1 //===- lib/MC/MCAssembler.cpp - Assembler Backend Implementation ----------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9
10 #include "llvm/MC/MCAssembler.h"
11 #include "llvm/ADT/ArrayRef.h"
12 #include "llvm/ADT/SmallString.h"
13 #include "llvm/ADT/SmallVector.h"
14 #include "llvm/ADT/Statistic.h"
15 #include "llvm/ADT/StringRef.h"
16 #include "llvm/ADT/Twine.h"
17 #include "llvm/MC/MCAsmBackend.h"
18 #include "llvm/MC/MCAsmInfo.h"
19 #include "llvm/MC/MCAsmLayout.h"
20 #include "llvm/MC/MCCodeEmitter.h"
21 #include "llvm/MC/MCCodeView.h"
22 #include "llvm/MC/MCContext.h"
23 #include "llvm/MC/MCDwarf.h"
24 #include "llvm/MC/MCExpr.h"
25 #include "llvm/MC/MCFixup.h"
26 #include "llvm/MC/MCFixupKindInfo.h"
27 #include "llvm/MC/MCFragment.h"
28 #include "llvm/MC/MCInst.h"
29 #include "llvm/MC/MCObjectWriter.h"
30 #include "llvm/MC/MCSection.h"
31 #include "llvm/MC/MCSectionELF.h"
32 #include "llvm/MC/MCSymbol.h"
33 #include "llvm/MC/MCValue.h"
34 #include "llvm/Support/Casting.h"
35 #include "llvm/Support/Debug.h"
36 #include "llvm/Support/ErrorHandling.h"
37 #include "llvm/Support/LEB128.h"
38 #include "llvm/Support/MathExtras.h"
39 #include "llvm/Support/raw_ostream.h"
40 #include <cassert>
41 #include <cstdint>
42 #include <cstring>
43 #include <tuple>
44 #include <utility>
45
46 using namespace llvm;
47
48 #define DEBUG_TYPE "assembler"
49
50 namespace {
51 namespace stats {
52
53 STATISTIC(EmittedFragments, "Number of emitted assembler fragments - total");
54 STATISTIC(EmittedRelaxableFragments,
55 "Number of emitted assembler fragments - relaxable");
56 STATISTIC(EmittedDataFragments,
57 "Number of emitted assembler fragments - data");
58 STATISTIC(EmittedCompactEncodedInstFragments,
59 "Number of emitted assembler fragments - compact encoded inst");
60 STATISTIC(EmittedAlignFragments,
61 "Number of emitted assembler fragments - align");
62 STATISTIC(EmittedFillFragments,
63 "Number of emitted assembler fragments - fill");
64 STATISTIC(EmittedOrgFragments,
65 "Number of emitted assembler fragments - org");
66 STATISTIC(evaluateFixup, "Number of evaluated fixups");
67 STATISTIC(FragmentLayouts, "Number of fragment layouts");
68 STATISTIC(ObjectBytes, "Number of emitted object file bytes");
69 STATISTIC(RelaxationSteps, "Number of assembler layout and relaxation steps");
70 STATISTIC(RelaxedInstructions, "Number of relaxed instructions");
71 STATISTIC(PaddingFragmentsRelaxations,
72 "Number of Padding Fragments relaxations");
73 STATISTIC(PaddingFragmentsBytes,
74 "Total size of all padding from adding Fragments");
75
76 } // end namespace stats
77 } // end anonymous namespace
78
79 // FIXME FIXME FIXME: There are number of places in this file where we convert
80 // what is a 64-bit assembler value used for computation into a value in the
81 // object file, which may truncate it. We should detect that truncation where
82 // invalid and report errors back.
83
84 /* *** */
85
MCAssembler(MCContext & Context,std::unique_ptr<MCAsmBackend> Backend,std::unique_ptr<MCCodeEmitter> Emitter,std::unique_ptr<MCObjectWriter> Writer)86 MCAssembler::MCAssembler(MCContext &Context,
87 std::unique_ptr<MCAsmBackend> Backend,
88 std::unique_ptr<MCCodeEmitter> Emitter,
89 std::unique_ptr<MCObjectWriter> Writer)
90 : Context(Context), Backend(std::move(Backend)),
91 Emitter(std::move(Emitter)), Writer(std::move(Writer)),
92 BundleAlignSize(0), RelaxAll(false), SubsectionsViaSymbols(false),
93 IncrementalLinkerCompatible(false), ELFHeaderEFlags(0) {
94 VersionInfo.Major = 0; // Major version == 0 for "none specified"
95 }
96
97 MCAssembler::~MCAssembler() = default;
98
reset()99 void MCAssembler::reset() {
100 Sections.clear();
101 Symbols.clear();
102 IndirectSymbols.clear();
103 DataRegions.clear();
104 LinkerOptions.clear();
105 FileNames.clear();
106 ThumbFuncs.clear();
107 BundleAlignSize = 0;
108 RelaxAll = false;
109 SubsectionsViaSymbols = false;
110 IncrementalLinkerCompatible = false;
111 ELFHeaderEFlags = 0;
112 LOHContainer.reset();
113 VersionInfo.Major = 0;
114
115 // reset objects owned by us
116 if (getBackendPtr())
117 getBackendPtr()->reset();
118 if (getEmitterPtr())
119 getEmitterPtr()->reset();
120 if (getWriterPtr())
121 getWriterPtr()->reset();
122 getLOHContainer().reset();
123 }
124
registerSection(MCSection & Section)125 bool MCAssembler::registerSection(MCSection &Section) {
126 if (Section.isRegistered())
127 return false;
128 Sections.push_back(&Section);
129 Section.setIsRegistered(true);
130 return true;
131 }
132
isThumbFunc(const MCSymbol * Symbol) const133 bool MCAssembler::isThumbFunc(const MCSymbol *Symbol) const {
134 if (ThumbFuncs.count(Symbol))
135 return true;
136
137 if (!Symbol->isVariable())
138 return false;
139
140 const MCExpr *Expr = Symbol->getVariableValue();
141
142 MCValue V;
143 if (!Expr->evaluateAsRelocatable(V, nullptr, nullptr))
144 return false;
145
146 if (V.getSymB() || V.getRefKind() != MCSymbolRefExpr::VK_None)
147 return false;
148
149 const MCSymbolRefExpr *Ref = V.getSymA();
150 if (!Ref)
151 return false;
152
153 if (Ref->getKind() != MCSymbolRefExpr::VK_None)
154 return false;
155
156 const MCSymbol &Sym = Ref->getSymbol();
157 if (!isThumbFunc(&Sym))
158 return false;
159
160 ThumbFuncs.insert(Symbol); // Cache it.
161 return true;
162 }
163
isSymbolLinkerVisible(const MCSymbol & Symbol) const164 bool MCAssembler::isSymbolLinkerVisible(const MCSymbol &Symbol) const {
165 // Non-temporary labels should always be visible to the linker.
