1 //===- AArch64ExpandPseudoInsts.cpp - Expand pseudo instructions ----------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains a pass that expands pseudo instructions into target
11 // instructions to allow proper scheduling and other late optimizations. This
12 // pass should be run after register allocation but before the post-regalloc
13 // scheduling pass.
14 //
15 //===----------------------------------------------------------------------===//
16
17 #include "AArch64InstrInfo.h"
18 #include "AArch64Subtarget.h"
19 #include "MCTargetDesc/AArch64AddressingModes.h"
20 #include "Utils/AArch64BaseInfo.h"
21 #include "llvm/ADT/DenseMap.h"
22 #include "llvm/ADT/Triple.h"
23 #include "llvm/CodeGen/LivePhysRegs.h"
24 #include "llvm/CodeGen/MachineBasicBlock.h"
25 #include "llvm/CodeGen/MachineFunction.h"
26 #include "llvm/CodeGen/MachineFunctionPass.h"
27 #include "llvm/CodeGen/MachineInstr.h"
28 #include "llvm/CodeGen/MachineInstrBuilder.h"
29 #include "llvm/CodeGen/MachineOperand.h"
30 #include "llvm/CodeGen/TargetSubtargetInfo.h"
31 #include "llvm/IR/DebugLoc.h"
32 #include "llvm/MC/MCInstrDesc.h"
33 #include "llvm/Pass.h"
34 #include "llvm/Support/CodeGen.h"
35 #include "llvm/Support/MathExtras.h"
36 #include "llvm/Target/TargetMachine.h"
37 #include <cassert>
38 #include <cstdint>
39 #include <iterator>
40 #include <limits>
41 #include <utility>
42
43 using namespace llvm;
44
45 #define AARCH64_EXPAND_PSEUDO_NAME "AArch64 pseudo instruction expansion pass"
46
47 namespace {
48
49 class AArch64ExpandPseudo : public MachineFunctionPass {
50 public:
51 const AArch64InstrInfo *TII;
52
53 static char ID;
54
AArch64ExpandPseudo()55 AArch64ExpandPseudo() : MachineFunctionPass(ID) {
56 initializeAArch64ExpandPseudoPass(*PassRegistry::getPassRegistry());
57 }
58
59 bool runOnMachineFunction(MachineFunction &Fn) override;
60
getPassName() const61 StringRef getPassName() const override { return AARCH64_EXPAND_PSEUDO_NAME; }
62
63 private:
64 bool expandMBB(MachineBasicBlock &MBB);
65 bool expandMI(MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI,
66 MachineBasicBlock::iterator &NextMBBI);
67 bool expandMOVImm(MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI,
68 unsigned BitSize);
69 bool expandMOVImmSimple(MachineBasicBlock &MBB,
70 MachineBasicBlock::iterator MBBI,
71 unsigned BitSize,
72 unsigned OneChunks,
73 unsigned ZeroChunks);
74
75 bool expandCMP_SWAP(MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI,
76 unsigned LdarOp, unsigned StlrOp, unsigned CmpOp,
77 unsigned ExtendImm, unsigned ZeroReg,
78 MachineBasicBlock::iterator &NextMBBI);
79 bool expandCMP_SWAP_128(MachineBasicBlock &MBB,
80 MachineBasicBlock::iterator MBBI,
81 MachineBasicBlock::iterator &NextMBBI);
82 };
83
84 } // end anonymous namespace
85
86 char AArch64ExpandPseudo::ID = 0;
87
88 INITIALIZE_PASS(AArch64ExpandPseudo, "aarch64-expand-pseudo",
89 AARCH64_EXPAND_PSEUDO_NAME, false, false)
90
91 /// Transfer implicit operands on the pseudo instruction to the
92 /// instructions created from the expansion.
transferImpOps(MachineInstr & OldMI,MachineInstrBuilder & UseMI,MachineInstrBuilder & DefMI)93 static void transferImpOps(MachineInstr &OldMI, MachineInstrBuilder &UseMI,
94 MachineInstrBuilder &DefMI) {
95 const MCInstrDesc &Desc = OldMI.getDesc();
96 for (unsigned i = Desc.getNumOperands(), e = OldMI.getNumOperands(); i != e;
97 ++i) {
98 const MachineOperand &MO = OldMI.getOperand(i);
99 assert(MO.isReg() && MO.getReg());
100 if (MO.isUse())
101 UseMI.add(MO);
102 else
103 DefMI.add(MO);
104 }
105 }
106
107 /// Helper function which extracts the specified 16-bit chunk from a
108 /// 64-bit value.
getChunk(uint64_t Imm,unsigned ChunkIdx)109 static uint64_t getChunk(uint64_t Imm, unsigned ChunkIdx) {
110 assert(ChunkIdx < 4 && "Out of range chunk index specified!");
111
112 return (Imm >> (ChunkIdx * 16)) & 0xFFFF;
113 }
114
115 /// Check whether the given 16-bit chunk replicated to full 64-bit width
116 /// can be materialized with an ORR instruction.
canUseOrr(uint64_t Chunk,uint64_t & Encoding)117 static bool canUseOrr(uint64_t Chunk, uint64_t &Encoding) {
118 Chunk = (Chunk << 48) | (Chunk << 32) | (Chunk << 16) | Chunk;
119
120 return AArch64_AM::processLogicalImmediate(Chunk, 64, Encoding);
121 }
122
123 /// Check for identical 16-bit chunks within the constant and if so
124 /// materialize them with a single ORR instruction. The remaining one or two
125 /// 16-bit chunks will be materialized with MOVK instructions.
126 ///
127 /// This allows us to materialize constants like |A|B|A|A| or |A|B|C|A| (order
128 /// of the chunks doesn't matter), assuming |A|A|A|A| can be materialized with
129 /// an ORR instruction.
tryToreplicateChunks(uint64_t UImm,MachineInstr & MI,MachineBasicBlock & MBB,MachineBasicBlock::iterator & MBBI,const AArch64InstrInfo * TII)130 static bool tryToreplicateChunks(uint64_t UImm, MachineInstr &MI,
131 MachineBasicBlock &MBB,
132 MachineBasicBlock::iterator &MBBI,
133 const AArch64InstrInfo *TII) {
134 using CountMap = DenseMap<uint64_t, unsigned>;
135
136 CountMap Counts;
137
138 // Scan the constant and count how often every chunk occurs.
