), Dom);
171 // Do not need to mark all in and out edges dead
172 // because BB is marked dead and this is enough
173 // to run further.
174 DeadBlocks.insert(Dom.begin(), Dom.end());
175
176 // Figure out the dominance-frontier(D).
177 for (BasicBlock *B : Dom)
178 for (BasicBlock *S : successors(B))
179 if (!isDeadBlock(S) && !hasLiveIncomingEdges(S))
180 NewDead.push_back(S);
181 }
182 }
183
addDeadEdge(const Use & DeadEdge)184 void addDeadEdge(const Use &DeadEdge) {
185 if (!DeadEdges.insert(&DeadEdge))
186 return;
187
188 BasicBlock *BB = cast_or_null<BasicBlock>(DeadEdge.get());
189 if (hasLiveIncomingEdges(BB))
190 return;
191
192 addDeadBlock(BB);
193 }
194 };
195 } // namespace
196
197 static void Verify(const Function &F, const DominatorTree &DT,
198 const CFGDeadness &CD);
199
200 namespace {
201
202 struct SafepointIRVerifier : public FunctionPass {
203 static char ID; // Pass identification, replacement for typeid
SafepointIRVerifier__anon2ece97b40211::SafepointIRVerifier204 SafepointIRVerifier() : FunctionPass(ID) {
205 initializeSafepointIRVerifierPass(*PassRegistry::getPassRegistry());
206 }
207
runOnFunction__anon2ece97b40211::SafepointIRVerifier208 bool runOnFunction(Function &F) override {
209 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
210 CFGDeadness CD;
211 CD.processFunction(F, DT);
212 Verify(F, DT, CD);
213 return false; // no modifications
214 }
215
getAnalysisUsage__anon2ece97b40211::SafepointIRVerifier216 void getAnalysisUsage(AnalysisUsage &AU) const override {
217 AU.addRequiredID(DominatorTreeWrapperPass::ID);
218 AU.setPreservesAll();
219 }
220
getPassName__anon2ece97b40211::SafepointIRVerifier221 StringRef getPassName() const override { return "safepoint verifier"; }
222 };
223 } // namespace
224
verifySafepointIR(Function & F)225 void llvm::verifySafepointIR(Function &F) {
226 SafepointIRVerifier pass;
227 pass.runOnFunction(F);
228 }
229
230 char SafepointIRVerifier::ID = 0;
231
createSafepointIRVerifierPass()232 FunctionPass *llvm::createSafepointIRVerifierPass() {
233 return new SafepointIRVerifier();
234 }
235
236 INITIALIZE_PASS_BEGIN(SafepointIRVerifier, "verify-safepoint-ir",
237 "Safepoint IR Verifier", false, false)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)238 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
239 INITIALIZE_PASS_END(SafepointIRVerifier, "verify-safepoint-ir",
240 "Safepoint IR Verifier", false, false)
241
242 static bool isGCPointerType(Type *T) {
243 if (auto *PT = dyn_cast<PointerType>(T))
244 // For the sake of this example GC, we arbitrarily pick addrspace(1) as our
245 // GC managed heap. We know that a pointer into this heap needs to be
246 // updated and that no other pointer does.
247 return (1 == PT->getAddressSpace());
248 return false;
249 }
250
containsGCPtrType(Type * Ty)251 static bool containsGCPtrType(Type *Ty) {
252 if (isGCPointerType(Ty))
253 return true;
254 if (VectorType *VT = dyn_cast<VectorType>(Ty))
255 return isGCPointerType(VT->getScalarType());
256 if (ArrayType *AT = dyn_cast<ArrayType>(Ty))
257 return containsGCPtrType(AT->getElementType());
258 if (StructType *ST = dyn_cast<StructType>(Ty))
259 return std::any_of(ST->subtypes().begin(), ST->subtypes().end(),
260 containsGCPtrType);
261 return false;
262 }
263
264 // Debugging aid -- prints a [Begin, End) range of values.