166 if (!Symbol.isTemporary())
167 return true;
168
169 // Absolute temporary labels are never visible.
170 if (!Symbol.isInSection())
171 return false;
172
173 if (Symbol.isUsedInReloc())
174 return true;
175
176 return false;
177 }
178
getAtom(const MCSymbol & S) const179 const MCSymbol *MCAssembler::getAtom(const MCSymbol &S) const {
180 // Linker visible symbols define atoms.
181 if (isSymbolLinkerVisible(S))
182 return &S;
183
184 // Absolute and undefined symbols have no defining atom.
185 if (!S.isInSection())
186 return nullptr;
187
188 // Non-linker visible symbols in sections which can't be atomized have no
189 // defining atom.
190 if (!getContext().getAsmInfo()->isSectionAtomizableBySymbols(
191 *S.getFragment()->getParent()))
192 return nullptr;
193
194 // Otherwise, return the atom for the containing fragment.
195 return S.getFragment()->getAtom();
196 }
197
evaluateFixup(const MCAsmLayout & Layout,const MCFixup & Fixup,const MCFragment * DF,MCValue & Target,uint64_t & Value,bool & WasForced) const198 bool MCAssembler::evaluateFixup(const MCAsmLayout &Layout,
199 const MCFixup &Fixup, const MCFragment *DF,
200 MCValue &Target, uint64_t &Value,
201 bool &WasForced) const {
202 ++stats::evaluateFixup;
203
204 // FIXME: This code has some duplication with recordRelocation. We should
205 // probably merge the two into a single callback that tries to evaluate a
206 // fixup and records a relocation if one is needed.
207
208 // On error claim to have completely evaluated the fixup, to prevent any
209 // further processing from being done.
210 const MCExpr *Expr = Fixup.getValue();
211 MCContext &Ctx = getContext();
212 Value = 0;
213 WasForced = false;
214 if (!Expr->evaluateAsRelocatable(Target, &Layout, &Fixup)) {
215 Ctx.reportError(Fixup.getLoc(), "expected relocatable expression");
216 return true;
217 }
218 if (const MCSymbolRefExpr *RefB = Target.getSymB()) {
219 if (RefB->getKind() != MCSymbolRefExpr::VK_None) {
220 Ctx.reportError(Fixup.getLoc(),
221 "unsupported subtraction of qualified symbol");
222 return true;
223 }
224 }
225
226 assert(getBackendPtr() && "Expected assembler backend");
227 bool IsPCRel = getBackendPtr()->getFixupKindInfo(Fixup.getKind()).Flags &
228 MCFixupKindInfo::FKF_IsPCRel;
229
230 bool IsResolved = false;
231 if (IsPCRel) {
232 if (Target.getSymB()) {
233 IsResolved = false;
234 } else if (!Target.getSymA()) {
235 IsResolved = false;
236 } else {
237 const MCSymbolRefExpr *A = Target.getSymA();
238 const MCSymbol &SA = A->getSymbol();
239 if (A->getKind() != MCSymbolRefExpr::VK_None || SA.isUndefined()) {
240 IsResolved = false;
241 } else if (auto *Writer = getWriterPtr()) {
242 IsResolved = Writer->isSymbolRefDifferenceFullyResolvedImpl(
243 *this, SA, *DF, false, true);
244 }
245 }
246 } else {
247 IsResolved = Target.isAbsolute();
248 }
249
250 Value = Target.getConstant();
251
252 if (const MCSymbolRefExpr *A = Target.getSymA()) {
253 const MCSymbol &Sym = A->getSymbol();
254 if (Sym.isDefined())
255 Value += Layout.getSymbolOffset(Sym);
256 }
257 if (const MCSymbolRefExpr *B = Target.getSymB()) {
258 const MCSymbol &Sym = B->getSymbol();
259 if (Sym.isDefined())
260 Value -= Layout.getSymbolOffset(Sym);
261 }
262
263 bool ShouldAlignPC = getBackend().getFixupKindInfo(Fixup.getKind()).Flags &
264 MCFixupKindInfo::FKF_IsAlignedDownTo32Bits;
265 assert((ShouldAlignPC ? IsPCRel : true) &&
266 "FKF_IsAlignedDownTo32Bits is only allowed on PC-relative fixups!");
267
268 if (IsPCRel) {
269 uint32_t Offset = Layout.getFragmentOffset(DF) + Fixup.getOffset();
270
271 // A number of ARM fixups in Thumb mode require that the effective PC
272 // address be determined as the 32-bit aligned version of the actual offset.
273 if (ShouldAlignPC) Offset &= ~0x3;
274 Value -= Offset;
275 }
276
277 // Let the backend force a relocation if needed.
