1 //===-- AArch64A57FPLoadBalancing.cpp - Balance FP ops statically on A57---===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 // For best-case performance on Cortex-A57, we should try to use a balanced
10 // mix of odd and even D-registers when performing a critical sequence of
11 // independent, non-quadword FP/ASIMD floating-point multiply or
12 // multiply-accumulate operations.
13 //
14 // This pass attempts to detect situations where the register allocation may
15 // adversely affect this load balancing and to change the registers used so as
16 // to better utilize the CPU.
17 //
18 // Ideally we'd just take each multiply or multiply-accumulate in turn and
19 // allocate it alternating even or odd registers. However, multiply-accumulates
20 // are most efficiently performed in the same functional unit as their
21 // accumulation operand. Therefore this pass tries to find maximal sequences
22 // ("Chains") of multiply-accumulates linked via their accumulation operand,
23 // and assign them all the same "color" (oddness/evenness).
24 //
25 // This optimization affects S-register and D-register floating point
26 // multiplies and FMADD/FMAs, as well as vector (floating point only) muls and
27 // FMADD/FMA. Q register instructions (and 128-bit vector instructions) are
28 // not affected.
29 //===----------------------------------------------------------------------===//
30
31 #include "AArch64.h"
32 #include "AArch64InstrInfo.h"
33 #include "AArch64Subtarget.h"
34 #include "llvm/ADT/BitVector.h"
35 #include "llvm/ADT/EquivalenceClasses.h"
36 #include "llvm/CodeGen/MachineFunction.h"
37 #include "llvm/CodeGen/MachineFunctionPass.h"
38 #include "llvm/CodeGen/MachineInstr.h"
39 #include "llvm/CodeGen/MachineInstrBuilder.h"
40 #include "llvm/CodeGen/MachineRegisterInfo.h"
41 #include "llvm/CodeGen/RegisterClassInfo.h"
42 #include "llvm/CodeGen/RegisterScavenging.h"
43 #include "llvm/Support/CommandLine.h"
44 #include "llvm/Support/Debug.h"
45 #include "llvm/Support/raw_ostream.h"
46 using namespace llvm;
47
48 #define DEBUG_TYPE "aarch64-a57-fp-load-balancing"
49
50 // Enforce the algorithm to use the scavenged register even when the original
51 // destination register is the correct color. Used for testing.
52 static cl::opt<bool>
53 TransformAll("aarch64-a57-fp-load-balancing-force-all",
54 cl::desc("Always modify dest registers regardless of color"),
55 cl::init(false), cl::Hidden);
56
57 // Never use the balance information obtained from chains - return a specific
58 // color always. Used for testing.
59 static cl::opt<unsigned>
60 OverrideBalance("aarch64-a57-fp-load-balancing-override",
61 cl::desc("Ignore balance information, always return "
62 "(1: Even, 2: Odd)."),
63 cl::init(0), cl::Hidden);
64
65 //===----------------------------------------------------------------------===//
66 // Helper functions
67
68 // Is the instruction a type of multiply on 64-bit (or 32-bit) FPRs?
isMul(MachineInstr * MI)69 static bool isMul(MachineInstr *MI) {
70 switch (MI->getOpcode()) {
71 case AArch64::FMULSrr:
72 case AArch64::FNMULSrr:
73 case AArch64::FMULDrr:
74 case AArch64::FNMULDrr:
75 return true;
76 default:
77 return false;
78 }
79 }
80
81 // Is the instruction a type of FP multiply-accumulate on 64-bit (or 32-bit) FPRs?
isMla(MachineInstr * MI)82 static bool isMla(MachineInstr *MI) {
83 switch (MI->getOpcode()) {
84 case AArch64::FMSUBSrrr:
85 case AArch64::FMADDSrrr:
86 case AArch64::FNMSUBSrrr:
87 case AArch64::FNMADDSrrr:
88 case AArch64::FMSUBDrrr:
89 case AArch64::FMADDDrrr:
90 case AArch64::FNMSUBDrrr:
91 case AArch64::FNMADDDrrr:
92 return true;
93 default:
94 return false;
95 }
96 }
97
98 //===----------------------------------------------------------------------===//
99
100 namespace {
101 /// A "color", which is either even or odd. Yes, these aren't really colors
102 /// but the algorithm is conceptually doing two-color graph coloring.
