1 //===-- ARMAddressingModes.h - ARM Addressing Modes -------------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains the ARM addressing mode implementation stuff. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #ifndef LLVM_LIB_TARGET_ARM_MCTARGETDESC_ARMADDRESSINGMODES_H 15 #define LLVM_LIB_TARGET_ARM_MCTARGETDESC_ARMADDRESSINGMODES_H 16 17 #include "llvm/ADT/APFloat.h" 18 #include "llvm/ADT/APInt.h" 19 #include "llvm/Support/ErrorHandling.h" 20 #include "llvm/Support/MathExtras.h" 21 #include <cassert> 22 23 namespace llvm { 24 25 /// ARM_AM - ARM Addressing Mode Stuff 26 namespace ARM_AM { 27 enum ShiftOpc { 28 no_shift = 0, 29 asr, 30 lsl, 31 lsr, 32 ror, 33 rrx 34 }; 35 36 enum AddrOpc { 37 sub = 0, 38 add 39 }; 40 getAddrOpcStr(AddrOpc Op)41 inline const char *getAddrOpcStr(AddrOpc Op) { return Op == sub ? "-" : ""; } 42 getShiftOpcStr(ShiftOpc Op)43 inline const char *getShiftOpcStr(ShiftOpc Op) { 44 switch (Op) { 45 default: llvm_unreachable("Unknown shift opc!"); 46 case ARM_AM::asr: return "asr"; 47 case ARM_AM::lsl: return "lsl"; 48 case ARM_AM::lsr: return "lsr"; 49 case ARM_AM::ror: return "ror"; 50 case ARM_AM::rrx: return "rrx"; 51 } 52 } 53 getShiftOpcEncoding(ShiftOpc Op)54 inline unsigned getShiftOpcEncoding(ShiftOpc Op) { 55 switch (Op) { 56 default: llvm_unreachable("Unknown shift opc!"); 57 case ARM_AM::asr: return 2; 58 case ARM_AM::lsl: return 0; 59 case ARM_AM::lsr: return 1; 60 case ARM_AM::ror: return 3; 61 } 62 } 63 64 enum AMSubMode { 65 bad_am_submode = 0, 66 ia, 67 ib, 68 da, 69 db 70 }; 71 getAMSubModeStr(AMSubMode Mode)72 inline const char *getAMSubModeStr(AMSubMode Mode) { 73 switch (Mode) { 74 default: llvm_unreachable("Unknown addressing sub-mode!"); 75 case ARM_AM::ia: return "ia"; 76 case ARM_AM::ib: return "ib"; 77 case ARM_AM::da: return "da"; 78 case ARM_AM::db: return "db"; 79 } 80 } 81 82 /// rotr32 - Rotate a 32-bit unsigned value right by a specified # bits. 83 /// rotr32(unsigned Val,unsigned Amt)84 inline unsigned rotr32(unsigned Val, unsigned Amt) { 85 assert(Amt < 32 && "Invalid rotate amount"); 86 return (Val >> Amt) | (Val << ((32-Amt)&31)); 87 } 88 89 /// rotl32 - Rotate a 32-bit unsigned value left by a specified # bits. 90 /// rotl32(unsigned Val,unsigned Amt)91 inline unsigned rotl32(unsigned Val, unsigned Amt) { 92 assert(Amt < 32 && "Invalid rotate amount"); 93 return (Val << Amt) | (Val >> ((32-Amt)&31)); 94 } 95 96 //===--------------------------------------------------------------------===// 97 // Addressing Mode #1: shift_operand with registers 98 //===--------------------------------------------------------------------===// 99 // 100 // This 'addressing mode' is used for arithmetic instructions. It can 101 // represent things like: 102 // reg 103 // reg [asr|lsl|lsr|ror|rrx] reg 104 // reg [asr|lsl|lsr|ror|rrx] imm 105 // 106 // This is stored three operands [rega, regb, opc]. The first is the base 107 // reg, the second is the shift amount (or reg0 if not present or imm). The 108 // third operand encodes the shift opcode and the imm if a reg isn't present. 