1//===-- SIInstructions.td - SI Instruction Defintions ---------------------===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// This file was originally auto-generated from a GPU register header file and 10// all the instruction definitions were originally commented out. Instructions 11// that are not yet supported remain commented out. 12//===----------------------------------------------------------------------===// 13 14class GCNPat<dag pattern, dag result> : Pat<pattern, result>, GCNPredicateControl { 15 let SubtargetPredicate = isGCN; 16} 17 18include "VOPInstructions.td" 19include "SOPInstructions.td" 20include "SMInstructions.td" 21include "FLATInstructions.td" 22include "BUFInstructions.td" 23 24//===----------------------------------------------------------------------===// 25// EXP Instructions 26//===----------------------------------------------------------------------===// 27 28defm EXP : EXP_m<0, AMDGPUexport>; 29defm EXP_DONE : EXP_m<1, AMDGPUexport_done>; 30 31//===----------------------------------------------------------------------===// 32// VINTRP Instructions 33//===----------------------------------------------------------------------===// 34 35// Used to inject printing of "_e32" suffix for VI (there are "_e64" variants for VI) 36def VINTRPDst : VINTRPDstOperand <VGPR_32>; 37 38let Uses = [M0, EXEC] in { 39 40// FIXME: Specify SchedRW for VINTRP insturctions. 41 42multiclass V_INTERP_P1_F32_m : VINTRP_m < 43 0x00000000, 44 (outs VINTRPDst:$vdst), 45 (ins VGPR_32:$vsrc, Attr:$attr, AttrChan:$attrchan), 46 "v_interp_p1_f32$vdst, $vsrc, $attr$attrchan", 47 [(set f32:$vdst, (AMDGPUinterp_p1 f32:$vsrc, (i32 imm:$attrchan), 48 (i32 imm:$attr)))] 49>; 50 51let OtherPredicates = [has32BankLDS] in { 52 53defm V_INTERP_P1_F32 : V_INTERP_P1_F32_m; 54 55} // End OtherPredicates = [has32BankLDS] 56 57let OtherPredicates = [has16BankLDS], Constraints = "@earlyclobber $vdst", isAsmParserOnly=1 in { 58 59defm V_INTERP_P1_F32_16bank : V_INTERP_P1_F32_m; 60 61} // End OtherPredicates = [has32BankLDS], Constraints = "@earlyclobber $vdst", isAsmParserOnly=1 62 63let DisableEncoding = "$src0", Constraints = "$src0 = $vdst" in { 64 65defm V_INTERP_P2_F32 : VINTRP_m < 66 0x00000001, 67 (outs VINTRPDst:$vdst), 68 (ins VGPR_32:$src0, VGPR_32:$vsrc, Attr:$attr, AttrChan:$attrchan), 69 "v_interp_p2_f32$vdst, $vsrc, $attr$attrchan", 70 [(set f32:$vdst, (AMDGPUinterp_p2 f32:$src0, f32:$vsrc, (i32 imm:$attrchan), 71 (i32 imm:$attr)))]>; 72 73} // End DisableEncoding = "$src0", Constraints = "$src0 = $vdst" 74 75defm V_INTERP_MOV_F32 : VINTRP_m < 76 0x00000002, 77 (outs VINTRPDst:$vdst), 78 (ins InterpSlot:$vsrc, Attr:$attr, AttrChan:$attrchan), 79 "v_interp_mov_f32$vdst, $vsrc, $attr$attrchan", 80 [(set f32:$vdst, (AMDGPUinterp_mov (i32 imm:$vsrc), (i32 imm:$attrchan), 81 (i32 imm:$attr)))]>; 82 83} // End Uses = [M0, EXEC] 84 85//===----------------------------------------------------------------------===// 86// Pseudo Instructions 87//===----------------------------------------------------------------------===// 88def ATOMIC_FENCE : SPseudoInstSI< 89 (outs), (ins i32imm:$ordering, i32imm:$scope), 90 [(atomic_fence (i32 imm:$ordering), (i32 imm:$scope))], 91 "ATOMIC_FENCE $ordering, $scope"> { 92 let hasSideEffects = 1; 93 let maybeAtomic = 1; 94} 95 96let hasSideEffects = 0, mayLoad = 0, mayStore = 0, Uses = [EXEC] in { 97 98// For use in patterns 99def V_CNDMASK_B64_PSEUDO : VOP3Common <(outs VReg_64:$vdst), 100 (ins VSrc_b64:$src0, VSrc_b64:$src1, SSrc_b64:$src2), "", []> { 101 let isPseudo = 1; 102 let isCodeGenOnly = 1; 103 let usesCustomInserter = 1; 104} 105 106// 64-bit vector move instruction. This is mainly used by the 107// SIFoldOperands pass to enable folding of inline immediates. 108def V_MOV_B64_PSEUDO : VPseudoInstSI <(outs VReg_64:$vdst), 109 (ins VSrc_b64:$src0)>; 110 111// Pseudoinstruction for @llvm.amdgcn.wqm. It is turned into a copy after the 112// WQM pass processes it. 113def WQM : PseudoInstSI <(outs unknown:$vdst), (ins unknown:$src0)>; 114 115// Pseudoinstruction for @llvm.amdgcn.wwm. It is turned into a copy post-RA, so 116// that the @earlyclobber is respected. The @earlyclobber is to make sure that 117// the instruction that defines $src0 (which is run in WWM) doesn't 118// accidentally clobber inactive channels of $vdst. 119let Constraints = "@earlyclobber $vdst" in { 120def WWM : PseudoInstSI <(outs unknown:$vdst), (ins unknown:$src0)>; 121} 122 123} // End let hasSideEffects = 0, mayLoad = 0, mayStore = 0, Uses = [EXEC] 124 125def EXIT_WWM : SPseudoInstSI <(outs SReg_64:$sdst), (ins SReg_64:$src0)> { 126 let hasSideEffects = 0; 127 let mayLoad = 0; 128 let mayStore = 0; 129} 130 131// Invert the exec mask and overwrite the inactive lanes of dst with inactive, 132// restoring it after we're done. 133def V_SET_INACTIVE_B32 : VPseudoInstSI <(outs VGPR_32:$vdst), 134 (ins VGPR_32: $src, VSrc_b32:$inactive), 135 [(set i32:$vdst, (int_amdgcn_set_inactive i32:$src, i32:$inactive))]> { 136 let Constraints = "$src = $vdst"; 137} 138 139def V_SET_INACTIVE_B64 : VPseudoInstSI <(outs VReg_64:$vdst), 140 (ins VReg_64: $src, VSrc_b64:$inactive), 141 [(set i64:$vdst, (int_amdgcn_set_inactive i64:$src, i64:$inactive))]> { 142 let Constraints = "$src = $vdst"; 143} 144 145 146let usesCustomInserter = 1, Defs = [SCC] in { 147def S_ADD_U64_PSEUDO : SPseudoInstSI < 148 (outs SReg_64:$vdst), (ins SSrc_b64:$src0, SSrc_b64:$src1), 149 [(set SReg_64:$vdst, (add i64:$src0, i64:$src1))] 150>; 151 152def S_SUB_U64_PSEUDO : SPseudoInstSI < 153 (outs SReg_64:$vdst), (ins SSrc_b64:$src0, SSrc_b64:$src1), 154 [(set SReg_64:$vdst, (sub i64:$src0, i64:$src1))] 155>; 156 157def S_ADD_U64_CO_PSEUDO : SPseudoInstSI < 158 (outs SReg_64:$vdst, VOPDstS64:$sdst), (ins SSrc_b64:$src0, SSrc_b64:$src1) 159>; 160 161def S_SUB_U64_CO_PSEUDO : SPseudoInstSI < 162 (outs SReg_64:$vdst, VOPDstS64:$sdst), (ins SSrc_b64:$src0, SSrc_b64:$src1) 163>; 164 165} // End usesCustomInserter = 1, Defs = [SCC] 166 167let usesCustomInserter = 1, SALU = 1 in { 168def GET_GROUPSTATICSIZE : PseudoInstSI <(outs SReg_32:$sdst), (ins), 169 [(set SReg_32:$sdst, (int_amdgcn_groupstaticsize))]>; 170} // End let usesCustomInserter = 1, SALU = 1 171 172def S_MOV_B64_term : PseudoInstSI<(outs SReg_64:$dst), 173 (ins SSrc_b64:$src0)> { 174 let SALU = 1; 175 let isAsCheapAsAMove = 1; 176 let isTerminator = 1; 177} 178 179def S_XOR_B64_term : PseudoInstSI<(outs SReg_64:$dst), 180 (ins SSrc_b64:$src0, SSrc_b64:$src1)> { 181 let SALU = 1; 182 let isAsCheapAsAMove = 1; 183 let isTerminator = 1; 184 let Defs = [SCC]; 185} 186 187def S_ANDN2_B64_term : PseudoInstSI<(outs SReg_64:$dst), 188 (ins SSrc_b64:$src0, SSrc_b64:$src1)> { 189 let SALU = 1; 190 let isAsCheapAsAMove = 1; 191 let isTerminator = 1; 192} 193 194def WAVE_BARRIER : SPseudoInstSI<(outs), (ins), 195 [(int_amdgcn_wave_barrier)]> { 196 let SchedRW = []; 197 let hasNoSchedulingInfo = 1; 198 let hasSideEffects = 1; 199 let mayLoad = 1; 200 let mayStore = 1; 201 let isBarrier = 1; 202 let isConvergent = 1; 203 let FixedSize = 1; 204 let Size = 0; 205} 206 207// SI pseudo instructions. These are used by the CFG structurizer pass 208// and should be lowered to ISA instructions prior to codegen. 