1 //
2 // The LLVM Compiler Infrastructure
3 //
4 // This file is distributed under the University of Illinois Open Source
5 // License. See LICENSE.TXT for details.
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains a pass that performs optimization on SIMD instructions
10 // with high latency by splitting them into more efficient series of
11 // instructions.
12 //
13 // 1. Rewrite certain SIMD instructions with vector element due to their
14 // inefficiency on some targets.
15 //
16 // For example:
17 // fmla v0.4s, v1.4s, v2.s[1]
18 //
19 // Is rewritten into:
20 // dup v3.4s, v2.s[1]
21 // fmla v0.4s, v1.4s, v3.4s
22 //
23 // 2. Rewrite interleaved memory access instructions due to their
24 // inefficiency on some targets.
25 //
26 // For example:
27 // st2 {v0.4s, v1.4s}, addr
28 //
29 // Is rewritten into:
30 // zip1 v2.4s, v0.4s, v1.4s
31 // zip2 v3.4s, v0.4s, v1.4s
32 // stp q2, q3, addr
33 //
34 //===----------------------------------------------------------------------===//
35
36 #include "AArch64InstrInfo.h"
37 #include "llvm/ADT/SmallVector.h"
38 #include "llvm/ADT/Statistic.h"
39 #include "llvm/ADT/StringRef.h"
40 #include "llvm/CodeGen/MachineBasicBlock.h"
41 #include "llvm/CodeGen/MachineFunction.h"
42 #include "llvm/CodeGen/MachineFunctionPass.h"
43 #include "llvm/CodeGen/MachineInstr.h"
44 #include "llvm/CodeGen/MachineInstrBuilder.h"
45 #include "llvm/CodeGen/MachineOperand.h"
46 #include "llvm/CodeGen/MachineRegisterInfo.h"
47 #include "llvm/CodeGen/TargetInstrInfo.h"
48 #include "llvm/CodeGen/TargetSchedule.h"
49 #include "llvm/CodeGen/TargetSubtargetInfo.h"
50 #include "llvm/MC/MCInstrDesc.h"
51 #include "llvm/MC/MCSchedule.h"
52 #include "llvm/Pass.h"
53 #include <unordered_map>
54
55 using namespace llvm;
56
57 #define DEBUG_TYPE "aarch64-simdinstr-opt"
58
59 STATISTIC(NumModifiedInstr,
60 "Number of SIMD instructions modified");
61
62 #define AARCH64_VECTOR_BY_ELEMENT_OPT_NAME \
63 "AArch64 SIMD instructions optimization pass"
64
65 namespace {
66
67 struct AArch64SIMDInstrOpt : public MachineFunctionPass {
68 static char ID;
69
70 const TargetInstrInfo *TII;
71 MachineRegisterInfo *MRI;
72 TargetSchedModel SchedModel;
73
74 // The two maps below are used to cache decisions instead of recomputing:
75 // This is used to cache instruction replacement decisions within function
76 // units and across function units.
77 std::map<std::pair<unsigned, std::string>, bool> SIMDInstrTable;
78 // This is used to cache the decision of whether to leave the interleaved
79 // store instructions replacement pass early or not for a particular target.
80 std::unordered_map<std::string, bool> InterlEarlyExit;
81
82 typedef enum {
83 VectorElem,
84 Interleave
85 } Subpass;
86
87 // Instruction represented by OrigOpc is replaced by instructions in ReplOpc.