265 template<typename IteratorTy>
PrintValueSet(raw_ostream & OS,IteratorTy Begin,IteratorTy End)266 static void PrintValueSet(raw_ostream &OS, IteratorTy Begin, IteratorTy End) {
267 OS << "[ ";
268 while (Begin != End) {
269 OS << **Begin << " ";
270 ++Begin;
271 }
272 OS << "]";
273 }
274
275 /// The verifier algorithm is phrased in terms of availability. The set of
276 /// values "available" at a given point in the control flow graph is the set of
277 /// correctly relocated value at that point, and is a subset of the set of
278 /// definitions dominating that point.
279
280 using AvailableValueSet = DenseSet<const Value *>;
281
282 /// State we compute and track per basic block.
283 struct BasicBlockState {
284 // Set of values available coming in, before the phi nodes
285 AvailableValueSet AvailableIn;
286
287 // Set of values available going out
288 AvailableValueSet AvailableOut;
289
290 // AvailableOut minus AvailableIn.
291 // All elements are Instructions
292 AvailableValueSet Contribution;
293
294 // True if this block contains a safepoint and thus AvailableIn does not
295 // contribute to AvailableOut.
296 bool Cleared = false;
297 };
298
299 /// A given derived pointer can have multiple base pointers through phi/selects.
300 /// This type indicates when the base pointer is exclusively constant
301 /// (ExclusivelySomeConstant), and if that constant is proven to be exclusively
302 /// null, we record that as ExclusivelyNull. In all other cases, the BaseType is
303 /// NonConstant.
304 enum BaseType {
305 NonConstant = 1, // Base pointers is not exclusively constant.
306 ExclusivelyNull,
307 ExclusivelySomeConstant // Base pointers for a given derived pointer is from a
308 // set of constants, but they are not exclusively
309 // null.
310 };
311
312 /// Return the baseType for Val which states whether Val is exclusively
313 /// derived from constant/null, or not exclusively derived from constant.
314 /// Val is exclusively derived off a constant base when all operands of phi and
315 /// selects are derived off a constant base.
getBaseType(const Value * Val)316 static enum BaseType getBaseType(const Value *Val) {
317
318 SmallVector<const Value *, 32> Worklist;
319 DenseSet<const Value *> Visited;
320 bool isExclusivelyDerivedFromNull = true;
321 Worklist.push_back(Val);
322 // Strip through all the bitcasts and geps to get base pointer. Also check for
323 // the exclusive value when there can be multiple base pointers (through phis
324 // or selects).
325 while(!Worklist.empty()) {
326 const Value *V = Worklist.pop_back_val();
327 if (!Visited.insert(V).second)
328 continue;
329
330 if (const auto *CI = dyn_cast<CastInst>(V)) {
331 Worklist.push_back(CI->stripPointerCasts());
332 continue;
333 }
334 if (const auto *GEP = dyn_cast<GetElementPtrInst>(V)) {
335 Worklist.push_back(GEP->getPointerOperand());
336 continue;
337 }
338 // Push all the incoming values of phi node into the worklist for
339 // processing.
340 if (const auto *PN = dyn_cast<PHINode>(V)) {
341 for (Value *InV: PN->incoming_values())
342 Worklist.push_back(InV);
343 continue;
344 }
345 if (const auto *SI = dyn_cast<SelectInst>(V)) {
346 // Push in the true and false values
347 Worklist.push_back(SI->getTrueValue());
348 Worklist.push_back(SI->getFalseValue());
349 continue;
350 }
351 if (isa<Constant>(V)) {
352 // We found at least one base pointer which is non-null, so this derived
353 // pointer is not exclusively derived from null.
354 if (V != Constant::getNullValue(V->getType()))
355 isExclusivelyDerivedFromNull = false;
356 // Continue processing the remaining values to make sure it's exclusively
357 // constant.
358 continue;
359 }
360 // At this point, we know that the base pointer is not exclusively
361 // constant.
362 return BaseType::NonConstant;
363 }
364 // Now, we know that the base pointer is exclusively constant, but we need to
365 // differentiate between exclusive null constant and non-null constant.
366 return isExclusivelyDerivedFromNull ? BaseType::ExclusivelyNull
367 : BaseType::ExclusivelySomeConstant;
368 }
369
isNotExclusivelyConstantDerived(const Value * V)370 static bool isNotExclusivelyConstantDerived(const Value *V) {
371 return getBaseType(V) == BaseType::NonConstant;
372 }
373
374 namespace {
375 class InstructionVerifier;
376
377 /// Builds BasicBlockState for each BB of the function.
