1 //===- ParallelDSP.cpp - Parallel DSP Pass --------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 /// \file
11 /// Armv6 introduced instructions to perform 32-bit SIMD operations. The
12 /// purpose of this pass is do some IR pattern matching to create ACLE
13 /// DSP intrinsics, which map on these 32-bit SIMD operations.
14 /// This pass runs only when unaligned accesses is supported/enabled.
15 //
16 //===----------------------------------------------------------------------===//
17 
18 #include "llvm/ADT/Statistic.h"
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/Analysis/AliasAnalysis.h"
21 #include "llvm/Analysis/LoopAccessAnalysis.h"
22 #include "llvm/Analysis/LoopPass.h"
23 #include "llvm/Analysis/LoopInfo.h"
24 #include "llvm/IR/Instructions.h"
25 #include "llvm/IR/NoFolder.h"
26 #include "llvm/Transforms/Scalar.h"
27 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
28 #include "llvm/Transforms/Utils/LoopUtils.h"
29 #include "llvm/Pass.h"
30 #include "llvm/PassRegistry.h"
31 #include "llvm/PassSupport.h"
32 #include "llvm/Support/Debug.h"
33 #include "llvm/IR/PatternMatch.h"
34 #include "llvm/CodeGen/TargetPassConfig.h"
35 #include "ARM.h"
36 #include "ARMSubtarget.h"
37 
38 using namespace llvm;
39 using namespace PatternMatch;
40 
41 #define DEBUG_TYPE "arm-parallel-dsp"
42 
43 STATISTIC(NumSMLAD , "Number of smlad instructions generated");
44 
45 namespace {
46   struct OpChain;
47   struct BinOpChain;
48   struct Reduction;
49 
50   using OpChainList     = SmallVector<std::unique_ptr<OpChain>, 8>;
51   using ReductionList   = SmallVector<Reduction, 8>;
52   using ValueList       = SmallVector<Value*, 8>;
53   using MemInstList     = SmallVector<Instruction*, 8>;
54   using PMACPair        = std::pair<BinOpChain*,BinOpChain*>;
55   using PMACPairList    = SmallVector<PMACPair, 8>;
56   using Instructions    = SmallVector<Instruction*,16>;
57   using MemLocList      = SmallVector<MemoryLocation, 4>;
58 
59   struct OpChain {
60     Instruction   *Root;
61     ValueList     AllValues;
62     MemInstList   VecLd;    // List of all load instructions.
63     MemLocList    MemLocs;  // All memory locations read by this tree.
64     bool          ReadOnly = true;
65 
OpChain__anon57282ee30111::OpChain66     OpChain(Instruction *I, ValueList &vl) : Root(I), AllValues(vl) { }
67     virtual ~OpChain() = default;
68 
SetMemoryLocations__anon57282ee30111::OpChain69     void SetMemoryLocations() {
70       const auto Size = MemoryLocation::UnknownSize;
71       for (auto *V : AllValues) {
72         if (auto *I = dyn_cast<Instruction>(V)) {
73           if (I->mayWriteToMemory())
74             ReadOnly = false;
75           if (auto *Ld = dyn_cast<LoadInst>(V))
76             MemLocs.push_back(MemoryLocation(Ld->getPointerOperand(), Size));
77         }
78       }
79     }
80 
size__anon57282ee30111::OpChain81     unsigned size() const { return AllValues.size(); }
82   };
83 
84   // 'BinOpChain' and 'Reduction' are just some bookkeeping data structures.
85   // 'Reduction' contains the phi-node and accumulator statement from where we
86   // start pattern matching, and 'BinOpChain' the multiplication
87   // instructions that are candidates for parallel execution.
88   struct BinOpChain : public OpChain {
89     ValueList     LHS;      // List of all (narrow) left hand operands.
90     ValueList     RHS;      // List of all (narrow) right hand operands.
91 
BinOpChain__anon57282ee30111::BinOpChain92     BinOpChain(Instruction *I, ValueList &lhs, ValueList &rhs) :
93       OpChain(I, lhs), LHS(lhs), RHS(rhs) {
94         for (auto *V : RHS)
95           AllValues.push_back(V);
96       }
97   };
98 
99   struct Reduction {
100     PHINode         *Phi;             // The Phi-node from where we start
101                                       // pattern matching.