88 struct InstReplInfo {
89 unsigned OrigOpc;
90 std::vector<unsigned> ReplOpc;
91 const TargetRegisterClass RC;
92 };
93
94 #define RuleST2(OpcOrg, OpcR0, OpcR1, OpcR2, RC) \
95 {OpcOrg, {OpcR0, OpcR1, OpcR2}, RC}
96 #define RuleST4(OpcOrg, OpcR0, OpcR1, OpcR2, OpcR3, OpcR4, OpcR5, OpcR6, \
97 OpcR7, OpcR8, OpcR9, RC) \
98 {OpcOrg, \
99 {OpcR0, OpcR1, OpcR2, OpcR3, OpcR4, OpcR5, OpcR6, OpcR7, OpcR8, OpcR9}, RC}
100
101 // The Instruction Replacement Table:
102 std::vector<InstReplInfo> IRT = {
103 // ST2 instructions
104 RuleST2(AArch64::ST2Twov2d, AArch64::ZIP1v2i64, AArch64::ZIP2v2i64,
105 AArch64::STPQi, AArch64::FPR128RegClass),
106 RuleST2(AArch64::ST2Twov4s, AArch64::ZIP1v4i32, AArch64::ZIP2v4i32,
107 AArch64::STPQi, AArch64::FPR128RegClass),
108 RuleST2(AArch64::ST2Twov2s, AArch64::ZIP1v2i32, AArch64::ZIP2v2i32,
109 AArch64::STPDi, AArch64::FPR64RegClass),
110 RuleST2(AArch64::ST2Twov8h, AArch64::ZIP1v8i16, AArch64::ZIP2v8i16,
111 AArch64::STPQi, AArch64::FPR128RegClass),
112 RuleST2(AArch64::ST2Twov4h, AArch64::ZIP1v4i16, AArch64::ZIP2v4i16,
113 AArch64::STPDi, AArch64::FPR64RegClass),
114 RuleST2(AArch64::ST2Twov16b, AArch64::ZIP1v16i8, AArch64::ZIP2v16i8,
115 AArch64::STPQi, AArch64::FPR128RegClass),
116 RuleST2(AArch64::ST2Twov8b, AArch64::ZIP1v8i8, AArch64::ZIP2v8i8,
117 AArch64::STPDi, AArch64::FPR64RegClass),
118 // ST4 instructions
119 RuleST4(AArch64::ST4Fourv2d, AArch64::ZIP1v2i64, AArch64::ZIP2v2i64,
120 AArch64::ZIP1v2i64, AArch64::ZIP2v2i64, AArch64::ZIP1v2i64,
121 AArch64::ZIP2v2i64, AArch64::ZIP1v2i64, AArch64::ZIP2v2i64,
122 AArch64::STPQi, AArch64::STPQi, AArch64::FPR128RegClass),
123 RuleST4(AArch64::ST4Fourv4s, AArch64::ZIP1v4i32, AArch64::ZIP2v4i32,
124 AArch64::ZIP1v4i32, AArch64::ZIP2v4i32, AArch64::ZIP1v4i32,
125 AArch64::ZIP2v4i32, AArch64::ZIP1v4i32, AArch64::ZIP2v4i32,
126 AArch64::STPQi, AArch64::STPQi, AArch64::FPR128RegClass),
127 RuleST4(AArch64::ST4Fourv2s, AArch64::ZIP1v2i32, AArch64::ZIP2v2i32,
128 AArch64::ZIP1v2i32, AArch64::ZIP2v2i32, AArch64::ZIP1v2i32,
129 AArch64::ZIP2v2i32, AArch64::ZIP1v2i32, AArch64::ZIP2v2i32,
130 AArch64::STPDi, AArch64::STPDi, AArch64::FPR64RegClass),
131 RuleST4(AArch64::ST4Fourv8h, AArch64::ZIP1v8i16, AArch64::ZIP2v8i16,
132 AArch64::ZIP1v8i16, AArch64::ZIP2v8i16, AArch64::ZIP1v8i16,
133 AArch64::ZIP2v8i16, AArch64::ZIP1v8i16, AArch64::ZIP2v8i16,
134 AArch64::STPQi, AArch64::STPQi, AArch64::FPR128RegClass),
135 RuleST4(AArch64::ST4Fourv4h, AArch64::ZIP1v4i16, AArch64::ZIP2v4i16,
136 AArch64::ZIP1v4i16, AArch64::ZIP2v4i16, AArch64::ZIP1v4i16,
137 AArch64::ZIP2v4i16, AArch64::ZIP1v4i16, AArch64::ZIP2v4i16,
138 AArch64::STPDi, AArch64::STPDi, AArch64::FPR64RegClass),
139 RuleST4(AArch64::ST4Fourv16b, AArch64::ZIP1v16i8, AArch64::ZIP2v16i8,
140 AArch64::ZIP1v16i8, AArch64::ZIP2v16i8, AArch64::ZIP1v16i8,
141 AArch64::ZIP2v16i8, AArch64::ZIP1v16i8, AArch64::ZIP2v16i8,
142 AArch64::STPQi, AArch64::STPQi, AArch64::FPR128RegClass),
143 RuleST4(AArch64::ST4Fourv8b, AArch64::ZIP1v8i8, AArch64::ZIP2v8i8,
144 AArch64::ZIP1v8i8, AArch64::ZIP2v8i8, AArch64::ZIP1v8i8,
145 AArch64::ZIP2v8i8, AArch64::ZIP1v8i8, AArch64::ZIP2v8i8,
146 AArch64::STPDi, AArch64::STPDi, AArch64::FPR64RegClass)
147 };
148
149 // A costly instruction is replaced in this work by N efficient instructions
150 // The maximum of N is curently 10 and it is for ST4 case.