209 210// Dummy terminator instruction to use after control flow instructions 211// replaced with exec mask operations. 212def SI_MASK_BRANCH : VPseudoInstSI < 213 (outs), (ins brtarget:$target)> { 214 let isBranch = 0; 215 let isTerminator = 1; 216 let isBarrier = 0; 217 let SchedRW = []; 218 let hasNoSchedulingInfo = 1; 219 let FixedSize = 1; 220 let Size = 0; 221} 222 223let isTerminator = 1 in { 224 225let OtherPredicates = [EnableLateCFGStructurize] in { 226 def SI_NON_UNIFORM_BRCOND_PSEUDO : CFPseudoInstSI < 227 (outs), 228 (ins SReg_64:$vcc, brtarget:$target), 229 [(brcond i1:$vcc, bb:$target)]> { 230 let Size = 12; 231} 232} 233 234def SI_IF: CFPseudoInstSI < 235 (outs SReg_64:$dst), (ins SReg_64:$vcc, brtarget:$target), 236 [(set i64:$dst, (AMDGPUif i1:$vcc, bb:$target))], 1, 1> { 237 let Constraints = ""; 238 let Size = 12; 239 let hasSideEffects = 1; 240} 241 242def SI_ELSE : CFPseudoInstSI < 243 (outs SReg_64:$dst), 244 (ins SReg_64:$src, brtarget:$target, i1imm:$execfix), [], 1, 1> { 245 let Size = 12; 246 let hasSideEffects = 1; 247} 248 249def SI_LOOP : CFPseudoInstSI < 250 (outs), (ins SReg_64:$saved, brtarget:$target), 251 [(AMDGPUloop i64:$saved, bb:$target)], 1, 1> { 252 let Size = 8; 253 let isBranch = 0; 254 let hasSideEffects = 1; 255} 256 257} // End isTerminator = 1 258 259def SI_END_CF : CFPseudoInstSI < 260 (outs), (ins SReg_64:$saved), 261 [(int_amdgcn_end_cf i64:$saved)], 1, 1> { 262 let Size = 4; 263 let isAsCheapAsAMove = 1; 264 let isReMaterializable = 1; 265 let hasSideEffects = 1; 266 let mayLoad = 1; // FIXME: Should not need memory flags 267 let mayStore = 1; 268} 269 270def SI_BREAK : CFPseudoInstSI < 271 (outs SReg_64:$dst), (ins SReg_64:$src), 272 [(set i64:$dst, (int_amdgcn_break i64:$src))], 1> { 273 let Size = 4; 274 let isAsCheapAsAMove = 1; 275 let isReMaterializable = 1; 276} 277 278def SI_IF_BREAK : CFPseudoInstSI < 279 (outs SReg_64:$dst), (ins SReg_64:$vcc, SReg_64:$src), 280 [(set i64:$dst, (int_amdgcn_if_break i1:$vcc, i64:$src))]> { 281 let Size = 4; 282 let isAsCheapAsAMove = 1; 283 let isReMaterializable = 1; 284} 285 286def SI_ELSE_BREAK : CFPseudoInstSI < 287 (outs SReg_64:$dst), (ins SReg_64:$src0, SReg_64:$src1), 288 [(set i64:$dst, (int_amdgcn_else_break i64:$src0, i64:$src1))]> { 289 let Size = 4; 290 let isAsCheapAsAMove = 1; 291 let isReMaterializable = 1; 292} 293 294let Uses = [EXEC] in { 295 296multiclass PseudoInstKill <dag ins> { 297 // Even though this pseudo can usually be expanded without an SCC def, we 298 // conservatively assume that it has an SCC def, both because it is sometimes 299 // required in degenerate cases (when V_CMPX cannot be used due to constant 300 // bus limitations) and because it allows us to avoid having to track SCC 301 // liveness across basic blocks. 302 let Defs = [EXEC,VCC,SCC] in 303 def _PSEUDO : PseudoInstSI <(outs), ins> { 304 let isConvergent = 1; 305 let usesCustomInserter = 1; 306 } 307 308 let Defs = [EXEC,VCC,SCC] in 309 def _TERMINATOR : SPseudoInstSI <(outs), ins> { 310 let isTerminator = 1; 311 } 312} 313 314defm SI_KILL_I1 : PseudoInstKill <(ins SSrc_b64:$src, i1imm:$killvalue)>; 315defm SI_KILL_F32_COND_IMM : PseudoInstKill <(ins VSrc_b32:$src0, i32imm:$src1, i32imm:$cond)>; 316 317let Defs = [EXEC,VCC] in 318def SI_ILLEGAL_COPY : SPseudoInstSI < 319 (outs unknown:$dst), (ins unknown:$src), 320 [], " ; illegal copy $src to $dst">; 321 322} // End Uses = [EXEC], Defs = [EXEC,VCC] 323 324// Branch on undef scc. Used to avoid intermediate copy from 325// IMPLICIT_DEF to SCC. 326def SI_BR_UNDEF : SPseudoInstSI <(outs), (ins sopp_brtarget:$simm16)> { 327 let isTerminator = 1; 328 let usesCustomInserter = 1; 329} 330 331def SI_PS_LIVE : PseudoInstSI < 332 (outs SReg_64:$dst), (ins), 333 [(set i1:$dst, (int_amdgcn_ps_live))]> { 334 let SALU = 1; 335} 336 337def SI_MASKED_UNREACHABLE : SPseudoInstSI <(outs), (ins), 338 [(int_amdgcn_unreachable)], 339 "; divergent unreachable"> { 340 let Size = 0; 341 let hasNoSchedulingInfo = 1; 342 let FixedSize = 1; 343} 344 345// Used as an isel pseudo to directly emit initialization with an 346// s_mov_b32 rather than a copy of another initialized 347// register. MachineCSE skips copies, and we don't want to have to 348// fold operands before it runs. 349def SI_INIT_M0 : SPseudoInstSI <(outs), (ins SSrc_b32:$src)> { 350 let Defs = [M0]; 351 let usesCustomInserter = 1; 352 let isAsCheapAsAMove = 1; 353 let isReMaterializable = 1; 354} 355 356def SI_INIT_EXEC : SPseudoInstSI < 357 (outs), (ins i64imm:$src), []> { 358 let Defs = [EXEC]; 359 let usesCustomInserter = 1; 360 let isAsCheapAsAMove = 1; 361} 362 363def SI_INIT_EXEC_FROM_INPUT : SPseudoInstSI < 364 (outs), (ins SSrc_b32:$input, i32imm:$shift), []> { 365 let Defs = [EXEC]; 366 let usesCustomInserter = 1; 367} 368 369// Return for returning shaders to a shader variant epilog. 370def SI_RETURN_TO_EPILOG : SPseudoInstSI < 371 (outs), (ins variable_ops), [(AMDGPUreturn_to_epilog)]> { 372 let isTerminator = 1; 373 let isBarrier = 1; 374 let isReturn = 1; 375 let hasNoSchedulingInfo = 1; 376 let DisableWQM = 1; 377 let FixedSize = 1; 378} 379 380// Return for returning function calls. 381def SI_RETURN : SPseudoInstSI < 382 (outs), (ins), [], 383 "; return"> { 384 let isTerminator = 1; 385 let isBarrier = 1; 386 let isReturn = 1; 387 let SchedRW = [WriteBranch]; 388} 389 390// Return for returning function calls without output register. 391// 392// This version is only needed so we can fill in the output regiter in 393// the custom inserter. 394def SI_CALL_ISEL : SPseudoInstSI < 395 (outs), (ins SSrc_b64:$src0), [(AMDGPUcall i64:$src0)]> { 396 let Size = 4; 397 let isCall = 1; 398 let SchedRW = [WriteBranch]; 399 let usesCustomInserter = 1; 400} 401 402// Wrapper around s_swappc_b64 with extra $callee parameter to track 403// the called function after regalloc. 