1 //===- AArch64ExpandPseudoInsts.cpp - Expand pseudo instructions ----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains a pass that expands pseudo instructions into target
11 // instructions to allow proper scheduling and other late optimizations.  This
12 // pass should be run after register allocation but before the post-regalloc
13 // scheduling pass.
14 //
15 //===----------------------------------------------------------------------===//
16 
17 #include "AArch64InstrInfo.h"
18 #include "AArch64Subtarget.h"
19 #include "MCTargetDesc/AArch64AddressingModes.h"
20 #include "Utils/AArch64BaseInfo.h"
21 #include "llvm/ADT/DenseMap.h"
22 #include "llvm/ADT/Triple.h"
23 #include "llvm/CodeGen/LivePhysRegs.h"
24 #include "llvm/CodeGen/MachineBasicBlock.h"
25 #include "llvm/CodeGen/MachineFunction.h"
26 #include "llvm/CodeGen/MachineFunctionPass.h"
27 #include "llvm/CodeGen/MachineInstr.h"
28 #include "llvm/CodeGen/MachineInstrBuilder.h"
29 #include "llvm/CodeGen/MachineOperand.h"
30 #include "llvm/CodeGen/TargetSubtargetInfo.h"
31 #include "llvm/IR/DebugLoc.h"
32 #include "llvm/MC/MCInstrDesc.h"
33 #include "llvm/Pass.h"
34 #include "llvm/Support/CodeGen.h"
35 #include "llvm/Support/MathExtras.h"
36 #include "llvm/Target/TargetMachine.h"
37 #include <cassert>
38 #include <cstdint>
39 #include <iterator>
40 #include <limits>
41 #include <utility>
42 
43 using namespace llvm;
44 
45 #define AARCH64_EXPAND_PSEUDO_NAME "AArch64 pseudo instruction expansion pass"
46 
47 namespace {
48 
49 class AArch64ExpandPseudo : public MachineFunctionPass {
50 public:
51   const AArch64InstrInfo *TII;
52 
53   static char ID;
54 
AArch64ExpandPseudo()55   AArch64ExpandPseudo() : MachineFunctionPass(ID) {
56     initializeAArch64ExpandPseudoPass(*PassRegistry::getPassRegistry());
57   }
58 
59   bool runOnMachineFunction(MachineFunction &Fn) override;
60 
getPassName() const61   StringRef getPassName() const override { return AARCH64_EXPAND_PSEUDO_NAME; }
62 
63 private:
64   bool expandMBB(MachineBasicBlock &MBB);
65   bool expandMI(MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI,
66                 MachineBasicBlock::iterator &NextMBBI);
67   bool expandMOVImm(MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI,
68                     unsigned BitSize);
69   bool expandMOVImmSimple(MachineBasicBlock &MBB,
70                           MachineBasicBlock::iterator MBBI,
71                           unsigned BitSize,
72                           unsigned OneChunks,
73                           unsigned ZeroChunks);
74 
75   bool expandCMP_SWAP(MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI,
76                       unsigned LdarOp, unsigned StlrOp, unsigned CmpOp,
77                       unsigned ExtendImm, unsigned ZeroReg,
78                       MachineBasicBlock::iterator &NextMBBI);
79   bool expandCMP_SWAP_128(MachineBasicBlock &MBB,
80                           MachineBasicBlock::iterator MBBI,
81                           MachineBasicBlock::iterator &NextMBBI);
82 };
83 
84 } // end anonymous namespace
85 
86 char AArch64ExpandPseudo::ID = 0;
87 
88 INITIALIZE_PASS(AArch64ExpandPseudo, "aarch64-expand-pseudo",
89                 AARCH64_EXPAND_PSEUDO_NAME, false, false)
90 
91 /// Transfer implicit operands on the pseudo instruction to the
92 /// instructions created from the expansion.
transferImpOps(MachineInstr & OldMI,MachineInstrBuilder & UseMI,MachineInstrBuilder & DefMI)93 static void transferImpOps(MachineInstr &OldMI, MachineInstrBuilder &UseMI,
94                            MachineInstrBuilder &DefMI) {
95   const MCInstrDesc &Desc = OldMI.getDesc();
96   for (unsigned i = Desc.getNumOperands(), e = OldMI.getNumOperands(); i != e;
97        ++i) {
98     const MachineOperand &MO = OldMI.getOperand(i);
99     assert(MO.isReg() && MO.getReg());
100     if (MO.isUse())
101       UseMI.add(MO);
102     else
103       DefMI.add(MO);
104   }
105 }
106 
107 /// Helper function which extracts the specified 16-bit chunk from a
108 /// 64-bit value.
getChunk(uint64_t Imm,unsigned ChunkIdx)109 static uint64_t getChunk(uint64_t Imm, unsigned ChunkIdx) {
110   assert(ChunkIdx < 4 && "Out of range chunk index specified!");
111 
112   return (Imm >> (ChunkIdx * 16)) & 0xFFFF;
113 }
114 
115 /// Check whether the given 16-bit chunk replicated to full 64-bit width
116 /// can be materialized with an ORR instruction.
canUseOrr(uint64_t Chunk,uint64_t & Encoding)117 static bool canUseOrr(uint64_t Chunk, uint64_t &Encoding) {
118   Chunk = (Chunk << 48) | (Chunk << 32) | (Chunk << 16) | Chunk;
119 
120   return AArch64_AM::processLogicalImmediate(Chunk, 64, Encoding);
121 }
122 
123 /// Check for identical 16-bit chunks within the constant and if so
124 /// materialize them with a single ORR instruction. The remaining one or two
125 /// 16-bit chunks will be materialized with MOVK instructions.
126 ///
127 /// This allows us to materialize constants like |A|B|A|A| or |A|B|C|A| (order
128 /// of the chunks doesn't matter), assuming |A|A|A|A| can be materialized with
129 /// an ORR instruction.
tryToreplicateChunks(uint64_t UImm,MachineInstr & MI,MachineBasicBlock & MBB,MachineBasicBlock::iterator & MBBI,const AArch64InstrInfo * TII)130 static bool tryToreplicateChunks(uint64_t UImm, MachineInstr &MI,
131                                  MachineBasicBlock &MBB,
132                                  MachineBasicBlock::iterator &MBBI,
133                                  const AArch64InstrInfo *TII) {
134   using CountMap = DenseMap<uint64_t, unsigned>;
135 
136   CountMap Counts;
137 
138   // Scan the constant and count how often every chunk occurs.