378 /// It can traverse function for verification and provides all required
379 /// information.
380 ///
381 /// GC pointer may be in one of three states: relocated, unrelocated and
382 /// poisoned.
383 /// Relocated pointer may be used without any restrictions.
384 /// Unrelocated pointer cannot be dereferenced, passed as argument to any call
385 /// or returned. Unrelocated pointer may be safely compared against another
386 /// unrelocated pointer or against a pointer exclusively derived from null.
387 /// Poisoned pointers are produced when we somehow derive pointer from relocated
388 /// and unrelocated pointers (e.g. phi, select). This pointers may be safely
389 /// used in a very limited number of situations. Currently the only way to use
390 /// it is comparison against constant exclusively derived from null. All
391 /// limitations arise due to their undefined state: this pointers should be
392 /// treated as relocated and unrelocated simultaneously.
393 /// Rules of deriving:
394 /// R + U = P - that's where the poisoned pointers come from
395 /// P + X = P
396 /// U + U = U
397 /// R + R = R
398 /// X + C = X
399 /// Where "+" - any operation that somehow derive pointer, U - unrelocated,
400 /// R - relocated and P - poisoned, C - constant, X - U or R or P or C or
401 /// nothing (in case when "+" is unary operation).
402 /// Deriving of pointers by itself is always safe.
403 /// NOTE: when we are making decision on the status of instruction's result:
404 /// a) for phi we need to check status of each input *at the end of
405 /// corresponding predecessor BB*.
406 /// b) for other instructions we need to check status of each input *at the
407 /// current point*.
408 ///
409 /// FIXME: This works fairly well except one case
410 /// bb1:
411 /// p = *some GC-ptr def*
412 /// p1 = gep p, offset
413 /// / |
414 /// / |
415 /// bb2: |
416 /// safepoint |
417 /// \ |
418 /// \ |
419 /// bb3:
420 /// p2 = phi [p, bb2] [p1, bb1]
421 /// p3 = phi [p, bb2] [p, bb1]
422 /// here p and p1 is unrelocated
423 /// p2 and p3 is poisoned (though they shouldn't be)
424 ///
425 /// This leads to some weird results:
426 /// cmp eq p, p2 - illegal instruction (false-positive)
427 /// cmp eq p1, p2 - illegal instruction (false-positive)
428 /// cmp eq p, p3 - illegal instruction (false-positive)
429 /// cmp eq p, p1 - ok
430 /// To fix this we need to introduce conception of generations and be able to
431 /// check if two values belong to one generation or not. This way p2 will be
432 /// considered to be unrelocated and no false alarm will happen.
433 class GCPtrTracker {
434 const Function &F;
435 const CFGDeadness &CD;
436 SpecificBumpPtrAllocator<BasicBlockState> BSAllocator;
437 DenseMap<const BasicBlock *, BasicBlockState *> BlockMap;
438 // This set contains defs of unrelocated pointers that are proved to be legal
439 // and don't need verification.
440 DenseSet<const Instruction *> ValidUnrelocatedDefs;
441 // This set contains poisoned defs. They can be safely ignored during
442 // verification too.
443 DenseSet<const Value *> PoisonedDefs;
444
445 public:
446 GCPtrTracker(const Function &F, const DominatorTree &DT,
447 const CFGDeadness &CD);
448
hasLiveIncomingEdge(const PHINode * PN,const BasicBlock * InBB) const449 bool hasLiveIncomingEdge(const PHINode *PN, const BasicBlock *InBB) const {
450 return CD.hasLiveIncomingEdge(PN, InBB);
451 }
452
453 BasicBlockState *getBasicBlockState(const BasicBlock *BB);
454 const BasicBlockState *getBasicBlockState(const BasicBlock *BB) const;
455
isValuePoisoned(const Value * V) const456 bool isValuePoisoned(const Value *V) const { return PoisonedDefs.count(V); }
457
458 /// Traverse each BB of the function and call
459 /// InstructionVerifier::verifyInstruction for each possibly invalid
460 /// instruction.