103 enum class Color { Even, Odd };
104 #ifndef NDEBUG
105 static const char *ColorNames[2] = { "Even", "Odd" };
106 #endif
107
108 class Chain;
109
110 class AArch64A57FPLoadBalancing : public MachineFunctionPass {
111 MachineRegisterInfo *MRI;
112 const TargetRegisterInfo *TRI;
113 RegisterClassInfo RCI;
114
115 public:
116 static char ID;
AArch64A57FPLoadBalancing()117 explicit AArch64A57FPLoadBalancing() : MachineFunctionPass(ID) {
118 initializeAArch64A57FPLoadBalancingPass(*PassRegistry::getPassRegistry());
119 }
120
121 bool runOnMachineFunction(MachineFunction &F) override;
122
getRequiredProperties() const123 MachineFunctionProperties getRequiredProperties() const override {
124 return MachineFunctionProperties().set(
125 MachineFunctionProperties::Property::NoVRegs);
126 }
127
getPassName() const128 StringRef getPassName() const override {
129 return "A57 FP Anti-dependency breaker";
130 }
131
getAnalysisUsage(AnalysisUsage & AU) const132 void getAnalysisUsage(AnalysisUsage &AU) const override {
133 AU.setPreservesCFG();
134 MachineFunctionPass::getAnalysisUsage(AU);
135 }
136
137 private:
138 bool runOnBasicBlock(MachineBasicBlock &MBB);
139 bool colorChainSet(std::vector<Chain*> GV, MachineBasicBlock &MBB,
140 int &Balance);
141 bool colorChain(Chain *G, Color C, MachineBasicBlock &MBB);
142 int scavengeRegister(Chain *G, Color C, MachineBasicBlock &MBB);
143 void scanInstruction(MachineInstr *MI, unsigned Idx,
144 std::map<unsigned, Chain*> &Active,
145 std::vector<std::unique_ptr<Chain>> &AllChains);
146 void maybeKillChain(MachineOperand &MO, unsigned Idx,
147 std::map<unsigned, Chain*> &RegChains);
148 Color getColor(unsigned Register);
149 Chain *getAndEraseNext(Color PreferredColor, std::vector<Chain*> &L);
150 };
151 }
152
153 char AArch64A57FPLoadBalancing::ID = 0;
154
155 INITIALIZE_PASS_BEGIN(AArch64A57FPLoadBalancing, DEBUG_TYPE,
156 "AArch64 A57 FP Load-Balancing", false, false)
157 INITIALIZE_PASS_END(AArch64A57FPLoadBalancing, DEBUG_TYPE,
158 "AArch64 A57 FP Load-Balancing", false, false)
159
160 namespace {
161 /// A Chain is a sequence of instructions that are linked together by
162 /// an accumulation operand. For example:
163 ///
164 /// fmul def d0, ?
165 /// fmla def d1, ?, ?, killed d0
166 /// fmla def d2, ?, ?, killed d1
167 ///
168 /// There may be other instructions interleaved in the sequence that
169 /// do not belong to the chain. These other instructions must not use
170 /// the "chain" register at any point.
171 ///
172 /// We currently only support chains where the "chain" operand is killed
173 /// at each link in the chain for simplicity.
174 /// A chain has three important instructions - Start, Last and Kill.
175 /// * The start instruction is the first instruction in the chain.
176 /// * Last is the final instruction in the chain.
177 /// * Kill may or may not be defined. If defined, Kill is the instruction
178 /// where the outgoing value of the Last instruction is killed.
179 /// This information is important as if we know the outgoing value is
180 /// killed with no intervening uses, we can safely change its register.