404def SI_CALL : SPseudoInstSI < 405 (outs SReg_64:$dst), (ins SSrc_b64:$src0, unknown:$callee)> { 406 let Size = 4; 407 let isCall = 1; 408 let UseNamedOperandTable = 1; 409 let SchedRW = [WriteBranch]; 410} 411 412// Tail call handling pseudo 413def SI_TCRETURN_ISEL : SPseudoInstSI<(outs), 414 (ins SSrc_b64:$src0, i32imm:$fpdiff), 415 [(AMDGPUtc_return i64:$src0, i32:$fpdiff)]> { 416 let isCall = 1; 417 let isTerminator = 1; 418 let isReturn = 1; 419 let isBarrier = 1; 420 let SchedRW = [WriteBranch]; 421 let usesCustomInserter = 1; 422} 423 424def SI_TCRETURN : SPseudoInstSI < 425 (outs), 426 (ins SSrc_b64:$src0, unknown:$callee, i32imm:$fpdiff)> { 427 let Size = 4; 428 let isCall = 1; 429 let isTerminator = 1; 430 let isReturn = 1; 431 let isBarrier = 1; 432 let UseNamedOperandTable = 1; 433 let SchedRW = [WriteBranch]; 434} 435 436 437def ADJCALLSTACKUP : SPseudoInstSI< 438 (outs), (ins i32imm:$amt0, i32imm:$amt1), 439 [(callseq_start timm:$amt0, timm:$amt1)], 440 "; adjcallstackup $amt0 $amt1"> { 441 let Size = 8; // Worst case. (s_add_u32 + constant) 442 let FixedSize = 1; 443 let hasSideEffects = 1; 444 let usesCustomInserter = 1; 445} 446 447def ADJCALLSTACKDOWN : SPseudoInstSI< 448 (outs), (ins i32imm:$amt1, i32imm:$amt2), 449 [(callseq_end timm:$amt1, timm:$amt2)], 450 "; adjcallstackdown $amt1"> { 451 let Size = 8; // Worst case. (s_add_u32 + constant) 452 let hasSideEffects = 1; 453 let usesCustomInserter = 1; 454} 455 456let Defs = [M0, EXEC, SCC], 457 UseNamedOperandTable = 1 in { 458 459class SI_INDIRECT_SRC<RegisterClass rc> : VPseudoInstSI < 460 (outs VGPR_32:$vdst), 461 (ins rc:$src, VS_32:$idx, i32imm:$offset)> { 462 let usesCustomInserter = 1; 463} 464 465class SI_INDIRECT_DST<RegisterClass rc> : VPseudoInstSI < 466 (outs rc:$vdst), 467 (ins rc:$src, VS_32:$idx, i32imm:$offset, VGPR_32:$val)> { 468 let Constraints = "$src = $vdst"; 469 let usesCustomInserter = 1; 470} 471 472// TODO: We can support indirect SGPR access. 473def SI_INDIRECT_SRC_V1 : SI_INDIRECT_SRC<VGPR_32>; 474def SI_INDIRECT_SRC_V2 : SI_INDIRECT_SRC<VReg_64>; 475def SI_INDIRECT_SRC_V4 : SI_INDIRECT_SRC<VReg_128>; 476def SI_INDIRECT_SRC_V8 : SI_INDIRECT_SRC<VReg_256>; 477def SI_INDIRECT_SRC_V16 : SI_INDIRECT_SRC<VReg_512>; 478 479def SI_INDIRECT_DST_V1 : SI_INDIRECT_DST<VGPR_32>; 480def SI_INDIRECT_DST_V2 : SI_INDIRECT_DST<VReg_64>; 481def SI_INDIRECT_DST_V4 : SI_INDIRECT_DST<VReg_128>; 482def SI_INDIRECT_DST_V8 : SI_INDIRECT_DST<VReg_256>; 483def SI_INDIRECT_DST_V16 : SI_INDIRECT_DST<VReg_512>; 484 485} // End Uses = [EXEC], Defs = [M0, EXEC] 486 487multiclass SI_SPILL_SGPR <RegisterClass sgpr_class> { 488 let UseNamedOperandTable = 1, SGPRSpill = 1, Uses = [EXEC] in { 489 def _SAVE : PseudoInstSI < 490 (outs), 491 (ins sgpr_class:$data, i32imm:$addr)> { 492 let mayStore = 1; 493 let mayLoad = 0; 494 } 495 496 def _RESTORE : PseudoInstSI < 497 (outs sgpr_class:$data), 498 (ins i32imm:$addr)> { 499 let mayStore = 0; 500 let mayLoad = 1; 501 } 502 } // End UseNamedOperandTable = 1 503} 504 505// You cannot use M0 as the output of v_readlane_b32 instructions or 506// use it in the sdata operand of SMEM instructions. We still need to 507// be able to spill the physical register m0, so allow it for 508// SI_SPILL_32_* instructions. 509defm SI_SPILL_S32 : SI_SPILL_SGPR <SReg_32>; 510defm SI_SPILL_S64 : SI_SPILL_SGPR <SReg_64>; 511defm SI_SPILL_S128 : SI_SPILL_SGPR <SReg_128>; 512defm SI_SPILL_S256 : SI_SPILL_SGPR <SReg_256>; 513defm SI_SPILL_S512 : SI_SPILL_SGPR <SReg_512>; 514 515multiclass SI_SPILL_VGPR <RegisterClass vgpr_class> { 516 let UseNamedOperandTable = 1, VGPRSpill = 1, 517 SchedRW = [WriteVMEM] in { 518 def _SAVE : VPseudoInstSI < 519 (outs), 520 (ins vgpr_class:$vdata, i32imm:$vaddr, SReg_128:$srsrc, 521 SReg_32:$soffset, i32imm:$offset)> { 522 let mayStore = 1; 523 let mayLoad = 0; 524 // (2 * 4) + (8 * num_subregs) bytes maximum 525 let Size = !add(!shl(!srl(vgpr_class.Size, 5), 3), 8); 526 } 527 528 def _RESTORE : VPseudoInstSI < 529 (outs vgpr_class:$vdata), 530 (ins i32imm:$vaddr, SReg_128:$srsrc, SReg_32:$soffset, 531 i32imm:$offset)> { 532 let mayStore = 0; 533 let mayLoad = 1; 534 535 // (2 * 4) + (8 * num_subregs) bytes maximum 536 let Size = !add(!shl(!srl(vgpr_class.Size, 5), 3), 8); 537 } 538 } // End UseNamedOperandTable = 1, VGPRSpill = 1, SchedRW = [WriteVMEM] 539} 540 541defm SI_SPILL_V32 : SI_SPILL_VGPR <VGPR_32>; 542defm SI_SPILL_V64 : SI_SPILL_VGPR <VReg_64>; 543defm SI_SPILL_V96 : SI_SPILL_VGPR <VReg_96>; 544defm SI_SPILL_V128 : SI_SPILL_VGPR <VReg_128>; 545defm SI_SPILL_V256 : SI_SPILL_VGPR <VReg_256>; 546defm SI_SPILL_V512 : SI_SPILL_VGPR <VReg_512>; 547 548def SI_PC_ADD_REL_OFFSET : SPseudoInstSI < 549 (outs SReg_64:$dst), 550 (ins si_ga:$ptr_lo, si_ga:$ptr_hi), 551 [(set SReg_64:$dst, 552 (i64 (SIpc_add_rel_offset (tglobaladdr:$ptr_lo), (tglobaladdr:$ptr_hi))))]> { 553 let Defs = [SCC]; 554} 555 556def : GCNPat < 557 (AMDGPUinit_exec i64:$src), 558 (SI_INIT_EXEC (as_i64imm $src)) 559>; 560 561def : GCNPat < 562 (AMDGPUinit_exec_from_input i32:$input, i32:$shift), 563 (SI_INIT_EXEC_FROM_INPUT (i32 $input), (as_i32imm $shift)) 564>; 565 566def : GCNPat< 567 (AMDGPUtrap timm:$trapid), 568 (S_TRAP $trapid) 569>; 570 571def : GCNPat< 572 (AMDGPUelse i64:$src, bb:$target), 573 (SI_ELSE $src, $target, 0) 574>; 575 576def : Pat < 577 // -1.0 as i32 (LowerINTRINSIC_VOID converts all other constants to -1.0) 578 (AMDGPUkill (i32 -1082130432)), 579 (SI_KILL_I1_PSEUDO (i1 0), 0) 580>; 581 582def : Pat < 583 (int_amdgcn_kill i1:$src), 584 (SI_KILL_I1_PSEUDO $src, 0) 585>; 586 587def : Pat < 588 (int_amdgcn_kill (i1 (not i1:$src))), 589 (SI_KILL_I1_PSEUDO $src, -1) 590>; 591 592def : Pat < 593 (AMDGPUkill i32:$src), 594 (SI_KILL_F32_COND_IMM_PSEUDO $src, 0, 3) // 3 means SETOGE 595>; 596 597def : Pat < 598 (int_amdgcn_kill (i1 (setcc f32:$src, InlineFPImm<f32>:$imm, cond:$cond))), 599 (SI_KILL_F32_COND_IMM_PSEUDO $src, (bitcast_fpimm_to_i32 $imm), (cond_as_i32imm $cond)) 600>; 601// TODO: we could add more variants for other types of conditionals 602 603//===----------------------------------------------------------------------===// 604// VOP1 Patterns 605//===----------------------------------------------------------------------===// 606 607let SubtargetPredicate = isGCN, OtherPredicates = [UnsafeFPMath] in { 608 609//def : RcpPat<V_RCP_F64_e32, f64>; 