109 // getSORegOpc(ShiftOpc ShOp,unsigned Imm)110 inline unsigned getSORegOpc(ShiftOpc ShOp, unsigned Imm) { 111 return ShOp | (Imm << 3); 112 } getSORegOffset(unsigned Op)113 inline unsigned getSORegOffset(unsigned Op) { return Op >> 3; } getSORegShOp(unsigned Op)114 inline ShiftOpc getSORegShOp(unsigned Op) { return (ShiftOpc)(Op & 7); } 115 116 /// getSOImmValImm - Given an encoded imm field for the reg/imm form, return 117 /// the 8-bit imm value. getSOImmValImm(unsigned Imm)118 inline unsigned getSOImmValImm(unsigned Imm) { return Imm & 0xFF; } 119 /// getSOImmValRot - Given an encoded imm field for the reg/imm form, return 120 /// the rotate amount. getSOImmValRot(unsigned Imm)121 inline unsigned getSOImmValRot(unsigned Imm) { return (Imm >> 8) * 2; } 122 123 /// getSOImmValRotate - Try to handle Imm with an immediate shifter operand, 124 /// computing the rotate amount to use. If this immediate value cannot be 125 /// handled with a single shifter-op, determine a good rotate amount that will 126 /// take a maximal chunk of bits out of the immediate. getSOImmValRotate(unsigned Imm)127 inline unsigned getSOImmValRotate(unsigned Imm) { 128 // 8-bit (or less) immediates are trivially shifter_operands with a rotate 129 // of zero. 130 if ((Imm & ~255U) == 0) return 0; 131 132 // Use CTZ to compute the rotate amount. 133 unsigned TZ = countTrailingZeros(Imm); 134 135 // Rotate amount must be even. Something like 0x200 must be rotated 8 bits, 136 // not 9. 137 unsigned RotAmt = TZ & ~1; 138 139 // If we can handle this spread, return it. 140 if ((rotr32(Imm, RotAmt) & ~255U) == 0) 141 return (32-RotAmt)&31; // HW rotates right, not left. 142 143 // For values like 0xF000000F, we should ignore the low 6 bits, then 144 // retry the hunt. 145 if (Imm & 63U) { 146 unsigned TZ2 = countTrailingZeros(Imm & ~63U); 147 unsigned RotAmt2 = TZ2 & ~1; 148 if ((rotr32(Imm, RotAmt2) & ~255U) == 0) 149 return (32-RotAmt2)&31; // HW rotates right, not left. 150 } 151 152 // Otherwise, we have no way to cover this span of bits with a single 153 // shifter_op immediate. Return a chunk of bits that will be useful to 154 // handle. 155 return (32-RotAmt)&31; // HW rotates right, not left. 156 } 157 158 /// getSOImmVal - Given a 32-bit immediate, if it is something that can fit 159 /// into an shifter_operand immediate operand, return the 12-bit encoding for 160 /// it. If not, return -1. getSOImmVal(unsigned Arg)161 inline int getSOImmVal(unsigned Arg) { 162 // 8-bit (or less) immediates are trivially shifter_operands with a rotate 163 // of zero. 164 if ((Arg & ~255U) == 0) return Arg; 165 166 unsigned RotAmt = getSOImmValRotate(Arg); 167 168 // If this cannot be handled with a single shifter_op, bail out. 169 if (rotr32(~255U, RotAmt) & Arg) 170 return -1; 171 172 // Encode this correctly. 173 return rotl32(Arg, RotAmt) | ((RotAmt>>1) << 8); 174 } 175 176 /// isSOImmTwoPartVal - Return true if the specified value can be obtained by 177 /// or'ing together two SOImmVal's. isSOImmTwoPartVal(unsigned V)178 inline bool isSOImmTwoPartVal(unsigned V) { 179 // If this can be handled with a single shifter_op, bail out. 180 V = rotr32(~255U, getSOImmValRotate(V)) & V; 181 if (V == 0) 182 return false; 183 184 // If this can be handled with two shifter_op's, accept. 185 V = rotr32(~255U, getSOImmValRotate(V)) & V; 186 return V == 0; 187 } 188 189 /// getSOImmTwoPartFirst - If V is a value that satisfies isSOImmTwoPartVal, 190 /// return the first chunk of it. getSOImmTwoPartFirst(unsigned V)191 inline unsigned getSOImmTwoPartFirst(unsigned V) { 192 return rotr32(255U, getSOImmValRotate(V)) & V; 193 } 194 195 /// getSOImmTwoPartSecond - If V is a value that satisfies isSOImmTwoPartVal, 196 /// return the second chunk of it. getSOImmTwoPartSecond(unsigned V)197 inline unsigned getSOImmTwoPartSecond(unsigned V) { 198 // Mask out the first hunk. 199 V = rotr32(~255U, getSOImmValRotate(V)) & V; 200 201 // Take what's left. 202 assert(V == (rotr32(255U, getSOImmValRotate(V)) & V)); 203 return V; 204 } 205 206 /// getThumbImmValShift - Try to handle Imm with a 8-bit immediate followed 207 /// by a left shift. Returns the shift amount to use. getThumbImmValShift(unsigned Imm)208 inline unsigned getThumbImmValShift(unsigned Imm) { 209 // 8-bit (or less) immediates are trivially immediate operand with a shift 210 // of zero. 211 if ((Imm & ~255U) == 0) return 0; 212 213 // Use CTZ to compute the shift amount. 