181 ///
182 /// Without a kill instruction, we must assume the outgoing value escapes
183 /// beyond our model and either must not change its register or must
184 /// create a fixup FMOV to keep the old register value consistent.
185 ///
186 class Chain {
187 public:
188 /// The important (marker) instructions.
189 MachineInstr *StartInst, *LastInst, *KillInst;
190 /// The index, from the start of the basic block, that each marker
191 /// appears. These are stored so we can do quick interval tests.
192 unsigned StartInstIdx, LastInstIdx, KillInstIdx;
193 /// All instructions in the chain.
194 std::set<MachineInstr*> Insts;
195 /// True if KillInst cannot be modified. If this is true,
196 /// we cannot change LastInst's outgoing register.
197 /// This will be true for tied values and regmasks.
198 bool KillIsImmutable;
199 /// The "color" of LastInst. This will be the preferred chain color,
200 /// as changing intermediate nodes is easy but changing the last
201 /// instruction can be more tricky.
202 Color LastColor;
203
Chain(MachineInstr * MI,unsigned Idx,Color C)204 Chain(MachineInstr *MI, unsigned Idx, Color C)
205 : StartInst(MI), LastInst(MI), KillInst(nullptr),
206 StartInstIdx(Idx), LastInstIdx(Idx), KillInstIdx(0),
207 LastColor(C) {
208 Insts.insert(MI);
209 }
210
211 /// Add a new instruction into the chain. The instruction's dest operand
212 /// has the given color.
add(MachineInstr * MI,unsigned Idx,Color C)213 void add(MachineInstr *MI, unsigned Idx, Color C) {
214 LastInst = MI;
215 LastInstIdx = Idx;
216 LastColor = C;
217 assert((KillInstIdx == 0 || LastInstIdx < KillInstIdx) &&
218 "Chain: broken invariant. A Chain can only be killed after its last "
219 "def");
220
221 Insts.insert(MI);
222 }
223
224 /// Return true if MI is a member of the chain.
contains(MachineInstr & MI)225 bool contains(MachineInstr &MI) { return Insts.count(&MI) > 0; }
226
227 /// Return the number of instructions in the chain.
size() const228 unsigned size() const {
229 return Insts.size();
230 }
231
232 /// Inform the chain that its last active register (the dest register of
233 /// LastInst) is killed by MI with no intervening uses or defs.
setKill(MachineInstr * MI,unsigned Idx,bool Immutable)234 void setKill(MachineInstr *MI, unsigned Idx, bool Immutable) {
235 KillInst = MI;
236 KillInstIdx = Idx;
237 KillIsImmutable = Immutable;
238 assert((KillInstIdx == 0 || LastInstIdx < KillInstIdx) &&
239 "Chain: broken invariant. A Chain can only be killed after its last "
240 "def");
241 }
242
243 /// Return the first instruction in the chain.
getStart() const244 MachineInstr *getStart() const { return StartInst; }
245 /// Return the last instruction in the chain.
getLast() const246 MachineInstr *getLast() const { return LastInst; }
247 /// Return the "kill" instruction (as set with setKill()) or NULL.
getKill() const248 MachineInstr *getKill() const { return KillInst; }
249 /// Return an instruction that can be used as an iterator for the end
250 /// of the chain. This is the maximum of KillInst (if set) and LastInst.
end() const251 MachineBasicBlock::iterator end() const {
252 return ++MachineBasicBlock::iterator(KillInst ? KillInst : LastInst);
253 }
begin() const254 MachineBasicBlock::iterator begin() const { return getStart(); }
255
256 /// Can the Kill instruction (assuming one exists) be modified?
isKillImmutable() const257 bool isKillImmutable() const { return KillIsImmutable; }
258
259 /// Return the preferred color of this chain.
getPreferredColor()260 Color getPreferredColor() {
261 if (OverrideBalance != 0)
262 return OverrideBalance == 1 ? Color::Even : Color::Odd;
263 return LastColor;
264 }
265
266 /// Return true if this chain (StartInst..KillInst) overlaps with Other.
rangeOverlapsWith(const Chain & Other) const267 bool rangeOverlapsWith(const Chain &Other) const {
268 unsigned End = KillInst ? KillInstIdx : LastInstIdx;
269 unsigned OtherEnd = Other.KillInst ?