610//defm : RsqPat<V_RSQ_F64_e32, f64>; 611//defm : RsqPat<V_RSQ_F32_e32, f32>; 612 613def : RsqPat<V_RSQ_F32_e32, f32>; 614def : RsqPat<V_RSQ_F64_e32, f64>; 615 616// Convert (x - floor(x)) to fract(x) 617def : GCNPat < 618 (f32 (fsub (f32 (VOP3Mods f32:$x, i32:$mods)), 619 (f32 (ffloor (f32 (VOP3Mods f32:$x, i32:$mods)))))), 620 (V_FRACT_F32_e64 $mods, $x, DSTCLAMP.NONE, DSTOMOD.NONE) 621>; 622 623// Convert (x + (-floor(x))) to fract(x) 624def : GCNPat < 625 (f64 (fadd (f64 (VOP3Mods f64:$x, i32:$mods)), 626 (f64 (fneg (f64 (ffloor (f64 (VOP3Mods f64:$x, i32:$mods)))))))), 627 (V_FRACT_F64_e64 $mods, $x, DSTCLAMP.NONE, DSTOMOD.NONE) 628>; 629 630} // End SubtargetPredicate = isGCN, OtherPredicates = [UnsafeFPMath] 631 632 633// f16_to_fp patterns 634def : GCNPat < 635 (f32 (f16_to_fp i32:$src0)), 636 (V_CVT_F32_F16_e64 SRCMODS.NONE, $src0, DSTCLAMP.NONE, DSTOMOD.NONE) 637>; 638 639def : GCNPat < 640 (f32 (f16_to_fp (and_oneuse i32:$src0, 0x7fff))), 641 (V_CVT_F32_F16_e64 SRCMODS.ABS, $src0, DSTCLAMP.NONE, DSTOMOD.NONE) 642>; 643 644def : GCNPat < 645 (f32 (f16_to_fp (i32 (srl_oneuse (and_oneuse i32:$src0, 0x7fff0000), (i32 16))))), 646 (V_CVT_F32_F16_e64 SRCMODS.ABS, (i32 (V_LSHRREV_B32_e64 (i32 16), i32:$src0)), DSTCLAMP.NONE, DSTOMOD.NONE) 647>; 648 649def : GCNPat < 650 (f32 (f16_to_fp (or_oneuse i32:$src0, 0x8000))), 651 (V_CVT_F32_F16_e64 SRCMODS.NEG_ABS, $src0, DSTCLAMP.NONE, DSTOMOD.NONE) 652>; 653 654def : GCNPat < 655 (f32 (f16_to_fp (xor_oneuse i32:$src0, 0x8000))), 656 (V_CVT_F32_F16_e64 SRCMODS.NEG, $src0, DSTCLAMP.NONE, DSTOMOD.NONE) 657>; 658 659def : GCNPat < 660 (f64 (fpextend f16:$src)), 661 (V_CVT_F64_F32_e32 (V_CVT_F32_F16_e32 $src)) 662>; 663 664// fp_to_fp16 patterns 665def : GCNPat < 666 (i32 (AMDGPUfp_to_f16 (f32 (VOP3Mods f32:$src0, i32:$src0_modifiers)))), 667 (V_CVT_F16_F32_e64 $src0_modifiers, f32:$src0, DSTCLAMP.NONE, DSTOMOD.NONE) 668>; 669 670def : GCNPat < 671 (i32 (fp_to_sint f16:$src)), 672 (V_CVT_I32_F32_e32 (V_CVT_F32_F16_e32 $src)) 673>; 674 675def : GCNPat < 676 (i32 (fp_to_uint f16:$src)), 677 (V_CVT_U32_F32_e32 (V_CVT_F32_F16_e32 $src)) 678>; 679 680def : GCNPat < 681 (f16 (sint_to_fp i32:$src)), 682 (V_CVT_F16_F32_e32 (V_CVT_F32_I32_e32 $src)) 683>; 684 685def : GCNPat < 686 (f16 (uint_to_fp i32:$src)), 687 (V_CVT_F16_F32_e32 (V_CVT_F32_U32_e32 $src)) 688>; 689 690//===----------------------------------------------------------------------===// 691// VOP2 Patterns 692//===----------------------------------------------------------------------===// 693 694multiclass FMADPat <ValueType vt, Instruction inst> { 695 def : GCNPat < 696 (vt (fmad (VOP3NoMods vt:$src0), 697 (VOP3NoMods vt:$src1), 698 (VOP3NoMods vt:$src2))), 699 (inst SRCMODS.NONE, $src0, SRCMODS.NONE, $src1, 700 SRCMODS.NONE, $src2, DSTCLAMP.NONE, DSTOMOD.NONE) 701 >; 702} 703 704defm : FMADPat <f16, V_MAC_F16_e64>; 705defm : FMADPat <f32, V_MAC_F32_e64>; 706 707class FMADModsPat<Instruction inst, SDPatternOperator mad_opr, ValueType Ty> 708 : GCNPat< 709 (Ty (mad_opr (VOP3Mods Ty:$src0, i32:$src0_mod), 710 (VOP3Mods Ty:$src1, i32:$src1_mod), 711 (VOP3Mods Ty:$src2, i32:$src2_mod))), 712 (inst $src0_mod, $src0, $src1_mod, $src1, 713 $src2_mod, $src2, DSTCLAMP.NONE, DSTOMOD.NONE) 714>; 715 716def : FMADModsPat<V_MAD_F32, AMDGPUfmad_ftz, f32>; 717def : FMADModsPat<V_MAD_F16, AMDGPUfmad_ftz, f16> { 718 let SubtargetPredicate = Has16BitInsts; 719} 720 721multiclass SelectPat <ValueType vt, Instruction inst> { 722 def : GCNPat < 723 (vt (select i1:$src0, vt:$src1, vt:$src2)), 724 (inst $src2, $src1, $src0) 725 >; 726} 727 728defm : SelectPat <i16, V_CNDMASK_B32_e64>; 729defm : SelectPat <i32, V_CNDMASK_B32_e64>; 730defm : SelectPat <f16, V_CNDMASK_B32_e64>; 731defm : SelectPat <f32, V_CNDMASK_B32_e64>; 732 733def : GCNPat < 734 (i32 (add (i32 (ctpop i32:$popcnt)), i32:$val)), 735 (V_BCNT_U32_B32_e64 $popcnt, $val) 736>; 737def : GCNPat < 738 (i16 (add (i16 (trunc (ctpop i32:$popcnt))), i16:$val)), 739 (V_BCNT_U32_B32_e64 $popcnt, $val) 740>; 741 742/********** ============================================ **********/ 743/********** Extraction, Insertion, Building and Casting **********/ 744/********** ============================================ **********/ 745 746foreach Index = 0-2 in { 747 def Extract_Element_v2i32_#Index : Extract_Element < 748 i32, v2i32, Index, !cast<SubRegIndex>(sub#Index) 749 >; 750 def Insert_Element_v2i32_#Index : Insert_Element < 751 i32, v2i32, Index, !cast<SubRegIndex>(sub#Index) 752 >; 753 754 def Extract_Element_v2f32_#Index : Extract_Element < 755 f32, v2f32, Index, !cast<SubRegIndex>(sub#Index) 756 >; 757 def Insert_Element_v2f32_#Index : Insert_Element < 758 f32, v2f32, Index, !cast<SubRegIndex>(sub#Index) 759 >; 760} 761 762foreach Index = 0-3 in { 763 def Extract_Element_v4i32_#Index : Extract_Element < 764 i32, v4i32, Index, !cast<SubRegIndex>(sub#Index) 765 >; 766 def Insert_Element_v4i32_#Index : Insert_Element < 767 i32, v4i32, Index, !cast<SubRegIndex>(sub#Index) 768 >; 769 770 def Extract_Element_v4f32_#Index : Extract_Element < 771 f32, v4f32, Index, !cast<SubRegIndex>(sub#Index) 772 >; 773 def Insert_Element_v4f32_#Index : Insert_Element < 774 f32, v4f32, Index, !cast<SubRegIndex>(sub#Index) 775 >; 776} 777 778foreach Index = 0-7 in { 779 def Extract_Element_v8i32_#Index : Extract_Element < 780 i32, v8i32, Index, !cast<SubRegIndex>(sub#Index) 781 >; 782 def Insert_Element_v8i32_#Index : Insert_Element < 783 i32, v8i32, Index, !cast<SubRegIndex>(sub#Index) 784 >; 785 786 def Extract_Element_v8f32_#Index : Extract_Element < 787 f32, v8f32, Index, !cast<SubRegIndex>(sub#Index) 788 >; 789 def Insert_Element_v8f32_#Index : Insert_Element < 790 f32, v8f32, Index, !cast<SubRegIndex>(sub#Index) 791 >; 792} 793 794foreach Index = 0-15 in { 795 def Extract_Element_v16i32_#Index : Extract_Element < 796 i32, v16i32, Index, !cast<SubRegIndex>(sub#Index) 797 >; 798 def Insert_Element_v16i32_#Index : Insert_Element < 799 i32, v16i32, Index, !cast<SubRegIndex>(sub#Index) 800 >; 801 802 def Extract_Element_v16f32_#Index : Extract_Element < 803 f32, v16f32, Index, !cast<SubRegIndex>(sub#Index) 804 >; 805 def Insert_Element_v16f32_#Index : Insert_Element < 806 f32, v16f32, Index, !cast<SubRegIndex>(sub#Index) 807 >; 808} 809 810 811def : Pat < 812 (extract_subvector v4i16:$vec, (i32 0)), 813 (v2i16 (EXTRACT_SUBREG v4i16:$vec, sub0)) 814>; 815 816def : Pat < 817 (extract_subvector v4i16:$vec, (i32 2)), 818 (v2i16 (EXTRACT_SUBREG v4i16:$vec, sub1)) 819>; 820 