214 return countTrailingZeros(Imm); 215 } 216 217 /// isThumbImmShiftedVal - Return true if the specified value can be obtained 218 /// by left shifting a 8-bit immediate. isThumbImmShiftedVal(unsigned V)219 inline bool isThumbImmShiftedVal(unsigned V) { 220 // If this can be handled with 221 V = (~255U << getThumbImmValShift(V)) & V; 222 return V == 0; 223 } 224 225 /// getThumbImm16ValShift - Try to handle Imm with a 16-bit immediate followed 226 /// by a left shift. Returns the shift amount to use. getThumbImm16ValShift(unsigned Imm)227 inline unsigned getThumbImm16ValShift(unsigned Imm) { 228 // 16-bit (or less) immediates are trivially immediate operand with a shift 229 // of zero. 230 if ((Imm & ~65535U) == 0) return 0; 231 232 // Use CTZ to compute the shift amount. 233 return countTrailingZeros(Imm); 234 } 235 236 /// isThumbImm16ShiftedVal - Return true if the specified value can be 237 /// obtained by left shifting a 16-bit immediate. isThumbImm16ShiftedVal(unsigned V)238 inline bool isThumbImm16ShiftedVal(unsigned V) { 239 // If this can be handled with 240 V = (~65535U << getThumbImm16ValShift(V)) & V; 241 return V == 0; 242 } 243 244 /// getThumbImmNonShiftedVal - If V is a value that satisfies 245 /// isThumbImmShiftedVal, return the non-shiftd value. getThumbImmNonShiftedVal(unsigned V)246 inline unsigned getThumbImmNonShiftedVal(unsigned V) { 247 return V >> getThumbImmValShift(V); 248 } 249 250 251 /// getT2SOImmValSplat - Return the 12-bit encoded representation 252 /// if the specified value can be obtained by splatting the low 8 bits 253 /// into every other byte or every byte of a 32-bit value. i.e., 254 /// 00000000 00000000 00000000 abcdefgh control = 0 255 /// 00000000 abcdefgh 00000000 abcdefgh control = 1 256 /// abcdefgh 00000000 abcdefgh 00000000 control = 2 257 /// abcdefgh abcdefgh abcdefgh abcdefgh control = 3 258 /// Return -1 if none of the above apply. 259 /// See ARM Reference Manual A6.3.2. getT2SOImmValSplatVal(unsigned V)260 inline int getT2SOImmValSplatVal(unsigned V) { 261 unsigned u, Vs, Imm; 262 // control = 0 263 if ((V & 0xffffff00) == 0) 264 return V; 265 266 // If the value is zeroes in the first byte, just shift those off 267 Vs = ((V & 0xff) == 0) ? V >> 8 : V; 268 // Any passing value only has 8 bits of payload, splatted across the word 269 Imm = Vs & 0xff; 270 // Likewise, any passing values have the payload splatted into the 3rd byte 271 u = Imm | (Imm << 16); 272 273 // control = 1 or 2 274 if (Vs == u) 275 return (((Vs == V) ? 1 : 2) << 8) | Imm; 276 277 // control = 3 278 if (Vs == (u | (u << 8))) 279 return (3 << 8) | Imm; 280 281 return -1; 282 } 283 284 /// getT2SOImmValRotateVal - Return the 12-bit encoded representation if the 285 /// specified value is a rotated 8-bit value. Return -1 if no rotation 286 /// encoding is possible. 287 /// See ARM Reference Manual A6.3.2. getT2SOImmValRotateVal(unsigned V)288 inline int getT2SOImmValRotateVal(unsigned V) { 289 unsigned RotAmt = countLeadingZeros(V); 290 if (RotAmt >= 24) 291 return -1; 292 293 // If 'Arg' can be handled with a single shifter_op return the value. 