102     Instruction     *AccIntAdd;       // The accumulating integer add statement,
103                                       // i.e, the reduction statement.
104 
105     OpChainList     MACCandidates;    // The MAC candidates associated with
106                                       // this reduction statement.
Reduction__anon57282ee30111::Reduction107     Reduction (PHINode *P, Instruction *Acc) : Phi(P), AccIntAdd(Acc) { };
108   };
109 
110   class ARMParallelDSP : public LoopPass {
111     ScalarEvolution   *SE;
112     AliasAnalysis     *AA;
113     TargetLibraryInfo *TLI;
114     DominatorTree     *DT;
115     LoopInfo          *LI;
116     Loop              *L;
117     const DataLayout  *DL;
118     Module            *M;
119 
120     bool InsertParallelMACs(Reduction &Reduction, PMACPairList &PMACPairs);
121     bool AreSequentialLoads(LoadInst *Ld0, LoadInst *Ld1, MemInstList &VecMem);
122     PMACPairList CreateParallelMACPairs(OpChainList &Candidates);
123     Instruction *CreateSMLADCall(LoadInst *VecLd0, LoadInst *VecLd1,
124                                  Instruction *Acc, Instruction *InsertAfter);
125 
126     /// Try to match and generate: SMLAD, SMLADX - Signed Multiply Accumulate
127     /// Dual performs two signed 16x16-bit multiplications. It adds the
128     /// products to a 32-bit accumulate operand. Optionally, the instruction can
129     /// exchange the halfwords of the second operand before performing the
130     /// arithmetic.
131     bool MatchSMLAD(Function &F);
132 
133   public:
134     static char ID;
135 
ARMParallelDSP()136     ARMParallelDSP() : LoopPass(ID) { }
137 
getAnalysisUsage(AnalysisUsage & AU) const138     void getAnalysisUsage(AnalysisUsage &AU) const override {
139       LoopPass::getAnalysisUsage(AU);
140       AU.addRequired<AssumptionCacheTracker>();
141       AU.addRequired<ScalarEvolutionWrapperPass>();
142       AU.addRequired<AAResultsWrapperPass>();
143       AU.addRequired<TargetLibraryInfoWrapperPass>();
144       AU.addRequired<LoopInfoWrapperPass>();
145       AU.addRequired<DominatorTreeWrapperPass>();
146       AU.addRequired<TargetPassConfig>();
147       AU.addPreserved<LoopInfoWrapperPass>();
148       AU.setPreservesCFG();
149     }
150 
runOnLoop(Loop * TheLoop,LPPassManager &)151     bool runOnLoop(Loop *TheLoop, LPPassManager &) override {
152       L = TheLoop;
153       SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
154       AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
155       TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
156       DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
157       LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
158       auto &TPC = getAnalysis<TargetPassConfig>();
159 
160       BasicBlock *Header = TheLoop->getHeader();
161       if (!Header)
162         return false;
163 
164       // TODO: We assume the loop header and latch to be the same block.
165       // This is not a fundamental restriction, but lifting this would just
166       // require more work to do the transformation and then patch up the CFG.