139 for (unsigned Idx = 0; Idx < 4; ++Idx)
140 ++Counts[getChunk(UImm, Idx)];
141
142 // Traverse the chunks to find one which occurs more than once.
143 for (CountMap::const_iterator Chunk = Counts.begin(), End = Counts.end();
144 Chunk != End; ++Chunk) {
145 const uint64_t ChunkVal = Chunk->first;
146 const unsigned Count = Chunk->second;
147
148 uint64_t Encoding = 0;
149
150 // We are looking for chunks which have two or three instances and can be
151 // materialized with an ORR instruction.
152 if ((Count != 2 && Count != 3) || !canUseOrr(ChunkVal, Encoding))
153 continue;
154
155 const bool CountThree = Count == 3;
156 // Create the ORR-immediate instruction.
157 MachineInstrBuilder MIB =
158 BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(AArch64::ORRXri))
159 .add(MI.getOperand(0))
160 .addReg(AArch64::XZR)
161 .addImm(Encoding);
162
163 const unsigned DstReg = MI.getOperand(0).getReg();
164 const bool DstIsDead = MI.getOperand(0).isDead();
165
166 unsigned ShiftAmt = 0;
167 uint64_t Imm16 = 0;
168 // Find the first chunk not materialized with the ORR instruction.
169 for (; ShiftAmt < 64; ShiftAmt += 16) {
170 Imm16 = (UImm >> ShiftAmt) & 0xFFFF;
171
172 if (Imm16 != ChunkVal)
173 break;
174 }
175
176 // Create the first MOVK instruction.
177 MachineInstrBuilder MIB1 =
178 BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(AArch64::MOVKXi))
179 .addReg(DstReg,
180 RegState::Define | getDeadRegState(DstIsDead && CountThree))
181 .addReg(DstReg)
182 .addImm(Imm16)
183 .addImm(AArch64_AM::getShifterImm(AArch64_AM::LSL, ShiftAmt));
184
185 // In case we have three instances the whole constant is now materialized
186 // and we can exit.
187 if (CountThree) {
188 transferImpOps(MI, MIB, MIB1);
189 MI.eraseFromParent();
190 return true;
191 }
192
193 // Find the remaining chunk which needs to be materialized.
194 for (ShiftAmt += 16; ShiftAmt < 64; ShiftAmt += 16) {
195 Imm16 = (UImm >> ShiftAmt) & 0xFFFF;
196
197 if (Imm16 != ChunkVal)
198 break;
199 }
200
201 // Create the second MOVK instruction.
202 MachineInstrBuilder MIB2 =
203 BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(AArch64::MOVKXi))
204 .addReg(DstReg, RegState::Define | getDeadRegState(DstIsDead))
205 .addReg(DstReg)
206 .addImm(Imm16)
207 .addImm(AArch64_AM::getShifterImm(AArch64_AM::LSL, ShiftAmt));
208
209 transferImpOps(MI, MIB, MIB2);
210 MI.eraseFromParent();
211 return true;
212 }
213
214 return false;
215 }
216
217 /// Check whether this chunk matches the pattern '1...0...'. This pattern
218 /// starts a contiguous sequence of ones if we look at the bits from the LSB
219 /// towards the MSB.
isStartChunk(uint64_t Chunk)220 static bool isStartChunk(uint64_t Chunk) {
221 if (Chunk == 0 || Chunk == std::numeric_limits<uint64_t>::max())
222 return false;
223
224 return isMask_64(~Chunk);
225 }
226
227 /// Check whether this chunk matches the pattern '0...1...' This pattern
228 /// ends a contiguous sequence of ones if we look at the bits from the LSB
229 /// towards the MSB.
isEndChunk(uint64_t Chunk)230 static bool isEndChunk(uint64_t Chunk) {
231 if (Chunk == 0 || Chunk == std::numeric_limits<uint64_t>::max())
232 return false;
233
234 return isMask_64(Chunk);
235 }
236
237 /// Clear or set all bits in the chunk at the given index.
updateImm(uint64_t Imm,unsigned Idx,bool Clear)238 static uint64_t updateImm(uint64_t Imm, unsigned Idx, bool Clear) {
239 const uint64_t Mask = 0xFFFF;
240
241 if (Clear)
242 // Clear chunk in the immediate.
243 Imm &= ~(Mask << (Idx * 16));
244 else
245 // Set all bits in the immediate for the particular chunk.
246 Imm |= Mask << (Idx * 16);
247
248 return Imm;
249 }
250
251 /// Check whether the constant contains a sequence of contiguous ones,
252 /// which might be interrupted by one or two chunks. If so, materialize the
253 /// sequence of contiguous ones with an ORR instruction.
254 /// Materialize the chunks which are either interrupting the sequence or outside
255 /// of the sequence with a MOVK instruction.
256 ///
257 /// Assuming S is a chunk which starts the sequence (1...0...), E is a chunk
258 /// which ends the sequence (0...1...). Then we are looking for constants which
259 /// contain at least one S and E chunk.
260 /// E.g. |E|A|B|S|, |A|E|B|S| or |A|B|E|S|.
261 ///
262 /// We are also looking for constants like |S|A|B|E| where the contiguous
263 /// sequence of ones wraps around the MSB into the LSB.
trySequenceOfOnes(uint64_t UImm,MachineInstr & MI,MachineBasicBlock & MBB,MachineBasicBlock::iterator & MBBI,const AArch64InstrInfo * TII)264 static bool trySequenceOfOnes(uint64_t UImm, MachineInstr &MI,
265 MachineBasicBlock &MBB,
266 MachineBasicBlock::iterator &MBBI,
267 const AArch64InstrInfo *TII) {
268 const int NotSet = -1;
269 const uint64_t Mask = 0xFFFF;
270
271 int StartIdx = NotSet;
272 int EndIdx = NotSet;
273 // Try to find the chunks which start/end a contiguous sequence of ones.