294 if ((rotr32(0xff000000U, RotAmt) & V) == V) 295 return (rotr32(V, 24 - RotAmt) & 0x7f) | ((RotAmt + 8) << 7); 296 297 return -1; 298 } 299 300 /// getT2SOImmVal - Given a 32-bit immediate, if it is something that can fit 301 /// into a Thumb-2 shifter_operand immediate operand, return the 12-bit 302 /// encoding for it. If not, return -1. 303 /// See ARM Reference Manual A6.3.2. getT2SOImmVal(unsigned Arg)304 inline int getT2SOImmVal(unsigned Arg) { 305 // If 'Arg' is an 8-bit splat, then get the encoded value. 306 int Splat = getT2SOImmValSplatVal(Arg); 307 if (Splat != -1) 308 return Splat; 309 310 // If 'Arg' can be handled with a single shifter_op return the value. 311 int Rot = getT2SOImmValRotateVal(Arg); 312 if (Rot != -1) 313 return Rot; 314 315 return -1; 316 } 317 getT2SOImmValRotate(unsigned V)318 inline unsigned getT2SOImmValRotate(unsigned V) { 319 if ((V & ~255U) == 0) return 0; 320 // Use CTZ to compute the rotate amount. 321 unsigned RotAmt = countTrailingZeros(V); 322 return (32 - RotAmt) & 31; 323 } 324 isT2SOImmTwoPartVal(unsigned Imm)325 inline bool isT2SOImmTwoPartVal(unsigned Imm) { 326 unsigned V = Imm; 327 // Passing values can be any combination of splat values and shifter 328 // values. If this can be handled with a single shifter or splat, bail 329 // out. Those should be handled directly, not with a two-part val. 330 if (getT2SOImmValSplatVal(V) != -1) 331 return false; 332 V = rotr32 (~255U, getT2SOImmValRotate(V)) & V; 333 if (V == 0) 334 return false; 335 336 // If this can be handled as an immediate, accept. 337 if (getT2SOImmVal(V) != -1) return true; 338 339 // Likewise, try masking out a splat value first. 340 V = Imm; 341 if (getT2SOImmValSplatVal(V & 0xff00ff00U) != -1) 342 V &= ~0xff00ff00U; 343 else if (getT2SOImmValSplatVal(V & 0x00ff00ffU) != -1) 344 V &= ~0x00ff00ffU; 345 // If what's left can be handled as an immediate, accept. 346 if (getT2SOImmVal(V) != -1) return true; 347 348 // Otherwise, do not accept. 349 return false; 350 } 351 getT2SOImmTwoPartFirst(unsigned Imm)352 inline unsigned getT2SOImmTwoPartFirst(unsigned Imm) { 353 assert (isT2SOImmTwoPartVal(Imm) && 354 "Immedate cannot be encoded as two part immediate!"); 355 // Try a shifter operand as one part 356 unsigned V = rotr32 (~255, getT2SOImmValRotate(Imm)) & Imm; 357 // If the rest is encodable as an immediate, then return it. 358 if (getT2SOImmVal(V) != -1) return V; 359 360 // Try masking out a splat value first. 361 if (getT2SOImmValSplatVal(Imm & 0xff00ff00U) != -1) 362 return Imm & 0xff00ff00U; 363 364 // The other splat is all that's left as an option. 365 assert (getT2SOImmValSplatVal(Imm & 0x00ff00ffU) != -1); 366 return Imm & 0x00ff00ffU; 367 } 368 getT2SOImmTwoPartSecond(unsigned Imm)369 inline unsigned getT2SOImmTwoPartSecond(unsigned Imm) { 370 // Mask out the first hunk 371 Imm ^= getT2SOImmTwoPartFirst(Imm); 372 // Return what's left 373 assert (getT2SOImmVal(Imm) != -1 && 374 "Unable to encode second part of T2 two part SO immediate"); 375 return Imm; 376 } 377 378 379 //===--------------------------------------------------------------------===// 380 // Addressing Mode #2 381 //===--------------------------------------------------------------------===// 382 // 383 // This is used for most simple load/store instructions. 