278 if (IsResolved && getBackend().shouldForceRelocation(*this, Fixup, Target)) {
279 IsResolved = false;
280 WasForced = true;
281 }
282
283 return IsResolved;
284 }
285
computeFragmentSize(const MCAsmLayout & Layout,const MCFragment & F) const286 uint64_t MCAssembler::computeFragmentSize(const MCAsmLayout &Layout,
287 const MCFragment &F) const {
288 assert(getBackendPtr() && "Requires assembler backend");
289 switch (F.getKind()) {
290 case MCFragment::FT_Data:
291 return cast<MCDataFragment>(F).getContents().size();
292 case MCFragment::FT_Relaxable:
293 return cast<MCRelaxableFragment>(F).getContents().size();
294 case MCFragment::FT_CompactEncodedInst:
295 return cast<MCCompactEncodedInstFragment>(F).getContents().size();
296 case MCFragment::FT_Fill: {
297 auto &FF = cast<MCFillFragment>(F);
298 int64_t NumValues = 0;
299 if (!FF.getNumValues().evaluateAsAbsolute(NumValues, Layout)) {
300 getContext().reportError(FF.getLoc(),
301 "expected assembly-time absolute expression");
302 return 0;
303 }
304 int64_t Size = NumValues * FF.getValueSize();
305 if (Size < 0) {
306 getContext().reportError(FF.getLoc(), "invalid number of bytes");
307 return 0;
308 }
309 return Size;
310 }
311
312 case MCFragment::FT_LEB:
313 return cast<MCLEBFragment>(F).getContents().size();
314
315 case MCFragment::FT_Padding:
316 return cast<MCPaddingFragment>(F).getSize();
317
318 case MCFragment::FT_SymbolId:
319 return 4;
320
321 case MCFragment::FT_Align: {
322 const MCAlignFragment &AF = cast<MCAlignFragment>(F);
323 unsigned Offset = Layout.getFragmentOffset(&AF);
324 unsigned Size = OffsetToAlignment(Offset, AF.getAlignment());
325 // If we are padding with nops, force the padding to be larger than the
326 // minimum nop size.
327 if (Size > 0 && AF.hasEmitNops()) {
328 while (Size % getBackend().getMinimumNopSize())
329 Size += AF.getAlignment();
330 }
331 if (Size > AF.getMaxBytesToEmit())
332 return 0;
333 return Size;
334 }
335
336 case MCFragment::FT_Org: {
337 const MCOrgFragment &OF = cast<MCOrgFragment>(F);
338 MCValue Value;
339 if (!OF.getOffset().evaluateAsValue(Value, Layout)) {
340 getContext().reportError(OF.getLoc(),
341 "expected assembly-time absolute expression");
342 return 0;
343 }
344
345 uint64_t FragmentOffset = Layout.getFragmentOffset(&OF);
346 int64_t TargetLocation = Value.getConstant();
347 if (const MCSymbolRefExpr *A = Value.getSymA()) {
348 uint64_t Val;
349 if (!Layout.getSymbolOffset(A->getSymbol(), Val)) {
350 getContext().reportError(OF.getLoc(), "expected absolute expression");
351 return 0;
352 }
353 TargetLocation += Val;
354 }
355 int64_t Size = TargetLocation - FragmentOffset;
356 if (Size < 0 || Size >= 0x40000000) {
357 getContext().reportError(
358 OF.getLoc(), "invalid .org offset '" + Twine(TargetLocation) +
359 "' (at offset '" + Twine(FragmentOffset) + "')");
360 return 0;
361 }
362 return Size;
363 }
364
365 case MCFragment::FT_Dwarf:
366 return cast<MCDwarfLineAddrFragment>(F).getContents().size();
367 case MCFragment::FT_DwarfFrame:
368 return cast<MCDwarfCallFrameFragment>(F).getContents().size();
369 case MCFragment::FT_CVInlineLines:
370 return cast<MCCVInlineLineTableFragment>(F).getContents().size();
371 case MCFragment::FT_CVDefRange:
372 return cast<MCCVDefRangeFragment>(F).getContents().size();
373 case MCFragment::FT_Dummy:
374 llvm_unreachable("Should not have been added");
375 }
376
377 llvm_unreachable("invalid fragment kind");
378 }
379
layoutFragment(MCFragment * F)380 void MCAsmLayout::layoutFragment(MCFragment *F) {
381 MCFragment *Prev = F->getPrevNode();
382
383 // We should never try to recompute something which is valid.
384 assert(!isFragmentValid(F) && "Attempt to recompute a valid fragment!");
385 // We should never try to compute the fragment layout if its predecessor
386 // isn't valid.
387 assert((!Prev || isFragmentValid(Prev)) &&
388 "Attempt to compute fragment before its predecessor!");
389
390 ++stats::FragmentLayouts;
391
392 // Compute fragment offset and size.
393 if (Prev)
394 F->Offset = Prev->Offset + getAssembler().computeFragmentSize(*this, *Prev);
395 else
396 F->Offset = 0;
397 LastValidFragment[F->getParent()] = F;
398
399 // If bundling is enabled and this fragment has instructions in it, it has to
400 // obey the bundling restrictions. With padding, we'll have:
401 //
402 //
403 // BundlePadding
404 // |||
405 // -------------------------------------
406 // Prev |##########| F |
407 // -------------------------------------
408 // ^
409 // |
410 // F->Offset
411 //
412 // The fragment's offset will point to after the padding, and its computed
413 // size won't include the padding.
414 //
415 // When the -mc-relax-all flag is used, we optimize bundling by writting the
416 // padding directly into fragments when the instructions are emitted inside
417 // the streamer. When the fragment is larger than the bundle size, we need to
418 // ensure that it's bundle aligned. This means that if we end up with
419 // multiple fragments, we must emit bundle padding between fragments.
420 //
421 // ".align N" is an example of a directive that introduces multiple
422 // fragments. We could add a special case to handle ".align N" by emitting
423 // within-fragment padding (which would produce less padding when N is less
424 // than the bundle size), but for now we don't.
425 //
426 if (Assembler.isBundlingEnabled() && F->hasInstructions()) {
427 assert(isa<MCEncodedFragment>(F) &&
428 "Only MCEncodedFragment implementations have instructions");
429 MCEncodedFragment *EF = cast<MCEncodedFragment>(F);
430 uint64_t FSize = Assembler.computeFragmentSize(*this, *EF);
431
432 if (!Assembler.getRelaxAll() && FSize > Assembler.getBundleAlignSize())
433 report_fatal_error("Fragment can't be larger than a bundle size");
434
435 uint64_t RequiredBundlePadding =
436 computeBundlePadding(Assembler, EF, EF->Offset, FSize);
437 if (RequiredBundlePadding > UINT8_MAX)
438 report_fatal_error("Padding cannot exceed 255 bytes");
439 EF->setBundlePadding(static_cast<uint8_t>(RequiredBundlePadding));
440 EF->Offset += RequiredBundlePadding;
441 }
442 }
443
registerSymbol(const MCSymbol & Symbol,bool * Created)444 void MCAssembler::registerSymbol(const MCSymbol &Symbol, bool *Created) {
445 bool New = !Symbol.isRegistered();
446 if (Created)
447 *Created = New;
448 if (New) {
449 Symbol.setIsRegistered(true);
450 Symbols.push_back(&Symbol);
451 }
452 }
453
writeFragmentPadding(raw_ostream & OS,const MCEncodedFragment & EF,uint64_t FSize) const454 void MCAssembler::writeFragmentPadding(raw_ostream &OS,
455 const MCEncodedFragment &EF,
456 uint64_t FSize) const {
457 assert(getBackendPtr() && "Expected assembler backend");
458 // Should NOP padding be written out before this fragment?