461 /// It destructively modifies GCPtrTracker so it's passed via rvalue reference
462 /// in order to prohibit further usages of GCPtrTracker as it'll be in
463 /// inconsistent state.
464 static void verifyFunction(GCPtrTracker &&Tracker,
465 InstructionVerifier &Verifier);
466
467 /// Returns true for reachable and live blocks.
isMapped(const BasicBlock * BB) const468 bool isMapped(const BasicBlock *BB) const {
469 return BlockMap.find(BB) != BlockMap.end();
470 }
471
472 private:
473 /// Returns true if the instruction may be safely skipped during verification.
474 bool instructionMayBeSkipped(const Instruction *I) const;
475
476 /// Iterates over all BBs from BlockMap and recalculates AvailableIn/Out for
477 /// each of them until it converges.
478 void recalculateBBsStates();
479
480 /// Remove from Contribution all defs that legally produce unrelocated
481 /// pointers and saves them to ValidUnrelocatedDefs.
482 /// Though Contribution should belong to BBS it is passed separately with
483 /// different const-modifier in order to emphasize (and guarantee) that only
484 /// Contribution will be changed.
485 /// Returns true if Contribution was changed otherwise false.
486 bool removeValidUnrelocatedDefs(const BasicBlock *BB,
487 const BasicBlockState *BBS,
488 AvailableValueSet &Contribution);
489
490 /// Gather all the definitions dominating the start of BB into Result. This is
491 /// simply the defs introduced by every dominating basic block and the
492 /// function arguments.
493 void gatherDominatingDefs(const BasicBlock *BB, AvailableValueSet &Result,
494 const DominatorTree &DT);
495
496 /// Compute the AvailableOut set for BB, based on the BasicBlockState BBS,
497 /// which is the BasicBlockState for BB.
498 /// ContributionChanged is set when the verifier runs for the first time
499 /// (in this case Contribution was changed from 'empty' to its initial state)
500 /// or when Contribution of this BB was changed since last computation.
501 static void transferBlock(const BasicBlock *BB, BasicBlockState &BBS,
502 bool ContributionChanged);
503
504 /// Model the effect of an instruction on the set of available values.
505 static void transferInstruction(const Instruction &I, bool &Cleared,
506 AvailableValueSet &Available);
507 };
508
509 /// It is a visitor for GCPtrTracker::verifyFunction. It decides if the
510 /// instruction (which uses heap reference) is legal or not, given our safepoint
511 /// semantics.
512 class InstructionVerifier {
513 bool AnyInvalidUses = false;
514
515 public:
516 void verifyInstruction(const GCPtrTracker *Tracker, const Instruction &I,
517 const AvailableValueSet &AvailableSet);
518
hasAnyInvalidUses() const519 bool hasAnyInvalidUses() const { return AnyInvalidUses; }
520
521 private:
522 void reportInvalidUse(const Value &V, const Instruction &I);
523 };
524 } // end anonymous namespace
525
GCPtrTracker(const Function & F,const DominatorTree & DT,const CFGDeadness & CD)526 GCPtrTracker::GCPtrTracker(const Function &F, const DominatorTree &DT,
527 const CFGDeadness &CD) : F(F), CD(CD) {
528 // Calculate Contribution of each live BB.
529 // Allocate BB states for live blocks.
530 for (const BasicBlock &BB : F)
531 if (!CD.isDeadBlock(&BB)) {
532 BasicBlockState *BBS = new (BSAllocator.Allocate()) BasicBlockState;
533 for (const auto &I : BB)
534 transferInstruction(I, BBS->Cleared, BBS->Contribution);
535 BlockMap[&BB] = BBS;
536 }
537
538 // Initialize AvailableIn/Out sets of each BB using only information about
539 // dominating BBs.
540 for (auto &BBI : BlockMap) {
541 gatherDominatingDefs(BBI.first, BBI.second->AvailableIn, DT);
542 transferBlock(BBI.first, *BBI.second, true);
543 }
544
545 // Simulate the flow of defs through the CFG and recalculate AvailableIn/Out
546 // sets of each BB until it converges. If any def is proved to be an
547 // unrelocated pointer, it will be removed from all BBSs.