384 // 385 // addrmode2 := reg +/- reg shop imm 386 // addrmode2 := reg +/- imm12 387 // 388 // The first operand is always a Reg. The second operand is a reg if in 389 // reg/reg form, otherwise it's reg#0. The third field encodes the operation 390 // in bit 12, the immediate in bits 0-11, and the shift op in 13-15. The 391 // fourth operand 16-17 encodes the index mode. 392 // 393 // If this addressing mode is a frame index (before prolog/epilog insertion 394 // and code rewriting), this operand will have the form: FI#, reg0, <offs> 395 // with no shift amount for the frame offset. 396 // 397 inline unsigned getAM2Opc(AddrOpc Opc, unsigned Imm12, ShiftOpc SO, 398 unsigned IdxMode = 0) { 399 assert(Imm12 < (1 << 12) && "Imm too large!"); 400 bool isSub = Opc == sub; 401 return Imm12 | ((int)isSub << 12) | (SO << 13) | (IdxMode << 16) ; 402 } getAM2Offset(unsigned AM2Opc)403 inline unsigned getAM2Offset(unsigned AM2Opc) { 404 return AM2Opc & ((1 << 12)-1); 405 } getAM2Op(unsigned AM2Opc)406 inline AddrOpc getAM2Op(unsigned AM2Opc) { 407 return ((AM2Opc >> 12) & 1) ? sub : add; 408 } getAM2ShiftOpc(unsigned AM2Opc)409 inline ShiftOpc getAM2ShiftOpc(unsigned AM2Opc) { 410 return (ShiftOpc)((AM2Opc >> 13) & 7); 411 } getAM2IdxMode(unsigned AM2Opc)412 inline unsigned getAM2IdxMode(unsigned AM2Opc) { return (AM2Opc >> 16); } 413 414 //===--------------------------------------------------------------------===// 415 // Addressing Mode #3 416 //===--------------------------------------------------------------------===// 417 // 418 // This is used for sign-extending loads, and load/store-pair instructions. 419 // 420 // addrmode3 := reg +/- reg 421 // addrmode3 := reg +/- imm8 422 // 423 // The first operand is always a Reg. The second operand is a reg if in 424 // reg/reg form, otherwise it's reg#0. The third field encodes the operation 425 // in bit 8, the immediate in bits 0-7. The fourth operand 9-10 encodes the 426 // index mode. 427 428 /// getAM3Opc - This function encodes the addrmode3 opc field. 429 inline unsigned getAM3Opc(AddrOpc Opc, unsigned char Offset, 430 unsigned IdxMode = 0) { 431 bool isSub = Opc == sub; 432 return ((int)isSub << 8) | Offset | (IdxMode << 9); 433 } getAM3Offset(unsigned AM3Opc)434 inline unsigned char getAM3Offset(unsigned AM3Opc) { return AM3Opc & 0xFF; } getAM3Op(unsigned AM3Opc)435 inline AddrOpc getAM3Op(unsigned AM3Opc) { 436 return ((AM3Opc >> 8) & 1) ? sub : add; 437 } getAM3IdxMode(unsigned AM3Opc)438 inline unsigned getAM3IdxMode(unsigned AM3Opc) { return (AM3Opc >> 9); } 439 440 //===--------------------------------------------------------------------===// 441 // Addressing Mode #4 442 //===--------------------------------------------------------------------===// 443 // 444 // This is used for load / store multiple instructions. 445 // 446 // addrmode4 := reg, <mode> 447 // 448 // The four modes are: 449 // IA - Increment after 450 // IB - Increment before 451 // DA - Decrement after 452 // DB - Decrement before 453 // For VFP instructions, only the IA and DB modes are valid. 454 getAM4SubMode(unsigned Mode)455 inline AMSubMode getAM4SubMode(unsigned Mode) { 456 return (AMSubMode)(Mode & 0x7); 457 } 458 getAM4ModeImm(AMSubMode SubMode)459 inline unsigned getAM4ModeImm(AMSubMode SubMode) { return (int)SubMode; } 460 461 //===--------------------------------------------------------------------===// 462 // Addressing Mode #5 463 //===--------------------------------------------------------------------===// 464 // 465 // This is used for coprocessor instructions, such as FP load/stores. 