167       if (Header != TheLoop->getLoopLatch()) {
168         LLVM_DEBUG(dbgs() << "The loop header is not the loop latch: not "
169                              "running pass ARMParallelDSP\n");
170         return false;
171       }
172 
173       Function &F = *Header->getParent();
174       M = F.getParent();
175       DL = &M->getDataLayout();
176 
177       auto &TM = TPC.getTM<TargetMachine>();
178       auto *ST = &TM.getSubtarget<ARMSubtarget>(F);
179 
180       if (!ST->allowsUnalignedMem()) {
181         LLVM_DEBUG(dbgs() << "Unaligned memory access not supported: not "
182                              "running pass ARMParallelDSP\n");
183         return false;
184       }
185 
186       if (!ST->hasDSP()) {
187         LLVM_DEBUG(dbgs() << "DSP extension not enabled: not running pass "
188                              "ARMParallelDSP\n");
189         return false;
190       }
191 
192       LoopAccessInfo LAI(L, SE, TLI, AA, DT, LI);
193       bool Changes = false;
194 
195       LLVM_DEBUG(dbgs() << "\n== Parallel DSP pass ==\n\n");
196       Changes = MatchSMLAD(F);
197       return Changes;
198     }
199   };
200 }
201 
202 // MaxBitwidth: the maximum supported bitwidth of the elements in the DSP
203 // instructions, which is set to 16. So here we should collect all i8 and i16
204 // narrow operations.
205 // TODO: we currently only collect i16, and will support i8 later, so that's
206 // why we check that types are equal to MaxBitWidth, and not <= MaxBitWidth.
207 template<unsigned MaxBitWidth>
IsNarrowSequence(Value * V,ValueList & VL)208 static bool IsNarrowSequence(Value *V, ValueList &VL) {
209   LLVM_DEBUG(dbgs() << "Is narrow sequence? "; V->dump());
210   ConstantInt *CInt;
211 
212   if (match(V, m_ConstantInt(CInt))) {
213     // TODO: if a constant is used, it needs to fit within the bit width.
214     return false;
215   }
216 
217   auto *I = dyn_cast<Instruction>(V);
218   if (!I)
219    return false;
220 
221   Value *Val, *LHS, *RHS;
222   if (match(V, m_Trunc(m_Value(Val)))) {
223     if (cast<TruncInst>(I)->getDestTy()->getIntegerBitWidth() == MaxBitWidth)
224       return IsNarrowSequence<MaxBitWidth>(Val, VL);
225   } else if (match(V, m_Add(m_Value(LHS), m_Value(RHS)))) {
226     // TODO: we need to implement sadd16/sadd8 for this, which enables to
227     // also do the rewrite for smlad8.ll, but it is unsupported for now.
228     LLVM_DEBUG(dbgs() << "No, unsupported Op:\t"; I->dump());
229     return false;
230   } else if (match(V, m_ZExtOrSExt(m_Value(Val)))) {
231     if (cast<CastInst>(I)->getSrcTy()->getIntegerBitWidth() != MaxBitWidth) {
232       LLVM_DEBUG(dbgs() << "No, wrong SrcTy size: " <<
233         cast<CastInst>(I)->getSrcTy()->getIntegerBitWidth() << "\n");
234       return false;
235     }
236 
237     if (match(Val, m_Load(m_Value()))) {
238       LLVM_DEBUG(dbgs() << "Yes, found narrow Load:\t"; Val->dump());
239       VL.push_back(Val);
240       VL.push_back(I);
241       return true;
242     }
243   }
244   LLVM_DEBUG(dbgs() << "No, unsupported Op:\t"; I->dump());
245   return false;
246 }
247 
248 // Element-by-element comparison of Value lists returning true if they are
249 // instructions with the same opcode or constants with the same value.