151 static const unsigned MaxNumRepl = 10;
152
AArch64SIMDInstrOpt__anone8e5f8710111::AArch64SIMDInstrOpt153 AArch64SIMDInstrOpt() : MachineFunctionPass(ID) {
154 initializeAArch64SIMDInstrOptPass(*PassRegistry::getPassRegistry());
155 }
156
157 /// Based only on latency of instructions, determine if it is cost efficient
158 /// to replace the instruction InstDesc by the instructions stored in the
159 /// array InstDescRepl.
160 /// Return true if replacement is expected to be faster.
161 bool shouldReplaceInst(MachineFunction *MF, const MCInstrDesc *InstDesc,
162 SmallVectorImpl<const MCInstrDesc*> &ReplInstrMCID);
163
164 /// Determine if we need to exit the instruction replacement optimization
165 /// passes early. This makes sure that no compile time is spent in this pass
166 /// for targets with no need for any of these optimizations.
167 /// Return true if early exit of the pass is recommended.
168 bool shouldExitEarly(MachineFunction *MF, Subpass SP);
169
170 /// Check whether an equivalent DUP instruction has already been
171 /// created or not.
172 /// Return true when the DUP instruction already exists. In this case,
173 /// DestReg will point to the destination of the already created DUP.
174 bool reuseDUP(MachineInstr &MI, unsigned DupOpcode, unsigned SrcReg,
175 unsigned LaneNumber, unsigned *DestReg) const;
176
177 /// Certain SIMD instructions with vector element operand are not efficient.
178 /// Rewrite them into SIMD instructions with vector operands. This rewrite
179 /// is driven by the latency of the instructions.
180 /// Return true if the SIMD instruction is modified.
181 bool optimizeVectElement(MachineInstr &MI);
182
183 /// Process The REG_SEQUENCE instruction, and extract the source
184 /// operands of the ST2/4 instruction from it.
185 /// Example of such instructions.
186 /// %dest = REG_SEQUENCE %st2_src1, dsub0, %st2_src2, dsub1;
187 /// Return true when the instruction is processed successfully.
188 bool processSeqRegInst(MachineInstr *DefiningMI, unsigned* StReg,
189 unsigned* StRegKill, unsigned NumArg) const;
190
191 /// Load/Store Interleaving instructions are not always beneficial.
192 /// Replace them by ZIP instructionand classical load/store.
193 /// Return true if the SIMD instruction is modified.
194 bool optimizeLdStInterleave(MachineInstr &MI);
195
196 /// Return the number of useful source registers for this
197 /// instruction (2 for ST2 and 4 for ST4).
198 unsigned determineSrcReg(MachineInstr &MI) const;
199
200 bool runOnMachineFunction(MachineFunction &Fn) override;
201
getPassName__anone8e5f8710111::AArch64SIMDInstrOpt202 StringRef getPassName() const override {
203 return AARCH64_VECTOR_BY_ELEMENT_OPT_NAME;
204 }
205 };
206
207 char AArch64SIMDInstrOpt::ID = 0;
208
209 } // end anonymous namespace
210
211 INITIALIZE_PASS(AArch64SIMDInstrOpt, "aarch64-simdinstr-opt",
212 AARCH64_VECTOR_BY_ELEMENT_OPT_NAME, false, false)
213
214 /// Based only on latency of instructions, determine if it is cost efficient
215 /// to replace the instruction InstDesc by the instructions stored in the
216 /// array InstDescRepl.
217 /// Return true if replacement is expected to be faster.
218 bool AArch64SIMDInstrOpt::
shouldReplaceInst(MachineFunction * MF,const MCInstrDesc * InstDesc,SmallVectorImpl<const MCInstrDesc * > & InstDescRepl)219 shouldReplaceInst(MachineFunction *MF, const MCInstrDesc *InstDesc,
220 SmallVectorImpl<const MCInstrDesc*> &InstDescRepl) {
221 // Check if replacement decision is already available in the cached table.
222 // if so, return it.
223 std::string Subtarget = SchedModel.getSubtargetInfo()->getCPU();
224 auto InstID = std::make_pair(InstDesc->getOpcode(), Subtarget);
225 if (SIMDInstrTable.find(InstID) != SIMDInstrTable.end())
226 return SIMDInstrTable[InstID];
227
228 unsigned SCIdx = InstDesc->getSchedClass();
229 const MCSchedClassDesc *SCDesc =
230 SchedModel.getMCSchedModel()->getSchedClassDesc(SCIdx);
231
232 // If a target does not define resources for the instructions
233 // of interest, then return false for no replacement.