270 Other.KillInstIdx : Other.LastInstIdx;
271
272 return StartInstIdx <= OtherEnd && Other.StartInstIdx <= End;
273 }
274
275 /// Return true if this chain starts before Other.
startsBefore(const Chain * Other) const276 bool startsBefore(const Chain *Other) const {
277 return StartInstIdx < Other->StartInstIdx;
278 }
279
280 /// Return true if the group will require a fixup MOV at the end.
requiresFixup() const281 bool requiresFixup() const {
282 return (getKill() && isKillImmutable()) || !getKill();
283 }
284
285 /// Return a simple string representation of the chain.
str() const286 std::string str() const {
287 std::string S;
288 raw_string_ostream OS(S);
289
290 OS << "{";
291 StartInst->print(OS, /* SkipOpers= */true);
292 OS << " -> ";
293 LastInst->print(OS, /* SkipOpers= */true);
294 if (KillInst) {
295 OS << " (kill @ ";
296 KillInst->print(OS, /* SkipOpers= */true);
297 OS << ")";
298 }
299 OS << "}";
300
301 return OS.str();
302 }
303
304 };
305
306 } // end anonymous namespace
307
308 //===----------------------------------------------------------------------===//
309
runOnMachineFunction(MachineFunction & F)310 bool AArch64A57FPLoadBalancing::runOnMachineFunction(MachineFunction &F) {
311 if (skipFunction(F.getFunction()))
312 return false;
313
314 if (!F.getSubtarget<AArch64Subtarget>().balanceFPOps())
315 return false;
316
317 bool Changed = false;
318 LLVM_DEBUG(dbgs() << "***** AArch64A57FPLoadBalancing *****\n");
319
320 MRI = &F.getRegInfo();
321 TRI = F.getRegInfo().getTargetRegisterInfo();
322 RCI.runOnMachineFunction(F);
323
324 for (auto &MBB : F) {
325 Changed |= runOnBasicBlock(MBB);
326 }
327
328 return Changed;
329 }
330
runOnBasicBlock(MachineBasicBlock & MBB)331 bool AArch64A57FPLoadBalancing::runOnBasicBlock(MachineBasicBlock &MBB) {
332 bool Changed = false;
333 LLVM_DEBUG(dbgs() << "Running on MBB: " << MBB
334 << " - scanning instructions...\n");
335
336 // First, scan the basic block producing a set of chains.
337
338 // The currently "active" chains - chains that can be added to and haven't
339 // been killed yet. This is keyed by register - all chains can only have one
340 // "link" register between each inst in the chain.
341 std::map<unsigned, Chain*> ActiveChains;
342 std::vector<std::unique_ptr<Chain>> AllChains;
343 unsigned Idx = 0;
344 for (auto &MI : MBB)
345 scanInstruction(&MI, Idx++, ActiveChains, AllChains);
346
347 LLVM_DEBUG(dbgs() << "Scan complete, " << AllChains.size()
348 << " chains created.\n");
349
350 // Group the chains into disjoint sets based on their liveness range. This is
351 // a poor-man's version of graph coloring. Ideally we'd create an interference
352 // graph and perform full-on graph coloring on that, but;
353 // (a) That's rather heavyweight for only two colors.
354 // (b) We expect multiple disjoint interference regions - in practice the live
355 // range of chains is quite small and they are clustered between loads
356 // and stores.
357 EquivalenceClasses<Chain*> EC;
358 for (auto &I : AllChains)
359 EC.insert(I.get());
360
361 for (auto &I : AllChains)
362 for (auto &J : AllChains)
363 if (I != J && I->rangeOverlapsWith(*J))
364 EC.unionSets(I.get(), J.get());
365 LLVM_DEBUG(dbgs() << "Created " << EC.getNumClasses() << " disjoint sets.\n");
366
367 // Now we assume that every member of an equivalence class interferes
368 // with every other member of that class, and with no members of other classes.