AreSymmetrical(const ValueList & VL0,const ValueList & VL1)250 static bool AreSymmetrical(const ValueList &VL0,
251                            const ValueList &VL1) {
252   if (VL0.size() != VL1.size()) {
253     LLVM_DEBUG(dbgs() << "Muls are mismatching operand list lengths: "
254                       << VL0.size() << " != " << VL1.size() << "\n");
255     return false;
256   }
257 
258   const unsigned Pairs = VL0.size();
259   LLVM_DEBUG(dbgs() << "Number of operand pairs: " << Pairs << "\n");
260 
261   for (unsigned i = 0; i < Pairs; ++i) {
262     const Value *V0 = VL0[i];
263     const Value *V1 = VL1[i];
264     const auto *Inst0 = dyn_cast<Instruction>(V0);
265     const auto *Inst1 = dyn_cast<Instruction>(V1);
266 
267     LLVM_DEBUG(dbgs() << "Pair " << i << ":\n";
268                dbgs() << "mul1: "; V0->dump();
269                dbgs() << "mul2: "; V1->dump());
270 
271     if (!Inst0 || !Inst1)
272       return false;
273 
274     if (Inst0->isSameOperationAs(Inst1)) {
275       LLVM_DEBUG(dbgs() << "OK: same operation found!\n");
276       continue;
277     }
278 
279     const APInt *C0, *C1;
280     if (!(match(V0, m_APInt(C0)) && match(V1, m_APInt(C1)) && C0 == C1))
281       return false;
282   }
283 
284   LLVM_DEBUG(dbgs() << "OK: found symmetrical operand lists.\n");
285   return true;
286 }
287 
288 template<typename MemInst>
AreSequentialAccesses(MemInst * MemOp0,MemInst * MemOp1,MemInstList & VecMem,const DataLayout & DL,ScalarEvolution & SE)289 static bool AreSequentialAccesses(MemInst *MemOp0, MemInst *MemOp1,
290                                   MemInstList &VecMem, const DataLayout &DL,
291                                   ScalarEvolution &SE) {
292   if (!MemOp0->isSimple() || !MemOp1->isSimple()) {
293     LLVM_DEBUG(dbgs() << "No, not touching volatile access\n");
294     return false;
295   }
296   if (isConsecutiveAccess(MemOp0, MemOp1, DL, SE)) {
297     VecMem.push_back(MemOp0);
298     VecMem.push_back(MemOp1);
299     LLVM_DEBUG(dbgs() << "OK: accesses are consecutive.\n");
300     return true;
301   }
302   LLVM_DEBUG(dbgs() << "No, accesses aren't consecutive.\n");
303   return false;
304 }
305 
AreSequentialLoads(LoadInst * Ld0,LoadInst * Ld1,MemInstList & VecMem)306 bool ARMParallelDSP::AreSequentialLoads(LoadInst *Ld0, LoadInst *Ld1,
307                                         MemInstList &VecMem) {
308   if (!Ld0 || !Ld1)
309     return false;
310 
311   LLVM_DEBUG(dbgs() << "Are consecutive loads:\n";
312     dbgs() << "Ld0:"; Ld0->dump();
313     dbgs() << "Ld1:"; Ld1->dump();
314   );
315 
316   if (!Ld0->hasOneUse() || !Ld1->hasOneUse()) {
317     LLVM_DEBUG(dbgs() << "No, load has more than one use.\n");
318     return false;
319   }
320 
321   return AreSequentialAccesses<LoadInst>(Ld0, Ld1, VecMem, *DL, *SE);
322 }
323 
324 PMACPairList
CreateParallelMACPairs(OpChainList & Candidates)325 ARMParallelDSP::CreateParallelMACPairs(OpChainList &Candidates) {
326   const unsigned Elems = Candidates.size();
327   PMACPairList PMACPairs;
328 
329   if (Elems < 2)
330     return PMACPairs;
331 
332   // TODO: for now we simply try to match consecutive pairs i and i+1.
333   // We can compare all elements, but then we need to compare and evaluate
334   // different solutions.
335   for(unsigned i=0; i<Elems-1; i+=2) {
336     BinOpChain *PMul0 = static_cast<BinOpChain*>(Candidates[i].get());
337     BinOpChain *PMul1 = static_cast<BinOpChain*>(Candidates[i+1].get());
338     const Instruction *Mul0 = PMul0->Root;
339     const Instruction *Mul1 = PMul1->Root;
340 
341     if (Mul0 == Mul1)
342       continue;
343 
344     LLVM_DEBUG(dbgs() << "\nCheck parallel muls:\n";
345                dbgs() << "- "; Mul0->dump();
346                dbgs() << "- "; Mul1->dump());
347 
348     const ValueList &Mul0_LHS = PMul0->LHS;
349     const ValueList &Mul0_RHS = PMul0->RHS;
350     const ValueList &Mul1_LHS = PMul1->LHS;
351     const ValueList &Mul1_RHS = PMul1->RHS;
352 
353     if (!AreSymmetrical(Mul0_LHS, Mul1_LHS) ||
354         !AreSymmetrical(Mul0_RHS, Mul1_RHS))
355       continue;
356 
357     LLVM_DEBUG(dbgs() << "OK: mul operands list match:\n");
358     // The first elements of each vector should be loads with sexts. If we find
359     // that its two pairs of consecutive loads, then these can be transformed
360     // into two wider loads and the users can be replaced with DSP
361     // intrinsics.