139   for (unsigned Idx = 0; Idx < 4; ++Idx)
140     ++Counts[getChunk(UImm, Idx)];
141 
142   // Traverse the chunks to find one which occurs more than once.
143   for (CountMap::const_iterator Chunk = Counts.begin(), End = Counts.end();
144        Chunk != End; ++Chunk) {
145     const uint64_t ChunkVal = Chunk->first;
146     const unsigned Count = Chunk->second;
147 
148     uint64_t Encoding = 0;
149 
150     // We are looking for chunks which have two or three instances and can be
151     // materialized with an ORR instruction.
152     if ((Count != 2 && Count != 3) || !canUseOrr(ChunkVal, Encoding))
153       continue;
154 
155     const bool CountThree = Count == 3;
156     // Create the ORR-immediate instruction.
157     MachineInstrBuilder MIB =
158         BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(AArch64::ORRXri))
159             .add(MI.getOperand(0))
160             .addReg(AArch64::XZR)
161             .addImm(Encoding);
162 
163     const unsigned DstReg = MI.getOperand(0).getReg();
164     const bool DstIsDead = MI.getOperand(0).isDead();
165 
166     unsigned ShiftAmt = 0;
167     uint64_t Imm16 = 0;
168     // Find the first chunk not materialized with the ORR instruction.
169     for (; ShiftAmt < 64; ShiftAmt += 16) {
170       Imm16 = (UImm >> ShiftAmt) & 0xFFFF;
171 
172       if (Imm16 != ChunkVal)
173         break;
174     }
175 
176     // Create the first MOVK instruction.
177     MachineInstrBuilder MIB1 =
178         BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(AArch64::MOVKXi))
179             .addReg(DstReg,
180                     RegState::Define | getDeadRegState(DstIsDead && CountThree))
181             .addReg(DstReg)
182             .addImm(Imm16)
183             .addImm(AArch64_AM::getShifterImm(AArch64_AM::LSL, ShiftAmt));
184 
185     // In case we have three instances the whole constant is now materialized
186     // and we can exit.
187     if (CountThree) {
188       transferImpOps(MI, MIB, MIB1);
189       MI.eraseFromParent();
190       return true;
191     }
192 
193     // Find the remaining chunk which needs to be materialized.
194     for (ShiftAmt += 16; ShiftAmt < 64; ShiftAmt += 16) {
195       Imm16 = (UImm >> ShiftAmt) & 0xFFFF;
196 
197       if (Imm16 != ChunkVal)
198         break;
199     }
200 
201     // Create the second MOVK instruction.
202     MachineInstrBuilder MIB2 =
203         BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(AArch64::MOVKXi))
204             .addReg(DstReg, RegState::Define | getDeadRegState(DstIsDead))
205             .addReg(DstReg)
206             .addImm(Imm16)
207             .addImm(AArch64_AM::getShifterImm(AArch64_AM::LSL, ShiftAmt));
208 
209     transferImpOps(MI, MIB, MIB2);
210     MI.eraseFromParent();
211     return true;
212   }
213 
214   return false;
215 }
216 
217 /// Check whether this chunk matches the pattern '1...0...'. This pattern
218 /// starts a contiguous sequence of ones if we look at the bits from the LSB
219 /// towards the MSB.
isStartChunk(uint64_t Chunk)220 static bool isStartChunk(uint64_t Chunk) {
221   if (Chunk == 0 || Chunk == std::numeric_limits<uint64_t>::max())
222     return false;
223 
224   return isMask_64(~Chunk);
225 }
226 
227 /// Check whether this chunk matches the pattern '0...1...' This pattern
228 /// ends a contiguous sequence of ones if we look at the bits from the LSB
229 /// towards the MSB.
isEndChunk(uint64_t Chunk)230 static bool isEndChunk(uint64_t Chunk) {
231   if (Chunk == 0 || Chunk == std::numeric_limits<uint64_t>::max())
232     return false;
233 
234   return isMask_64(Chunk);
235 }
236 
237 /// Clear or set all bits in the chunk at the given index.
updateImm(uint64_t Imm,unsigned Idx,bool Clear)238 static uint64_t updateImm(uint64_t Imm, unsigned Idx, bool Clear) {
239   const uint64_t Mask = 0xFFFF;
240 
241   if (Clear)
242     // Clear chunk in the immediate.
243     Imm &= ~(Mask << (Idx * 16));
244   else
245     // Set all bits in the immediate for the particular chunk.
246     Imm |= Mask << (Idx * 16);
247 
248   return Imm;
249 }
250 
251 /// Check whether the constant contains a sequence of contiguous ones,
252 /// which might be interrupted by one or two chunks. If so, materialize the
253 /// sequence of contiguous ones with an ORR instruction.
254 /// Materialize the chunks which are either interrupting the sequence or outside
255 /// of the sequence with a MOVK instruction.
256 ///
257 /// Assuming S is a chunk which starts the sequence (1...0...), E is a chunk
258 /// which ends the sequence (0...1...). Then we are looking for constants which
259 /// contain at least one S and E chunk.
260 /// E.g. |E|A|B|S|, |A|E|B|S| or |A|B|E|S|.
261 ///
262 /// We are also looking for constants like |S|A|B|E| where the contiguous
263 /// sequence of ones wraps around the MSB into the LSB.
trySequenceOfOnes(uint64_t UImm,MachineInstr & MI,MachineBasicBlock & MBB,MachineBasicBlock::iterator & MBBI,const AArch64InstrInfo * TII)264 static bool trySequenceOfOnes(uint64_t UImm, MachineInstr &MI,
265                               MachineBasicBlock &MBB,
266                               MachineBasicBlock::iterator &MBBI,
267                               const AArch64InstrInfo *TII) {
268   const int NotSet = -1;
269   const uint64_t Mask = 0xFFFF;
270 
271   int StartIdx = NotSet;
272   int EndIdx = NotSet;
273   // Try to find the chunks which start/end a contiguous sequence of ones.