369
370 // Convert the EquivalenceClasses to a simpler set of sets.
371 std::vector<std::vector<Chain*> > V;
372 for (auto I = EC.begin(), E = EC.end(); I != E; ++I) {
373 std::vector<Chain*> Cs(EC.member_begin(I), EC.member_end());
374 if (Cs.empty()) continue;
375 V.push_back(std::move(Cs));
376 }
377
378 // Now we have a set of sets, order them by start address so
379 // we can iterate over them sequentially.
380 llvm::sort(V.begin(), V.end(),
381 [](const std::vector<Chain*> &A,
382 const std::vector<Chain*> &B) {
383 return A.front()->startsBefore(B.front());
384 });
385
386 // As we only have two colors, we can track the global (BB-level) balance of
387 // odds versus evens. We aim to keep this near zero to keep both execution
388 // units fed.
389 // Positive means we're even-heavy, negative we're odd-heavy.
390 //
391 // FIXME: If chains have interdependencies, for example:
392 // mul r0, r1, r2
393 // mul r3, r0, r1
394 // We do not model this and may color each one differently, assuming we'll
395 // get ILP when we obviously can't. This hasn't been seen to be a problem
396 // in practice so far, so we simplify the algorithm by ignoring it.
397 int Parity = 0;
398
399 for (auto &I : V)
400 Changed |= colorChainSet(std::move(I), MBB, Parity);
401
402 return Changed;
403 }
404
getAndEraseNext(Color PreferredColor,std::vector<Chain * > & L)405 Chain *AArch64A57FPLoadBalancing::getAndEraseNext(Color PreferredColor,
406 std::vector<Chain*> &L) {
407 if (L.empty())
408 return nullptr;
409
410 // We try and get the best candidate from L to color next, given that our
411 // preferred color is "PreferredColor". L is ordered from larger to smaller
412 // chains. It is beneficial to color the large chains before the small chains,
413 // but if we can't find a chain of the maximum length with the preferred color,
414 // we fuzz the size and look for slightly smaller chains before giving up and
415 // returning a chain that must be recolored.
416
417 // FIXME: Does this need to be configurable?
418 const unsigned SizeFuzz = 1;
419 unsigned MinSize = L.front()->size() - SizeFuzz;
420 for (auto I = L.begin(), E = L.end(); I != E; ++I) {
421 if ((*I)->size() <= MinSize) {
422 // We've gone past the size limit. Return the previous item.
423 Chain *Ch = *--I;
424 L.erase(I);
425 return Ch;
426 }
427
428 if ((*I)->getPreferredColor() == PreferredColor) {
429 Chain *Ch = *I;
430 L.erase(I);
431 return Ch;
432 }
433 }
434
435 // Bailout case - just return the first item.
436 Chain *Ch = L.front();
437 L.erase(L.begin());
438 return Ch;
439 }
440
colorChainSet(std::vector<Chain * > GV,MachineBasicBlock & MBB,int & Parity)441 bool AArch64A57FPLoadBalancing::colorChainSet(std::vector<Chain*> GV,
442 MachineBasicBlock &MBB,
443 int &Parity) {
444 bool Changed = false;
445 LLVM_DEBUG(dbgs() << "colorChainSet(): #sets=" << GV.size() << "\n");
446
447 // Sort by descending size order so that we allocate the most important
448 // sets first.
449 // Tie-break equivalent sizes by sorting chains requiring fixups before
450 // those without fixups. The logic here is that we should look at the
451 // chains that we cannot change before we look at those we can,
452 // so the parity counter is updated and we know what color we should
453 // change them to!
454 // Final tie-break with instruction order so pass output is stable (i.e. not
455 // dependent on malloc'd pointer values).