274 for (int Idx = 0; Idx < 4; ++Idx) {
275 int64_t Chunk = getChunk(UImm, Idx);
276 // Sign extend the 16-bit chunk to 64-bit.
277 Chunk = (Chunk << 48) >> 48;
278
279 if (isStartChunk(Chunk))
280 StartIdx = Idx;
281 else if (isEndChunk(Chunk))
282 EndIdx = Idx;
283 }
284
285 // Early exit in case we can't find a start/end chunk.
286 if (StartIdx == NotSet || EndIdx == NotSet)
287 return false;
288
289 // Outside of the contiguous sequence of ones everything needs to be zero.
290 uint64_t Outside = 0;
291 // Chunks between the start and end chunk need to have all their bits set.
292 uint64_t Inside = Mask;
293
294 // If our contiguous sequence of ones wraps around from the MSB into the LSB,
295 // just swap indices and pretend we are materializing a contiguous sequence
296 // of zeros surrounded by a contiguous sequence of ones.
297 if (StartIdx > EndIdx) {
298 std::swap(StartIdx, EndIdx);
299 std::swap(Outside, Inside);
300 }
301
302 uint64_t OrrImm = UImm;
303 int FirstMovkIdx = NotSet;
304 int SecondMovkIdx = NotSet;
305
306 // Find out which chunks we need to patch up to obtain a contiguous sequence
307 // of ones.
308 for (int Idx = 0; Idx < 4; ++Idx) {
309 const uint64_t Chunk = getChunk(UImm, Idx);
310
311 // Check whether we are looking at a chunk which is not part of the
312 // contiguous sequence of ones.
313 if ((Idx < StartIdx || EndIdx < Idx) && Chunk != Outside) {
314 OrrImm = updateImm(OrrImm, Idx, Outside == 0);
315
316 // Remember the index we need to patch.
317 if (FirstMovkIdx == NotSet)
318 FirstMovkIdx = Idx;
319 else
320 SecondMovkIdx = Idx;
321
322 // Check whether we are looking a chunk which is part of the contiguous
323 // sequence of ones.
324 } else if (Idx > StartIdx && Idx < EndIdx && Chunk != Inside) {
325 OrrImm = updateImm(OrrImm, Idx, Inside != Mask);
326
327 // Remember the index we need to patch.
328 if (FirstMovkIdx == NotSet)
329 FirstMovkIdx = Idx;
330 else
331 SecondMovkIdx = Idx;
332 }
333 }
334 assert(FirstMovkIdx != NotSet && "Constant materializable with single ORR!");
335
336 // Create the ORR-immediate instruction.
337 uint64_t Encoding = 0;
338 AArch64_AM::processLogicalImmediate(OrrImm, 64, Encoding);
339 MachineInstrBuilder MIB =
340 BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(AArch64::ORRXri))
341 .add(MI.getOperand(0))
342 .addReg(AArch64::XZR)
343 .addImm(Encoding);
344
345 const unsigned DstReg = MI.getOperand(0).getReg();
346 const bool DstIsDead = MI.getOperand(0).isDead();
347
348 const bool SingleMovk = SecondMovkIdx == NotSet;
349 // Create the first MOVK instruction.
350 MachineInstrBuilder MIB1 =
351 BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(AArch64::MOVKXi))
352 .addReg(DstReg,
353 RegState::Define | getDeadRegState(DstIsDead && SingleMovk))
354 .addReg(DstReg)
355 .addImm(getChunk(UImm, FirstMovkIdx))
356 .addImm(
357 AArch64_AM::getShifterImm(AArch64_AM::LSL, FirstMovkIdx * 16));
358
359 // Early exit in case we only need to emit a single MOVK instruction.
360 if (SingleMovk) {
361 transferImpOps(MI, MIB, MIB1);
362 MI.eraseFromParent();
363 return true;
364 }
365
366 // Create the second MOVK instruction.
367 MachineInstrBuilder MIB2 =
368 BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(AArch64::MOVKXi))
369 .addReg(DstReg, RegState::Define | getDeadRegState(DstIsDead))
370 .addReg(DstReg)
371 .addImm(getChunk(UImm, SecondMovkIdx))
372 .addImm(
373 AArch64_AM::getShifterImm(AArch64_AM::LSL, SecondMovkIdx * 16));
374
375 transferImpOps(MI, MIB, MIB2);
376 MI.eraseFromParent();
377 return true;
378 }
379
380 /// Expand a MOVi32imm or MOVi64imm pseudo instruction to one or more
381 /// real move-immediate instructions to synthesize the immediate.
expandMOVImm(MachineBasicBlock & MBB,MachineBasicBlock::iterator MBBI,unsigned BitSize)382 bool AArch64ExpandPseudo::expandMOVImm(MachineBasicBlock &MBB,
383 MachineBasicBlock::iterator MBBI,
384 unsigned BitSize) {
385 MachineInstr &MI = *MBBI;
386 unsigned DstReg = MI.getOperand(0).getReg();
387 uint64_t Imm = MI.getOperand(1).getImm();
388 const unsigned Mask = 0xFFFF;
389
390 if (DstReg == AArch64::XZR || DstReg == AArch64::WZR) {
391 // Useless def, and we don't want to risk creating an invalid ORR (which
392 // would really write to sp).
393 MI.eraseFromParent();
394 return true;
395 }
396
397 // Scan the immediate and count the number of 16-bit chunks which are either
398 // all ones or all zeros.
399 unsigned OneChunks = 0;
400 unsigned ZeroChunks = 0;
401 for (unsigned Shift = 0; Shift < BitSize; Shift += 16) {
402 const unsigned Chunk = (Imm >> Shift) & Mask;
403 if (Chunk == Mask)
404 OneChunks++;
405 else if (Chunk == 0)
406 ZeroChunks++;
407 }
408
409 // FIXME: Prefer MOVZ/MOVN over ORR because of the rules for the "mov"
410 // alias.
411
412 // Try a single ORR.