459 unsigned BundlePadding = EF.getBundlePadding();
460 if (BundlePadding > 0) {
461 assert(isBundlingEnabled() &&
462 "Writing bundle padding with disabled bundling");
463 assert(EF.hasInstructions() &&
464 "Writing bundle padding for a fragment without instructions");
465
466 unsigned TotalLength = BundlePadding + static_cast<unsigned>(FSize);
467 if (EF.alignToBundleEnd() && TotalLength > getBundleAlignSize()) {
468 // If the padding itself crosses a bundle boundary, it must be emitted
469 // in 2 pieces, since even nop instructions must not cross boundaries.
470 // v--------------v <- BundleAlignSize
471 // v---------v <- BundlePadding
472 // ----------------------------
473 // | Prev |####|####| F |
474 // ----------------------------
475 // ^-------------------^ <- TotalLength
476 unsigned DistanceToBoundary = TotalLength - getBundleAlignSize();
477 if (!getBackend().writeNopData(OS, DistanceToBoundary))
478 report_fatal_error("unable to write NOP sequence of " +
479 Twine(DistanceToBoundary) + " bytes");
480 BundlePadding -= DistanceToBoundary;
481 }
482 if (!getBackend().writeNopData(OS, BundlePadding))
483 report_fatal_error("unable to write NOP sequence of " +
484 Twine(BundlePadding) + " bytes");
485 }
486 }
487
488 /// Write the fragment \p F to the output file.
writeFragment(raw_ostream & OS,const MCAssembler & Asm,const MCAsmLayout & Layout,const MCFragment & F)489 static void writeFragment(raw_ostream &OS, const MCAssembler &Asm,
490 const MCAsmLayout &Layout, const MCFragment &F) {
491 // FIXME: Embed in fragments instead?
492 uint64_t FragmentSize = Asm.computeFragmentSize(Layout, F);
493
494 support::endianness Endian = Asm.getBackend().Endian;
495
496 if (const MCEncodedFragment *EF = dyn_cast<MCEncodedFragment>(&F))
497 Asm.writeFragmentPadding(OS, *EF, FragmentSize);
498
499 // This variable (and its dummy usage) is to participate in the assert at
500 // the end of the function.
501 uint64_t Start = OS.tell();
502 (void) Start;
503
504 ++stats::EmittedFragments;
505
506 switch (F.getKind()) {
507 case MCFragment::FT_Align: {
508 ++stats::EmittedAlignFragments;
509 const MCAlignFragment &AF = cast<MCAlignFragment>(F);
510 assert(AF.getValueSize() && "Invalid virtual align in concrete fragment!");
511
512 uint64_t Count = FragmentSize / AF.getValueSize();
513
514 // FIXME: This error shouldn't actually occur (the front end should emit
515 // multiple .align directives to enforce the semantics it wants), but is
516 // severe enough that we want to report it. How to handle this?
517 if (Count * AF.getValueSize() != FragmentSize)
518 report_fatal_error("undefined .align directive, value size '" +
519 Twine(AF.getValueSize()) +
520 "' is not a divisor of padding size '" +
521 Twine(FragmentSize) + "'");
522
523 // See if we are aligning with nops, and if so do that first to try to fill
524 // the Count bytes. Then if that did not fill any bytes or there are any
525 // bytes left to fill use the Value and ValueSize to fill the rest.
526 // If we are aligning with nops, ask that target to emit the right data.
527 if (AF.hasEmitNops()) {
528 if (!Asm.getBackend().writeNopData(OS, Count))
529 report_fatal_error("unable to write nop sequence of " +
530 Twine(Count) + " bytes");
531 break;
532 }
533
534 // Otherwise, write out in multiples of the value size.
535 for (uint64_t i = 0; i != Count; ++i) {
536 switch (AF.getValueSize()) {
537 default: llvm_unreachable("Invalid size!");
538 case 1: OS << char(AF.getValue()); break;
539 case 2:
540 support::endian::write<uint16_t>(OS, AF.getValue(), Endian);
541 break;
542 case 4:
543 support::endian::write<uint32_t>(OS, AF.getValue(), Endian);
544 break;
545 case 8:
546 support::endian::write<uint64_t>(OS, AF.getValue(), Endian);
547 break;
548 }
549 }
550 break;
551 }
552
553 case MCFragment::FT_Data:
554 ++stats::EmittedDataFragments;
555 OS << cast<MCDataFragment>(F).getContents();
556 break;
557
558 case MCFragment::FT_Relaxable:
559 ++stats::EmittedRelaxableFragments;
560 OS << cast<MCRelaxableFragment>(F).getContents();
561 break;
562
563 case MCFragment::FT_CompactEncodedInst:
564 ++stats::EmittedCompactEncodedInstFragments;
565 OS << cast<MCCompactEncodedInstFragment>(F).getContents();
566 break;
567
568 case MCFragment::FT_Fill: {
569 ++stats::EmittedFillFragments;
570 const MCFillFragment &FF = cast<MCFillFragment>(F);
571 uint64_t V = FF.getValue();
572 unsigned VSize = FF.getValueSize();
573 const unsigned MaxChunkSize = 16;
574 char Data[MaxChunkSize];
575 // Duplicate V into Data as byte vector to reduce number of
576 // writes done. As such, do endian conversion here.
577 for (unsigned I = 0; I != VSize; ++I) {
578 unsigned index = Endian == support::little ? I : (VSize - I - 1);
579 Data[I] = uint8_t(V >> (index * 8));
580 }
581 for (unsigned I = VSize; I < MaxChunkSize; ++I)
582 Data[I] = Data[I - VSize];
583
584 // Set to largest multiple of VSize in Data.