466 // 467 // addrmode5 := reg +/- imm8*4 468 // 469 // The first operand is always a Reg. The second operand encodes the 470 // operation (add or subtract) in bit 8 and the immediate in bits 0-7. 471 472 /// getAM5Opc - This function encodes the addrmode5 opc field. getAM5Opc(AddrOpc Opc,unsigned char Offset)473 inline unsigned getAM5Opc(AddrOpc Opc, unsigned char Offset) { 474 bool isSub = Opc == sub; 475 return ((int)isSub << 8) | Offset; 476 } getAM5Offset(unsigned AM5Opc)477 inline unsigned char getAM5Offset(unsigned AM5Opc) { return AM5Opc & 0xFF; } getAM5Op(unsigned AM5Opc)478 inline AddrOpc getAM5Op(unsigned AM5Opc) { 479 return ((AM5Opc >> 8) & 1) ? sub : add; 480 } 481 482 //===--------------------------------------------------------------------===// 483 // Addressing Mode #5 FP16 484 //===--------------------------------------------------------------------===// 485 // 486 // This is used for coprocessor instructions, such as 16-bit FP load/stores. 487 // 488 // addrmode5fp16 := reg +/- imm8*2 489 // 490 // The first operand is always a Reg. The second operand encodes the 491 // operation (add or subtract) in bit 8 and the immediate in bits 0-7. 492 493 /// getAM5FP16Opc - This function encodes the addrmode5fp16 opc field. getAM5FP16Opc(AddrOpc Opc,unsigned char Offset)494 inline unsigned getAM5FP16Opc(AddrOpc Opc, unsigned char Offset) { 495 bool isSub = Opc == sub; 496 return ((int)isSub << 8) | Offset; 497 } getAM5FP16Offset(unsigned AM5Opc)498 inline unsigned char getAM5FP16Offset(unsigned AM5Opc) { 499 return AM5Opc & 0xFF; 500 } getAM5FP16Op(unsigned AM5Opc)501 inline AddrOpc getAM5FP16Op(unsigned AM5Opc) { 502 return ((AM5Opc >> 8) & 1) ? sub : add; 503 } 504 505 //===--------------------------------------------------------------------===// 506 // Addressing Mode #6 507 //===--------------------------------------------------------------------===// 508 // 509 // This is used for NEON load / store instructions. 510 // 511 // addrmode6 := reg with optional alignment 512 // 513 // This is stored in two operands [regaddr, align]. The first is the 514 // address register. The second operand is the value of the alignment 515 // specifier in bytes or zero if no explicit alignment. 516 // Valid alignments depend on the specific instruction. 517 518 //===--------------------------------------------------------------------===// 519 // NEON Modified Immediates 520 //===--------------------------------------------------------------------===// 521 // 522 // Several NEON instructions (e.g., VMOV) take a "modified immediate" 523 // vector operand, where a small immediate encoded in the instruction 524 // specifies a full NEON vector value. These modified immediates are 525 // represented here as encoded integers. The low 8 bits hold the immediate 526 // value; bit 12 holds the "Op" field of the instruction, and bits 11-8 hold 527 // the "Cmode" field of the instruction. The interfaces below treat the 528 // Op and Cmode values as a single 5-bit value. 529 createNEONModImm(unsigned OpCmode,unsigned Val)530 inline unsigned createNEONModImm(unsigned OpCmode, unsigned Val) { 531 return (OpCmode << 8) | Val; 532 } getNEONModImmOpCmode(unsigned ModImm)533 inline unsigned getNEONModImmOpCmode(unsigned ModImm) { 534 return (ModImm >> 8) & 0x1f; 535 } getNEONModImmVal(unsigned ModImm)536 inline unsigned getNEONModImmVal(unsigned ModImm) { return ModImm & 0xff; } 537 538 /// decodeNEONModImm - Decode a NEON modified immediate value into the 539 /// element value and the element size in bits. (If the element size is 540 /// smaller than the