413 uint64_t UImm = Imm << (64 - BitSize) >> (64 - BitSize);
414 uint64_t Encoding;
415 if (AArch64_AM::processLogicalImmediate(UImm, BitSize, Encoding)) {
416 unsigned Opc = (BitSize == 32 ? AArch64::ORRWri : AArch64::ORRXri);
417 MachineInstrBuilder MIB =
418 BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(Opc))
419 .add(MI.getOperand(0))
420 .addReg(BitSize == 32 ? AArch64::WZR : AArch64::XZR)
421 .addImm(Encoding);
422 transferImpOps(MI, MIB, MIB);
423 MI.eraseFromParent();
424 return true;
425 }
426
427 // Two instruction sequences.
428 //
429 // Prefer MOVZ/MOVN followed by MOVK; it's more readable, and possibly the
430 // fastest sequence with fast literal generation.
431 if (OneChunks >= (BitSize / 16) - 2 || ZeroChunks >= (BitSize / 16) - 2)
432 return expandMOVImmSimple(MBB, MBBI, BitSize, OneChunks, ZeroChunks);
433
434 assert(BitSize == 64 && "All 32-bit immediates can be expanded with a"
435 "MOVZ/MOVK pair");
436
437 // Try other two-instruction sequences.
438
439 // 64-bit ORR followed by MOVK.
440 // We try to construct the ORR immediate in three different ways: either we
441 // zero out the chunk which will be replaced, we fill the chunk which will
442 // be replaced with ones, or we take the bit pattern from the other half of
443 // the 64-bit immediate. This is comprehensive because of the way ORR
444 // immediates are constructed.
445 for (unsigned Shift = 0; Shift < BitSize; Shift += 16) {
446 uint64_t ShiftedMask = (0xFFFFULL << Shift);
447 uint64_t ZeroChunk = UImm & ~ShiftedMask;
448 uint64_t OneChunk = UImm | ShiftedMask;
449 uint64_t RotatedImm = (UImm << 32) | (UImm >> 32);
450 uint64_t ReplicateChunk = ZeroChunk | (RotatedImm & ShiftedMask);
451 if (AArch64_AM::processLogicalImmediate(ZeroChunk, BitSize, Encoding) ||
452 AArch64_AM::processLogicalImmediate(OneChunk, BitSize, Encoding) ||
453 AArch64_AM::processLogicalImmediate(ReplicateChunk,
454 BitSize, Encoding)) {
455 // Create the ORR-immediate instruction.
456 MachineInstrBuilder MIB =
457 BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(AArch64::ORRXri))
458 .add(MI.getOperand(0))
459 .addReg(AArch64::XZR)
460 .addImm(Encoding);
461
462 // Create the MOVK instruction.
463 const unsigned Imm16 = getChunk(UImm, Shift / 16);
464 const unsigned DstReg = MI.getOperand(0).getReg();
465 const bool DstIsDead = MI.getOperand(0).isDead();
466 MachineInstrBuilder MIB1 =
467 BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(AArch64::MOVKXi))
468 .addReg(DstReg, RegState::Define | getDeadRegState(DstIsDead))
469 .addReg(DstReg)
470 .addImm(Imm16)
471 .addImm(AArch64_AM::getShifterImm(AArch64_AM::LSL, Shift));
472
473 transferImpOps(MI, MIB, MIB1);
474 MI.eraseFromParent();
475 return true;
476 }
477 }
478
479 // FIXME: Add more two-instruction sequences.
480
481 // Three instruction sequences.
482 //
483 // Prefer MOVZ/MOVN followed by two MOVK; it's more readable, and possibly
484 // the fastest sequence with fast literal generation. (If neither MOVK is
485 // part of a fast literal generation pair, it could be slower than the
486 // four-instruction sequence, but we won't worry about that for now.)
487 if (OneChunks || ZeroChunks)
488 return expandMOVImmSimple(MBB, MBBI, BitSize, OneChunks, ZeroChunks);
489
490 // Check for identical 16-bit chunks within the constant and if so materialize
491 // them with a single ORR instruction. The remaining one or two 16-bit chunks
492 // will be materialized with MOVK instructions.
493 if (BitSize == 64 && tryToreplicateChunks(UImm, MI, MBB, MBBI, TII))
494 return true;
495
496 // Check whether the constant contains a sequence of contiguous ones, which
497 // might be interrupted by one or two chunks. If so, materialize the sequence
498 // of contiguous ones with an ORR instruction. Materialize the chunks which
499 // are either interrupting the sequence or outside of the sequence with a
500 // MOVK instruction.
501 if (BitSize == 64 && trySequenceOfOnes(UImm, MI, MBB, MBBI, TII))
502 return true;
503
504 // We found no possible two or three instruction sequence; use the general
505 // four-instruction sequence.
506 return expandMOVImmSimple(MBB, MBBI, BitSize, OneChunks, ZeroChunks);
507 }
508
509 /// \brief Expand a MOVi32imm or MOVi64imm pseudo instruction to a
510 /// MOVZ or MOVN of width BitSize followed by up to 3 MOVK instructions.
expandMOVImmSimple(MachineBasicBlock & MBB,MachineBasicBlock::iterator MBBI,unsigned BitSize,unsigned OneChunks,unsigned ZeroChunks)511 bool AArch64ExpandPseudo::expandMOVImmSimple(MachineBasicBlock &MBB,
512 MachineBasicBlock::iterator MBBI,
513 unsigned BitSize,
514 unsigned OneChunks,
515 unsigned ZeroChunks) {
516 MachineInstr &MI = *MBBI;
517 unsigned DstReg = MI.getOperand(0).getReg();
518 uint64_t Imm = MI.getOperand(1).getImm();
519 const unsigned Mask = 0xFFFF;
520
521 // Use a MOVZ or MOVN instruction to set the high bits, followed by one or
522 // more MOVK instructions to insert additional 16-bit portions into the
523 // lower bits.
524 bool isNeg = false;
525
526 // Use MOVN to materialize the high bits if we have more all one chunks
527 // than all zero chunks.