274   for (int Idx = 0; Idx < 4; ++Idx) {
275     int64_t Chunk = getChunk(UImm, Idx);
276     // Sign extend the 16-bit chunk to 64-bit.
277     Chunk = (Chunk << 48) >> 48;
278 
279     if (isStartChunk(Chunk))
280       StartIdx = Idx;
281     else if (isEndChunk(Chunk))
282       EndIdx = Idx;
283   }
284 
285   // Early exit in case we can't find a start/end chunk.
286   if (StartIdx == NotSet || EndIdx == NotSet)
287     return false;
288 
289   // Outside of the contiguous sequence of ones everything needs to be zero.
290   uint64_t Outside = 0;
291   // Chunks between the start and end chunk need to have all their bits set.
292   uint64_t Inside = Mask;
293 
294   // If our contiguous sequence of ones wraps around from the MSB into the LSB,
295   // just swap indices and pretend we are materializing a contiguous sequence
296   // of zeros surrounded by a contiguous sequence of ones.
297   if (StartIdx > EndIdx) {
298     std::swap(StartIdx, EndIdx);
299     std::swap(Outside, Inside);
300   }
301 
302   uint64_t OrrImm = UImm;
303   int FirstMovkIdx = NotSet;
304   int SecondMovkIdx = NotSet;
305 
306   // Find out which chunks we need to patch up to obtain a contiguous sequence
307   // of ones.
308   for (int Idx = 0; Idx < 4; ++Idx) {
309     const uint64_t Chunk = getChunk(UImm, Idx);
310 
311     // Check whether we are looking at a chunk which is not part of the
312     // contiguous sequence of ones.
313     if ((Idx < StartIdx || EndIdx < Idx) && Chunk != Outside) {
314       OrrImm = updateImm(OrrImm, Idx, Outside == 0);
315 
316       // Remember the index we need to patch.
317       if (FirstMovkIdx == NotSet)
318         FirstMovkIdx = Idx;
319       else
320         SecondMovkIdx = Idx;
321 
322       // Check whether we are looking a chunk which is part of the contiguous
323       // sequence of ones.
324     } else if (Idx > StartIdx && Idx < EndIdx && Chunk != Inside) {
325       OrrImm = updateImm(OrrImm, Idx, Inside != Mask);
326 
327       // Remember the index we need to patch.
328       if (FirstMovkIdx == NotSet)
329         FirstMovkIdx = Idx;
330       else
331         SecondMovkIdx = Idx;
332     }
333   }
334   assert(FirstMovkIdx != NotSet && "Constant materializable with single ORR!");
335 
336   // Create the ORR-immediate instruction.
337   uint64_t Encoding = 0;
338   AArch64_AM::processLogicalImmediate(OrrImm, 64, Encoding);
339   MachineInstrBuilder MIB =
340       BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(AArch64::ORRXri))
341           .add(MI.getOperand(0))
342           .addReg(AArch64::XZR)
343           .addImm(Encoding);
344 
345   const unsigned DstReg = MI.getOperand(0).getReg();
346   const bool DstIsDead = MI.getOperand(0).isDead();
347 
348   const bool SingleMovk = SecondMovkIdx == NotSet;
349   // Create the first MOVK instruction.
350   MachineInstrBuilder MIB1 =
351       BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(AArch64::MOVKXi))
352           .addReg(DstReg,
353                   RegState::Define | getDeadRegState(DstIsDead && SingleMovk))
354           .addReg(DstReg)
355           .addImm(getChunk(UImm, FirstMovkIdx))
356           .addImm(
357               AArch64_AM::getShifterImm(AArch64_AM::LSL, FirstMovkIdx * 16));
358 
359   // Early exit in case we only need to emit a single MOVK instruction.
360   if (SingleMovk) {
361     transferImpOps(MI, MIB, MIB1);
362     MI.eraseFromParent();
363     return true;
364   }
365 
366   // Create the second MOVK instruction.
367   MachineInstrBuilder MIB2 =
368       BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(AArch64::MOVKXi))
369           .addReg(DstReg, RegState::Define | getDeadRegState(DstIsDead))
370           .addReg(DstReg)
371           .addImm(getChunk(UImm, SecondMovkIdx))
372           .addImm(
373               AArch64_AM::getShifterImm(AArch64_AM::LSL, SecondMovkIdx * 16));
374 
375   transferImpOps(MI, MIB, MIB2);
376   MI.eraseFromParent();
377   return true;
378 }
379 
380 /// Expand a MOVi32imm or MOVi64imm pseudo instruction to one or more
381 /// real move-immediate instructions to synthesize the immediate.
expandMOVImm(MachineBasicBlock & MBB,MachineBasicBlock::iterator MBBI,unsigned BitSize)382 bool AArch64ExpandPseudo::expandMOVImm(MachineBasicBlock &MBB,
383                                        MachineBasicBlock::iterator MBBI,
384                                        unsigned BitSize) {
385   MachineInstr &MI = *MBBI;
386   unsigned DstReg = MI.getOperand(0).getReg();
387   uint64_t Imm = MI.getOperand(1).getImm();
388   const unsigned Mask = 0xFFFF;
389 
390   if (DstReg == AArch64::XZR || DstReg == AArch64::WZR) {
391     // Useless def, and we don't want to risk creating an invalid ORR (which
392     // would really write to sp).
393     MI.eraseFromParent();
394     return true;
395   }
396 
397   // Scan the immediate and count the number of 16-bit chunks which are either
398   // all ones or all zeros.
399   unsigned OneChunks = 0;
400   unsigned ZeroChunks = 0;
401   for (unsigned Shift = 0; Shift < BitSize; Shift += 16) {
402     const unsigned Chunk = (Imm >> Shift) & Mask;
403     if (Chunk == Mask)
404       OneChunks++;
405     else if (Chunk == 0)
406       ZeroChunks++;
407   }
408 
409   // FIXME: Prefer MOVZ/MOVN over ORR because of the rules for the "mov"
410   // alias.
411 
412   // Try a single ORR.