821def : Pat < 822 (extract_subvector v4f16:$vec, (i32 0)), 823 (v2f16 (EXTRACT_SUBREG v4f16:$vec, sub0)) 824>; 825 826def : Pat < 827 (extract_subvector v4f16:$vec, (i32 2)), 828 (v2f16 (EXTRACT_SUBREG v4f16:$vec, sub1)) 829>; 830 831let SubtargetPredicate = isGCN in { 832 833// FIXME: Why do only some of these type combinations for SReg and 834// VReg? 835// 16-bit bitcast 836def : BitConvert <i16, f16, VGPR_32>; 837def : BitConvert <f16, i16, VGPR_32>; 838def : BitConvert <i16, f16, SReg_32>; 839def : BitConvert <f16, i16, SReg_32>; 840 841// 32-bit bitcast 842def : BitConvert <i32, f32, VGPR_32>; 843def : BitConvert <f32, i32, VGPR_32>; 844def : BitConvert <i32, f32, SReg_32>; 845def : BitConvert <f32, i32, SReg_32>; 846def : BitConvert <v2i16, i32, SReg_32>; 847def : BitConvert <i32, v2i16, SReg_32>; 848def : BitConvert <v2f16, i32, SReg_32>; 849def : BitConvert <i32, v2f16, SReg_32>; 850def : BitConvert <v2i16, v2f16, SReg_32>; 851def : BitConvert <v2f16, v2i16, SReg_32>; 852def : BitConvert <v2f16, f32, SReg_32>; 853def : BitConvert <f32, v2f16, SReg_32>; 854def : BitConvert <v2i16, f32, SReg_32>; 855def : BitConvert <f32, v2i16, SReg_32>; 856 857// 64-bit bitcast 858def : BitConvert <i64, f64, VReg_64>; 859def : BitConvert <f64, i64, VReg_64>; 860def : BitConvert <v2i32, v2f32, VReg_64>; 861def : BitConvert <v2f32, v2i32, VReg_64>; 862def : BitConvert <i64, v2i32, VReg_64>; 863def : BitConvert <v2i32, i64, VReg_64>; 864def : BitConvert <i64, v2f32, VReg_64>; 865def : BitConvert <v2f32, i64, VReg_64>; 866def : BitConvert <f64, v2f32, VReg_64>; 867def : BitConvert <v2f32, f64, VReg_64>; 868def : BitConvert <f64, v2i32, VReg_64>; 869def : BitConvert <v2i32, f64, VReg_64>; 870 871// FIXME: Make SGPR 872def : BitConvert <v2i32, v4f16, VReg_64>; 873def : BitConvert <v4f16, v2i32, VReg_64>; 874def : BitConvert <v2i32, v4f16, VReg_64>; 875def : BitConvert <v2i32, v4i16, VReg_64>; 876def : BitConvert <v4i16, v2i32, VReg_64>; 877def : BitConvert <v2f32, v4f16, VReg_64>; 878def : BitConvert <v4f16, v2f32, VReg_64>; 879def : BitConvert <v2f32, v4i16, VReg_64>; 880def : BitConvert <v4i16, v2f32, VReg_64>; 881def : BitConvert <v4i16, f64, VReg_64>; 882def : BitConvert <v4f16, f64, VReg_64>; 883def : BitConvert <f64, v4i16, VReg_64>; 884def : BitConvert <f64, v4f16, VReg_64>; 885def : BitConvert <v4i16, i64, VReg_64>; 886def : BitConvert <v4f16, i64, VReg_64>; 887def : BitConvert <i64, v4i16, VReg_64>; 888def : BitConvert <i64, v4f16, VReg_64>; 889 890def : BitConvert <v4i32, v4f32, VReg_128>; 891def : BitConvert <v4f32, v4i32, VReg_128>; 892 893// 128-bit bitcast 894def : BitConvert <v2i64, v4i32, SReg_128>; 895def : BitConvert <v4i32, v2i64, SReg_128>; 896def : BitConvert <v2f64, v4f32, VReg_128>; 897def : BitConvert <v2f64, v4i32, VReg_128>; 898def : BitConvert <v4f32, v2f64, VReg_128>; 899def : BitConvert <v4i32, v2f64, VReg_128>; 900def : BitConvert <v2i64, v2f64, VReg_128>; 901def : BitConvert <v2f64, v2i64, VReg_128>; 902 903// 256-bit bitcast 904def : BitConvert <v8i32, v8f32, SReg_256>; 905def : BitConvert <v8f32, v8i32, SReg_256>; 906def : BitConvert <v8i32, v8f32, VReg_256>; 907def : BitConvert <v8f32, v8i32, VReg_256>; 908 909// 512-bit bitcast 910def : BitConvert <v16i32, v16f32, VReg_512>; 911def : BitConvert <v16f32, v16i32, VReg_512>; 912 913} // End SubtargetPredicate = isGCN 914 915/********** =================== **********/ 916/********** Src & Dst modifiers **********/ 917/********** =================== **********/ 918 919 920// If denormals are not enabled, it only impacts the compare of the 921// inputs. The output result is not flushed. 922class ClampPat<Instruction inst, ValueType vt> : GCNPat < 923 (vt (AMDGPUclamp (VOP3Mods vt:$src0, i32:$src0_modifiers))), 924 (inst i32:$src0_modifiers, vt:$src0, 925 i32:$src0_modifiers, vt:$src0, DSTCLAMP.ENABLE, DSTOMOD.NONE) 926>; 927 928def : ClampPat<V_MAX_F32_e64, f32>; 929def : ClampPat<V_MAX_F64, f64>; 930def : ClampPat<V_MAX_F16_e64, f16>; 931 932let SubtargetPredicate = HasVOP3PInsts in { 933def : GCNPat < 934 (v2f16 (AMDGPUclamp (VOP3PMods v2f16:$src0, i32:$src0_modifiers))), 935 (V_PK_MAX_F16 $src0_modifiers, $src0, 936 $src0_modifiers, $src0, DSTCLAMP.ENABLE) 937>; 938} 939 940/********** ================================ **********/ 941/********** Floating point absolute/negative **********/ 942/********** ================================ **********/ 943 944// Prevent expanding both fneg and fabs. 945 946def : GCNPat < 947 (fneg (fabs f32:$src)), 948 (S_OR_B32 $src, (S_MOV_B32(i32 0x80000000))) // Set sign bit 949>; 950 951// FIXME: Should use S_OR_B32 952def : GCNPat < 953 (fneg (fabs f64:$src)), 954 (REG_SEQUENCE VReg_64, 955 (i32 (EXTRACT_SUBREG f64:$src, sub0)), 956 sub0, 957 (V_OR_B32_e32 (i32 (EXTRACT_SUBREG f64:$src, sub1)), 958 (V_MOV_B32_e32 (i32 0x80000000))), // Set sign bit. 959 sub1) 960>; 961 962def : GCNPat < 963 (fabs f32:$src), 964 (S_AND_B32 $src, (S_MOV_B32 (i32 0x7fffffff))) 965>; 966 967def : GCNPat < 968 (fneg f32:$src), 969 (V_XOR_B32_e32 $src, (V_MOV_B32_e32 (i32 0x80000000))) 970>; 971 972def : GCNPat < 973 (fabs f64:$src), 974 (REG_SEQUENCE VReg_64, 975 (i32 (EXTRACT_SUBREG f64:$src, sub0)), 976 sub0, 977 (V_AND_B32_e64 (i32 (EXTRACT_SUBREG f64:$src, sub1)), 978 (V_MOV_B32_e32 (i32 0x7fffffff))), // Set sign bit. 979 sub1) 980>; 981 982def : GCNPat < 983 (fneg f64:$src), 984 (REG_SEQUENCE VReg_64, 985 (i32 (EXTRACT_SUBREG f64:$src, sub0)), 986 sub0, 987 (V_XOR_B32_e32 (i32 (EXTRACT_SUBREG f64:$src, sub1)), 988 (i32 (V_MOV_B32_e32 (i32 0x80000000)))), 989 sub1) 990>; 991 992def : GCNPat < 993 (fcopysign f16:$src0, f16:$src1), 994 (V_BFI_B32 (S_MOV_B32 (i32 0x00007fff)), $src0, $src1) 995>; 996 997def : GCNPat < 998 (fcopysign f32:$src0, f16:$src1), 999 (V_BFI_B32 (S_MOV_B32 (i32 0x7fffffff)), $src0, 1000 (V_LSHLREV_B32_e64 (i32 16), $src1)) 1001>; 1002 1003def : GCNPat < 1004 (fcopysign f64:$src0, f16:$src1), 1005 (REG_SEQUENCE SReg_64, 1006 (i32 (EXTRACT_SUBREG $src0, sub0)), sub0, 1007 (V_BFI_B32 (S_MOV_B32 (i32 0x7fffffff)), (i32 (EXTRACT_SUBREG $src0, sub1)), 1008 (V_LSHLREV_B32_e64 (i32 16), $src1)), sub1) 1009>; 1010 1011def : GCNPat < 1012 (fcopysign f16:$src0, f32:$src1), 1013 (V_BFI_B32 (S_MOV_B32 (i32 0x00007fff)), $src0, 1014 (V_LSHRREV_B32_e64 (i32 16), $src1)) 1015>; 1016 1017def : GCNPat < 1018 (fcopysign f16:$src0, f64:$src1), 1019 (V_BFI_B32 (S_MOV_B32 (i32 0x00007fff)), $src0, 1020 (V_LSHRREV_B32_e64 (i32 16), (EXTRACT_SUBREG $src1, sub1))) 1021>; 1022 1023def : GCNPat < 1024 (fneg f16:$src), 1025 (S_XOR_B32 $src, (S_MOV_B32 (i32 0x00008000))) 1026>; 1027 1028def : GCNPat < 1029 (fabs f16:$src), 1030 (S_AND_B32 $src, (S_MOV_B32 (i32 0x00007fff))) 1031>; 1032 1033def : GCNPat < 1034 (fneg (fabs f16:$src)), 1035 (S_OR_B32 $src, (S_MOV_B32 (i32 0x00008000))) // Set sign bit 1036>; 1037 1038def : GCNPat < 1039 (fneg v2f16:$src), 1040 (S_XOR_B32 $src, (S_MOV_B32 (i32 0x80008000))) 1041>; 1042 1043def : GCNPat < 1044 (fabs v2f16:$src), 1045 (S_AND_B32 $src, (S_MOV_B32 (i32 0x7fff7fff))) 1046>; 1047 1048// This is really (fneg (fabs v2f16:$src)) 1049// 1050// fabs is not reported as free because there is modifier for it in 1051// VOP3P instructions, so it is turned into the bit op. 1052def : GCNPat < 1053 (fneg (v2f16 (bitconvert (and_oneuse i32:$src, 0x7fff7fff)))), 1054 (S_OR_B32 $src, (S_MOV_B32 (i32 0x80008000))) // Set sign bit 1055>; 1056 1057def : GCNPat < 1058 (fneg (v2f16 (fabs v2f16:$src))), 1059 (S_OR_B32 $src, (S_MOV_B32 (i32 0x80008000))) // Set sign bit 1060>; 1061 1062/********** ================== **********/ 1063/********** Immediate Patterns **********/ 1064/********** ================== **********/ 1065 1066def : GCNPat < 1067 (VGPRImm<(i32 imm)>:$imm), 1068 (V_MOV_B32_e32 imm:$imm) 1069>; 1070 1071def : GCNPat < 1072 (VGPRImm<(f32 fpimm)>:$imm), 1073 (V_MOV_B32_e32 (f32 (bitcast_fpimm_to_i32 $imm))) 1074>; 1075 1076def : GCNPat < 1077 (i32 imm:$imm), 1078 (S_MOV_B32 imm:$imm) 1079>; 1080 1081// FIXME: Workaround for ordering issue with peephole optimizer where 1082// a register class copy interferes with immediate folding. Should 1083// use s_mov_b32, which can be shrunk to s_movk_i32 1084def : GCNPat < 1085 (VGPRImm<(f16 fpimm)>:$imm), 1086 (V_MOV_B32_e32 (f16 (bitcast_fpimm_to_i32 $imm))) 1087>; 1088 1089def : GCNPat < 1090 (f32 fpimm:$imm), 1091 (S_MOV_B32 (f32 (bitcast_fpimm_to_i32 $imm))) 1092>; 1093 1094def : GCNPat < 1095 (f16 fpimm:$imm), 1096 (S_MOV_B32 (i32 (bitcast_fpimm_to_i32 $imm))) 1097>; 1098 1099def : GCNPat < 1100 (i32 frameindex:$fi), 1101 (V_MOV_B32_e32 (i32 (frameindex_to_targetframeindex $fi))) 1102>; 1103 1104def : GCNPat < 1105 (i64 InlineImm<i64>:$imm), 1106 (S_MOV_B64 InlineImm<i64>:$imm) 1107>; 1108 1109// XXX - Should this use a s_cmp to set SCC? 1110 1111// Set to sign-extended 64-bit value (true = -1, false = 0) 1112def : GCNPat < 1113 (i1 imm:$imm), 1114 (S_MOV_B64 (i64 (as_i64imm $imm))) 1115>; 1116 1117def : GCNPat < 1118 (f64 InlineFPImm<f64>:$imm), 1119 (S_MOV_B64 (f64 (bitcast_fpimm_to_i64 InlineFPImm<f64>:$imm))) 1120>; 1121 1122/********** ================== **********/ 1123/********** Intrinsic Patterns **********/ 1124/********** ================== **********/ 1125 1126let SubtargetPredicate = isGCN in { 1127def : POW_Common <V_LOG_F32_e32, V_EXP_F32_e32, V_MUL_LEGACY_F32_e32>; 1128} 1129 1130def : GCNPat < 1131 (i32 (sext i1:$src0)), 1132 (V_CNDMASK_B32_e64 (i32 0), (i32 -1), $src0) 1133>; 1134 1135class Ext32Pat <SDNode ext> : GCNPat < 1136 (i32 (ext i1:$src0)), 1137 (V_CNDMASK_B32_e64 (i32 0), (i32 1), $src0) 1138>; 1139 1140def : Ext32Pat <zext>; 1141def : Ext32Pat <anyext>; 1142 1143// The multiplication scales from [0,1] to the unsigned integer range 1144def : GCNPat < 1145 (AMDGPUurecip i32:$src0), 1146 (V_CVT_U32_F32_e32 1147 (V_MUL_F32_e32 (i32 CONST.FP_UINT_MAX_PLUS_1), 1148 (V_RCP_IFLAG_F32_e32 (V_CVT_F32_U32_e32 $src0)))) 1149>; 1150 1151//===----------------------------------------------------------------------===// 1152// VOP3 Patterns 1153//===----------------------------------------------------------------------===// 1154 1155let SubtargetPredicate = isGCN in { 1156 1157def : IMad24Pat<V_MAD_I32_I24, 1>; 1158def : UMad24Pat<V_MAD_U32_U24, 1>; 1159 1160// FIXME: This should only be done for VALU inputs 1161defm : BFIPatterns <V_BFI_B32, S_MOV_B32, SReg_64>; 1162def : ROTRPattern <V_ALIGNBIT_B32>; 1163 1164} 1165 1166def : GCNPat<(i32 (trunc (srl i64:$src0, (and i32:$src1, (i32 31))))), 1167 (V_ALIGNBIT_B32 (i32 (EXTRACT_SUBREG (i64 $src0), sub1)), 1168 (i32 (EXTRACT_SUBREG (i64 $src0), sub0)), $src1)>; 1169 1170def : GCNPat<(i32 (trunc (srl i64:$src0, (i32 ShiftAmt32Imm:$src1)))), 1171 (V_ALIGNBIT_B32 (i32 (EXTRACT_SUBREG (i64 $src0), sub1)), 1172 (i32 (EXTRACT_SUBREG (i64 $src0), sub0)), $src1)>; 1173 1174/********** ====================== **********/ 1175/********** Indirect addressing **********/ 1176/********** ====================== **********/ 1177 1178multiclass SI_INDIRECT_Pattern <ValueType vt, ValueType eltvt, string VecSize> { 1179 // Extract with offset 1180 def : GCNPat< 1181 (eltvt (extractelt vt:$src, (MOVRELOffset i32:$idx, (i32 imm:$offset)))), 1182 (!cast<Instruction>("SI_INDIRECT_SRC_"#VecSize) $src, $idx, imm:$offset) 1183 >; 1184 1185 // Insert with offset 1186 def : GCNPat< 1187 (insertelt vt:$src, eltvt:$val, (MOVRELOffset i32:$idx, (i32 imm:$offset))), 1188 (!cast<Instruction>("SI_INDIRECT_DST_"#VecSize) $src, $idx, imm:$offset, $val) 1189 >; 1190} 1191 1192defm : SI_INDIRECT_Pattern <v2f32, f32, "V2">; 1193defm : SI_INDIRECT_Pattern <v4f32, f32, "V4">; 1194defm : SI_INDIRECT_Pattern <v8f32, f32, "V8">; 1195defm : SI_INDIRECT_Pattern <v16f32, f32, "V16">; 1196 1197defm : SI_INDIRECT_Pattern <v2i32, i32, "V2">; 1198defm : SI_INDIRECT_Pattern <v4i32, i32, "V4">; 1199defm : SI_INDIRECT_Pattern <v8i32, i32, "V8">; 1200defm : SI_INDIRECT_Pattern <v16i32, i32, "V16">; 1201 1202//===----------------------------------------------------------------------===// 1203// SAD Patterns 1204//===----------------------------------------------------------------------===// 1205 1206def : GCNPat < 1207 (add (sub_oneuse (umax i32:$src0, i32:$src1), 1208 (umin i32:$src0, i32:$src1)), 1209 i32:$src2), 1210 (V_SAD_U32 $src0, $src1, $src2, (i1 0)) 1211>; 1212 1213def : GCNPat < 1214 (add (select_oneuse (i1 (setugt i32:$src0, i32:$src1)), 1215 (sub i32:$src0, i32:$src1), 1216 (sub i32:$src1, i32:$src0)), 1217 i32:$src2), 1218 (V_SAD_U32 $src0, $src1, $src2, (i1 0)) 1219>; 1220 1221//===----------------------------------------------------------------------===// 1222// Conversion Patterns 1223//===----------------------------------------------------------------------===// 1224 1225def : GCNPat<(i32 (sext_inreg i32:$src, i1)), 1226 (S_BFE_I32 i32:$src, (i32 65536))>; // 0 | 1 << 16 1227 1228// Handle sext_inreg in i64 1229def : GCNPat < 1230 (i64 (sext_inreg i64:$src, i1)), 1231 (S_BFE_I64 i64:$src, (i32 0x10000)) // 0 | 1 << 16 1232>; 1233 1234def : GCNPat < 1235 (i16 (sext_inreg i16:$src, i1)), 1236 (S_BFE_I32 $src, (i32 0x00010000)) // 0 | 1 << 16 1237>; 1238 1239def : GCNPat < 1240 (i16 (sext_inreg i16:$src, i8)), 1241 (S_BFE_I32 $src, (i32 0x80000)) // 0 | 8 << 16 1242>; 1243 1244def : GCNPat < 1245 (i64 (sext_inreg i64:$src, i8)), 1246 (S_BFE_I64 i64:$src, (i32 0x80000)) // 0 | 8 << 16 1247>; 1248 1249def : GCNPat < 1250 (i64 (sext_inreg i64:$src, i16)), 1251 (S_BFE_I64 i64:$src, (i32 0x100000)) // 0 | 16 << 16 1252>; 1253 1254def : GCNPat < 1255 (i64 (sext_inreg i64:$src, i32)), 1256 (S_BFE_I64 i64:$src, (i32 0x200000)) // 0 | 32 << 16 1257>; 1258 1259def : GCNPat < 1260 (i64 (zext i32:$src)), 1261 (REG_SEQUENCE SReg_64, $src, sub0, (S_MOV_B32 (i32 0)), sub1) 1262>; 1263 1264def : GCNPat < 1265 (i64 (anyext i32:$src)), 1266 (REG_SEQUENCE SReg_64, $src, sub0, (i32 (IMPLICIT_DEF)), sub1) 1267>; 1268 1269class ZExt_i64_i1_Pat <SDNode ext> : GCNPat < 1270 (i64 (ext i1:$src)), 1271 (REG_SEQUENCE VReg_64, 1272 (V_CNDMASK_B32_e64 (i32 0), (i32 1), $src), sub0, 1273 (S_MOV_B32 (i32 0)), sub1) 1274>; 1275 1276 1277def : ZExt_i64_i1_Pat<zext>; 1278def : ZExt_i64_i1_Pat<anyext>; 1279 1280// FIXME: We need to use COPY_TO_REGCLASS to work-around the fact that 1281// REG_SEQUENCE patterns don't support instructions with multiple outputs. 1282def : GCNPat < 1283 (i64 (sext i32:$src)), 1284 (REG_SEQUENCE SReg_64, $src, sub0, 1285 (i32 (COPY_TO_REGCLASS (S_ASHR_I32 $src, (i32 31)), SReg_32_XM0)), sub1) 1286>; 1287 1288def : GCNPat < 1289 (i64 (sext i1:$src)), 1290 (REG_SEQUENCE VReg_64, 1291 (V_CNDMASK_B32_e64 (i32 0), (i32 -1), $src), sub0, 1292 (V_CNDMASK_B32_e64 (i32 0), (i32 -1), $src), sub1) 1293>; 1294 1295class FPToI1Pat<Instruction Inst, int KOne, ValueType kone_type, ValueType vt, SDPatternOperator fp_to_int> : GCNPat < 1296 (i1 (fp_to_int (vt (VOP3Mods vt:$src0, i32:$src0_modifiers)))), 1297 (i1 (Inst 0, (kone_type KOne), $src0_modifiers, $src0, DSTCLAMP.NONE)) 1298>; 1299 1300def : FPToI1Pat<V_CMP_EQ_F32_e64, CONST.FP32_ONE, i32, f32, fp_to_uint>; 1301def : FPToI1Pat<V_CMP_EQ_F32_e64, CONST.FP32_NEG_ONE, i32, f32, fp_to_sint>; 1302def : FPToI1Pat<V_CMP_EQ_F64_e64, CONST.FP64_ONE, i64, f64, fp_to_uint>; 1303def : FPToI1Pat<V_CMP_EQ_F64_e64, CONST.FP64_NEG_ONE, i64, f64, fp_to_sint>; 1304 1305// If we need to perform a logical operation on i1 values, we need to 1306// use vector comparisons since there is only one SCC register. Vector 1307// comparisons still write to a pair of SGPRs, so treat these as 1308// 64-bit comparisons. When legalizing SGPR copies, instructions 1309// resulting in the copies from SCC to these instructions will be 1310// moved to the VALU. 1311def : GCNPat < 1312 (i1 (and i1:$src0, i1:$src1)), 1313 (S_AND_B64 $src0, $src1) 1314>; 1315 1316def : GCNPat < 1317 (i1 (or i1:$src0, i1:$src1)), 1318 (S_OR_B64 $src0, $src1) 1319>; 1320 1321def : GCNPat < 1322 (i1 (xor i1:$src0, i1:$src1)), 1323 (S_XOR_B64 $src0, $src1) 1324>; 1325 1326def : GCNPat < 1327 (f32 (sint_to_fp i1:$src)), 1328 (V_CNDMASK_B32_e64 (i32 0), (i32 CONST.FP32_NEG_ONE), $src) 1329>; 1330 1331def : GCNPat < 1332 (f32 (uint_to_fp i1:$src)), 1333 (V_CNDMASK_B32_e64 (i32 0), (i32 CONST.FP32_ONE), $src) 1334>; 1335 1336def : GCNPat < 1337 (f64 (sint_to_fp i1:$src)), 1338 (V_CVT_F64_I32_e32 (V_CNDMASK_B32_e64 (i32 0), (i32 -1), $src)) 1339>; 1340 1341def : GCNPat < 1342 (f64 (uint_to_fp i1:$src)), 1343 (V_CVT_F64_U32_e32 (V_CNDMASK_B32_e64 (i32 0), (i32 1), $src)) 1344>; 1345 1346//===----------------------------------------------------------------------===// 1347// Miscellaneous Patterns 1348//===----------------------------------------------------------------------===// 1349def : GCNPat < 1350 (i32 (AMDGPUfp16_zext f16:$src)), 1351 (COPY $src) 1352>; 1353 1354 1355def : GCNPat < 1356 (i32 (trunc i64:$a)), 1357 (EXTRACT_SUBREG $a, sub0) 1358>; 1359 1360def : GCNPat < 1361 (i1 (trunc i32:$a)), 1362 (V_CMP_EQ_U32_e64 (S_AND_B32 (i32 1), $a), (i32 1)) 1363>; 1364 1365def : GCNPat < 1366 (i1 (trunc i16:$a)), 1367 (V_CMP_EQ_U32_e64 (S_AND_B32 (i32 1), $a), (i32 1)) 1368>; 1369 1370def : GCNPat < 1371 (i1 (trunc i64:$a)), 1372 (V_CMP_EQ_U32_e64 (S_AND_B32 (i32 1), 1373 (i32 (EXTRACT_SUBREG $a, sub0))), (i32 1)) 1374>; 1375 1376def : GCNPat < 1377 (i32 (bswap i32:$a)), 1378 (V_BFI_B32 (S_MOV_B32 (i32 0x00ff00ff)), 1379 (V_ALIGNBIT_B32 $a, $a, (i32 24)), 1380 (V_ALIGNBIT_B32 $a, $a, (i32 8))) 1381>; 1382 1383let OtherPredicates = [NoFP16Denormals] in { 1384def : GCNPat< 1385 (fcanonicalize (f16 (VOP3Mods f16:$src, i32:$src_mods))), 1386 (V_MUL_F16_e64 0, (i32 CONST.FP16_ONE), $src_mods, $src, 0, 0) 1387>; 1388 1389def : GCNPat< 1390 (fcanonicalize (f16 (fneg (VOP3Mods f16:$src, i32:$src_mods)))), 1391 (V_MUL_F16_e64 0, (i32 CONST.FP16_NEG_ONE), $src_mods, $src, 0, 0) 1392>; 1393 1394def : GCNPat< 1395 (fcanonicalize (v2f16 (VOP3PMods v2f16:$src, i32:$src_mods))), 1396 (V_PK_MUL_F16 0, (i32 CONST.V2FP16_ONE), $src_mods, $src, DSTCLAMP.NONE) 1397>; 1398} 1399 1400let OtherPredicates = [FP16Denormals] in { 1401def : GCNPat< 1402 (fcanonicalize (f16 (VOP3Mods f16:$src, i32:$src_mods))), 1403 (V_MAX_F16_e64 $src_mods, $src, $src_mods, $src, 0, 0) 1404>; 1405 1406let SubtargetPredicate = HasVOP3PInsts in { 1407def : GCNPat< 1408 (fcanonicalize (v2f16 (VOP3PMods v2f16:$src, i32:$src_mods))), 1409 (V_PK_MAX_F16 $src_mods, $src, $src_mods, $src, DSTCLAMP.NONE) 1410>; 1411} 1412} 1413 1414let OtherPredicates = [NoFP32Denormals] in { 1415def : GCNPat< 1416 (fcanonicalize (f32 (VOP3Mods f32:$src, i32:$src_mods))), 1417 (V_MUL_F32_e64 0, (i32 CONST.FP32_ONE), $src_mods, $src, 0, 0) 1418>; 1419 1420def : GCNPat< 1421 (fcanonicalize (f32 (fneg (VOP3Mods f32:$src, i32:$src_mods)))), 1422 (V_MUL_F32_e64 0, (i32 CONST.FP32_NEG_ONE), $src_mods, $src, 0, 0) 1423>; 1424} 1425 1426let OtherPredicates = [FP32Denormals] in { 1427def : GCNPat< 1428 (fcanonicalize (f32 (VOP3Mods f32:$src, i32:$src_mods))), 1429 (V_MAX_F32_e64 $src_mods, $src, $src_mods, $src, 0, 0) 1430>; 1431} 1432 1433let OtherPredicates = [NoFP64Denormals] in { 1434def : GCNPat< 1435 (fcanonicalize (f64 (VOP3Mods f64:$src, i32:$src_mods))), 1436 (V_MUL_F64 0, CONST.FP64_ONE, $src_mods, $src, 0, 0) 1437>; 1438} 1439 1440let OtherPredicates = [FP64Denormals] in { 1441def : GCNPat< 1442 (fcanonicalize (f64 (VOP3Mods f64:$src, i32:$src_mods))), 1443 (V_MAX_F64 $src_mods, $src, $src_mods, $src, 0, 0) 1444>; 1445} 1446 1447let OtherPredicates = [HasDLInsts] in { 1448def : GCNPat < 1449 (fma (f32 (VOP3Mods0 