456 llvm::sort(GV.begin(), GV.end(), [](const Chain *G1, const Chain *G2) {
457 if (G1->size() != G2->size())
458 return G1->size() > G2->size();
459 if (G1->requiresFixup() != G2->requiresFixup())
460 return G1->requiresFixup() > G2->requiresFixup();
461 // Make sure startsBefore() produces a stable final order.
462 assert((G1 == G2 || (G1->startsBefore(G2) ^ G2->startsBefore(G1))) &&
463 "Starts before not total order!");
464 return G1->startsBefore(G2);
465 });
466
467 Color PreferredColor = Parity < 0 ? Color::Even : Color::Odd;
468 while (Chain *G = getAndEraseNext(PreferredColor, GV)) {
469 // Start off by assuming we'll color to our own preferred color.
470 Color C = PreferredColor;
471 if (Parity == 0)
472 // But if we really don't care, use the chain's preferred color.
473 C = G->getPreferredColor();
474
475 LLVM_DEBUG(dbgs() << " - Parity=" << Parity
476 << ", Color=" << ColorNames[(int)C] << "\n");
477
478 // If we'll need a fixup FMOV, don't bother. Testing has shown that this
479 // happens infrequently and when it does it has at least a 50% chance of
480 // slowing code down instead of speeding it up.
481 if (G->requiresFixup() && C != G->getPreferredColor()) {
482 C = G->getPreferredColor();
483 LLVM_DEBUG(dbgs() << " - " << G->str()
484 << " - not worthwhile changing; "
485 "color remains "
486 << ColorNames[(int)C] << "\n");
487 }
488
489 Changed |= colorChain(G, C, MBB);
490
491 Parity += (C == Color::Even) ? G->size() : -G->size();
492 PreferredColor = Parity < 0 ? Color::Even : Color::Odd;
493 }
494
495 return Changed;
496 }
497
scavengeRegister(Chain * G,Color C,MachineBasicBlock & MBB)498 int AArch64A57FPLoadBalancing::scavengeRegister(Chain *G, Color C,
499 MachineBasicBlock &MBB) {
500 // Can we find an appropriate register that is available throughout the life
501 // of the chain? Simulate liveness backwards until the end of the chain.
502 LiveRegUnits Units(*TRI);
503 Units.addLiveOuts(MBB);
504 MachineBasicBlock::iterator I = MBB.end();
505 MachineBasicBlock::iterator ChainEnd = G->end();
506 while (I != ChainEnd) {
507 --I;
508 Units.stepBackward(*I);
509 }
510
511 // Check which register units are alive throughout the chain.
512 MachineBasicBlock::iterator ChainBegin = G->begin();
513 assert(ChainBegin != ChainEnd && "Chain should contain instructions");
514 do {
515 --I;
516 Units.accumulate(*I);
517 } while (I != ChainBegin);
518
519 // Make sure we allocate in-order, to get the cheapest registers first.
520 unsigned RegClassID = ChainBegin->getDesc().OpInfo[0].RegClass;
521 auto Ord = RCI.getOrder(TRI->getRegClass(RegClassID));
522 for (auto Reg : Ord) {
523 if (!Units.available(Reg))
524 continue;
525 if (C == getColor(Reg))
526 return Reg;
527 }
528
529 return -1;
530 }
531
colorChain(Chain * G,Color C,MachineBasicBlock & MBB)532 bool AArch64A57FPLoadBalancing::colorChain(Chain *G, Color C,
533 MachineBasicBlock &MBB) {
534 bool Changed = false;
535 LLVM_DEBUG(dbgs() << " - colorChain(" << G->str() << ", "
536 << ColorNames[(int)C] << ")\n");
537
538 // Try and obtain a free register of the right class. Without a register
539 // to play with we cannot continue.