585 const unsigned NumPerChunk = MaxChunkSize / VSize;
586 // Set ChunkSize to largest multiple of VSize in Data
587 const unsigned ChunkSize = VSize * NumPerChunk;
588
589 // Do copies by chunk.
590 StringRef Ref(Data, ChunkSize);
591 for (uint64_t I = 0, E = FragmentSize / ChunkSize; I != E; ++I)
592 OS << Ref;
593
594 // do remainder if needed.
595 unsigned TrailingCount = FragmentSize % ChunkSize;
596 if (TrailingCount)
597 OS.write(Data, TrailingCount);
598 break;
599 }
600
601 case MCFragment::FT_LEB: {
602 const MCLEBFragment &LF = cast<MCLEBFragment>(F);
603 OS << LF.getContents();
604 break;
605 }
606
607 case MCFragment::FT_Padding: {
608 if (!Asm.getBackend().writeNopData(OS, FragmentSize))
609 report_fatal_error("unable to write nop sequence of " +
610 Twine(FragmentSize) + " bytes");
611 break;
612 }
613
614 case MCFragment::FT_SymbolId: {
615 const MCSymbolIdFragment &SF = cast<MCSymbolIdFragment>(F);
616 support::endian::write<uint32_t>(OS, SF.getSymbol()->getIndex(), Endian);
617 break;
618 }
619
620 case MCFragment::FT_Org: {
621 ++stats::EmittedOrgFragments;
622 const MCOrgFragment &OF = cast<MCOrgFragment>(F);
623
624 for (uint64_t i = 0, e = FragmentSize; i != e; ++i)
625 OS << char(OF.getValue());
626
627 break;
628 }
629
630 case MCFragment::FT_Dwarf: {
631 const MCDwarfLineAddrFragment &OF = cast<MCDwarfLineAddrFragment>(F);
632 OS << OF.getContents();
633 break;
634 }
635 case MCFragment::FT_DwarfFrame: {
636 const MCDwarfCallFrameFragment &CF = cast<MCDwarfCallFrameFragment>(F);
637 OS << CF.getContents();
638 break;
639 }
640 case MCFragment::FT_CVInlineLines: {
641 const auto &OF = cast<MCCVInlineLineTableFragment>(F);
642 OS << OF.getContents();
643 break;
644 }
645 case MCFragment::FT_CVDefRange: {
646 const auto &DRF = cast<MCCVDefRangeFragment>(F);
647 OS << DRF.getContents();
648 break;
649 }
650 case MCFragment::FT_Dummy:
651 llvm_unreachable("Should not have been added");
652 }
653
654 assert(OS.tell() - Start == FragmentSize &&
655 "The stream should advance by fragment size");
656 }
657
writeSectionData(raw_ostream & OS,const MCSection * Sec,const MCAsmLayout & Layout) const658 void MCAssembler::writeSectionData(raw_ostream &OS, const MCSection *Sec,
659 const MCAsmLayout &Layout) const {
660 assert(getBackendPtr() && "Expected assembler backend");
661
662 // Ignore virtual sections.
663 if (Sec->isVirtualSection()) {
664 assert(Layout.getSectionFileSize(Sec) == 0 && "Invalid size for section!");
665
666 // Check that contents are only things legal inside a virtual section.
667 for (const MCFragment &F : *Sec) {
668 switch (F.getKind()) {
669 default: llvm_unreachable("Invalid fragment in virtual section!");
670 case MCFragment::FT_Data: {
671 // Check that we aren't trying to write a non-zero contents (or fixups)
672 // into a virtual section. This is to support clients which use standard
673 // directives to fill the contents of virtual sections.
674 const MCDataFragment &DF = cast<MCDataFragment>(F);
675 if (DF.fixup_begin() != DF.fixup_end())
676 report_fatal_error("cannot have fixups in virtual section!");
677 for (unsigned i = 0, e = DF.getContents().size(); i != e; ++i)
678 if (DF.getContents()[i]) {
679 if (auto *ELFSec = dyn_cast<const MCSectionELF>(Sec))
680 report_fatal_error("non-zero initializer found in section '" +
681 ELFSec->getSectionName() + "'");
682 else
683 report_fatal_error("non-zero initializer found in virtual section");
684 }
685 break;
686 }
687 case MCFragment::FT_Align:
688 // Check that we aren't trying to write a non-zero value into a virtual
689 // section.
690 assert((cast<MCAlignFragment>(F).getValueSize() == 0 ||
691 cast<MCAlignFragment>(F).getValue() == 0) &&
692 "Invalid align in virtual section!");
693 break;
694 case MCFragment::FT_Fill:
695 assert((cast<MCFillFragment>(F).getValue() == 0) &&
696 "Invalid fill in virtual section!");
697 break;
698 }
699 }
700
701 return;
702 }
703
704 uint64_t Start = OS.tell();
705 (void)Start;
706
707 for (const MCFragment &F : *Sec)
708 writeFragment(OS, *this, Layout, F);
709
710 assert(OS.tell() - Start == Layout.getSectionAddressSize(Sec));
711 }
712
713 std::tuple<MCValue, uint64_t, bool>
handleFixup(const MCAsmLayout & Layout,MCFragment & F,const MCFixup & Fixup)714 MCAssembler::handleFixup(const MCAsmLayout &Layout, MCFragment &F,
715 const MCFixup &Fixup) {
716 // Evaluate the fixup.
717 MCValue Target;
718 uint64_t FixedValue;
719 bool WasForced;
720 bool IsResolved = evaluateFixup(Layout, Fixup, &F, Target, FixedValue,
721 WasForced);
722 if (!IsResolved) {
723 // The fixup was unresolved, we need a relocation. Inform the object
724 // writer of the relocation, and give it an opportunity to adjust the
725 // fixup value if need be.
726 if (Target.getSymA() && Target.getSymB() &&
727 getBackend().requiresDiffExpressionRelocations()) {
728 // The fixup represents the difference between two symbols, which the
729 // backend has indicated must be resolved at link time. Split up the fixup
730 // into two relocations, one for the add, and one for the sub, and emit
731 // both of these. The constant will be associated with the add half of the
732 // expression.