548 recalculateBBsStates();
549 }
550
getBasicBlockState(const BasicBlock * BB)551 BasicBlockState *GCPtrTracker::getBasicBlockState(const BasicBlock *BB) {
552 auto it = BlockMap.find(BB);
553 return it != BlockMap.end() ? it->second : nullptr;
554 }
555
getBasicBlockState(const BasicBlock * BB) const556 const BasicBlockState *GCPtrTracker::getBasicBlockState(
557 const BasicBlock *BB) const {
558 return const_cast<GCPtrTracker *>(this)->getBasicBlockState(BB);
559 }
560
instructionMayBeSkipped(const Instruction * I) const561 bool GCPtrTracker::instructionMayBeSkipped(const Instruction *I) const {
562 // Poisoned defs are skipped since they are always safe by itself by
563 // definition (for details see comment to this class).
564 return ValidUnrelocatedDefs.count(I) || PoisonedDefs.count(I);
565 }
566
verifyFunction(GCPtrTracker && Tracker,InstructionVerifier & Verifier)567 void GCPtrTracker::verifyFunction(GCPtrTracker &&Tracker,
568 InstructionVerifier &Verifier) {
569 // We need RPO here to a) report always the first error b) report errors in
570 // same order from run to run.
571 ReversePostOrderTraversal<const Function *> RPOT(&Tracker.F);
572 for (const BasicBlock *BB : RPOT) {
573 BasicBlockState *BBS = Tracker.getBasicBlockState(BB);
574 if (!BBS)
575 continue;
576
577 // We destructively modify AvailableIn as we traverse the block instruction
578 // by instruction.
579 AvailableValueSet &AvailableSet = BBS->AvailableIn;
580 for (const Instruction &I : *BB) {
581 if (Tracker.instructionMayBeSkipped(&I))
582 continue; // This instruction shouldn't be added to AvailableSet.
583
584 Verifier.verifyInstruction(&Tracker, I, AvailableSet);
585
586 // Model the effect of current instruction on AvailableSet to keep the set
587 // relevant at each point of BB.
588 bool Cleared = false;
589 transferInstruction(I, Cleared, AvailableSet);
590 (void)Cleared;
591 }
592 }
593 }
594
recalculateBBsStates()595 void GCPtrTracker::recalculateBBsStates() {
596 SetVector<const BasicBlock *> Worklist;
597 // TODO: This order is suboptimal, it's better to replace it with priority
598 // queue where priority is RPO number of BB.
599 for (auto &BBI : BlockMap)
600 Worklist.insert(BBI.first);
601
602 // This loop iterates the AvailableIn/Out sets until it converges.
603 // The AvailableIn and AvailableOut sets decrease as we iterate.
604 while (!Worklist.empty()) {
605 const BasicBlock *BB = Worklist.pop_back_val();
606 BasicBlockState *BBS = getBasicBlockState(BB);
607 if (!BBS)
608 continue; // Ignore dead successors.
609
610 size_t OldInCount = BBS->AvailableIn.size();
611 for (const_pred_iterator PredIt(BB), End(BB, true); PredIt != End; ++PredIt) {
612 const BasicBlock *PBB = *PredIt;
613 BasicBlockState *PBBS = getBasicBlockState(PBB);
614 if (PBBS && !CD.isDeadEdge(&CFGDeadness::getEdge(PredIt)))
615 set_intersect(BBS->AvailableIn, PBBS->AvailableOut);
616 }
617
618 assert(OldInCount >= BBS->AvailableIn.size() && "invariant!");
619
620 bool InputsChanged = OldInCount != BBS->AvailableIn.size();
621 bool ContributionChanged =
622 removeValidUnrelocatedDefs(BB, BBS, BBS->Contribution);
623 if (!InputsChanged && !ContributionChanged)
624 continue;
625
626 size_t OldOutCount = BBS->AvailableOut.size();
627 transferBlock(BB, *BBS, ContributionChanged);
628 if (OldOutCount != BBS->AvailableOut.size()) {
629 assert(OldOutCount > BBS->AvailableOut.size() && "invariant!");
630 Worklist.insert(succ_begin(BB), succ_end(BB));
631 }
632 }
633 }
634
removeValidUnrelocatedDefs(const BasicBlock * BB,const BasicBlockState * BBS,AvailableValueSet & Contribution)635 bool GCPtrTracker::removeValidUnrelocatedDefs(const BasicBlock *BB,
636 const BasicBlockState *BBS,
637 AvailableValueSet &Contribution) {
638 assert(&BBS->Contribution == &Contribution &&
639 "Passed Contribution should be from the passed BasicBlockState!");
640 AvailableValueSet AvailableSet = BBS->AvailableIn;
641 bool ContributionChanged = false;
642 // For explanation why instructions are processed this way see
643 // "Rules of deriving" in the comment to this class.