234 const MCSchedClassDesc *SCDescRepl;
235 if (!SCDesc->isValid() || SCDesc->isVariant())
236 {
237 SIMDInstrTable[InstID] = false;
238 return false;
239 }
240 for (auto IDesc : InstDescRepl)
241 {
242 SCDescRepl = SchedModel.getMCSchedModel()->getSchedClassDesc(
243 IDesc->getSchedClass());
244 if (!SCDescRepl->isValid() || SCDescRepl->isVariant())
245 {
246 SIMDInstrTable[InstID] = false;
247 return false;
248 }
249 }
250
251 // Replacement cost.
252 unsigned ReplCost = 0;
253 for (auto IDesc :InstDescRepl)
254 ReplCost += SchedModel.computeInstrLatency(IDesc->getOpcode());
255
256 if (SchedModel.computeInstrLatency(InstDesc->getOpcode()) > ReplCost)
257 {
258 SIMDInstrTable[InstID] = true;
259 return true;
260 }
261 else
262 {
263 SIMDInstrTable[InstID] = false;
264 return false;
265 }
266 }
267
268 /// Determine if we need to exit this pass for a kind of instruction replacement
269 /// early. This makes sure that no compile time is spent in this pass for
270 /// targets with no need for any of these optimizations beyond performing this
271 /// check.
272 /// Return true if early exit of this pass for a kind of instruction
273 /// replacement is recommended for a target.
shouldExitEarly(MachineFunction * MF,Subpass SP)274 bool AArch64SIMDInstrOpt::shouldExitEarly(MachineFunction *MF, Subpass SP) {
275 const MCInstrDesc* OriginalMCID;
276 SmallVector<const MCInstrDesc*, MaxNumRepl> ReplInstrMCID;
277
278 switch (SP) {
279 // For this optimization, check by comparing the latency of a representative
280 // instruction to that of the replacement instructions.
281 // TODO: check for all concerned instructions.
282 case VectorElem:
283 OriginalMCID = &TII->get(AArch64::FMLAv4i32_indexed);
284 ReplInstrMCID.push_back(&TII->get(AArch64::DUPv4i32lane));
285 ReplInstrMCID.push_back(&TII->get(AArch64::FMLAv4f32));
286 if (shouldReplaceInst(MF, OriginalMCID, ReplInstrMCID))
287 return false;
288 break;
289
290 // For this optimization, check for all concerned instructions.
291 case Interleave:
292 std::string Subtarget = SchedModel.getSubtargetInfo()->getCPU();
293 if (InterlEarlyExit.find(Subtarget) != InterlEarlyExit.end())
294 return InterlEarlyExit[Subtarget];
295
296 for (auto &I : IRT) {
297 OriginalMCID = &TII->get(I.OrigOpc);
298 for (auto &Repl : I.ReplOpc)
299 ReplInstrMCID.push_back(&TII->get(Repl));
300 if (shouldReplaceInst(MF, OriginalMCID, ReplInstrMCID)) {
301 InterlEarlyExit[Subtarget] = false;
302 return false;
303 }
304 ReplInstrMCID.clear();
305 }
306 InterlEarlyExit[Subtarget] = true;
307 break;
308 }
309
310 return true;
311 }
312
313 /// Check whether an equivalent DUP instruction has already been
314 /// created or not.
315 /// Return true when the DUP instruction already exists. In this case,
316 /// DestReg will point to the destination of the already created DUP.
reuseDUP(MachineInstr & MI,unsigned DupOpcode,unsigned SrcReg,unsigned LaneNumber,unsigned * DestReg) const317 bool AArch64SIMDInstrOpt::reuseDUP(MachineInstr &MI, unsigned DupOpcode,
318 unsigned SrcReg, unsigned LaneNumber,
319 unsigned *DestReg) const {
320 for (MachineBasicBlock::iterator MII = MI, MIE = MI.getParent()->begin();
321 MII != MIE;) {
322 MII--;
323 MachineInstr *CurrentMI = &*MII;
324
325 if (CurrentMI->getOpcode() == DupOpcode &&
326 CurrentMI->getNumOperands() == 3 &&
327 CurrentMI->getOperand(1).getReg() == SrcReg &&
328 CurrentMI->getOperand(2).getImm() == LaneNumber) {
329 *DestReg = CurrentMI->getOperand(0).getReg();
330 return true;
331 }
332 }
333
334 return false;
335 }
336
337 /// Certain SIMD instructions with vector element operand are not efficient.
338 /// Rewrite them into SIMD instructions with vector operands. This rewrite
339 /// is driven by the latency of the instructions.
340 /// The instruction of concerns are for the time being FMLA, FMLS, FMUL,
341 /// and FMULX and hence they are hardcoded.