vector, it is splatted into all the elements.) decodeNEONModImm(unsigned ModImm,unsigned & EltBits)541 inline uint64_t decodeNEONModImm(unsigned ModImm, unsigned &EltBits) { 542 unsigned OpCmode = getNEONModImmOpCmode(ModImm); 543 unsigned Imm8 = getNEONModImmVal(ModImm); 544 uint64_t Val = 0; 545 546 if (OpCmode == 0xe) { 547 // 8-bit vector elements 548 Val = Imm8; 549 EltBits = 8; 550 } else if ((OpCmode & 0xc) == 0x8) { 551 // 16-bit vector elements 552 unsigned ByteNum = (OpCmode & 0x6) >> 1; 553 Val = Imm8 << (8 * ByteNum); 554 EltBits = 16; 555 } else if ((OpCmode & 0x8) == 0) { 556 // 32-bit vector elements, zero with one byte set 557 unsigned ByteNum = (OpCmode & 0x6) >> 1; 558 Val = Imm8 << (8 * ByteNum); 559 EltBits = 32; 560 } else if ((OpCmode & 0xe) == 0xc) { 561 // 32-bit vector elements, one byte with low bits set 562 unsigned ByteNum = 1 + (OpCmode & 0x1); 563 Val = (Imm8 << (8 * ByteNum)) | (0xffff >> (8 * (2 - ByteNum))); 564 EltBits = 32; 565 } else if (OpCmode == 0x1e) { 566 // 64-bit vector elements 567 for (unsigned ByteNum = 0; ByteNum < 8; ++ByteNum) { 568 if ((ModImm >> ByteNum) & 1) 569 Val |= (uint64_t)0xff << (8 * ByteNum); 570 } 571 EltBits = 64; 572 } else { 573 llvm_unreachable("Unsupported NEON immediate"); 574 } 575 return Val; 576 } 577 578 // Generic validation for single-byte immediate (0X00, 00X0, etc). isNEONBytesplat(unsigned Value,unsigned Size)579 inline bool isNEONBytesplat(unsigned Value, unsigned Size) { 580 assert(Size >= 1 && Size <= 4 && "Invalid size"); 581 unsigned count = 0; 582 for (unsigned i = 0; i < Size; ++i) { 583 if (Value & 0xff) count++; 584 Value >>= 8; 585 } 586 return count == 1; 587 } 588 589 /// Checks if Value is a correct immediate for instructions like VBIC/VORR. isNEONi16splat(unsigned Value)590 inline bool isNEONi16splat(unsigned Value) { 591 if (Value > 0xffff) 592 return false; 593 // i16 value with set bits only in one byte X0 or 0X. 594 return Value == 0 || isNEONBytesplat(Value, 2); 595 } 596 597 // Encode NEON 16 bits Splat immediate for instructions like VBIC/VORR encodeNEONi16splat(unsigned Value)598 inline unsigned encodeNEONi16splat(unsigned Value) { 599 assert(isNEONi16splat(Value) && "Invalid NEON splat value"); 600 if (Value >= 0x100) 601 Value = (Value >> 8) | 0xa00; 602 else 603 Value |= 0x800; 604 return Value; 605 } 606 607 /// Checks if Value is a correct immediate for instructions like VBIC/VORR. isNEONi32splat(unsigned Value)608 inline bool isNEONi32splat(unsigned Value) { 609 // i32 value with set bits only in one byte X000, 0X00, 00X0, or 000X. 610 return Value == 0 || isNEONBytesplat(Value, 4); 611 } 612 613 /// Encode NEON 32 bits Splat immediate for instructions like VBIC/VORR. encodeNEONi32splat(unsigned Value)614 inline unsigned encodeNEONi32splat(unsigned Value) { 615 assert(isNEONi32splat(Value) && "Invalid NEON splat value"); 616 if (Value >= 0x100 && Value <= 0xff00) 617 Value = (Value >> 8) | 0x200; 618 else if (Value > 0xffff && Value <= 0xff0000) 619 Value = (Value >> 16) | 0x400; 620 else if (Value > 0xffffff) 621 Value = (Value >> 24) | 0x600; 622 return Value; 623 } 624 625 //===--------------------------------------------------------------------===// 626 // Floating-point Immediates 627 // getFPImmFloat(unsigned Imm)628 inline float getFPImmFloat(unsigned Imm) { 629 // We expect an 8-bit binary encoding of a floating-point number here. 630 union { 631 uint32_t I; 632 float F; 633 } FPUnion; 634 635 uint8_t Sign = (Imm >> 7) & 0x1; 636 uint8_t Exp = (Imm >> 4) & 0x7; 637 uint8_t Mantissa = Imm & 0xf; 638 639 // 8-bit FP iEEEE Float Encoding 640 // abcd efgh aBbbbbbc defgh000 00000000 00000000 641 // 642 // where B = NOT(b); 643 644 FPUnion.I = 0; 645 FPUnion.I |= Sign << 31; 646 FPUnion.I |= ((Exp & 0x4) != 0 ? 