362     for (unsigned x = 0; x < Mul0_LHS.size(); x += 2) {
363       auto *Ld0 = dyn_cast<LoadInst>(Mul0_LHS[x]);
364       auto *Ld1 = dyn_cast<LoadInst>(Mul1_LHS[x]);
365       auto *Ld2 = dyn_cast<LoadInst>(Mul0_RHS[x]);
366       auto *Ld3 = dyn_cast<LoadInst>(Mul1_RHS[x]);
367 
368       LLVM_DEBUG(dbgs() << "Looking at operands " << x << ":\n";
369                  dbgs() << "\t mul1: "; Mul0_LHS[x]->dump();
370                  dbgs() << "\t mul2: "; Mul1_LHS[x]->dump();
371                  dbgs() << "and operands " << x + 2 << ":\n";
372                  dbgs() << "\t mul1: "; Mul0_RHS[x]->dump();
373                  dbgs() << "\t mul2: "; Mul1_RHS[x]->dump());
374 
375       if (AreSequentialLoads(Ld0, Ld1, PMul0->VecLd) &&
376           AreSequentialLoads(Ld2, Ld3, PMul1->VecLd)) {
377         LLVM_DEBUG(dbgs() << "OK: found two pairs of parallel loads!\n");
378         PMACPairs.push_back(std::make_pair(PMul0, PMul1));
379       }
380     }
381   }
382   return PMACPairs;
383 }
384 
InsertParallelMACs(Reduction & Reduction,PMACPairList & PMACPairs)385 bool ARMParallelDSP::InsertParallelMACs(Reduction &Reduction,
386                                         PMACPairList &PMACPairs) {
387   Instruction *Acc = Reduction.Phi;
388   Instruction *InsertAfter = Reduction.AccIntAdd;
389 
390   for (auto &Pair : PMACPairs) {
391     LLVM_DEBUG(dbgs() << "Found parallel MACs!!\n";
392                dbgs() << "- "; Pair.first->Root->dump();
393                dbgs() << "- "; Pair.second->Root->dump());
394     auto *VecLd0 = cast<LoadInst>(Pair.first->VecLd[0]);
395     auto *VecLd1 = cast<LoadInst>(Pair.second->VecLd[0]);
396     Acc = CreateSMLADCall(VecLd0, VecLd1, Acc, InsertAfter);
397     InsertAfter = Acc;
398   }
399 
400   if (Acc != Reduction.Phi) {
401     LLVM_DEBUG(dbgs() << "Replace Accumulate: "; Acc->dump());
402     Reduction.AccIntAdd->replaceAllUsesWith(Acc);
403     return true;
404   }
405   return false;
406 }
407 
MatchReductions(Function & F,Loop * TheLoop,BasicBlock * Header,ReductionList & Reductions)408 static void MatchReductions(Function &F, Loop *TheLoop, BasicBlock *Header,
409                             ReductionList &Reductions) {
410   RecurrenceDescriptor RecDesc;
411   const bool HasFnNoNaNAttr =
412     F.getFnAttribute("no-nans-fp-math").getValueAsString() == "true";
413   const BasicBlock *Latch = TheLoop->getLoopLatch();
414 
415   // We need a preheader as getIncomingValueForBlock assumes there is one.