342 ///
343 /// For example:
344 /// fmla v0.4s, v1.4s, v2.s[1]
345 ///
346 /// Is rewritten into
347 /// dup v3.4s, v2.s[1] // DUP not necessary if redundant
348 /// fmla v0.4s, v1.4s, v3.4s
349 ///
350 /// Return true if the SIMD instruction is modified.
optimizeVectElement(MachineInstr & MI)351 bool AArch64SIMDInstrOpt::optimizeVectElement(MachineInstr &MI) {
352 const MCInstrDesc *MulMCID, *DupMCID;
353 const TargetRegisterClass *RC = &AArch64::FPR128RegClass;
354
355 switch (MI.getOpcode()) {
356 default:
357 return false;
358
359 // 4X32 instructions
360 case AArch64::FMLAv4i32_indexed:
361 DupMCID = &TII->get(AArch64::DUPv4i32lane);
362 MulMCID = &TII->get(AArch64::FMLAv4f32);
363 break;
364 case AArch64::FMLSv4i32_indexed:
365 DupMCID = &TII->get(AArch64::DUPv4i32lane);
366 MulMCID = &TII->get(AArch64::FMLSv4f32);
367 break;
368 case AArch64::FMULXv4i32_indexed:
369 DupMCID = &TII->get(AArch64::DUPv4i32lane);
370 MulMCID = &TII->get(AArch64::FMULXv4f32);
371 break;
372 case AArch64::FMULv4i32_indexed:
373 DupMCID = &TII->get(AArch64::DUPv4i32lane);
374 MulMCID = &TII->get(AArch64::FMULv4f32);
375 break;
376
377 // 2X64 instructions
378 case AArch64::FMLAv2i64_indexed:
379 DupMCID = &TII->get(AArch64::DUPv2i64lane);
380 MulMCID = &TII->get(AArch64::FMLAv2f64);
381 break;
382 case AArch64::FMLSv2i64_indexed:
383 DupMCID = &TII->get(AArch64::DUPv2i64lane);
384 MulMCID = &TII->get(AArch64::FMLSv2f64);
385 break;
386 case AArch64::FMULXv2i64_indexed:
387 DupMCID = &TII->get(AArch64::DUPv2i64lane);
388 MulMCID = &TII->get(AArch64::FMULXv2f64);
389 break;
390 case AArch64::FMULv2i64_indexed:
391 DupMCID = &TII->get(AArch64::DUPv2i64lane);
392 MulMCID = &TII->get(AArch64::FMULv2f64);
393 break;
394
395 // 2X32 instructions
396 case AArch64::FMLAv2i32_indexed:
397 RC = &AArch64::FPR64RegClass;
398 DupMCID = &TII->get(AArch64::DUPv2i32lane);
399 MulMCID = &TII->get(AArch64::FMLAv2f32);
400 break;
401 case AArch64::FMLSv2i32_indexed:
402 RC = &AArch64::FPR64RegClass;
403 DupMCID = &TII->get(AArch64::DUPv2i32lane);
404 MulMCID = &TII->get(AArch64::FMLSv2f32);
405 break;
406 case AArch64::FMULXv2i32_indexed:
407 RC = &AArch64::FPR64RegClass;
408 DupMCID = &TII->get(AArch64::DUPv2i32lane);
409 MulMCID = &TII->get(AArch64::FMULXv2f32);
410 break;
411 case AArch64::FMULv2i32_indexed:
412 RC = &AArch64::FPR64RegClass;
413 DupMCID = &TII->get(AArch64::DUPv2i32lane);
414 MulMCID = &TII->get(AArch64::FMULv2f32);
415 break;
416 }
417
418 SmallVector<const MCInstrDesc*, 2> ReplInstrMCID;
419 ReplInstrMCID.push_back(DupMCID);
420 ReplInstrMCID.push_back(MulMCID);
421 if (!shouldReplaceInst(MI.getParent()->getParent(), &TII->get(MI.getOpcode()),
422 ReplInstrMCID))
423 return false;
424
425 const DebugLoc &DL = MI.getDebugLoc();
426 MachineBasicBlock &MBB = *MI.getParent();
427 MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
428
429 // Get the operands of the current SIMD arithmetic instruction.
430 unsigned MulDest = MI.getOperand(0).getReg();
431 unsigned SrcReg0 = MI.getOperand(1).getReg();
432 unsigned Src0IsKill = getKillRegState(MI.getOperand(1).isKill());
433 unsigned SrcReg1 = MI.getOperand(2).getReg();
434 unsigned Src1IsKill = getKillRegState(MI.getOperand(2).isKill());
435 unsigned DupDest;
436
437 // Instructions of interest have either 4 or 5 operands.