733 MCFixup FixupAdd = MCFixup::createAddFor(Fixup);
734 MCValue TargetAdd =
735 MCValue::get(Target.getSymA(), nullptr, Target.getConstant());
736 getWriter().recordRelocation(*this, Layout, &F, FixupAdd, TargetAdd,
737 FixedValue);
738 MCFixup FixupSub = MCFixup::createSubFor(Fixup);
739 MCValue TargetSub = MCValue::get(Target.getSymB());
740 getWriter().recordRelocation(*this, Layout, &F, FixupSub, TargetSub,
741 FixedValue);
742 } else {
743 getWriter().recordRelocation(*this, Layout, &F, Fixup, Target,
744 FixedValue);
745 }
746 }
747 return std::make_tuple(Target, FixedValue, IsResolved);
748 }
749
layout(MCAsmLayout & Layout)750 void MCAssembler::layout(MCAsmLayout &Layout) {
751 assert(getBackendPtr() && "Expected assembler backend");
752 DEBUG_WITH_TYPE("mc-dump", {
753 errs() << "assembler backend - pre-layout\n--\n";
754 dump(); });
755
756 // Create dummy fragments and assign section ordinals.
757 unsigned SectionIndex = 0;
758 for (MCSection &Sec : *this) {
759 // Create dummy fragments to eliminate any empty sections, this simplifies
760 // layout.
761 if (Sec.getFragmentList().empty())
762 new MCDataFragment(&Sec);
763
764 Sec.setOrdinal(SectionIndex++);
765 }
766
767 // Assign layout order indices to sections and fragments.
768 for (unsigned i = 0, e = Layout.getSectionOrder().size(); i != e; ++i) {
769 MCSection *Sec = Layout.getSectionOrder()[i];
770 Sec->setLayoutOrder(i);
771
772 unsigned FragmentIndex = 0;
773 for (MCFragment &Frag : *Sec)
774 Frag.setLayoutOrder(FragmentIndex++);
775 }
776
777 // Layout until everything fits.
778 while (layoutOnce(Layout))
779 if (getContext().hadError())
780 return;
781
782 DEBUG_WITH_TYPE("mc-dump", {
783 errs() << "assembler backend - post-relaxation\n--\n";
784 dump(); });
785
786 // Finalize the layout, including fragment lowering.
787 finishLayout(Layout);
788
789 DEBUG_WITH_TYPE("mc-dump", {
790 errs() << "assembler backend - final-layout\n--\n";
791 dump(); });
792
793 // Allow the object writer a chance to perform post-layout binding (for
794 // example, to set the index fields in the symbol data).
795 getWriter().executePostLayoutBinding(*this, Layout);
796
797 // Evaluate and apply the fixups, generating relocation entries as necessary.
798 for (MCSection &Sec : *this) {
799 for (MCFragment &Frag : Sec) {
800 // Data and relaxable fragments both have fixups. So only process
801 // those here.
802 // FIXME: Is there a better way to do this? MCEncodedFragmentWithFixups
803 // being templated makes this tricky.
804 if (isa<MCEncodedFragment>(&Frag) &&
805 isa<MCCompactEncodedInstFragment>(&Frag))
806 continue;
807 if (!isa<MCEncodedFragment>(&Frag) && !isa<MCCVDefRangeFragment>(&Frag))
808 continue;
809 ArrayRef<MCFixup> Fixups;
810 MutableArrayRef<char> Contents;
811 const MCSubtargetInfo *STI = nullptr;
812 if (auto *FragWithFixups = dyn_cast<MCDataFragment>(&Frag)) {
813 Fixups = FragWithFixups->getFixups();
814 Contents = FragWithFixups->getContents();
815 STI = FragWithFixups->getSubtargetInfo();
816 assert(!FragWithFixups->hasInstructions() || STI != nullptr);
817 } else if (auto *FragWithFixups = dyn_cast<MCRelaxableFragment>(&Frag)) {
818 Fixups = FragWithFixups->getFixups();
819 Contents = FragWithFixups->getContents();
820 STI = FragWithFixups->getSubtargetInfo();
821 assert(!FragWithFixups->hasInstructions() || STI != nullptr);
822 } else if (auto *FragWithFixups = dyn_cast<MCCVDefRangeFragment>(&Frag)) {
823 Fixups = FragWithFixups->getFixups();
824 Contents = FragWithFixups->getContents();
825 } else if (auto *FragWithFixups = dyn_cast<MCDwarfLineAddrFragment>(&Frag)) {
826 Fixups = FragWithFixups->getFixups();
827 Contents = FragWithFixups->getContents();
828 } else
829 llvm_unreachable("Unknown fragment with fixups!");
830 for (const MCFixup &Fixup : Fixups) {
831 uint64_t FixedValue;
832 bool IsResolved;
833 MCValue Target;
834 std::tie(Target, FixedValue, IsResolved) =
835 handleFixup(Layout, Frag, Fixup);
836 getBackend().applyFixup(*this, Fixup, Target, Contents, FixedValue,
837 IsResolved, STI);
838 }
839 }
840 }
841 }
842
Finish()843 void MCAssembler::Finish() {
844 // Create the layout object.
845 MCAsmLayout Layout(*this);
846 layout(Layout);
847
848 // Write the object file.
849 stats::ObjectBytes += getWriter().writeObject(*this, Layout);
850 }
851
fixupNeedsRelaxation(const MCFixup & Fixup,const MCRelaxableFragment * DF,const MCAsmLayout & Layout) const852 bool MCAssembler::fixupNeedsRelaxation(const MCFixup &Fixup,
853 const MCRelaxableFragment *DF,
854 const MCAsmLayout &Layout) const {
855 assert(getBackendPtr() && "Expected assembler backend");
856 MCValue Target;
857 uint64_t Value;
858 bool WasForced;
859 bool Resolved = evaluateFixup(Layout, Fixup, DF, Target, Value, WasForced);
860 if (Target.getSymA() &&
861 Target.getSymA()->getKind() == MCSymbolRefExpr::VK_X86_ABS8 &&
862 Fixup.getKind() == FK_Data_1)
863 return false;
864 return getBackend().fixupNeedsRelaxationAdvanced(Fixup, Resolved, Value, DF,
865 Layout, WasForced);
866 }
867
fragmentNeedsRelaxation(const MCRelaxableFragment * F,const MCAsmLayout & Layout) const868 bool MCAssembler::fragmentNeedsRelaxation(const MCRelaxableFragment *F,
869 const MCAsmLayout &Layout) const {
870 assert(getBackendPtr() && "Expected assembler backend");
871 // If this inst doesn't ever need relaxation, ignore it. This occurs when we
872 // are intentionally pushing out inst fragments, or because we relaxed a
873 // previous instruction to one that doesn't need relaxation.
