1 //===- AMDGPUUnifyDivergentExitNodes.cpp ----------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This is a variant of the UnifyDivergentExitNodes pass. Rather than ensuring
11 // there is at most one ret and one unreachable instruction, it ensures there is
12 // at most one divergent exiting block.
13 //
14 // StructurizeCFG can't deal with multi-exit regions formed by branches to
15 // multiple return nodes. It is not desirable to structurize regions with
16 // uniform branches, so unifying those to the same return block as divergent
17 // branches inhibits use of scalar branching. It still can't deal with the case
18 // where one branch goes to return, and one unreachable. Replace unreachable in
19 // this case with a return.
20 //
21 //===----------------------------------------------------------------------===//
22 
23 #include "AMDGPU.h"
24 #include "llvm/ADT/ArrayRef.h"
25 #include "llvm/ADT/SmallPtrSet.h"
26 #include "llvm/ADT/SmallVector.h"
27 #include "llvm/ADT/StringRef.h"
28 #include "llvm/Analysis/DivergenceAnalysis.h"
29 #include "llvm/Analysis/PostDominators.h"
30 #include "llvm/Analysis/TargetTransformInfo.h"
31 #include "llvm/Transforms/Utils/Local.h"
32 #include "llvm/IR/BasicBlock.h"
33 #include "llvm/IR/CFG.h"
34 #include "llvm/IR/Constants.h"
35 #include "llvm/IR/Function.h"
36 #include "llvm/IR/InstrTypes.h"
37 #include "llvm/IR/Instructions.h"
38 #include "llvm/IR/Intrinsics.h"
39 #include "llvm/IR/Type.h"
40 #include "llvm/Pass.h"
41 #include "llvm/Support/Casting.h"
42 #include "llvm/Transforms/Scalar.h"
43 #include "llvm/Transforms/Utils.h"
44 
45 using namespace llvm;
46 
47 #define DEBUG_TYPE "amdgpu-unify-divergent-exit-nodes"
48 
49 namespace {
50 
51 class AMDGPUUnifyDivergentExitNodes : public FunctionPass {
52 public:
53   static char ID; // Pass identification, replacement for typeid
54 
AMDGPUUnifyDivergentExitNodes()55   AMDGPUUnifyDivergentExitNodes() : FunctionPass(ID) {
56     initializeAMDGPUUnifyDivergentExitNodesPass(*PassRegistry::getPassRegistry());
57   }
58 
59   // We can preserve non-critical-edgeness when we unify function exit nodes
60   void getAnalysisUsage(AnalysisUsage &AU) const override;
61   bool runOnFunction(Function &F) override;
62 };
63 
64 } // end anonymous namespace
65 
66 char AMDGPUUnifyDivergentExitNodes::ID = 0;
67 
68 char &llvm::AMDGPUUnifyDivergentExitNodesID = AMDGPUUnifyDivergentExitNodes::ID;
69 
70 INITIALIZE_PASS_BEGIN(AMDGPUUnifyDivergentExitNodes, DEBUG_TYPE,
71                      "Unify divergent function exit nodes", false, false)
INITIALIZE_PASS_DEPENDENCY(PostDominatorTreeWrapperPass)72 INITIALIZE_PASS_DEPENDENCY(PostDominatorTreeWrapperPass)
73 INITIALIZE_PASS_DEPENDENCY(DivergenceAnalysis)
74 INITIALIZE_PASS_END(AMDGPUUnifyDivergentExitNodes, DEBUG_TYPE,
75                     "Unify divergent function exit nodes", false, false)
76 
77 void AMDGPUUnifyDivergentExitNodes::getAnalysisUsage(AnalysisUsage &AU) const{
78   // TODO: Preserve dominator tree.
79   AU.addRequired<PostDominatorTreeWrapperPass>();
80 
81   AU.addRequired<DivergenceAnalysis>();
82 
83   // No divergent values are changed, only blocks and branch edges.