413   uint64_t UImm = Imm << (64 - BitSize) >> (64 - BitSize);
414   uint64_t Encoding;
415   if (AArch64_AM::processLogicalImmediate(UImm, BitSize, Encoding)) {
416     unsigned Opc = (BitSize == 32 ? AArch64::ORRWri : AArch64::ORRXri);
417     MachineInstrBuilder MIB =
418         BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(Opc))
419             .add(MI.getOperand(0))
420             .addReg(BitSize == 32 ? AArch64::WZR : AArch64::XZR)
421             .addImm(Encoding);
422     transferImpOps(MI, MIB, MIB);
423     MI.eraseFromParent();
424     return true;
425   }
426 
427   // Two instruction sequences.
428   //
429   // Prefer MOVZ/MOVN followed by MOVK; it's more readable, and possibly the
430   // fastest sequence with fast literal generation.
431   if (OneChunks >= (BitSize / 16) - 2 || ZeroChunks >= (BitSize / 16) - 2)
432     return expandMOVImmSimple(MBB, MBBI, BitSize, OneChunks, ZeroChunks);
433 
434   assert(BitSize == 64 && "All 32-bit immediates can be expanded with a"
435                           "MOVZ/MOVK pair");
436 
437   // Try other two-instruction sequences.
438 
439   // 64-bit ORR followed by MOVK.
440   // We try to construct the ORR immediate in three different ways: either we
441   // zero out the chunk which will be replaced, we fill the chunk which will
442   // be replaced with ones, or we take the bit pattern from the other half of
443   // the 64-bit immediate. This is comprehensive because of the way ORR
444   // immediates are constructed.
445   for (unsigned Shift = 0; Shift < BitSize; Shift += 16) {
446     uint64_t ShiftedMask = (0xFFFFULL << Shift);
447     uint64_t ZeroChunk = UImm & ~ShiftedMask;
448     uint64_t OneChunk = UImm | ShiftedMask;
449     uint64_t RotatedImm = (UImm << 32) | (UImm >> 32);
450     uint64_t ReplicateChunk = ZeroChunk | (RotatedImm & ShiftedMask);
451     if (AArch64_AM::processLogicalImmediate(ZeroChunk, BitSize, Encoding) ||
452         AArch64_AM::processLogicalImmediate(OneChunk, BitSize, Encoding) ||
453         AArch64_AM::processLogicalImmediate(ReplicateChunk,
454                                             BitSize, Encoding)) {
455       // Create the ORR-immediate instruction.
456       MachineInstrBuilder MIB =
457           BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(AArch64::ORRXri))
458               .add(MI.getOperand(0))
459               .addReg(AArch64::XZR)
460               .addImm(Encoding);
461 
462       // Create the MOVK instruction.
463       const unsigned Imm16 = getChunk(UImm, Shift / 16);
464       const unsigned DstReg = MI.getOperand(0).getReg();
465       const bool DstIsDead = MI.getOperand(0).isDead();
466       MachineInstrBuilder MIB1 =
467           BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(AArch64::MOVKXi))
468               .addReg(DstReg, RegState::Define | getDeadRegState(DstIsDead))
469               .addReg(DstReg)
470               .addImm(Imm16)
471               .addImm(AArch64_AM::getShifterImm(AArch64_AM::LSL, Shift));
472 
473       transferImpOps(MI, MIB, MIB1);
474       MI.eraseFromParent();
475       return true;
476     }
477   }
478 
479   // FIXME: Add more two-instruction sequences.
480 
481   // Three instruction sequences.
482   //
483   // Prefer MOVZ/MOVN followed by two MOVK; it's more readable, and possibly
484   // the fastest sequence with fast literal generation. (If neither MOVK is
485   // part of a fast literal generation pair, it could be slower than the
486   // four-instruction sequence, but we won't worry about that for now.)
487   if (OneChunks || ZeroChunks)
488     return expandMOVImmSimple(MBB, MBBI, BitSize, OneChunks, ZeroChunks);
489 
490   // Check for identical 16-bit chunks within the constant and if so materialize
491   // them with a single ORR instruction. The remaining one or two 16-bit chunks
492   // will be materialized with MOVK instructions.
493   if (BitSize == 64 && tryToreplicateChunks(UImm, MI, MBB, MBBI, TII))
494     return true;
495 
496   // Check whether the constant contains a sequence of contiguous ones, which
497   // might be interrupted by one or two chunks. If so, materialize the sequence
498   // of contiguous ones with an ORR instruction. Materialize the chunks which
499   // are either interrupting the sequence or outside of the sequence with a
500   // MOVK instruction.
501   if (BitSize == 64 && trySequenceOfOnes(UImm, MI, MBB, MBBI, TII))
502     return true;
503 
504   // We found no possible two or three instruction sequence; use the general
505   // four-instruction sequence.
506   return expandMOVImmSimple(MBB, MBBI, BitSize, OneChunks, ZeroChunks);
507 }
508 
509 /// \brief Expand a MOVi32imm or MOVi64imm pseudo instruction to a
510 /// MOVZ or MOVN of width BitSize followed by up to 3 MOVK instructions.
expandMOVImmSimple(MachineBasicBlock & MBB,MachineBasicBlock::iterator MBBI,unsigned BitSize,unsigned OneChunks,unsigned ZeroChunks)511 bool AArch64ExpandPseudo::expandMOVImmSimple(MachineBasicBlock &MBB,
512                                              MachineBasicBlock::iterator MBBI,
513                                              unsigned BitSize,
514                                              unsigned OneChunks,
515                                              unsigned ZeroChunks) {
516   MachineInstr &MI = *MBBI;
517   unsigned DstReg = MI.getOperand(0).getReg();
518   uint64_t Imm = MI.getOperand(1).getImm();
519   const unsigned Mask = 0xFFFF;
520 
521   // Use a MOVZ or MOVN instruction to set the high bits, followed by one or
522   // more MOVK instructions to insert additional 16-bit portions into the
523   // lower bits.
524   bool isNeg = false;
525 
526   // Use MOVN to materialize the high bits if we have more all one chunks
527   // than all zero chunks.