438 if (MI.getNumOperands() == 5) {
439 unsigned SrcReg2 = MI.getOperand(3).getReg();
440 unsigned Src2IsKill = getKillRegState(MI.getOperand(3).isKill());
441 unsigned LaneNumber = MI.getOperand(4).getImm();
442 // Create a new DUP instruction. Note that if an equivalent DUP instruction
443 // has already been created before, then use that one instead of creating
444 // a new one.
445 if (!reuseDUP(MI, DupMCID->getOpcode(), SrcReg2, LaneNumber, &DupDest)) {
446 DupDest = MRI.createVirtualRegister(RC);
447 BuildMI(MBB, MI, DL, *DupMCID, DupDest)
448 .addReg(SrcReg2, Src2IsKill)
449 .addImm(LaneNumber);
450 }
451 BuildMI(MBB, MI, DL, *MulMCID, MulDest)
452 .addReg(SrcReg0, Src0IsKill)
453 .addReg(SrcReg1, Src1IsKill)
454 .addReg(DupDest, Src2IsKill);
455 } else if (MI.getNumOperands() == 4) {
456 unsigned LaneNumber = MI.getOperand(3).getImm();
457 if (!reuseDUP(MI, DupMCID->getOpcode(), SrcReg1, LaneNumber, &DupDest)) {
458 DupDest = MRI.createVirtualRegister(RC);
459 BuildMI(MBB, MI, DL, *DupMCID, DupDest)
460 .addReg(SrcReg1, Src1IsKill)
461 .addImm(LaneNumber);
462 }
463 BuildMI(MBB, MI, DL, *MulMCID, MulDest)
464 .addReg(SrcReg0, Src0IsKill)
465 .addReg(DupDest, Src1IsKill);
466 } else {
467 return false;
468 }
469
470 ++NumModifiedInstr;
471 return true;
472 }
473
474 /// Load/Store Interleaving instructions are not always beneficial.
475 /// Replace them by ZIP instructions and classical load/store.
476 ///
477 /// For example:
478 /// st2 {v0.4s, v1.4s}, addr
479 ///
480 /// Is rewritten into:
481 /// zip1 v2.4s, v0.4s, v1.4s
482 /// zip2 v3.4s, v0.4s, v1.4s
483 /// stp q2, q3, addr
484 //
485 /// For example:
486 /// st4 {v0.4s, v1.4s, v2.4s, v3.4s}, addr
487 ///
488 /// Is rewritten into:
489 /// zip1 v4.4s, v0.4s, v2.4s
490 /// zip2 v5.4s, v0.4s, v2.4s
491 /// zip1 v6.4s, v1.4s, v3.4s
492 /// zip2 v7.4s, v1.4s, v3.4s
493 /// zip1 v8.4s, v4.4s, v6.4s
494 /// zip2 v9.4s, v4.4s, v6.4s
495 /// zip1 v10.4s, v5.4s, v7.4s
496 /// zip2 v11.4s, v5.4s, v7.4s
497 /// stp q8, q9, addr
498 /// stp q10, q11, addr+32
499 ///
500 /// Currently only instructions related to ST2 and ST4 are considered.
501 /// Other may be added later.
502 /// Return true if the SIMD instruction is modified.
optimizeLdStInterleave(MachineInstr & MI)503 bool AArch64SIMDInstrOpt::optimizeLdStInterleave(MachineInstr &MI) {
504
505 unsigned SeqReg, AddrReg;
506 unsigned StReg[4], StRegKill[4];
507 MachineInstr *DefiningMI;
508 const DebugLoc &DL = MI.getDebugLoc();
509 MachineBasicBlock &MBB = *MI.getParent();
510 SmallVector<unsigned, MaxNumRepl> ZipDest;
511 SmallVector<const MCInstrDesc*, MaxNumRepl> ReplInstrMCID;
512
513 // If current instruction matches any of the rewriting rules, then
514 // gather information about parameters of the new instructions.
515 bool Match = false;
516 for (auto &I : IRT) {
517 if (MI.getOpcode() == I.OrigOpc) {
518 SeqReg = MI.getOperand(0).getReg();
519 AddrReg = MI.getOperand(1).getReg();
520 DefiningMI = MRI->getUniqueVRegDef(SeqReg);
521 unsigned NumReg = determineSrcReg(MI);
522 if (!processSeqRegInst(DefiningMI, StReg, StRegKill, NumReg))
523 return false;
524
525 for (auto &Repl : I.ReplOpc) {
526 ReplInstrMCID.push_back(&TII->get(Repl));
527 // Generate destination registers but only for non-store instruction.