528 if (OneChunks > ZeroChunks) {
529 isNeg = true;
530 Imm = ~Imm;
531 }
532
533 unsigned FirstOpc;
534 if (BitSize == 32) {
535 Imm &= (1LL << 32) - 1;
536 FirstOpc = (isNeg ? AArch64::MOVNWi : AArch64::MOVZWi);
537 } else {
538 FirstOpc = (isNeg ? AArch64::MOVNXi : AArch64::MOVZXi);
539 }
540 unsigned Shift = 0; // LSL amount for high bits with MOVZ/MOVN
541 unsigned LastShift = 0; // LSL amount for last MOVK
542 if (Imm != 0) {
543 unsigned LZ = countLeadingZeros(Imm);
544 unsigned TZ = countTrailingZeros(Imm);
545 Shift = (TZ / 16) * 16;
546 LastShift = ((63 - LZ) / 16) * 16;
547 }
548 unsigned Imm16 = (Imm >> Shift) & Mask;
549 bool DstIsDead = MI.getOperand(0).isDead();
550 MachineInstrBuilder MIB1 =
551 BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(FirstOpc))
552 .addReg(DstReg, RegState::Define |
553 getDeadRegState(DstIsDead && Shift == LastShift))
554 .addImm(Imm16)
555 .addImm(AArch64_AM::getShifterImm(AArch64_AM::LSL, Shift));
556
557 // If a MOVN was used for the high bits of a negative value, flip the rest
558 // of the bits back for use with MOVK.
559 if (isNeg)
560 Imm = ~Imm;
561
562 if (Shift == LastShift) {
563 transferImpOps(MI, MIB1, MIB1);
564 MI.eraseFromParent();
565 return true;
566 }
567
568 MachineInstrBuilder MIB2;
569 unsigned Opc = (BitSize == 32 ? AArch64::MOVKWi : AArch64::MOVKXi);
570 while (Shift < LastShift) {
571 Shift += 16;
572 Imm16 = (Imm >> Shift) & Mask;
573 if (Imm16 == (isNeg ? Mask : 0))
574 continue; // This 16-bit portion is already set correctly.
575 MIB2 = BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(Opc))
576 .addReg(DstReg,
577 RegState::Define |
578 getDeadRegState(DstIsDead && Shift == LastShift))
579 .addReg(DstReg)
580 .addImm(Imm16)
581 .addImm(AArch64_AM::getShifterImm(AArch64_AM::LSL, Shift));
582 }
583
584 transferImpOps(MI, MIB1, MIB2);
585 MI.eraseFromParent();
586 return true;
587 }
588
expandCMP_SWAP(MachineBasicBlock & MBB,MachineBasicBlock::iterator MBBI,unsigned LdarOp,unsigned StlrOp,unsigned CmpOp,unsigned ExtendImm,unsigned ZeroReg,MachineBasicBlock::iterator & NextMBBI)589 bool AArch64ExpandPseudo::expandCMP_SWAP(
590 MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, unsigned LdarOp,
591 unsigned StlrOp, unsigned CmpOp, unsigned ExtendImm, unsigned ZeroReg,
592 MachineBasicBlock::iterator &NextMBBI) {
593 MachineInstr &MI = *MBBI;
594 DebugLoc DL = MI.getDebugLoc();
595 const MachineOperand &Dest = MI.getOperand(0);
596 unsigned StatusReg = MI.getOperand(1).getReg();
597 bool StatusDead = MI.getOperand(1).isDead();
598 // Duplicating undef operands into 2 instructions does not guarantee the same
599 // value on both; However undef should be replaced by xzr anyway.
600 assert(!MI.getOperand(2).isUndef() && "cannot handle undef");
601 unsigned AddrReg = MI.getOperand(2).getReg();
602 unsigned DesiredReg = MI.getOperand(3).getReg();
603 unsigned NewReg = MI.getOperand(4).getReg();
604
605 MachineFunction *MF = MBB.getParent();
606 auto LoadCmpBB = MF->CreateMachineBasicBlock(MBB.getBasicBlock());
607 auto StoreBB = MF->CreateMachineBasicBlock(MBB.getBasicBlock());
608 auto DoneBB = MF->CreateMachineBasicBlock(MBB.getBasicBlock());
609
610 MF->insert(++MBB.getIterator(), LoadCmpBB);
611 MF->insert(++LoadCmpBB->getIterator(), StoreBB);
612 MF->insert(++StoreBB->getIterator(), DoneBB);
613
614 // .Lloadcmp:
615 // mov wStatus, 0
616 // ldaxr xDest, [xAddr]
617 // cmp xDest, xDesired
618 // b.ne .Ldone
619 if (!StatusDead)
620 BuildMI(LoadCmpBB, DL, TII->get(AArch64::MOVZWi), StatusReg)
621 .addImm(0).addImm(0);
622 BuildMI(LoadCmpBB, DL, TII->get(LdarOp), Dest.getReg())
623 .addReg(AddrReg);
624 BuildMI(LoadCmpBB, DL, TII->get(CmpOp), ZeroReg)
625 .addReg(Dest.getReg(), getKillRegState(Dest.isDead()))
626 .addReg(DesiredReg)
627 .addImm(ExtendImm);
628 BuildMI(LoadCmpBB, DL, TII->get(AArch64::Bcc))
629 .addImm(AArch64CC::NE)
630 .addMBB(DoneBB)
631 .addReg(AArch64::NZCV, RegState::Implicit | RegState::Kill);
632 LoadCmpBB->addSuccessor(DoneBB);
633 LoadCmpBB->addSuccessor(StoreBB);
634
635 // .Lstore:
636 // stlxr wStatus, xNew, [xAddr]
637 // cbnz wStatus, .Lloadcmp
638 BuildMI(StoreBB, DL, TII->get(StlrOp), StatusReg)
639 .addReg(NewReg)
640 .addReg(AddrReg);
641 BuildMI(StoreBB, DL, TII->get(AArch64::CBNZW))
642 .addReg(StatusReg, getKillRegState(StatusDead))
643 .addMBB(LoadCmpBB);
644 StoreBB->addSuccessor(LoadCmpBB);
645 StoreBB->addSuccessor(DoneBB);
646
647 DoneBB->splice(DoneBB->end(), &MBB, MI, MBB.end());
648 DoneBB->transferSuccessors(&MBB);
649
650 MBB.addSuccessor(LoadCmpBB);
651
652 NextMBBI = MBB.end();
653 MI.eraseFromParent();
654
655 // Recompute livein lists.