874 if (!getBackend().mayNeedRelaxation(F->getInst(), *F->getSubtargetInfo()))
875 return false;
876
877 for (const MCFixup &Fixup : F->getFixups())
878 if (fixupNeedsRelaxation(Fixup, F, Layout))
879 return true;
880
881 return false;
882 }
883
relaxInstruction(MCAsmLayout & Layout,MCRelaxableFragment & F)884 bool MCAssembler::relaxInstruction(MCAsmLayout &Layout,
885 MCRelaxableFragment &F) {
886 assert(getEmitterPtr() &&
887 "Expected CodeEmitter defined for relaxInstruction");
888 if (!fragmentNeedsRelaxation(&F, Layout))
889 return false;
890
891 ++stats::RelaxedInstructions;
892
893 // FIXME-PERF: We could immediately lower out instructions if we can tell
894 // they are fully resolved, to avoid retesting on later passes.
895
896 // Relax the fragment.
897
898 MCInst Relaxed;
899 getBackend().relaxInstruction(F.getInst(), *F.getSubtargetInfo(), Relaxed);
900
901 // Encode the new instruction.
902 //
903 // FIXME-PERF: If it matters, we could let the target do this. It can
904 // probably do so more efficiently in many cases.
905 SmallVector<MCFixup, 4> Fixups;
906 SmallString<256> Code;
907 raw_svector_ostream VecOS(Code);
908 getEmitter().encodeInstruction(Relaxed, VecOS, Fixups, *F.getSubtargetInfo());
909
910 // Update the fragment.
911 F.setInst(Relaxed);
912 F.getContents() = Code;
913 F.getFixups() = Fixups;
914
915 return true;
916 }
917
relaxPaddingFragment(MCAsmLayout & Layout,MCPaddingFragment & PF)918 bool MCAssembler::relaxPaddingFragment(MCAsmLayout &Layout,
919 MCPaddingFragment &PF) {
920 assert(getBackendPtr() && "Expected assembler backend");
921 uint64_t OldSize = PF.getSize();
922 if (!getBackend().relaxFragment(&PF, Layout))
923 return false;
924 uint64_t NewSize = PF.getSize();
925
926 ++stats::PaddingFragmentsRelaxations;
927 stats::PaddingFragmentsBytes += NewSize;
928 stats::PaddingFragmentsBytes -= OldSize;
929 return true;
930 }
931
relaxLEB(MCAsmLayout & Layout,MCLEBFragment & LF)932 bool MCAssembler::relaxLEB(MCAsmLayout &Layout, MCLEBFragment &LF) {
933 uint64_t OldSize = LF.getContents().size();
934 int64_t Value;
935 bool Abs = LF.getValue().evaluateKnownAbsolute(Value, Layout);
936 if (!Abs)
937 report_fatal_error("sleb128 and uleb128 expressions must be absolute");
938 SmallString<8> &Data = LF.getContents();
939 Data.clear();
940 raw_svector_ostream OSE(Data);
941 // The compiler can generate EH table assembly that is impossible to assemble
942 // without either adding padding to an LEB fragment or adding extra padding
943 // to a later alignment fragment. To accommodate such tables, relaxation can
944 // only increase an LEB fragment size here, not decrease it. See PR35809.
945 if (LF.isSigned())
946 encodeSLEB128(Value, OSE, OldSize);
947 else
948 encodeULEB128(Value, OSE, OldSize);
949 return OldSize != LF.getContents().size();
950 }
951
relaxDwarfLineAddr(MCAsmLayout & Layout,MCDwarfLineAddrFragment & DF)952 bool MCAssembler::relaxDwarfLineAddr(MCAsmLayout &Layout,
953 MCDwarfLineAddrFragment &DF) {
954 MCContext &Context = Layout.getAssembler().getContext();
955 uint64_t OldSize = DF.getContents().size();
956 int64_t AddrDelta;
957 bool Abs;
958 if (getBackend().requiresDiffExpressionRelocations())
959 Abs = DF.getAddrDelta().evaluateAsAbsolute(AddrDelta, Layout);
960 else {
961 Abs = DF.getAddrDelta().evaluateKnownAbsolute(AddrDelta, Layout);
962 assert(Abs && "We created a line delta with an invalid expression");
963 }
964 int64_t LineDelta;
965 LineDelta = DF.getLineDelta();
966 SmallVectorImpl<char> &Data = DF.getContents();
967 Data.clear();
968 raw_svector_ostream OSE(Data);
969 DF.getFixups().clear();
970
971 if (Abs) {
972 MCDwarfLineAddr::Encode(Context, getDWARFLinetableParams(), LineDelta,
973 AddrDelta, OSE);
974 } else {
975 uint32_t Offset;
976 uint32_t Size;
977 bool SetDelta = MCDwarfLineAddr::FixedEncode(Context,
978 getDWARFLinetableParams(),
979 LineDelta, AddrDelta,
980 OSE, &Offset, &Size);
981 // Add Fixups for address delta or new address.