528 if (Repl != AArch64::STPQi && Repl != AArch64::STPDi)
529 ZipDest.push_back(MRI->createVirtualRegister(&I.RC));
530 }
531 Match = true;
532 break;
533 }
534 }
535
536 if (!Match)
537 return false;
538
539 // Determine if it is profitable to replace MI by the series of instructions
540 // represented in ReplInstrMCID.
541 if (!shouldReplaceInst(MI.getParent()->getParent(), &TII->get(MI.getOpcode()),
542 ReplInstrMCID))
543 return false;
544
545 // Generate the replacement instructions composed of ZIP1, ZIP2, and STP (at
546 // this point, the code generation is hardcoded and does not rely on the IRT
547 // table used above given that code generation for ST2 replacement is somewhat
548 // different than for ST4 replacement. We could have added more info into the
549 // table related to how we build new instructions but we may be adding more
550 // complexity with that).
551 switch (MI.getOpcode()) {
552 default:
553 return false;
554
555 case AArch64::ST2Twov16b:
556 case AArch64::ST2Twov8b:
557 case AArch64::ST2Twov8h:
558 case AArch64::ST2Twov4h:
559 case AArch64::ST2Twov4s:
560 case AArch64::ST2Twov2s:
561 case AArch64::ST2Twov2d:
562 // ZIP instructions
563 BuildMI(MBB, MI, DL, *ReplInstrMCID[0], ZipDest[0])
564 .addReg(StReg[0])
565 .addReg(StReg[1]);
566 BuildMI(MBB, MI, DL, *ReplInstrMCID[1], ZipDest[1])
567 .addReg(StReg[0], StRegKill[0])
568 .addReg(StReg[1], StRegKill[1]);
569 // STP instructions
570 BuildMI(MBB, MI, DL, *ReplInstrMCID[2])
571 .addReg(ZipDest[0])
572 .addReg(ZipDest[1])
573 .addReg(AddrReg)
574 .addImm(0);
575 break;
576
577 case AArch64::ST4Fourv16b:
578 case AArch64::ST4Fourv8b:
579 case AArch64::ST4Fourv8h:
580 case AArch64::ST4Fourv4h:
581 case AArch64::ST4Fourv4s:
582 case AArch64::ST4Fourv2s:
583 case AArch64::ST4Fourv2d:
584 // ZIP instructions
585 BuildMI(MBB, MI, DL, *ReplInstrMCID[0], ZipDest[0])
586 .addReg(StReg[0])
587 .addReg(StReg[2]);
588 BuildMI(MBB, MI, DL, *ReplInstrMCID[1], ZipDest[1])
589 .addReg(StReg[0], StRegKill[0])
590 .addReg(StReg[2], StRegKill[2]);
591 BuildMI(MBB, MI, DL, *ReplInstrMCID[2], ZipDest[2])
592 .addReg(StReg[1])
593 .addReg(StReg[3]);
594 BuildMI(MBB, MI, DL, *ReplInstrMCID[3], ZipDest[3])
595 .addReg(StReg[1], StRegKill[1])
596 .addReg(StReg[3], StRegKill[3]);
597 BuildMI(MBB, MI, DL, *ReplInstrMCID[4], ZipDest[4])
598 .addReg(ZipDest[0])
599 .addReg(ZipDest[2]);
600 BuildMI(MBB, MI, DL, *ReplInstrMCID[5], ZipDest[5])
601 .addReg(ZipDest[0])
602 .addReg(ZipDest[2]);
603 BuildMI(MBB, MI, DL, *ReplInstrMCID[6], ZipDest[6])
604 .addReg(ZipDest[1])
605 .addReg(ZipDest[3]);
606 BuildMI(MBB, MI, DL, *ReplInstrMCID[7], ZipDest[7])
607 .addReg(ZipDest[1])
608 .addReg(ZipDest[3]);
609 // stp instructions
610 BuildMI(MBB, MI, DL, *ReplInstrMCID[8])
611 .addReg(ZipDest[4])
612 .addReg(ZipDest[5])
613 .addReg(AddrReg)
614 .addImm(0);
615 BuildMI(MBB, MI, DL, *ReplInstrMCID[9])
616 .addReg(ZipDest[6])
617 .addReg(ZipDest[7])
618 .addReg(AddrReg)
619 .addImm(2);
620 break;
621 }
622
623 ++NumModifiedInstr;
624 return true;
625 }
626
627 /// Process The REG_SEQUENCE instruction, and extract the source
628 /// operands of the ST2/4 instruction from it.
629 /// Example of such instruction.