644 for (const Instruction &I : *BB) {
645 bool ValidUnrelocatedPointerDef = false;
646 bool PoisonedPointerDef = false;
647 // TODO: `select` instructions should be handled here too.
648 if (const PHINode *PN = dyn_cast<PHINode>(&I)) {
649 if (containsGCPtrType(PN->getType())) {
650 // If both is true, output is poisoned.
651 bool HasRelocatedInputs = false;
652 bool HasUnrelocatedInputs = false;
653 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
654 const BasicBlock *InBB = PN->getIncomingBlock(i);
655 if (!isMapped(InBB) ||
656 !CD.hasLiveIncomingEdge(PN, InBB))
657 continue; // Skip dead block or dead edge.
658
659 const Value *InValue = PN->getIncomingValue(i);
660
661 if (isNotExclusivelyConstantDerived(InValue)) {
662 if (isValuePoisoned(InValue)) {
663 // If any of inputs is poisoned, output is always poisoned too.
664 HasRelocatedInputs = true;
665 HasUnrelocatedInputs = true;
666 break;
667 }
668 if (BlockMap[InBB]->AvailableOut.count(InValue))
669 HasRelocatedInputs = true;
670 else
671 HasUnrelocatedInputs = true;
672 }
673 }
674 if (HasUnrelocatedInputs) {
675 if (HasRelocatedInputs)
676 PoisonedPointerDef = true;
677 else
678 ValidUnrelocatedPointerDef = true;
679 }
680 }
681 } else if ((isa<GetElementPtrInst>(I) || isa<BitCastInst>(I)) &&
682 containsGCPtrType(I.getType())) {
683 // GEP/bitcast of unrelocated pointer is legal by itself but this def
684 // shouldn't appear in any AvailableSet.
685 for (const Value *V : I.operands())
686 if (containsGCPtrType(V->getType()) &&
687 isNotExclusivelyConstantDerived(V) && !AvailableSet.count(V)) {
688 if (isValuePoisoned(V))
689 PoisonedPointerDef = true;
690 else
691 ValidUnrelocatedPointerDef = true;
692 break;
693 }
694 }
695 assert(!(ValidUnrelocatedPointerDef && PoisonedPointerDef) &&
696 "Value cannot be both unrelocated and poisoned!");
697 if (ValidUnrelocatedPointerDef) {
698 // Remove def of unrelocated pointer from Contribution of this BB and
699 // trigger update of all its successors.
700 Contribution.erase(&I);
701 PoisonedDefs.erase(&I);
702 ValidUnrelocatedDefs.insert(&I);
703 LLVM_DEBUG(dbgs() << "Removing urelocated " << I
704 << " from Contribution of " << BB->getName() << "\n");
705 ContributionChanged = true;
706 } else if (PoisonedPointerDef) {
707 // Mark pointer as poisoned, remove its def from Contribution and trigger
708 // update of all successors.