982 const MCExpr *FixupExpr;
983 if (SetDelta) {
984 FixupExpr = &DF.getAddrDelta();
985 } else {
986 const MCBinaryExpr *ABE = cast<MCBinaryExpr>(&DF.getAddrDelta());
987 FixupExpr = ABE->getLHS();
988 }
989 DF.getFixups().push_back(
990 MCFixup::create(Offset, FixupExpr,
991 MCFixup::getKindForSize(Size, false /*isPCRel*/)));
992 }
993
994 return OldSize != Data.size();
995 }
996
relaxDwarfCallFrameFragment(MCAsmLayout & Layout,MCDwarfCallFrameFragment & DF)997 bool MCAssembler::relaxDwarfCallFrameFragment(MCAsmLayout &Layout,
998 MCDwarfCallFrameFragment &DF) {
999 MCContext &Context = Layout.getAssembler().getContext();
1000 uint64_t OldSize = DF.getContents().size();
1001 int64_t AddrDelta;
1002 bool Abs = DF.getAddrDelta().evaluateKnownAbsolute(AddrDelta, Layout);
1003 assert(Abs && "We created call frame with an invalid expression");
1004 (void) Abs;
1005 SmallString<8> &Data = DF.getContents();
1006 Data.clear();
1007 raw_svector_ostream OSE(Data);
1008 MCDwarfFrameEmitter::EncodeAdvanceLoc(Context, AddrDelta, OSE);
1009 return OldSize != Data.size();
1010 }
1011
relaxCVInlineLineTable(MCAsmLayout & Layout,MCCVInlineLineTableFragment & F)1012 bool MCAssembler::relaxCVInlineLineTable(MCAsmLayout &Layout,
1013 MCCVInlineLineTableFragment &F) {
1014 unsigned OldSize = F.getContents().size();
1015 getContext().getCVContext().encodeInlineLineTable(Layout, F);
1016 return OldSize != F.getContents().size();
1017 }
1018
relaxCVDefRange(MCAsmLayout & Layout,MCCVDefRangeFragment & F)1019 bool MCAssembler::relaxCVDefRange(MCAsmLayout &Layout,
1020 MCCVDefRangeFragment &F) {
1021 unsigned OldSize = F.getContents().size();
1022 getContext().getCVContext().encodeDefRange(Layout, F);
1023 return OldSize != F.getContents().size();
1024 }
1025
layoutSectionOnce(MCAsmLayout & Layout,MCSection & Sec)1026 bool MCAssembler::layoutSectionOnce(MCAsmLayout &Layout, MCSection &Sec) {
1027 // Holds the first fragment which needed relaxing during this layout. It will
1028 // remain NULL if none were relaxed.
1029 // When a fragment is relaxed, all the fragments following it should get
1030 // invalidated because their offset is going to change.
1031 MCFragment *FirstRelaxedFragment = nullptr;
1032
1033 // Attempt to relax all the fragments in the section.
1034 for (MCSection::iterator I = Sec.begin(), IE = Sec.end(); I != IE; ++I) {
1035 // Check if this is a fragment that needs relaxation.
1036 bool RelaxedFrag = false;
1037 switch(I->getKind()) {
1038 default:
1039 break;
1040 case MCFragment::FT_Relaxable:
1041 assert(!getRelaxAll() &&
1042 "Did not expect a MCRelaxableFragment in RelaxAll mode");
1043 RelaxedFrag = relaxInstruction(Layout, *cast<MCRelaxableFragment>(I));
1044 break;
1045 case MCFragment::FT_Dwarf:
1046 RelaxedFrag = relaxDwarfLineAddr(Layout,
1047 *cast<MCDwarfLineAddrFragment>(I));
1048 break;
1049 case MCFragment::FT_DwarfFrame:
1050 RelaxedFrag =
1051 relaxDwarfCallFrameFragment(Layout,
1052 *cast<MCDwarfCallFrameFragment>(I));
1053 break;
1054 case MCFragment::FT_LEB:
1055 RelaxedFrag = relaxLEB(Layout, *cast<MCLEBFragment>(I));
1056 break;
1057 case MCFragment::FT_Padding:
1058 RelaxedFrag = relaxPaddingFragment(Layout, *cast<MCPaddingFragment>(I));
1059 break;
1060 case MCFragment::FT_CVInlineLines:
1061 RelaxedFrag =
1062 relaxCVInlineLineTable(Layout, *cast<MCCVInlineLineTableFragment>(I));
1063 break;
1064 case MCFragment::FT_CVDefRange:
1065 RelaxedFrag = relaxCVDefRange(Layout, *cast<MCCVDefRangeFragment>(I));
1066 break;
1067 }
1068 if (RelaxedFrag && !FirstRelaxedFragment)
1069 FirstRelaxedFragment = &*I;
1070 }
1071 if (FirstRelaxedFragment) {
1072 Layout.invalidateFragmentsFrom(FirstRelaxedFragment);
1073 return true;
1074 }
1075 return false;
1076 }
1077
layoutOnce(MCAsmLayout & Layout)1078 bool MCAssembler::layoutOnce(MCAsmLayout &Layout) {
1079 ++stats::RelaxationSteps;
1080
1081 bool WasRelaxed = false;
1082 for (iterator it = begin(), ie = end(); it != ie; ++it) {
1083 MCSection &Sec = *it;
1084 while (layoutSectionOnce(Layout, Sec))
1085 WasRelaxed = true;
1086 }
1087
1088 return WasRelaxed;
1089 }
1090
finishLayout(MCAsmLayout & Layout)1091 void MCAssembler::finishLayout(MCAsmLayout &Layout) {
1092 assert(getBackendPtr() && "Expected assembler backend");
1093 // The layout is done. Mark every fragment as valid.
1094 for (unsigned int i = 0, n = Layout.getSectionOrder().size(); i != n; ++i) {
1095 MCSection &Section = *Layout.getSectionOrder()[i];
1096 Layout.getFragmentOffset(&*Section.rbegin());
1097 computeFragmentSize(Layout, *Section.rbegin());
1098 }
1099 getBackend().finishLayout(*this, Layout);
1100 }
1101
1102 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
dump() const1103 LLVM_DUMP_METHOD void MCAssembler::dump() const{
1104 raw_ostream &OS = errs();
1105
1106 OS << "<MCAssembler\n";
1107 OS << " Sections:[\n ";
1108 for (const_iterator it = begin(), ie = end(); it != ie; ++it) {
1109 if (it != begin()) OS << ",\n ";
1110 it->dump();
1111 }
1112 OS << "],\n";
1113 OS << " Symbols:[";
1114
1115 for (const_symbol_iterator it = symbol_begin(), ie = symbol_end(); it != ie; ++it) {
1116 if (it != symbol_begin()) OS << ",\n ";
1117 OS << "(";
1118 it->dump();
1119 OS << ", Index:" << it->getIndex() << ", ";
1120 OS << ")";
1121 }
1122 OS << "]>\n";
1123 }
1124 #endif
1125