528   if (OneChunks > ZeroChunks) {
529     isNeg = true;
530     Imm = ~Imm;
531   }
532 
533   unsigned FirstOpc;
534   if (BitSize == 32) {
535     Imm &= (1LL << 32) - 1;
536     FirstOpc = (isNeg ? AArch64::MOVNWi : AArch64::MOVZWi);
537   } else {
538     FirstOpc = (isNeg ? AArch64::MOVNXi : AArch64::MOVZXi);
539   }
540   unsigned Shift = 0;     // LSL amount for high bits with MOVZ/MOVN
541   unsigned LastShift = 0; // LSL amount for last MOVK
542   if (Imm != 0) {
543     unsigned LZ = countLeadingZeros(Imm);
544     unsigned TZ = countTrailingZeros(Imm);
545     Shift = (TZ / 16) * 16;
546     LastShift = ((63 - LZ) / 16) * 16;
547   }
548   unsigned Imm16 = (Imm >> Shift) & Mask;
549   bool DstIsDead = MI.getOperand(0).isDead();
550   MachineInstrBuilder MIB1 =
551       BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(FirstOpc))
552           .addReg(DstReg, RegState::Define |
553                   getDeadRegState(DstIsDead && Shift == LastShift))
554           .addImm(Imm16)
555           .addImm(AArch64_AM::getShifterImm(AArch64_AM::LSL, Shift));
556 
557   // If a MOVN was used for the high bits of a negative value, flip the rest
558   // of the bits back for use with MOVK.
559   if (isNeg)
560     Imm = ~Imm;
561 
562   if (Shift == LastShift) {
563     transferImpOps(MI, MIB1, MIB1);
564     MI.eraseFromParent();
565     return true;
566   }
567 
568   MachineInstrBuilder MIB2;
569   unsigned Opc = (BitSize == 32 ? AArch64::MOVKWi : AArch64::MOVKXi);
570   while (Shift < LastShift) {
571     Shift += 16;
572     Imm16 = (Imm >> Shift) & Mask;
573     if (Imm16 == (isNeg ? Mask : 0))
574       continue; // This 16-bit portion is already set correctly.
575     MIB2 = BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(Opc))
576                .addReg(DstReg,
577                        RegState::Define |
578                        getDeadRegState(DstIsDead && Shift == LastShift))
579                .addReg(DstReg)
580                .addImm(Imm16)
581                .addImm(AArch64_AM::getShifterImm(AArch64_AM::LSL, Shift));
582   }
583 
584   transferImpOps(MI, MIB1, MIB2);
585   MI.eraseFromParent();
586   return true;
587 }
588 
expandCMP_SWAP(MachineBasicBlock & MBB,MachineBasicBlock::iterator MBBI,unsigned LdarOp,unsigned StlrOp,unsigned CmpOp,unsigned ExtendImm,unsigned ZeroReg,MachineBasicBlock::iterator & NextMBBI)589 bool AArch64ExpandPseudo::expandCMP_SWAP(
590     MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, unsigned LdarOp,
591     unsigned StlrOp, unsigned CmpOp, unsigned ExtendImm, unsigned ZeroReg,
592     MachineBasicBlock::iterator &NextMBBI) {
593   MachineInstr &MI = *MBBI;
594   DebugLoc DL = MI.getDebugLoc();
595   const MachineOperand &Dest = MI.getOperand(0);
596   unsigned StatusReg = MI.getOperand(1).getReg();
597   bool StatusDead = MI.getOperand(1).isDead();
598   // Duplicating undef operands into 2 instructions does not guarantee the same
599   // value on both; However undef should be replaced by xzr anyway.
600   assert(!MI.getOperand(2).isUndef() && "cannot handle undef");
601   unsigned AddrReg = MI.getOperand(2).getReg();
602   unsigned DesiredReg = MI.getOperand(3).getReg();
603   unsigned NewReg = MI.getOperand(4).getReg();
604 
605   MachineFunction *MF = MBB.getParent();
606   auto LoadCmpBB = MF->CreateMachineBasicBlock(MBB.getBasicBlock());
607   auto StoreBB = MF->CreateMachineBasicBlock(MBB.getBasicBlock());
608   auto DoneBB = MF->CreateMachineBasicBlock(MBB.getBasicBlock());
609 
610   MF->insert(++MBB.getIterator(), LoadCmpBB);
611   MF->insert(++LoadCmpBB->getIterator(), StoreBB);
612   MF->insert(++StoreBB->getIterator(), DoneBB);
613 
614   // .Lloadcmp:
615   //     mov wStatus, 0
616   //     ldaxr xDest, [xAddr]
617   //     cmp xDest, xDesired
618   //     b.ne .Ldone
619   if (!StatusDead)
620     BuildMI(LoadCmpBB, DL, TII->get(AArch64::MOVZWi), StatusReg)
621       .addImm(0).addImm(0);
622   BuildMI(LoadCmpBB, DL, TII->get(LdarOp), Dest.getReg())
623       .addReg(AddrReg);
624   BuildMI(LoadCmpBB, DL, TII->get(CmpOp), ZeroReg)
625       .addReg(Dest.getReg(), getKillRegState(Dest.isDead()))
626       .addReg(DesiredReg)
627       .addImm(ExtendImm);
628   BuildMI(LoadCmpBB, DL, TII->get(AArch64::Bcc))
629       .addImm(AArch64CC::NE)
630       .addMBB(DoneBB)
631       .addReg(AArch64::NZCV, RegState::Implicit | RegState::Kill);
632   LoadCmpBB->addSuccessor(DoneBB);
633   LoadCmpBB->addSuccessor(StoreBB);
634 
635   // .Lstore:
636   //     stlxr wStatus, xNew, [xAddr]
637   //     cbnz wStatus, .Lloadcmp
638   BuildMI(StoreBB, DL, TII->get(StlrOp), StatusReg)
639       .addReg(NewReg)
640       .addReg(AddrReg);
641   BuildMI(StoreBB, DL, TII->get(AArch64::CBNZW))
642       .addReg(StatusReg, getKillRegState(StatusDead))
643       .addMBB(LoadCmpBB);
644   StoreBB->addSuccessor(LoadCmpBB);
645   StoreBB->addSuccessor(DoneBB);
646 
647   DoneBB->splice(DoneBB->end(), &MBB, MI, MBB.end());
648   DoneBB->transferSuccessors(&MBB);
649 
650   MBB.addSuccessor(LoadCmpBB);
651 
652   NextMBBI = MBB.end();
653   MI.eraseFromParent();
654 
655   // Recompute livein lists.