416   if (!TheLoop->getLoopPreheader()) {
417     LLVM_DEBUG(dbgs() << "No preheader found, bailing out\n");
418     return;
419   }
420 
421   for (PHINode &Phi : Header->phis()) {
422     const auto *Ty = Phi.getType();
423     if (!Ty->isIntegerTy(32))
424       continue;
425 
426     const bool IsReduction =
427       RecurrenceDescriptor::AddReductionVar(&Phi,
428                                             RecurrenceDescriptor::RK_IntegerAdd,
429                                             TheLoop, HasFnNoNaNAttr, RecDesc);
430     if (!IsReduction)
431       continue;
432 
433     Instruction *Acc = dyn_cast<Instruction>(Phi.getIncomingValueForBlock(Latch));
434     if (!Acc)
435       continue;
436 
437     Reductions.push_back(Reduction(&Phi, Acc));
438   }
439 
440   LLVM_DEBUG(
441     dbgs() << "\nAccumulating integer additions (reductions) found:\n";
442     for (auto &R : Reductions) {
443       dbgs() << "-  "; R.Phi->dump();
444       dbgs() << "-> "; R.AccIntAdd->dump();
445     }
446   );
447 }
448 
AddMACCandidate(OpChainList & Candidates,const Instruction * Acc,Value * MulOp0,Value * MulOp1,int MulOpNum)449 static void AddMACCandidate(OpChainList &Candidates,
450                             const Instruction *Acc,
451                             Value *MulOp0, Value *MulOp1, int MulOpNum) {
452   Instruction *Mul = dyn_cast<Instruction>(Acc->getOperand(MulOpNum));
453   LLVM_DEBUG(dbgs() << "OK, found acc mul:\t"; Mul->dump());
454   ValueList LHS;
455   ValueList RHS;
456   if (IsNarrowSequence<16>(MulOp0, LHS) &&
457       IsNarrowSequence<16>(MulOp1, RHS)) {
458     LLVM_DEBUG(dbgs() << "OK, found narrow mul: "; Mul->dump());
459     Candidates.push_back(make_unique<BinOpChain>(Mul, LHS, RHS));
460   }
461 }
462 
MatchParallelMACSequences(Reduction & R,OpChainList & Candidates)463 static void MatchParallelMACSequences(Reduction &R,
464                                       OpChainList &Candidates) {
465   const Instruction *Acc = R.AccIntAdd;
466   Value *A, *MulOp0, *MulOp1;
467   LLVM_DEBUG(dbgs() << "\n- Analysing:\t"; Acc->dump());
468 
469   // Pattern 1: the accumulator is the RHS of the mul.
470   while(match(Acc, m_Add(m_Mul(m_Value(MulOp0), m_Value(MulOp1)),
471                          m_Value(A)))){
472     AddMACCandidate(Candidates, Acc, MulOp0, MulOp1, 0);
473     Acc = dyn_cast<Instruction>(A);
474   }
475   // Pattern 2: the accumulator is the LHS of the mul.
476   while(match(Acc, m_Add(m_Value(A),
477                          m_Mul(m_Value(MulOp0), m_Value(MulOp1))))) {
478     AddMACCandidate(Candidates, Acc, MulOp0, MulOp1, 1);
479     Acc = dyn_cast<Instruction>(A);
480   }
481 
482   // The last mul in the chain has a slightly different pattern:
483   // the mul is the first operand
484   if (match(Acc, m_Add(m_Mul(m_Value(MulOp0), m_Value(MulOp1)), m_Value(A))))
485     AddMACCandidate(Candidates, Acc, MulOp0, MulOp1, 0);
486 
487   // Because we start at the bottom of the chain, and we work our way up,
488   // the muls are added in reverse program order to the list.
489   std::reverse(Candidates.begin(), Candidates.end());
490 }
491 
492 // Collects all instructions that are not part of the MAC chains, which is the
493 // set of instructions that can potentially alias with the MAC operands.
AliasCandidates(BasicBlock * Header,Instructions & Reads,Instructions & Writes)494 static void AliasCandidates(BasicBlock *Header, Instructions &Reads,
495                             Instructions &Writes) {
496   for (auto &I : *Header) {
497     if (I.mayReadFromMemory())
498       Reads.push_back(&I);
499     if (I.mayWriteToMemory())
500       Writes.push_back(&I);
501   }
502 }
503 
504 // Check whether statements in the basic block that write to memory alias with
505 // the memory locations accessed by the MAC-chains.