84   AU.addPreserved<DivergenceAnalysis>();
85 
86   // We preserve the non-critical-edgeness property
87   AU.addPreservedID(BreakCriticalEdgesID);
88 
89   // This is a cluster of orthogonal Transforms
90   AU.addPreservedID(LowerSwitchID);
91   FunctionPass::getAnalysisUsage(AU);
92 
93   AU.addRequired<TargetTransformInfoWrapperPass>();
94 }
95 
96 /// \returns true if \p BB is reachable through only uniform branches.
97 /// XXX - Is there a more efficient way to find this?
isUniformlyReached(const DivergenceAnalysis & DA,BasicBlock & BB)98 static bool isUniformlyReached(const DivergenceAnalysis &DA,
99                                BasicBlock &BB) {
100   SmallVector<BasicBlock *, 8> Stack;
101   SmallPtrSet<BasicBlock *, 8> Visited;
102 
103   for (BasicBlock *Pred : predecessors(&BB))
104     Stack.push_back(Pred);
105 
106   while (!Stack.empty()) {
107     BasicBlock *Top = Stack.pop_back_val();
108     if (!DA.isUniform(Top->getTerminator()))
109       return false;
110 
111     for (BasicBlock *Pred : predecessors(Top)) {
112       if (Visited.insert(Pred).second)
113         Stack.push_back(Pred);
114     }
115   }
116 
117   return true;
118 }
119 
unifyReturnBlockSet(Function & F,ArrayRef<BasicBlock * > ReturningBlocks,const TargetTransformInfo & TTI,StringRef Name)120 static BasicBlock *unifyReturnBlockSet(Function &F,
121                                        ArrayRef<BasicBlock *> ReturningBlocks,
122                                        const TargetTransformInfo &TTI,
123                                        StringRef Name) {
124   // Otherwise, we need to insert a new basic block into the function, add a PHI
125   // nodes (if the function returns values), and convert all of the return
126   // instructions into unconditional branches.
127   BasicBlock *NewRetBlock = BasicBlock::Create(F.getContext(), Name, &F);
128 
129   PHINode *PN = nullptr;
130   if (F.getReturnType()->isVoidTy()) {
131     ReturnInst::Create(F.getContext(), nullptr, NewRetBlock);
132   } else {
133     // If the function doesn't return void... add a PHI node to the block...
134     PN = PHINode::Create(F.getReturnType(), ReturningBlocks.size(),
135                          "UnifiedRetVal");
136     NewRetBlock->getInstList().push_back(PN);
137     ReturnInst::Create(F.getContext(), PN, NewRetBlock);
138   }
139 
140   // Loop over all of the blocks, replacing the return instruction with an
141   // unconditional branch.
142   for (BasicBlock *BB : ReturningBlocks) {
143     // Add an incoming element to the PHI node for every return instruction that
144     // is merging into this new block...
145     if (PN)
146       PN->addIncoming(BB->getTerminator()->getOperand(0), BB);
147 
148     // Remove and delete the return inst.
149     BB->getTerminator()->eraseFromParent();
150     BranchInst::Create(NewRetBlock, BB);
151   }
152 
153   for (BasicBlock *BB : ReturningBlocks) {
154     // Cleanup possible branch to unconditional branch to the return.
155     simplifyCFG(BB, TTI, {2});
156   }
157 
158   return NewRetBlock;
159 }
160 
runOnFunction(Function & F)161 bool AMDGPUUnifyDivergentExitNodes::runOnFunction(Function &F) {
162   auto &PDT = getAnalysis<PostDominatorTreeWrapperPass>().getPostDomTree();
163   if (PDT.getRoots().size() <= 1)
164     return false;
165 
166   DivergenceAnalysis &DA = getAnalysis<DivergenceAnalysis>();
167 
168   // Loop over all of the blocks in a function, tracking all of the blocks that
169   // return.
170   SmallVector<BasicBlock *, 4> ReturningBlocks;
171   SmallVector<BasicBlock *, 4> UnreachableBlocks;
172 
173   // Dummy return block for infinite loop.