709 Contribution.erase(&I);
710 PoisonedDefs.insert(&I);
711 LLVM_DEBUG(dbgs() << "Removing poisoned " << I << " from Contribution of "
712 << BB->getName() << "\n");
713 ContributionChanged = true;
714 } else {
715 bool Cleared = false;
716 transferInstruction(I, Cleared, AvailableSet);
717 (void)Cleared;
718 }
719 }
720 return ContributionChanged;
721 }
722
gatherDominatingDefs(const BasicBlock * BB,AvailableValueSet & Result,const DominatorTree & DT)723 void GCPtrTracker::gatherDominatingDefs(const BasicBlock *BB,
724 AvailableValueSet &Result,
725 const DominatorTree &DT) {
726 DomTreeNode *DTN = DT[const_cast<BasicBlock *>(BB)];
727
728 assert(DTN && "Unreachable blocks are ignored");
729 while (DTN->getIDom()) {
730 DTN = DTN->getIDom();
731 auto BBS = getBasicBlockState(DTN->getBlock());
732 assert(BBS && "immediate dominator cannot be dead for a live block");
733 const auto &Defs = BBS->Contribution;
734 Result.insert(Defs.begin(), Defs.end());
735 // If this block is 'Cleared', then nothing LiveIn to this block can be
736 // available after this block completes. Note: This turns out to be
737 // really important for reducing memory consuption of the initial available
738 // sets and thus peak memory usage by this verifier.
739 if (BBS->Cleared)
740 return;
741 }
742
743 for (const Argument &A : BB->getParent()->args())
744 if (containsGCPtrType(A.getType()))
745 Result.insert(&A);
746 }
747
transferBlock(const BasicBlock * BB,BasicBlockState & BBS,bool ContributionChanged)748 void GCPtrTracker::transferBlock(const BasicBlock *BB, BasicBlockState &BBS,
749 bool ContributionChanged) {
750 const AvailableValueSet &AvailableIn = BBS.AvailableIn;
751 AvailableValueSet &AvailableOut = BBS.AvailableOut;
752
753 if (BBS.Cleared) {
754 // AvailableOut will change only when Contribution changed.
755 if (ContributionChanged)
756 AvailableOut = BBS.Contribution;
757 } else {
758 // Otherwise, we need to reduce the AvailableOut set by things which are no
759 // longer in our AvailableIn
760 AvailableValueSet Temp = BBS.Contribution;
761 set_union(Temp, AvailableIn);
762 AvailableOut = std::move(Temp);
763 }
764
765 LLVM_DEBUG(dbgs() << "Transfered block " << BB->getName() << " from ";
766 PrintValueSet(dbgs(), AvailableIn.begin(), AvailableIn.end());
767 dbgs() << " to ";
768 PrintValueSet(dbgs(), AvailableOut.begin(), AvailableOut.end());
769 dbgs() << "\n";);
770 }
771
transferInstruction(const Instruction & I,bool & Cleared,AvailableValueSet & Available)772 void GCPtrTracker::transferInstruction(const Instruction &I, bool &Cleared,
773 AvailableValueSet &Available) {
774 if (isStatepoint(I)) {
775 Cleared = true;
776 Available.clear();
777 } else if (containsGCPtrType(I.getType()))
778 Available.insert(&I);
779 }
780
verifyInstruction(const GCPtrTracker * Tracker,const Instruction & I,const AvailableValueSet & AvailableSet)781 void InstructionVerifier::verifyInstruction(
782 const GCPtrTracker *Tracker, const Instruction &I,
783 const AvailableValueSet &AvailableSet) {
784 if (const PHINode *PN = dyn_cast<PHINode>(&I)) {
785 if (containsGCPtrType(PN->getType()))
786 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
787 const BasicBlock *InBB = PN->getIncomingBlock(i);
788 const BasicBlockState *InBBS = Tracker->getBasicBlockState(InBB);
789 if (!InBBS ||
790 !Tracker->hasLiveIncomingEdge(PN, InBB))
791 continue; // Skip dead block or dead edge.
792
793 const Value *InValue = PN->getIncomingValue(i);
794
795 if (isNotExclusivelyConstantDerived(InValue) &&
796 !InBBS->AvailableOut.count(InValue))
797 reportInvalidUse(*InValue, *PN);
798 }
799 } else if (isa<CmpInst>(I) &&
800 containsGCPtrType(I.getOperand(0)->getType())) {
801 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
802 enum BaseType baseTyLHS = getBaseType(LHS),
803 baseTyRHS = getBaseType(RHS);
804
805 // Returns true if LHS and RHS are unrelocated pointers and they are
806 // valid unrelocated uses.