f32:$src0, i32:$src0_modifiers, i1:$clamp, i32:$omod)), 1450 (f32 (VOP3Mods f32:$src1, i32:$src1_modifiers)), 1451 (f32 (VOP3NoMods f32:$src2))), 1452 (V_FMAC_F32_e64 $src0_modifiers, $src0, $src1_modifiers, $src1, 1453 SRCMODS.NONE, $src2, $clamp, $omod) 1454>; 1455} // End OtherPredicates = [HasDLInsts] 1456 1457 1458// Allow integer inputs 1459class ExpPattern<SDPatternOperator node, ValueType vt, Instruction Inst> : GCNPat< 1460 (node (i8 timm:$tgt), (i8 timm:$en), vt:$src0, vt:$src1, vt:$src2, vt:$src3, (i1 timm:$compr), (i1 timm:$vm)), 1461 (Inst i8:$tgt, vt:$src0, vt:$src1, vt:$src2, vt:$src3, i1:$vm, i1:$compr, i8:$en) 1462>; 1463 1464def : ExpPattern<AMDGPUexport, i32, EXP>; 1465def : ExpPattern<AMDGPUexport_done, i32, EXP_DONE>; 1466 1467// COPY_TO_REGCLASS is workaround tablegen bug from multiple outputs 1468// from S_LSHL_B32's multiple outputs from implicit scc def. 1469def : GCNPat < 1470 (v2i16 (build_vector (i16 0), i16:$src1)), 1471 (v2i16 (COPY_TO_REGCLASS (S_LSHL_B32 i16:$src1, (i16 16)), SReg_32_XM0)) 1472>; 1473 1474 1475let SubtargetPredicate = HasVOP3PInsts in { 1476def : GCNPat < 1477 (v2i16 (build_vector i16:$src0, i16:$src1)), 1478 (v2i16 (S_PACK_LL_B32_B16 $src0, $src1)) 1479>; 1480 1481// With multiple uses of the shift, this will duplicate the shift and 1482// increase register pressure. 1483def : GCNPat < 1484 (v2i16 (build_vector i16:$src0, (i16 (trunc (srl_oneuse i32:$src1, (i32 16)))))), 1485 (v2i16 (S_PACK_LH_B32_B16 i16:$src0, i32:$src1)) 1486>; 1487 1488 1489def : GCNPat < 1490 (v2i16 (build_vector (i16 (trunc (srl_oneuse i32:$src0, (i32 16)))), 1491 (i16 (trunc (srl_oneuse i32:$src1, (i32 16)))))), 1492 (v2i16 (S_PACK_HH_B32_B16 $src0, $src1)) 1493>; 1494 1495// TODO: Should source modifiers be matched to v_pack_b32_f16? 1496def : GCNPat < 1497 (v2f16 (build_vector f16:$src0, f16:$src1)), 1498 (v2f16 (S_PACK_LL_B32_B16 $src0, $src1)) 1499>; 1500 1501} // End SubtargetPredicate = HasVOP3PInsts 1502 1503 1504// def : GCNPat < 1505// (v2f16 (scalar_to_vector f16:$src0)), 1506// (COPY $src0) 1507// >; 1508 1509// def : GCNPat < 1510// (v2i16 (scalar_to_vector i16:$src0)), 1511// (COPY $src0) 1512// >; 1513 1514def : GCNPat < 1515 (v4i16 (scalar_to_vector i16:$src0)), 1516 (INSERT_SUBREG (IMPLICIT_DEF), $src0, sub0) 1517>; 1518 1519def : GCNPat < 1520 (v4f16 (scalar_to_vector f16:$src0)), 1521 (INSERT_SUBREG (IMPLICIT_DEF), $src0, sub0) 1522>; 1523 1524//===----------------------------------------------------------------------===// 1525// Fract Patterns 1526//===----------------------------------------------------------------------===// 1527 1528let SubtargetPredicate = isSI in { 1529 1530// V_FRACT is buggy on SI, so the F32 version is never used and (x-floor(x)) is 1531// used instead. However, SI doesn't have V_FLOOR_F64, so the most efficient 1532// way to implement it is using V_FRACT_F64. 1533// The workaround for the V_FRACT bug is: 1534// fract(x) = isnan(x) ? x : min(V_FRACT(x), 0.99999999999999999) 1535 1536// Convert floor(x) to (x - fract(x)) 1537def : GCNPat < 1538 (f64 (ffloor (f64 (VOP3Mods f64:$x, i32:$mods)))), 1539 (V_ADD_F64 1540 $mods, 1541 $x, 1542 SRCMODS.NEG, 1543 (V_CNDMASK_B64_PSEUDO 1544 (V_MIN_F64 1545 SRCMODS.NONE, 1546 (V_FRACT_F64_e64 $mods, $x, DSTCLAMP.NONE, DSTOMOD.NONE), 1547 SRCMODS.NONE, 1548 (V_MOV_B64_PSEUDO 0x3fefffffffffffff), 1549 DSTCLAMP.NONE, DSTOMOD.NONE), 1550 $x, 1551 (V_CMP_CLASS_F64_e64 SRCMODS.NONE, $x, (i32 3 /*NaN*/))), 1552 DSTCLAMP.NONE, DSTOMOD.NONE) 1553>; 1554 1555} // End SubtargetPredicates = isSI 1556 1557//============================================================================// 1558// Miscellaneous Optimization Patterns 1559//============================================================================// 1560 1561// Undo sub x, c -> add x, -c canonicalization since c is more likely 1562// an inline immediate than -c. 1563// TODO: Also do for 64-bit. 1564def : GCNPat< 1565 (add i32:$src0, (i32 NegSubInlineConst32:$src1)), 1566 (S_SUB_I32 $src0, NegSubInlineConst32:$src1) 1567>; 1568 1569 1570multiclass BFMPatterns <ValueType vt, InstSI BFM, InstSI MOV> { 1571 def : GCNPat < 1572 (vt (shl (vt (add (vt (shl 1, vt:$a)), -1)), vt:$b)), 1573 (BFM $a, $b) 1574 >; 1575 1576 def : GCNPat < 1577 (vt (add (vt (shl 1, vt:$a)), -1)), 1578 (BFM $a, (MOV (i32 0))) 1579 >; 1580} 1581 1582let SubtargetPredicate = isGCN in { 1583 1584defm : BFMPatterns <i32, S_BFM_B32, S_MOV_B32>; 1585// FIXME: defm : BFMPatterns <i64, S_BFM_B64, S_MOV_B64>; 1586 1587defm : BFEPattern <V_BFE_U32, V_BFE_I32, S_MOV_B32>; 1588defm : SHA256MaPattern <V_BFI_B32, V_XOR_B32_e64, SReg_64>; 1589 1590def : IntMed3Pat<V_MED3_I32, smax, smax_oneuse, smin_oneuse>; 1591def : IntMed3Pat<V_MED3_U32, umax, umax_oneuse, umin_oneuse>; 1592 1593} 1594 1595// This matches 16 permutations of 1596// max(min(x, y), min(max(x, y), z)) 1597class FPMed3Pat<ValueType vt, 1598 Instruction med3Inst> : GCNPat< 1599 (fmaxnum (fminnum_oneuse (VOP3Mods_nnan vt:$src0, i32:$src0_mods), 1600 (VOP3Mods_nnan vt:$src1, i32:$src1_mods)), 1601 (fminnum_oneuse (fmaxnum_oneuse (VOP3Mods_nnan vt:$src0, i32:$src0_mods), 1602 (VOP3Mods_nnan vt:$src1, i32:$src1_mods)), 1603 (vt (VOP3Mods_nnan vt:$src2, i32:$src2_mods)))), 1604 (med3Inst $src0_mods, $src0, $src1_mods, $src1, $src2_mods, $src2, DSTCLAMP.NONE, DSTOMOD.NONE) 1605>; 1606 1607class FP16Med3Pat<ValueType vt, 1608 Instruction med3Inst> : GCNPat< 1609 (fmaxnum (fminnum_oneuse (VOP3Mods_nnan vt:$src0, i32:$src0_mods), 1610 (VOP3Mods_nnan vt:$src1, i32:$src1_mods)), 1611 (fminnum_oneuse (fmaxnum_oneuse (VOP3Mods_nnan vt:$src0, i32:$src0_mods), 1612 (VOP3Mods_nnan vt:$src1, i32:$src1_mods)), 1613 (vt (VOP3Mods_nnan vt:$src2, i32:$src2_mods)))), 1614 (med3Inst $src0_mods, $src0, $src1_mods, $src1, $src2_mods, $src2, DSTCLAMP.NONE) 1615>; 1616 1617class Int16Med3Pat<Instruction med3Inst, 1618 SDPatternOperator max, 1619 SDPatternOperator max_oneuse, 1620 SDPatternOperator min_oneuse, 1621 ValueType vt = i32> : GCNPat< 1622 (max (min_oneuse vt:$src0, vt:$src1), 1623 (min_oneuse (max_oneuse vt:$src0, vt:$src1), vt:$src2)), 1624 (med3Inst SRCMODS.NONE, $src0, SRCMODS.NONE, $src1, SRCMODS.NONE, $src2, DSTCLAMP.NONE) 1625>; 1626 1627def : FPMed3Pat<f32, V_MED3_F32>; 1628 1629let OtherPredicates = [isGFX9] in { 1630def : FP16Med3Pat<f16, V_MED3_F16>; 1631def : Int16Med3Pat<V_MED3_I16, smax, smax_oneuse, smin_oneuse, i16>; 1632def : Int16Med3Pat<V_MED3_U16, umax, umax_oneuse, umin_oneuse, i16>; 1633} // End Predicates = [isGFX9] 1634