540 int Reg = scavengeRegister(G, C, MBB);
541 if (Reg == -1) {
542 LLVM_DEBUG(dbgs() << "Scavenging (thus coloring) failed!\n");
543 return false;
544 }
545 LLVM_DEBUG(dbgs() << " - Scavenged register: " << printReg(Reg, TRI) << "\n");
546
547 std::map<unsigned, unsigned> Substs;
548 for (MachineInstr &I : *G) {
549 if (!G->contains(I) && (&I != G->getKill() || G->isKillImmutable()))
550 continue;
551
552 // I is a member of G, or I is a mutable instruction that kills G.
553
554 std::vector<unsigned> ToErase;
555 for (auto &U : I.operands()) {
556 if (U.isReg() && U.isUse() && Substs.find(U.getReg()) != Substs.end()) {
557 unsigned OrigReg = U.getReg();
558 U.setReg(Substs[OrigReg]);
559 if (U.isKill())
560 // Don't erase straight away, because there may be other operands
561 // that also reference this substitution!
562 ToErase.push_back(OrigReg);
563 } else if (U.isRegMask()) {
564 for (auto J : Substs) {
565 if (U.clobbersPhysReg(J.first))
566 ToErase.push_back(J.first);
567 }
568 }
569 }
570 // Now it's safe to remove the substs identified earlier.
571 for (auto J : ToErase)
572 Substs.erase(J);
573
574 // Only change the def if this isn't the last instruction.
575 if (&I != G->getKill()) {
576 MachineOperand &MO = I.getOperand(0);
577
578 bool Change = TransformAll || getColor(MO.getReg()) != C;
579 if (G->requiresFixup() && &I == G->getLast())
580 Change = false;
581
582 if (Change) {
583 Substs[MO.getReg()] = Reg;
584 MO.setReg(Reg);
585
586 Changed = true;
587 }
588 }
589 }
590 assert(Substs.size() == 0 && "No substitutions should be left active!");
591
592 if (G->getKill()) {
593 LLVM_DEBUG(dbgs() << " - Kill instruction seen.\n");
594 } else {
595 // We didn't have a kill instruction, but we didn't seem to need to change
596 // the destination register anyway.
597 LLVM_DEBUG(dbgs() << " - Destination register not changed.\n");
598 }
599 return Changed;
600 }
601
scanInstruction(MachineInstr * MI,unsigned Idx,std::map<unsigned,Chain * > & ActiveChains,std::vector<std::unique_ptr<Chain>> & AllChains)602 void AArch64A57FPLoadBalancing::scanInstruction(
603 MachineInstr *MI, unsigned Idx, std::map<unsigned, Chain *> &ActiveChains,
604 std::vector<std::unique_ptr<Chain>> &AllChains) {
605 // Inspect "MI", updating ActiveChains and AllChains.
606
607 if (isMul(MI)) {
608
609 for (auto &I : MI->uses())
610 maybeKillChain(I, Idx, ActiveChains);
611 for (auto &I : MI->defs())
612 maybeKillChain(I, Idx, ActiveChains);
613
614 // Create a new chain. Multiplies don't require forwarding so can go on any
615 // unit.
616 unsigned DestReg = MI->getOperand(0).getReg();
617
618 LLVM_DEBUG(dbgs() << "New chain started for register "
619 << printReg(DestReg, TRI) << " at " << *MI);
620
621 auto G = llvm::make_unique<Chain>(MI, Idx, getColor(DestReg));
622 ActiveChains[DestReg] = G.get();
623 AllChains.push_back(std::move(G));
624
625 } else if (isMla(MI)) {
626
627 // It is beneficial to keep MLAs on the same functional unit as their
628 // accumulator operand.
629 unsigned DestReg = MI->getOperand(0).getReg();
630 unsigned AccumReg = MI->getOperand(3).getReg();
631
632 maybeKillChain(MI->getOperand(1), Idx, ActiveChains);
633 maybeKillChain(MI->getOperand(2), Idx, ActiveChains);
634 if (DestReg != AccumReg)
635 maybeKillChain(MI->getOperand(0), Idx, ActiveChains);
636
637 if (ActiveChains.find(AccumReg) != ActiveChains.end()) {
638 LLVM_DEBUG(dbgs() << "Chain found for accumulator register "
639 << printReg(AccumReg, TRI) << " in MI " << *MI);
640
641 // For simplicity we only chain together sequences of MULs/MLAs where the
642 // accumulator register is killed on each instruction. This means we don't
643 // need to track other uses of the registers we want to rewrite.