506 // TODO: we need the read statements when we accept more complicated chains.
AreAliased(AliasAnalysis * AA,Instructions & Reads,Instructions & Writes,OpChainList & MACCandidates)507 static bool AreAliased(AliasAnalysis *AA, Instructions &Reads,
508                        Instructions &Writes, OpChainList &MACCandidates) {
509   LLVM_DEBUG(dbgs() << "Alias checks:\n");
510   for (auto &MAC : MACCandidates) {
511     LLVM_DEBUG(dbgs() << "mul: "; MAC->Root->dump());
512 
513     // At the moment, we allow only simple chains that only consist of reads,
514     // accumulate their result with an integer add, and thus that don't write
515     // memory, and simply bail if they do.
516     if (!MAC->ReadOnly)
517       return true;
518 
519     // Now for all writes in the basic block, check that they don't alias with
520     // the memory locations accessed by our MAC-chain:
521     for (auto *I : Writes) {
522       LLVM_DEBUG(dbgs() << "- "; I->dump());
523       assert(MAC->MemLocs.size() >= 2 && "expecting at least 2 memlocs");
524       for (auto &MemLoc : MAC->MemLocs) {
525         if (isModOrRefSet(intersectModRef(AA->getModRefInfo(I, MemLoc),
526                                           ModRefInfo::ModRef))) {
527           LLVM_DEBUG(dbgs() << "Yes, aliases found\n");
528           return true;
529         }
530       }
531     }
532   }
533 
534   LLVM_DEBUG(dbgs() << "OK: no aliases found!\n");
535   return false;
536 }
537 
CheckMACMemory(OpChainList & Candidates)538 static bool CheckMACMemory(OpChainList &Candidates) {
539   for (auto &C : Candidates) {
540     // A mul has 2 operands, and a narrow op consist of sext and a load; thus
541     // we expect at least 4 items in this operand value list.
542     if (C->size() < 4) {
543       LLVM_DEBUG(dbgs() << "Operand list too short.\n");
544       return false;
545     }
546     C->SetMemoryLocations();
547     ValueList &LHS = static_cast<BinOpChain*>(C.get())->LHS;
548     ValueList &RHS = static_cast<BinOpChain*>(C.get())->RHS;
549 
550     // Use +=2 to skip over the expected extend instructions.
551     for (unsigned i = 0, e = LHS.size(); i < e; i += 2) {
552       if (!isa<LoadInst>(LHS[i]) || !isa<LoadInst>(RHS[i]))
553         return false;
554     }
555   }
556   return true;
557 }
558 
559 // Loop Pass that needs to identify integer add/sub reductions of 16-bit vector
560 // multiplications.
561 // To use SMLAD:
562 // 1) we first need to find integer add reduction PHIs,
563 // 2) then from the PHI, look for this pattern:
564 //
565 // acc0 = phi i32 [0, %entry], [%acc1, %loop.body]
566 // ld0 = load i16
567 // sext0 = sext i16 %ld0 to i32
568 // ld1 = load i16
569 // sext1 = sext i16 %ld1 to i32
570 // mul0 = mul %sext0, %sext1
571 // ld2 = load i16
572 // sext2 = sext i16 %ld2 to i32
573 // ld3 = load i16
574 // sext3 = sext i16 %ld3 to i32
575 // mul1 = mul i32 %sext2, %sext3
576 // add0 = add i32 %mul0, %acc0
577 // acc1 = add i32 %add0, %mul1
578 //
579 // Which can be selected to:
580 //
581 // ldr.h r0
582 // ldr.h r1
583 // smlad r2, r0, r1, r2
584 //
585 // If constants are used instead of loads, these will need to be hoisted
586 // out and into a register.
587 //
588 // If loop invariants are used instead of loads, these need to be packed
589 // before the loop begins.