656   LivePhysRegs LiveRegs;
657   computeAndAddLiveIns(LiveRegs, *DoneBB);
658   computeAndAddLiveIns(LiveRegs, *StoreBB);
659   computeAndAddLiveIns(LiveRegs, *LoadCmpBB);
660   // Do an extra pass around the loop to get loop carried registers right.
661   StoreBB->clearLiveIns();
662   computeAndAddLiveIns(LiveRegs, *StoreBB);
663   LoadCmpBB->clearLiveIns();
664   computeAndAddLiveIns(LiveRegs, *LoadCmpBB);
665 
666   return true;
667 }
668 
expandCMP_SWAP_128(MachineBasicBlock & MBB,MachineBasicBlock::iterator MBBI,MachineBasicBlock::iterator & NextMBBI)669 bool AArch64ExpandPseudo::expandCMP_SWAP_128(
670     MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI,
671     MachineBasicBlock::iterator &NextMBBI) {
672   MachineInstr &MI = *MBBI;
673   DebugLoc DL = MI.getDebugLoc();
674   MachineOperand &DestLo = MI.getOperand(0);
675   MachineOperand &DestHi = MI.getOperand(1);
676   unsigned StatusReg = MI.getOperand(2).getReg();
677   bool StatusDead = MI.getOperand(2).isDead();
678   // Duplicating undef operands into 2 instructions does not guarantee the same
679   // value on both; However undef should be replaced by xzr anyway.
680   assert(!MI.getOperand(3).isUndef() && "cannot handle undef");
681   unsigned AddrReg = MI.getOperand(3).getReg();
682   unsigned DesiredLoReg = MI.getOperand(4).getReg();
683   unsigned DesiredHiReg = MI.getOperand(5).getReg();
684   unsigned NewLoReg = MI.getOperand(6).getReg();
685   unsigned NewHiReg = MI.getOperand(7).getReg();
686 
687   MachineFunction *MF = MBB.getParent();
688   auto LoadCmpBB = MF->CreateMachineBasicBlock(MBB.getBasicBlock());
689   auto StoreBB = MF->CreateMachineBasicBlock(MBB.getBasicBlock());
690   auto DoneBB = MF->CreateMachineBasicBlock(MBB.getBasicBlock());
691 
692   MF->insert(++MBB.getIterator(), LoadCmpBB);
693   MF->insert(++LoadCmpBB->getIterator(), StoreBB);
694   MF->insert(++StoreBB->getIterator(), DoneBB);
695 
696   // .Lloadcmp:
697   //     ldaxp xDestLo, xDestHi, [xAddr]
698   //     cmp xDestLo, xDesiredLo
699   //     sbcs xDestHi, xDesiredHi
700   //     b.ne .Ldone
701   BuildMI(LoadCmpBB, DL, TII->get(AArch64::LDAXPX))
702       .addReg(DestLo.getReg(), RegState::Define)
703       .addReg(DestHi.getReg(), RegState::Define)
704       .addReg(AddrReg);
705   BuildMI(LoadCmpBB, DL, TII->get(AArch64::SUBSXrs), AArch64::XZR)
706       .addReg(DestLo.getReg(), getKillRegState(DestLo.isDead()))
707       .addReg(DesiredLoReg)
708       .addImm(0);
709   BuildMI(LoadCmpBB, DL, TII->get(AArch64::CSINCWr), StatusReg)
710     .addUse(AArch64::WZR)
711     .addUse(AArch64::WZR)
712     .addImm(AArch64CC::EQ);
713   BuildMI(LoadCmpBB, DL, TII->get(AArch64::SUBSXrs), AArch64::XZR)
714       .addReg(DestHi.getReg(), getKillRegState(DestHi.isDead()))
715       .addReg(DesiredHiReg)
716       .addImm(0);
717   BuildMI(LoadCmpBB, DL, TII->get(AArch64::CSINCWr), StatusReg)
718       .addUse(StatusReg, RegState::Kill)
719       .addUse(StatusReg, RegState::Kill)
720       .addImm(AArch64CC::EQ);
721   BuildMI(LoadCmpBB, DL, TII->get(AArch64::CBNZW))
722       .addUse(StatusReg, getKillRegState(StatusDead))
723       .addMBB(DoneBB);
724   LoadCmpBB->addSuccessor(DoneBB);
725   LoadCmpBB->addSuccessor(StoreBB);
726 
727   // .Lstore:
728   //     stlxp wStatus, xNewLo, xNewHi, [xAddr]
729   //     cbnz wStatus, .Lloadcmp
730   BuildMI(StoreBB, DL, TII->get(AArch64::STLXPX), StatusReg)
731       .addReg(NewLoReg)
732       .addReg(NewHiReg)
733       .addReg(AddrReg);
734   BuildMI(StoreBB, DL, TII->get(AArch64::CBNZW))
735       .addReg(StatusReg, getKillRegState(StatusDead))
736       .addMBB(LoadCmpBB);
737   StoreBB->addSuccessor(LoadCmpBB);
738   StoreBB->addSuccessor(DoneBB);
739 
740   DoneBB->splice(DoneBB->end(), &MBB, MI, MBB.end());
741   DoneBB->transferSuccessors(&MBB);
742 
743   MBB.addSuccessor(LoadCmpBB);
744 
745   NextMBBI = MBB.end();
746   MI.eraseFromParent();
747 
748   // Recompute liveness bottom up.
749   LivePhysRegs LiveRegs;
750   computeAndAddLiveIns(LiveRegs, *DoneBB);
751   computeAndAddLiveIns(LiveRegs, *StoreBB);
752   computeAndAddLiveIns(LiveRegs, *LoadCmpBB);
753   // Do an extra pass in the loop to get the loop carried dependencies right.