807 auto hasValidUnrelocatedUse = [&AvailableSet, Tracker, baseTyLHS, baseTyRHS,
808 &LHS, &RHS] () {
809 // A cmp instruction has valid unrelocated pointer operands only if
810 // both operands are unrelocated pointers.
811 // In the comparison between two pointers, if one is an unrelocated
812 // use, the other *should be* an unrelocated use, for this
813 // instruction to contain valid unrelocated uses. This unrelocated
814 // use can be a null constant as well, or another unrelocated
815 // pointer.
816 if (AvailableSet.count(LHS) || AvailableSet.count(RHS))
817 return false;
818 // Constant pointers (that are not exclusively null) may have
819 // meaning in different VMs, so we cannot reorder the compare
820 // against constant pointers before the safepoint. In other words,
821 // comparison of an unrelocated use against a non-null constant
822 // maybe invalid.
823 if ((baseTyLHS == BaseType::ExclusivelySomeConstant &&
824 baseTyRHS == BaseType::NonConstant) ||
825 (baseTyLHS == BaseType::NonConstant &&
826 baseTyRHS == BaseType::ExclusivelySomeConstant))
827 return false;
828
829 // If one of pointers is poisoned and other is not exclusively derived
830 // from null it is an invalid expression: it produces poisoned result
831 // and unless we want to track all defs (not only gc pointers) the only
832 // option is to prohibit such instructions.
833 if ((Tracker->isValuePoisoned(LHS) && baseTyRHS != ExclusivelyNull) ||
834 (Tracker->isValuePoisoned(RHS) && baseTyLHS != ExclusivelyNull))
835 return false;
836
837 // All other cases are valid cases enumerated below:
838 // 1. Comparison between an exclusively derived null pointer and a
839 // constant base pointer.
840 // 2. Comparison between an exclusively derived null pointer and a
841 // non-constant unrelocated base pointer.
842 // 3. Comparison between 2 unrelocated pointers.
843 // 4. Comparison between a pointer exclusively derived from null and a
844 // non-constant poisoned pointer.
845 return true;
846 };
847 if (!hasValidUnrelocatedUse()) {
848 // Print out all non-constant derived pointers that are unrelocated
849 // uses, which are invalid.
850 if (baseTyLHS == BaseType::NonConstant && !AvailableSet.count(LHS))
851 reportInvalidUse(*LHS, I);
852 if (baseTyRHS == BaseType::NonConstant && !AvailableSet.count(RHS))
853 reportInvalidUse(*RHS, I);
854 }
855 } else {
856 for (const Value *V : I.operands())
857 if (containsGCPtrType(V->getType()) &&
858 isNotExclusivelyConstantDerived(V) && !AvailableSet.count(V))
859 reportInvalidUse(*V, I);
860 }
861 }
862
reportInvalidUse(const Value & V,const Instruction & I)863 void InstructionVerifier::reportInvalidUse(const Value &V,
864 const Instruction &I) {
865 errs() << "Illegal use of unrelocated value found!\n";
866 errs() << "Def: " << V << "\n";
867 errs() << "Use: " << I << "\n";
868 if (!PrintOnly)
869 abort();
870 AnyInvalidUses = true;
871 }
872
Verify(const Function & F,const DominatorTree & DT,const CFGDeadness & CD)873 static void Verify(const Function &F, const DominatorTree &DT,
874 const CFGDeadness &CD) {
875 LLVM_DEBUG(dbgs() << "Verifying gc pointers in function: " << F.getName()
876 << "\n");
877 if (PrintOnly)
878 dbgs() << "Verifying gc pointers in function: " << F.getName() << "\n";
879
880 GCPtrTracker Tracker(F, DT, CD);
881
882 // We now have all the information we need to decide if the use of a heap
883 // reference is legal or not, given our safepoint semantics.
884
885 InstructionVerifier Verifier;
886 GCPtrTracker::verifyFunction(std::move(Tracker), Verifier);
887
888 if (PrintOnly && !Verifier.hasAnyInvalidUses()) {
889 dbgs() << "No illegal uses found by SafepointIRVerifier in: " << F.getName()
890 << "\n";
891 }
892 }
893