0 : 1) << 30; 647 FPUnion.I |= ((Exp & 0x4) != 0 ? 0x1f : 0) << 25; 648 FPUnion.I |= (Exp & 0x3) << 23; 649 FPUnion.I |= Mantissa << 19; 650 return FPUnion.F; 651 } 652 653 /// getFP16Imm - Return an 8-bit floating-point version of the 16-bit 654 /// floating-point value. If the value cannot be represented as an 8-bit 655 /// floating-point value, then return -1. getFP16Imm(const APInt & Imm)656 inline int getFP16Imm(const APInt &Imm) { 657 uint32_t Sign = Imm.lshr(15).getZExtValue() & 1; 658 int32_t Exp = (Imm.lshr(10).getSExtValue() & 0x1f) - 15; // -14 to 15 659 int64_t Mantissa = Imm.getZExtValue() & 0x3ff; // 10 bits 660 661 // We can handle 4 bits of mantissa. 662 // mantissa = (16+UInt(e:f:g:h))/16. 663 if (Mantissa & 0x3f) 664 return -1; 665 Mantissa >>= 6; 666 667 // We can handle 3 bits of exponent: exp == UInt(NOT(b):c:d)-3 668 if (Exp < -3 || Exp > 4) 669 return -1; 670 Exp = ((Exp+3) & 0x7) ^ 4; 671 672 return ((int)Sign << 7) | (Exp << 4) | Mantissa; 673 } 674 getFP16Imm(const APFloat & FPImm)675 inline int getFP16Imm(const APFloat &FPImm) { 676 return getFP16Imm(FPImm.bitcastToAPInt()); 677 } 678 679 /// getFP32Imm - Return an 8-bit floating-point version of the 32-bit 680 /// floating-point value. If the value cannot be represented as an 8-bit 681 /// floating-point value, then return -1. getFP32Imm(const APInt & Imm)682 inline int getFP32Imm(const APInt &Imm) { 683 uint32_t Sign = Imm.lshr(31).getZExtValue() & 1; 684 int32_t Exp = (Imm.lshr(23).getSExtValue() & 0xff) - 127; // -126 to 127 685 int64_t Mantissa = Imm.getZExtValue() & 0x7fffff; // 23 bits 686 687 // We can handle 4 bits of mantissa. 688 // mantissa = (16+UInt(e:f:g:h))/16. 689 if (Mantissa & 0x7ffff) 690 return -1; 691 Mantissa >>= 19; 692 if ((Mantissa & 0xf) != Mantissa) 693 return -1; 694 695 // We can handle 3 bits of exponent: exp == UInt(NOT(b):c:d)-3 696 if (Exp < -3 || Exp > 4) 697 return -1; 698 Exp = ((Exp+3) & 0x7) ^ 4; 699 700 return ((int)Sign << 7) | (Exp << 4) | Mantissa; 701 } 702 getFP32Imm(const APFloat & FPImm)703 inline int getFP32Imm(const APFloat &FPImm) { 704 return getFP32Imm(FPImm.bitcastToAPInt()); 705 } 706 707 /// getFP64Imm - Return an 8-bit floating-point version of the 64-bit 708 /// floating-point value. If the value cannot be represented as an 8-bit 709 /// floating-point value, then return -1. getFP64Imm(const APInt & Imm)710 inline int getFP64Imm(const APInt &Imm) { 711 uint64_t Sign = Imm.lshr(63).getZExtValue() & 1; 712 int64_t Exp = (Imm.lshr(52).getSExtValue() & 0x7ff) - 1023; // -1022 to 1023 713 uint64_t Mantissa = Imm.getZExtValue() & 0xfffffffffffffULL; 714 715 // We can handle 4 bits of mantissa. 716 // mantissa = (16+UInt(e:f:g:h))/16. 717 if (Mantissa & 0xffffffffffffULL) 718 return -1; 719 Mantissa >>= 48; 720 if ((Mantissa & 0xf) != Mantissa) 721 return -1; 722 723 // We can handle 3 bits of exponent: exp == UInt(NOT(b):c:d)-3 724 if (Exp < -3 || Exp > 4) 725 return -1; 726 Exp = ((Exp+3) & 0x7) ^ 4; 727 728 return ((int)Sign << 7) | (Exp << 4) | Mantissa; 729 } 730 getFP64Imm(const APFloat & FPImm)731 inline int getFP64Imm(const APFloat &FPImm) { 732 return getFP64Imm(FPImm.bitcastToAPInt()); 733 } 734 735 } // end namespace ARM_AM 736 } // end namespace llvm 737 738 #endif 739 740