754   StoreBB->clearLiveIns();
755   computeAndAddLiveIns(LiveRegs, *StoreBB);
756   LoadCmpBB->clearLiveIns();
757   computeAndAddLiveIns(LiveRegs, *LoadCmpBB);
758 
759   return true;
760 }
761 
762 /// If MBBI references a pseudo instruction that should be expanded here,
763 /// do the expansion and return true.  Otherwise return false.
expandMI(MachineBasicBlock & MBB,MachineBasicBlock::iterator MBBI,MachineBasicBlock::iterator & NextMBBI)764 bool AArch64ExpandPseudo::expandMI(MachineBasicBlock &MBB,
765                                    MachineBasicBlock::iterator MBBI,
766                                    MachineBasicBlock::iterator &NextMBBI) {
767   MachineInstr &MI = *MBBI;
768   unsigned Opcode = MI.getOpcode();
769   switch (Opcode) {
770   default:
771     break;
772 
773   case AArch64::ADDWrr:
774   case AArch64::SUBWrr:
775   case AArch64::ADDXrr:
776   case AArch64::SUBXrr:
777   case AArch64::ADDSWrr:
778   case AArch64::SUBSWrr:
779   case AArch64::ADDSXrr:
780   case AArch64::SUBSXrr:
781   case AArch64::ANDWrr:
782   case AArch64::ANDXrr:
783   case AArch64::BICWrr:
784   case AArch64::BICXrr:
785   case AArch64::ANDSWrr:
786   case AArch64::ANDSXrr:
787   case AArch64::BICSWrr:
788   case AArch64::BICSXrr:
789   case AArch64::EONWrr:
790   case AArch64::EONXrr:
791   case AArch64::EORWrr:
792   case AArch64::EORXrr:
793   case AArch64::ORNWrr:
794   case AArch64::ORNXrr:
795   case AArch64::ORRWrr:
796   case AArch64::ORRXrr: {
797     unsigned Opcode;
798     switch (MI.getOpcode()) {
799     default:
800       return false;
801     case AArch64::ADDWrr:      Opcode = AArch64::ADDWrs; break;
802     case AArch64::SUBWrr:      Opcode = AArch64::SUBWrs; break;
803     case AArch64::ADDXrr:      Opcode = AArch64::ADDXrs; break;
804     case AArch64::SUBXrr:      Opcode = AArch64::SUBXrs; break;
805     case AArch64::ADDSWrr:     Opcode = AArch64::ADDSWrs; break;
806     case AArch64::SUBSWrr:     Opcode = AArch64::SUBSWrs; break;
807     case AArch64::ADDSXrr:     Opcode = AArch64::ADDSXrs; break;
808     case AArch64::SUBSXrr:     Opcode = AArch64::SUBSXrs; break;
809     case AArch64::ANDWrr:      Opcode = AArch64::ANDWrs; break;
810     case AArch64::ANDXrr:      Opcode = AArch64::ANDXrs; break;
811     case AArch64::BICWrr:      Opcode = AArch64::BICWrs; break;
812     case AArch64::BICXrr:      Opcode = AArch64::BICXrs; break;
813     case AArch64::ANDSWrr:     Opcode = AArch64::ANDSWrs; break;
814     case AArch64::ANDSXrr:     Opcode = AArch64::ANDSXrs; break;
815     case AArch64::BICSWrr:     Opcode = AArch64::BICSWrs; break;
816     case AArch64::BICSXrr:     Opcode = AArch64::BICSXrs; break;
817     case AArch64::EONWrr:      Opcode = AArch64::EONWrs; break;
818     case AArch64::EONXrr:      Opcode = AArch64::EONXrs; break;
819     case AArch64::EORWrr:      Opcode = AArch64::EORWrs; break;
820     case AArch64::EORXrr:      Opcode = AArch64::EORXrs; break;
821     case AArch64::ORNWrr:      Opcode = AArch64::ORNWrs; break;
822     case AArch64::ORNXrr:      Opcode = AArch64::ORNXrs; break;
823     case AArch64::ORRWrr:      Opcode = AArch64::ORRWrs; break;
824     case AArch64::ORRXrr:      Opcode = AArch64::ORRXrs; break;
825     }
826     MachineInstrBuilder MIB1 =
827         BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(Opcode),
828                 MI.getOperand(0).getReg())
829             .add(MI.getOperand(1))
830             .add(MI.getOperand(2))
831             .addImm(AArch64_AM::getShifterImm(AArch64_AM::LSL, 0));
832     transferImpOps(MI, MIB1, MIB1);
833     MI.eraseFromParent();
834     return true;
835   }
836 
837   case AArch64::LOADgot: {
838     // Expand into ADRP + LDR.
839     unsigned DstReg = MI.getOperand(0).getReg();
840     const MachineOperand &MO1 = MI.getOperand(1);
841     unsigned Flags = MO1.getTargetFlags();
842     MachineInstrBuilder MIB1 =
843         BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(AArch64::ADRP), DstReg);
844     MachineInstrBuilder MIB2 =
845         BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(AArch64::LDRXui))
846             .add(MI.getOperand(0))
847             .addReg(DstReg);
848 
849     if (MO1.isGlobal()) {
850       MIB1.addGlobalAddress(MO1.getGlobal(), 0, Flags | AArch64II::MO_PAGE);
851       MIB2.addGlobalAddress(MO1.getGlobal(), 0,
852                             Flags | AArch64II::MO_PAGEOFF | AArch64II::MO_NC);
853     } else if (MO1.isSymbol()) {
854       MIB1.addExternalSymbol(MO1.getSymbolName(), Flags | AArch64II::MO_PAGE);
855       MIB2.addExternalSymbol(MO1.getSymbolName(),
856                              Flags | AArch64II::MO_PAGEOFF | AArch64II::MO_NC);
857     } else {
858       assert(MO1.isCPI() &&
859              "Only expect globals, externalsymbols, or constant pools");
860       MIB1.addConstantPoolIndex(MO1.getIndex(), MO1.getOffset(),
861                                 Flags | AArch64II::MO_PAGE);
862       MIB2.addConstantPoolIndex(MO1.getIndex(), MO1.getOffset(),
863                                 Flags | AArch64II::MO_PAGEOFF |
864                                     AArch64II::MO_NC);
865     }
866 
867     transferImpOps(MI, MIB1, MIB2);
868     MI.eraseFromParent();
869     return true;
870   }
871 
872   case AArch64::MOVaddr:
873   case AArch64::MOVaddrJT:
874   case AArch64::MOVaddrCP:
875   case AArch64::MOVaddrBA:
876   case AArch64::MOVaddrTLS:
877   case AArch64::MOVaddrEXT: {
878     // Expand into ADRP + ADD.