590 //
MatchSMLAD(Function & F)591 bool ARMParallelDSP::MatchSMLAD(Function &F) {
592   BasicBlock *Header = L->getHeader();
593   LLVM_DEBUG(dbgs() << "= Matching SMLAD =\n";
594              dbgs() << "Header block:\n"; Header->dump();
595              dbgs() << "Loop info:\n\n"; L->dump());
596 
597   bool Changed = false;
598   ReductionList Reductions;
599   MatchReductions(F, L, Header, Reductions);
600 
601   for (auto &R : Reductions) {
602     OpChainList MACCandidates;
603     MatchParallelMACSequences(R, MACCandidates);
604     if (!CheckMACMemory(MACCandidates))
605       continue;
606 
607     R.MACCandidates = std::move(MACCandidates);
608 
609     LLVM_DEBUG(dbgs() << "MAC candidates:\n";
610       for (auto &M : R.MACCandidates)
611         M->Root->dump();
612       dbgs() << "\n";);
613   }
614 
615   // Collect all instructions that may read or write memory. Our alias
616   // analysis checks bail out if any of these instructions aliases with an
617   // instruction from the MAC-chain.
618   Instructions Reads, Writes;
619   AliasCandidates(Header, Reads, Writes);
620 
621   for (auto &R : Reductions) {
622     if (AreAliased(AA, Reads, Writes, R.MACCandidates))
623       return false;
624     PMACPairList PMACPairs = CreateParallelMACPairs(R.MACCandidates);
625     Changed |= InsertParallelMACs(R, PMACPairs);
626   }
627 
628   LLVM_DEBUG(if (Changed) dbgs() << "Header block:\n"; Header->dump(););
629   return Changed;
630 }
631 
CreateLoadIns(IRBuilder<NoFolder> & IRB,Instruction * Acc,LoadInst ** VecLd)632 static void CreateLoadIns(IRBuilder<NoFolder> &IRB, Instruction *Acc,
633                           LoadInst **VecLd) {
634   const Type *AccTy = Acc->getType();
635   const unsigned AddrSpace = (*VecLd)->getPointerAddressSpace();
636 
637   Value *VecPtr = IRB.CreateBitCast((*VecLd)->getPointerOperand(),
638                                     AccTy->getPointerTo(AddrSpace));
639   *VecLd = IRB.CreateAlignedLoad(VecPtr, (*VecLd)->getAlignment());
640 }
641 
CreateSMLADCall(LoadInst * VecLd0,LoadInst * VecLd1,Instruction * Acc,Instruction * InsertAfter)642 Instruction *ARMParallelDSP::CreateSMLADCall(LoadInst *VecLd0, LoadInst *VecLd1,
643                                              Instruction *Acc,
644                                              Instruction *InsertAfter) {
645   LLVM_DEBUG(dbgs() << "Create SMLAD intrinsic using:\n";
646              dbgs() << "- "; VecLd0->dump();
647              dbgs() << "- "; VecLd1->dump();
648              dbgs() << "- "; Acc->dump());
649 
650   IRBuilder<NoFolder> Builder(InsertAfter->getParent(),
651                               ++BasicBlock::iterator(InsertAfter));
652 
653   // Replace the reduction chain with an intrinsic call
654   CreateLoadIns(Builder, Acc, &VecLd0);
655   CreateLoadIns(Builder, Acc, &VecLd1);
656   Value* Args[] = { VecLd0, VecLd1, Acc };
657   Function *SMLAD = Intrinsic::getDeclaration(M, Intrinsic::arm_smlad);
658   CallInst *Call = Builder.CreateCall(SMLAD, Args);
659   NumSMLAD++;
660   return Call;
661 }
662 
createARMParallelDSPPass()663 Pass *llvm::createARMParallelDSPPass() {
664   return new ARMParallelDSP();
665 }
666 
667 char ARMParallelDSP::ID = 0;
668 
669 INITIALIZE_PASS_BEGIN(ARMParallelDSP, "arm-parallel-dsp",
670                 "Transform loops to use DSP intrinsics", false, false)
671 INITIALIZE_PASS_END(ARMParallelDSP, "arm-parallel-dsp",
672                 "Transform loops to use DSP intrinsics", false, false)
673