644 //
645 // FIXME: We could extend to handle the non-kill cases for more coverage.
646 if (MI->getOperand(3).isKill()) {
647 // Add to chain.
648 LLVM_DEBUG(dbgs() << "Instruction was successfully added to chain.\n");
649 ActiveChains[AccumReg]->add(MI, Idx, getColor(DestReg));
650 // Handle cases where the destination is not the same as the accumulator.
651 if (DestReg != AccumReg) {
652 ActiveChains[DestReg] = ActiveChains[AccumReg];
653 ActiveChains.erase(AccumReg);
654 }
655 return;
656 }
657
658 LLVM_DEBUG(
659 dbgs() << "Cannot add to chain because accumulator operand wasn't "
660 << "marked <kill>!\n");
661 maybeKillChain(MI->getOperand(3), Idx, ActiveChains);
662 }
663
664 LLVM_DEBUG(dbgs() << "Creating new chain for dest register "
665 << printReg(DestReg, TRI) << "\n");
666 auto G = llvm::make_unique<Chain>(MI, Idx, getColor(DestReg));
667 ActiveChains[DestReg] = G.get();
668 AllChains.push_back(std::move(G));
669
670 } else {
671
672 // Non-MUL or MLA instruction. Invalidate any chain in the uses or defs
673 // lists.
674 for (auto &I : MI->uses())
675 maybeKillChain(I, Idx, ActiveChains);
676 for (auto &I : MI->defs())
677 maybeKillChain(I, Idx, ActiveChains);
678
679 }
680 }
681
682 void AArch64A57FPLoadBalancing::
maybeKillChain(MachineOperand & MO,unsigned Idx,std::map<unsigned,Chain * > & ActiveChains)683 maybeKillChain(MachineOperand &MO, unsigned Idx,
684 std::map<unsigned, Chain*> &ActiveChains) {
685 // Given an operand and the set of active chains (keyed by register),
686 // determine if a chain should be ended and remove from ActiveChains.
687 MachineInstr *MI = MO.getParent();
688
689 if (MO.isReg()) {
690
691 // If this is a KILL of a current chain, record it.
692 if (MO.isKill() && ActiveChains.find(MO.getReg()) != ActiveChains.end()) {
693 LLVM_DEBUG(dbgs() << "Kill seen for chain " << printReg(MO.getReg(), TRI)
694 << "\n");
695 ActiveChains[MO.getReg()]->setKill(MI, Idx, /*Immutable=*/MO.isTied());
696 }
697 ActiveChains.erase(MO.getReg());
698
699 } else if (MO.isRegMask()) {
700
701 for (auto I = ActiveChains.begin(), E = ActiveChains.end();
702 I != E;) {
703 if (MO.clobbersPhysReg(I->first)) {
704 LLVM_DEBUG(dbgs() << "Kill (regmask) seen for chain "
705 << printReg(I->first, TRI) << "\n");
706 I->second->setKill(MI, Idx, /*Immutable=*/true);
707 ActiveChains.erase(I++);
708 } else
709 ++I;
710 }
711
712 }
713 }
714
getColor(unsigned Reg)715 Color AArch64A57FPLoadBalancing::getColor(unsigned Reg) {
716 if ((TRI->getEncodingValue(Reg) % 2) == 0)
717 return Color::Even;
718 else
719 return Color::Odd;
720 }
721
722 // Factory function used by AArch64TargetMachine to add the pass to the passmanager.
createAArch64A57FPLoadBalancing()723 FunctionPass *llvm::createAArch64A57FPLoadBalancing() {
724 return new AArch64A57FPLoadBalancing();
725 }
726