879     unsigned DstReg = MI.getOperand(0).getReg();
880     MachineInstrBuilder MIB1 =
881         BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(AArch64::ADRP), DstReg)
882             .add(MI.getOperand(1));
883 
884     MachineInstrBuilder MIB2 =
885         BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(AArch64::ADDXri))
886             .add(MI.getOperand(0))
887             .addReg(DstReg)
888             .add(MI.getOperand(2))
889             .addImm(0);
890 
891     transferImpOps(MI, MIB1, MIB2);
892     MI.eraseFromParent();
893     return true;
894   }
895   case AArch64::ADDlowTLS:
896     // Produce a plain ADD
897     BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(AArch64::ADDXri))
898         .add(MI.getOperand(0))
899         .add(MI.getOperand(1))
900         .add(MI.getOperand(2))
901         .addImm(0);
902     MI.eraseFromParent();
903     return true;
904 
905   case AArch64::MOVbaseTLS: {
906     unsigned DstReg = MI.getOperand(0).getReg();
907     auto SysReg = AArch64SysReg::TPIDR_EL0;
908     MachineFunction *MF = MBB.getParent();
909     if (MF->getTarget().getTargetTriple().isOSFuchsia() &&
910         MF->getTarget().getCodeModel() == CodeModel::Kernel)
911       SysReg = AArch64SysReg::TPIDR_EL1;
912     BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(AArch64::MRS), DstReg)
913         .addImm(SysReg);
914     MI.eraseFromParent();
915     return true;
916   }
917 
918   case AArch64::MOVi32imm:
919     return expandMOVImm(MBB, MBBI, 32);
920   case AArch64::MOVi64imm:
921     return expandMOVImm(MBB, MBBI, 64);
922   case AArch64::RET_ReallyLR: {
923     // Hiding the LR use with RET_ReallyLR may lead to extra kills in the
924     // function and missing live-ins. We are fine in practice because callee
925     // saved register handling ensures the register value is restored before
926     // RET, but we need the undef flag here to appease the MachineVerifier
927     // liveness checks.
928     MachineInstrBuilder MIB =
929         BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(AArch64::RET))
930           .addReg(AArch64::LR, RegState::Undef);
931     transferImpOps(MI, MIB, MIB);
932     MI.eraseFromParent();
933     return true;
934   }
935   case AArch64::CMP_SWAP_8:
936     return expandCMP_SWAP(MBB, MBBI, AArch64::LDAXRB, AArch64::STLXRB,
937                           AArch64::SUBSWrx,
938                           AArch64_AM::getArithExtendImm(AArch64_AM::UXTB, 0),
939                           AArch64::WZR, NextMBBI);
940   case AArch64::CMP_SWAP_16:
941     return expandCMP_SWAP(MBB, MBBI, AArch64::LDAXRH, AArch64::STLXRH,
942                           AArch64::SUBSWrx,
943                           AArch64_AM::getArithExtendImm(AArch64_AM::UXTH, 0),
944                           AArch64::WZR, NextMBBI);
945   case AArch64::CMP_SWAP_32:
946     return expandCMP_SWAP(MBB, MBBI, AArch64::LDAXRW, AArch64::STLXRW,
947                           AArch64::SUBSWrs,
948                           AArch64_AM::getShifterImm(AArch64_AM::LSL, 0),
949                           AArch64::WZR, NextMBBI);
950   case AArch64::CMP_SWAP_64:
951     return expandCMP_SWAP(MBB, MBBI,
952                           AArch64::LDAXRX, AArch64::STLXRX, AArch64::SUBSXrs,
953                           AArch64_AM::getShifterImm(AArch64_AM::LSL, 0),
954                           AArch64::XZR, NextMBBI);
955   case AArch64::CMP_SWAP_128:
956     return expandCMP_SWAP_128(MBB, MBBI, NextMBBI);
957 
958   case AArch64::AESMCrrTied:
959   case AArch64::AESIMCrrTied: {
960     MachineInstrBuilder MIB =
961     BuildMI(MBB, MBBI, MI.getDebugLoc(),
962             TII->get(Opcode == AArch64::AESMCrrTied ? AArch64::AESMCrr :
963                                                       AArch64::AESIMCrr))
964       .add(MI.getOperand(0))
965       .add(MI.getOperand(1));
966     transferImpOps(MI, MIB, MIB);
967     MI.eraseFromParent();
968     return true;
969    }
970   }
971   return false;
972 }
973 
974 /// Iterate over the instructions in basic block MBB and expand any
975 /// pseudo instructions.  Return true if anything was modified.
expandMBB(MachineBasicBlock & MBB)976 bool AArch64ExpandPseudo::expandMBB(MachineBasicBlock &MBB) {
977   bool Modified = false;
978 
979   MachineBasicBlock::iterator MBBI = MBB.begin(), E = MBB.end();
980   while (MBBI != E) {
981     MachineBasicBlock::iterator NMBBI = std::next(MBBI);
982     Modified |= expandMI(MBB, MBBI, NMBBI);
983     MBBI = NMBBI;
984   }
985 
986   return Modified;
987 }
988 
runOnMachineFunction(MachineFunction & MF)989 bool AArch64ExpandPseudo::runOnMachineFunction(MachineFunction &MF) {
990   TII = static_cast<const AArch64InstrInfo *>(MF.getSubtarget().getInstrInfo());
991 
992   bool Modified = false;
993   for (auto &MBB : MF)
994     Modified |= expandMBB(MBB);
995   return Modified;
996 }
997 
998 /// Returns an instance of the pseudo instruction expansion pass.
createAArch64ExpandPseudoPass()999 FunctionPass *llvm::createAArch64ExpandPseudoPass() {
1000   return new AArch64ExpandPseudo();
1001 }
1002