656 LivePhysRegs LiveRegs;
657 computeAndAddLiveIns(LiveRegs, *DoneBB);
658 computeAndAddLiveIns(LiveRegs, *StoreBB);
659 computeAndAddLiveIns(LiveRegs, *LoadCmpBB);
660 // Do an extra pass around the loop to get loop carried registers right.
661 StoreBB->clearLiveIns();
662 computeAndAddLiveIns(LiveRegs, *StoreBB);
663 LoadCmpBB->clearLiveIns();
664 computeAndAddLiveIns(LiveRegs, *LoadCmpBB);
665
666 return true;
667 }
668
expandCMP_SWAP_128(MachineBasicBlock & MBB,MachineBasicBlock::iterator MBBI,MachineBasicBlock::iterator & NextMBBI)669 bool AArch64ExpandPseudo::expandCMP_SWAP_128(
670 MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI,
671 MachineBasicBlock::iterator &NextMBBI) {
672 MachineInstr &MI = *MBBI;
673 DebugLoc DL = MI.getDebugLoc();
674 MachineOperand &DestLo = MI.getOperand(0);
675 MachineOperand &DestHi = MI.getOperand(1);
676 unsigned StatusReg = MI.getOperand(2).getReg();
677 bool StatusDead = MI.getOperand(2).isDead();
678 // Duplicating undef operands into 2 instructions does not guarantee the same
679 // value on both; However undef should be replaced by xzr anyway.
680 assert(!MI.getOperand(3).isUndef() && "cannot handle undef");
681 unsigned AddrReg = MI.getOperand(3).getReg();
682 unsigned DesiredLoReg = MI.getOperand(4).getReg();
683 unsigned DesiredHiReg = MI.getOperand(5).getReg();
684 unsigned NewLoReg = MI.getOperand(6).getReg();
685 unsigned NewHiReg = MI.getOperand(7).getReg();
686
687 MachineFunction *MF = MBB.getParent();
688 auto LoadCmpBB = MF->CreateMachineBasicBlock(MBB.getBasicBlock());
689 auto StoreBB = MF->CreateMachineBasicBlock(MBB.getBasicBlock());
690 auto DoneBB = MF->CreateMachineBasicBlock(MBB.getBasicBlock());
691
692 MF->insert(++MBB.getIterator(), LoadCmpBB);
693 MF->insert(++LoadCmpBB->getIterator(), StoreBB);
694 MF->insert(++StoreBB->getIterator(), DoneBB);
695
696 // .Lloadcmp:
697 // ldaxp xDestLo, xDestHi, [xAddr]
698 // cmp xDestLo, xDesiredLo
699 // sbcs xDestHi, xDesiredHi
700 // b.ne .Ldone
701 BuildMI(LoadCmpBB, DL, TII->get(AArch64::LDAXPX))
702 .addReg(DestLo.getReg(), RegState::Define)
703 .addReg(DestHi.getReg(), RegState::Define)
704 .addReg(AddrReg);
705 BuildMI(LoadCmpBB, DL, TII->get(AArch64::SUBSXrs), AArch64::XZR)
706 .addReg(DestLo.getReg(), getKillRegState(DestLo.isDead()))
707 .addReg(DesiredLoReg)
708 .addImm(0);
709 BuildMI(LoadCmpBB, DL, TII->get(AArch64::CSINCWr), StatusReg)
710 .addUse(AArch64::WZR)
711 .addUse(AArch64::WZR)
712 .addImm(AArch64CC::EQ);
713 BuildMI(LoadCmpBB, DL, TII->get(AArch64::SUBSXrs), AArch64::XZR)
714 .addReg(DestHi.getReg(), getKillRegState(DestHi.isDead()))
715 .addReg(DesiredHiReg)
716 .addImm(0);
717 BuildMI(LoadCmpBB, DL, TII->get(AArch64::CSINCWr), StatusReg)
718 .addUse(StatusReg, RegState::Kill)
719 .addUse(StatusReg, RegState::Kill)
720 .addImm(AArch64CC::EQ);
721 BuildMI(LoadCmpBB, DL, TII->get(AArch64::CBNZW))
722 .addUse(StatusReg, getKillRegState(StatusDead))
723 .addMBB(DoneBB);
724 LoadCmpBB->addSuccessor(DoneBB);
725 LoadCmpBB->addSuccessor(StoreBB);
726
727 // .Lstore:
728 // stlxp wStatus, xNewLo, xNewHi, [xAddr]
729 // cbnz wStatus, .Lloadcmp
730 BuildMI(StoreBB, DL, TII->get(AArch64::STLXPX), StatusReg)
731 .addReg(NewLoReg)
732 .addReg(NewHiReg)
733 .addReg(AddrReg);
734 BuildMI(StoreBB, DL, TII->get(AArch64::CBNZW))
735 .addReg(StatusReg, getKillRegState(StatusDead))
736 .addMBB(LoadCmpBB);
737 StoreBB->addSuccessor(LoadCmpBB);
738 StoreBB->addSuccessor(DoneBB);
739
740 DoneBB->splice(DoneBB->end(), &MBB, MI, MBB.end());
741 DoneBB->transferSuccessors(&MBB);
742
743 MBB.addSuccessor(LoadCmpBB);
744
745 NextMBBI = MBB.end();
746 MI.eraseFromParent();
747
748 // Recompute liveness bottom up.
749 LivePhysRegs LiveRegs;
750 computeAndAddLiveIns(LiveRegs, *DoneBB);
751 computeAndAddLiveIns(LiveRegs, *StoreBB);
752 computeAndAddLiveIns(LiveRegs, *LoadCmpBB);
753 // Do an extra pass in the loop to get the loop carried dependencies right.