174   BasicBlock *DummyReturnBB = nullptr;
175 
176   for (BasicBlock *BB : PDT.getRoots()) {
177     if (isa<ReturnInst>(BB->getTerminator())) {
178       if (!isUniformlyReached(DA, *BB))
179         ReturningBlocks.push_back(BB);
180     } else if (isa<UnreachableInst>(BB->getTerminator())) {
181       if (!isUniformlyReached(DA, *BB))
182         UnreachableBlocks.push_back(BB);
183     } else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
184 
185       ConstantInt *BoolTrue = ConstantInt::getTrue(F.getContext());
186       if (DummyReturnBB == nullptr) {
187         DummyReturnBB = BasicBlock::Create(F.getContext(),
188                                            "DummyReturnBlock", &F);
189         Type *RetTy = F.getReturnType();
190         Value *RetVal = RetTy->isVoidTy() ? nullptr : UndefValue::get(RetTy);
191         ReturnInst::Create(F.getContext(), RetVal, DummyReturnBB);
192         ReturningBlocks.push_back(DummyReturnBB);
193       }
194 
195       if (BI->isUnconditional()) {
196         BasicBlock *LoopHeaderBB = BI->getSuccessor(0);
197         BI->eraseFromParent(); // Delete the unconditional branch.
198         // Add a new conditional branch with a dummy edge to the return block.
199         BranchInst::Create(LoopHeaderBB, DummyReturnBB, BoolTrue, BB);
200       } else { // Conditional branch.
201         // Create a new transition block to hold the conditional branch.
202         BasicBlock *TransitionBB = BasicBlock::Create(F.getContext(),
203                                                       "TransitionBlock", &F);
204 
205         // Move BI from BB to the new transition block.
206         BI->removeFromParent();
207         TransitionBB->getInstList().push_back(BI);
208 
209         // Create a branch that will always branch to the transition block.
210         BranchInst::Create(TransitionBB, DummyReturnBB, BoolTrue, BB);
211       }
212     }
213   }
214 
215   if (!UnreachableBlocks.empty()) {
216     BasicBlock *UnreachableBlock = nullptr;
217 
218     if (UnreachableBlocks.size() == 1) {
219       UnreachableBlock = UnreachableBlocks.front();
220     } else {
221       UnreachableBlock = BasicBlock::Create(F.getContext(),
222                                             "UnifiedUnreachableBlock", &F);
223       new UnreachableInst(F.getContext(), UnreachableBlock);
224 
225       for (BasicBlock *BB : UnreachableBlocks) {
226         // Remove and delete the unreachable inst.
227         BB->getTerminator()->eraseFromParent();
228         BranchInst::Create(UnreachableBlock, BB);
229       }
230     }
231 
232     if (!ReturningBlocks.empty()) {
233       // Don't create a new unreachable inst if we have a return. The
234       // structurizer/annotator can't handle the multiple exits
235 
236       Type *RetTy = F.getReturnType();
237       Value *RetVal = RetTy->isVoidTy() ? nullptr : UndefValue::get(RetTy);
238       // Remove and delete the unreachable inst.
239       UnreachableBlock->getTerminator()->eraseFromParent();
240 
241       Function *UnreachableIntrin =
242         Intrinsic::getDeclaration(F.getParent(), Intrinsic::amdgcn_unreachable);
243 
244       // Insert a call to an intrinsic tracking that this is an unreachable
245       // point, in case we want to kill the active lanes or something later.
246       CallInst::Create(UnreachableIntrin, {}, "", UnreachableBlock);
247 
248       // Don't create a scalar trap. We would only want to trap if this code was
249       // really reached, but a scalar trap would happen even if no lanes
250       // actually reached here.
251       ReturnInst::Create(F.getContext(), RetVal, UnreachableBlock);
252       ReturningBlocks.push_back(UnreachableBlock);
253     }
254   }
255 
256   // Now handle return blocks.
257   if (ReturningBlocks.empty())
258     return false; // No blocks return
259 
260   if (ReturningBlocks.size() == 1)
261     return false; // Already has a single return block
262 
263   const TargetTransformInfo &TTI
264     = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
265 
266   unifyReturnBlockSet(F, ReturningBlocks, TTI, "UnifiedReturnBlock");
267   return true;
268 }
269