630 /// %dest = REG_SEQUENCE %st2_src1, dsub0, %st2_src2, dsub1;
631 /// Return true when the instruction is processed successfully.
processSeqRegInst(MachineInstr * DefiningMI,unsigned * StReg,unsigned * StRegKill,unsigned NumArg) const632 bool AArch64SIMDInstrOpt::processSeqRegInst(MachineInstr *DefiningMI,
633 unsigned* StReg, unsigned* StRegKill, unsigned NumArg) const {
634 assert (DefiningMI != NULL);
635 if (DefiningMI->getOpcode() != AArch64::REG_SEQUENCE)
636 return false;
637
638 for (unsigned i=0; i<NumArg; i++) {
639 StReg[i] = DefiningMI->getOperand(2*i+1).getReg();
640 StRegKill[i] = getKillRegState(DefiningMI->getOperand(2*i+1).isKill());
641
642 // Sanity check for the other arguments.
643 if (DefiningMI->getOperand(2*i+2).isImm()) {
644 switch (DefiningMI->getOperand(2*i+2).getImm()) {
645 default:
646 return false;
647
648 case AArch64::dsub0:
649 case AArch64::dsub1:
650 case AArch64::dsub2:
651 case AArch64::dsub3:
652 case AArch64::qsub0:
653 case AArch64::qsub1:
654 case AArch64::qsub2:
655 case AArch64::qsub3:
656 break;
657 }
658 }
659 else
660 return false;
661 }
662 return true;
663 }
664
665 /// Return the number of useful source registers for this instruction
666 /// (2 for ST2 and 4 for ST4).
determineSrcReg(MachineInstr & MI) const667 unsigned AArch64SIMDInstrOpt::determineSrcReg(MachineInstr &MI) const {
668 switch (MI.getOpcode()) {
669 default:
670 llvm_unreachable("Unsupported instruction for this pass");
671
672 case AArch64::ST2Twov16b:
673 case AArch64::ST2Twov8b:
674 case AArch64::ST2Twov8h:
675 case AArch64::ST2Twov4h:
676 case AArch64::ST2Twov4s:
677 case AArch64::ST2Twov2s:
678 case AArch64::ST2Twov2d:
679 return 2;
680
681 case AArch64::ST4Fourv16b:
682 case AArch64::ST4Fourv8b:
683 case AArch64::ST4Fourv8h:
684 case AArch64::ST4Fourv4h:
685 case AArch64::ST4Fourv4s:
686 case AArch64::ST4Fourv2s:
687 case AArch64::ST4Fourv2d:
688 return 4;
689 }
690 }
691
runOnMachineFunction(MachineFunction & MF)692 bool AArch64SIMDInstrOpt::runOnMachineFunction(MachineFunction &MF) {
693 if (skipFunction(MF.getFunction()))
694 return false;
695
696 TII = MF.getSubtarget().getInstrInfo();
697 MRI = &MF.getRegInfo();
698 const TargetSubtargetInfo &ST = MF.getSubtarget();
699 const AArch64InstrInfo *AAII =
700 static_cast<const AArch64InstrInfo *>(ST.getInstrInfo());
701 if (!AAII)
702 return false;
703 SchedModel.init(&ST);
704 if (!SchedModel.hasInstrSchedModel())
705 return false;
706
707 bool Changed = false;
708 for (auto OptimizationKind : {VectorElem, Interleave}) {
709 if (!shouldExitEarly(&MF, OptimizationKind)) {
710 SmallVector<MachineInstr *, 8> RemoveMIs;
711 for (MachineBasicBlock &MBB : MF) {
712 for (MachineBasicBlock::iterator MII = MBB.begin(), MIE = MBB.end();
713 MII != MIE;) {
714 MachineInstr &MI = *MII;
715 bool InstRewrite;
716 if (OptimizationKind == VectorElem)
717 InstRewrite = optimizeVectElement(MI) ;
718 else
719 InstRewrite = optimizeLdStInterleave(MI);
720 if (InstRewrite) {
721 // Add MI to the list of instructions to be removed given that it
722 // has been replaced.
723 RemoveMIs.push_back(&MI);
724 Changed = true;
725 }
726 ++MII;
727 }
728 }
729 for (MachineInstr *MI : RemoveMIs)
730 MI->eraseFromParent();
731 }
732 }
733
734 return Changed;
735 }
736
737 /// Returns an instance of the high cost ASIMD instruction replacement
738 /// optimization pass.
createAArch64SIMDInstrOptPass()739 FunctionPass *llvm::createAArch64SIMDInstrOptPass() {
740 return new AArch64SIMDInstrOpt();
741 }
742