754 StoreBB->clearLiveIns();
755 computeAndAddLiveIns(LiveRegs, *StoreBB);
756 LoadCmpBB->clearLiveIns();
757 computeAndAddLiveIns(LiveRegs, *LoadCmpBB);
758
759 return true;
760 }
761
762 /// If MBBI references a pseudo instruction that should be expanded here,
763 /// do the expansion and return true. Otherwise return false.
expandMI(MachineBasicBlock & MBB,MachineBasicBlock::iterator MBBI,MachineBasicBlock::iterator & NextMBBI)764 bool AArch64ExpandPseudo::expandMI(MachineBasicBlock &MBB,
765 MachineBasicBlock::iterator MBBI,
766 MachineBasicBlock::iterator &NextMBBI) {
767 MachineInstr &MI = *MBBI;
768 unsigned Opcode = MI.getOpcode();
769 switch (Opcode) {
770 default:
771 break;
772
773 case AArch64::ADDWrr:
774 case AArch64::SUBWrr:
775 case AArch64::ADDXrr:
776 case AArch64::SUBXrr:
777 case AArch64::ADDSWrr:
778 case AArch64::SUBSWrr:
779 case AArch64::ADDSXrr:
780 case AArch64::SUBSXrr:
781 case AArch64::ANDWrr:
782 case AArch64::ANDXrr:
783 case AArch64::BICWrr:
784 case AArch64::BICXrr:
785 case AArch64::ANDSWrr:
786 case AArch64::ANDSXrr:
787 case AArch64::BICSWrr:
788 case AArch64::BICSXrr:
789 case AArch64::EONWrr:
790 case AArch64::EONXrr:
791 case AArch64::EORWrr:
792 case AArch64::EORXrr:
793 case AArch64::ORNWrr:
794 case AArch64::ORNXrr:
795 case AArch64::ORRWrr:
796 case AArch64::ORRXrr: {
797 unsigned Opcode;
798 switch (MI.getOpcode()) {
799 default:
800 return false;
801 case AArch64::ADDWrr: Opcode = AArch64::ADDWrs; break;
802 case AArch64::SUBWrr: Opcode = AArch64::SUBWrs; break;
803 case AArch64::ADDXrr: Opcode = AArch64::ADDXrs; break;
804 case AArch64::SUBXrr: Opcode = AArch64::SUBXrs; break;
805 case AArch64::ADDSWrr: Opcode = AArch64::ADDSWrs; break;
806 case AArch64::SUBSWrr: Opcode = AArch64::SUBSWrs; break;
807 case AArch64::ADDSXrr: Opcode = AArch64::ADDSXrs; break;
808 case AArch64::SUBSXrr: Opcode = AArch64::SUBSXrs; break;
809 case AArch64::ANDWrr: Opcode = AArch64::ANDWrs; break;
810 case AArch64::ANDXrr: Opcode = AArch64::ANDXrs; break;
811 case AArch64::BICWrr: Opcode = AArch64::BICWrs; break;
812 case AArch64::BICXrr: Opcode = AArch64::BICXrs; break;
813 case AArch64::ANDSWrr: Opcode = AArch64::ANDSWrs; break;
814 case AArch64::ANDSXrr: Opcode = AArch64::ANDSXrs; break;
815 case AArch64::BICSWrr: Opcode = AArch64::BICSWrs; break;
816 case AArch64::BICSXrr: Opcode = AArch64::BICSXrs; break;
817 case AArch64::EONWrr: Opcode = AArch64::EONWrs; break;
818 case AArch64::EONXrr: Opcode = AArch64::EONXrs; break;
819 case AArch64::EORWrr: Opcode = AArch64::EORWrs; break;
820 case AArch64::EORXrr: Opcode = AArch64::EORXrs; break;
821 case AArch64::ORNWrr: Opcode = AArch64::ORNWrs; break;
822 case AArch64::ORNXrr: Opcode = AArch64::ORNXrs; break;
823 case AArch64::ORRWrr: Opcode = AArch64::ORRWrs; break;
824 case AArch64::ORRXrr: Opcode = AArch64::ORRXrs; break;
825 }
826 MachineInstrBuilder MIB1 =
827 BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(Opcode),
828 MI.getOperand(0).getReg())
829 .add(MI.getOperand(1))
830 .add(MI.getOperand(2))
831 .addImm(AArch64_AM::getShifterImm(AArch64_AM::LSL, 0));
832 transferImpOps(MI, MIB1, MIB1);
833 MI.eraseFromParent();
834 return true;
835 }
836
837 case AArch64::LOADgot: {
838 // Expand into ADRP + LDR.
839 unsigned DstReg = MI.getOperand(0).getReg();
840 const MachineOperand &MO1 = MI.getOperand(1);
841 unsigned Flags = MO1.getTargetFlags();
842 MachineInstrBuilder MIB1 =
843 BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(AArch64::ADRP), DstReg);
844 MachineInstrBuilder MIB2 =
845 BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(AArch64::LDRXui))
846 .add(MI.getOperand(0))
847 .addReg(DstReg);
848
849 if (MO1.isGlobal()) {
850 MIB1.addGlobalAddress(MO1.getGlobal(), 0, Flags | AArch64II::MO_PAGE);
851 MIB2.addGlobalAddress(MO1.getGlobal(), 0,
852 Flags | AArch64II::MO_PAGEOFF | AArch64II::MO_NC);
853 } else if (MO1.isSymbol()) {
854 MIB1.addExternalSymbol(MO1.getSymbolName(), Flags | AArch64II::MO_PAGE);
855 MIB2.addExternalSymbol(MO1.getSymbolName(),
856 Flags | AArch64II::MO_PAGEOFF | AArch64II::MO_NC);
857 } else {
858 assert(MO1.isCPI() &&
859 "Only expect globals, externalsymbols, or constant pools");
860 MIB1.addConstantPoolIndex(MO1.getIndex(), MO1.getOffset(),
861 Flags | AArch64II::MO_PAGE);
862 MIB2.addConstantPoolIndex(MO1.getIndex(), MO1.getOffset(),
863 Flags | AArch64II::MO_PAGEOFF |
864 AArch64II::MO_NC);
865 }
866
867 transferImpOps(MI, MIB1, MIB2);
868 MI.eraseFromParent();
869 return true;
870 }
871
872 case AArch64::MOVaddr:
873 case AArch64::MOVaddrJT:
874 case AArch64::MOVaddrCP:
875 case AArch64::MOVaddrBA:
876 case AArch64::MOVaddrTLS:
877 case AArch64::MOVaddrEXT: {
878 // Expand into ADRP + ADD.
879 unsigned DstReg = MI.getOperand(0).getReg();
880 MachineInstrBuilder MIB1 =
881 BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(AArch64::ADRP), DstReg)
882 .add(MI.getOperand(1));
883
884 MachineInstrBuilder MIB2 =
885 BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(AArch64::ADDXri))
886 .add(MI.getOperand(0))
887 .addReg(DstReg)
888 .add(MI.getOperand(2))
889 .addImm(0);
890
891 transferImpOps(MI, MIB1, MIB2);
892 MI.eraseFromParent();
893 return true;
894 }
895 case AArch64::ADDlowTLS:
896 // Produce a plain ADD
897 BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(AArch64::ADDXri))
898 .add(MI.getOperand(0))
899 .add(MI.getOperand(1))
900 .add(MI.getOperand(2))
901 .addImm(0);
902 MI.eraseFromParent();
903 return true;
904
905 case AArch64::MOVbaseTLS: {
906 unsigned DstReg = MI.getOperand(0).getReg();
907 auto SysReg = AArch64SysReg::TPIDR_EL0;
908 MachineFunction *MF = MBB.getParent();
909 if (MF->getTarget().getTargetTriple().isOSFuchsia() &&
910 MF->getTarget().getCodeModel() == CodeModel::Kernel)
911 SysReg = AArch64SysReg::TPIDR_EL1;
912 BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(AArch64::MRS), DstReg)
913 .addImm(SysReg);
914 MI.eraseFromParent();
915 return true;
916 }
917
918 case AArch64::MOVi32imm:
919 return expandMOVImm(MBB, MBBI, 32);
920 case AArch64::MOVi64imm:
921 return expandMOVImm(MBB, MBBI, 64);
922 case AArch64::RET_ReallyLR: {
923 // Hiding the LR use with RET_ReallyLR may lead to extra kills in the
924 // function and missing live-ins. We are fine in practice because callee
925 // saved register handling ensures the register value is restored before
926 // RET, but we need the undef flag here to appease the MachineVerifier
927 // liveness checks.
928 MachineInstrBuilder MIB =
929 BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(AArch64::RET))
930 .addReg(AArch64::LR, RegState::Undef);
931 transferImpOps(MI, MIB, MIB);
932 MI.eraseFromParent();
933 return true;
934 }
935 case AArch64::CMP_SWAP_8:
936 return expandCMP_SWAP(MBB, MBBI, AArch64::LDAXRB, AArch64::STLXRB,
937 AArch64::SUBSWrx,
938 AArch64_AM::getArithExtendImm(AArch64_AM::UXTB, 0),
939 AArch64::WZR, NextMBBI);
940 case AArch64::CMP_SWAP_16:
941 return expandCMP_SWAP(MBB, MBBI, AArch64::LDAXRH, AArch64::STLXRH,
942 AArch64::SUBSWrx,
943 AArch64_AM::getArithExtendImm(AArch64_AM::UXTH, 0),
944 AArch64::WZR, NextMBBI);
945 case AArch64::CMP_SWAP_32:
946 return expandCMP_SWAP(MBB, MBBI, AArch64::LDAXRW, AArch64::STLXRW,
947 AArch64::SUBSWrs,
948 AArch64_AM::getShifterImm(AArch64_AM::LSL, 0),
949 AArch64::WZR, NextMBBI);
950 case AArch64::CMP_SWAP_64:
951 return expandCMP_SWAP(MBB, MBBI,
952 AArch64::LDAXRX, AArch64::STLXRX, AArch64::SUBSXrs,
953 AArch64_AM::getShifterImm(AArch64_AM::LSL, 0),
954 AArch64::XZR, NextMBBI);
955 case AArch64::CMP_SWAP_128:
956 return expandCMP_SWAP_128(MBB, MBBI, NextMBBI);
957
958 case AArch64::AESMCrrTied:
959 case AArch64::AESIMCrrTied: {
960 MachineInstrBuilder MIB =
961 BuildMI(MBB, MBBI, MI.getDebugLoc(),
962 TII->get(Opcode == AArch64::AESMCrrTied ? AArch64::AESMCrr :
963 AArch64::AESIMCrr))
964 .add(MI.getOperand(0))
965 .add(MI.getOperand(1));
966 transferImpOps(MI, MIB, MIB);
967 MI.eraseFromParent();
968 return true;
969 }
970 }
971 return false;
972 }
973
974 /// Iterate over the instructions in basic block MBB and expand any
975 /// pseudo instructions. Return true if anything was modified.
expandMBB(MachineBasicBlock & MBB)976 bool AArch64ExpandPseudo::expandMBB(MachineBasicBlock &MBB) {
977 bool Modified = false;
978
979 MachineBasicBlock::iterator MBBI = MBB.begin(), E = MBB.end();
980 while (MBBI != E) {
981 MachineBasicBlock::iterator NMBBI = std::next(MBBI);
982 Modified |= expandMI(MBB, MBBI, NMBBI);
983 MBBI = NMBBI;
984 }
985
986 return Modified;
987 }
988
runOnMachineFunction(MachineFunction & MF)989 bool AArch64ExpandPseudo::runOnMachineFunction(MachineFunction &MF) {
990 TII = static_cast<const AArch64InstrInfo *>(MF.getSubtarget().getInstrInfo());
991
992 bool Modified = false;
993 for (auto &MBB : MF)
994 Modified |= expandMBB(MBB);
995 return Modified;
996 }
997
998 /// Returns an instance of the pseudo instruction expansion pass.
createAArch64ExpandPseudoPass()999 FunctionPass *llvm::createAArch64ExpandPseudoPass() {
1000 return new AArch64ExpandPseudo();
1001 }
1002