1 //===-- ARMUnwindOpAsm.cpp - ARM Unwind Opcodes Assembler -------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the unwind opcode assmebler for ARM exception handling
11 // table.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "ARMUnwindOpAsm.h"
16 #include "llvm/Support/ARMEHABI.h"
17 #include "llvm/Support/LEB128.h"
18 #include "llvm/Support/MathExtras.h"
19 #include <cassert>
20 
21 using namespace llvm;
22 
23 namespace {
24 
25   /// UnwindOpcodeStreamer - The simple wrapper over SmallVector to emit bytes
26   /// with MSB to LSB per uint32_t ordering.  For example, the first byte will
27   /// be placed in Vec[3], and the following bytes will be placed in 2, 1, 0,
28   /// 7, 6, 5, 4, 11, 10, 9, 8, and so on.
29   class UnwindOpcodeStreamer {
30   private:
31     SmallVectorImpl<uint8_t> &Vec;
32     size_t Pos = 3;
33 
34   public:
UnwindOpcodeStreamer(SmallVectorImpl<uint8_t> & V)35     UnwindOpcodeStreamer(SmallVectorImpl<uint8_t> &V) : Vec(V) {}
36 
37     /// Emit the byte in MSB to LSB per uint32_t order.
EmitByte(uint8_t elem)38     void EmitByte(uint8_t elem) {
39       Vec[Pos] = elem;
40       Pos = (((Pos ^ 0x3u) + 1) ^ 0x3u);
41     }
42 
43     /// Emit the size prefix.
EmitSize(size_t Size)44     void EmitSize(size_t Size) {
45       size_t SizeInWords = (Size + 3) / 4;
46       assert(SizeInWords <= 0x100u &&
47              "Only 256 additional words are allowed for unwind opcodes");
48       EmitByte(static_cast<uint8_t>(SizeInWords - 1));
49     }
50 
51     /// Emit the personality index prefix.
EmitPersonalityIndex(unsigned PI)52     void EmitPersonalityIndex(unsigned PI) {
53       assert(PI < ARM::EHABI::NUM_PERSONALITY_INDEX &&
54              "Invalid personality prefix");
55       EmitByte(ARM::EHABI::EHT_COMPACT | PI);
56     }
57 
58     /// Fill the rest of bytes with FINISH opcode.
FillFinishOpcode()59     void FillFinishOpcode() {
60       while (Pos < Vec.size())
61         EmitByte(ARM::EHABI::UNWIND_OPCODE_FINISH);
62     }
63   };
64 
65 } // end anonymous namespace
66 
EmitRegSave(uint32_t RegSave)67 void UnwindOpcodeAssembler::EmitRegSave(uint32_t RegSave) {
68   if (RegSave == 0u)
69     return;
70 
71   // One byte opcode to save register r14 and r11-r4
72   if (RegSave & (1u << 4)) {
73     // The one byte opcode will always save r4, thus we can't use the one byte
74     // opcode when r4 is not in .save directive.
75 
76     // Compute the consecutive registers from r4 to r11.
77     uint32_t Mask = RegSave & 0xff0u;
78     uint32_t Range = countTrailingOnes(Mask >> 5); // Exclude r4.
79     // Mask off non-consecutive registers. Keep r4.
80     Mask &= ~(0xffffffe0u << Range);
81 
82     // Emit this opcode when the mask covers every registers.
83     uint32_t UnmaskedReg = RegSave & 0xfff0u & (~Mask);
84     if (UnmaskedReg == 0u) {
85       // Pop r[4 : (4 + n)]
86       EmitInt8(ARM::EHABI::UNWIND_OPCODE_POP_REG_RANGE_R4 | Range);
87       RegSave &= 0x000fu;
88     } else if (UnmaskedReg == (1u << 14)) {
89       // Pop r[14] + r[4 : (4 + n)]
90       EmitInt8(ARM::EHABI::UNWIND_OPCODE_POP_REG_RANGE_R4_R14 | Range);
91       RegSave &= 0x000fu;
92     }
93   }
94 
95   // Two bytes opcode to save register r15-r4
96   if ((RegSave & 0xfff0u) != 0)
97     EmitInt16(ARM::EHABI::UNWIND_OPCODE_POP_REG_MASK_R4 | (RegSave >> 4));
98 
99   // Opcode to save register r3-r0
100   if ((RegSave & 0x000fu) != 0)
101     EmitInt16(ARM::EHABI::UNWIND_OPCODE_POP_REG_MASK | (RegSave & 0x000fu));
102 }
103 
104 /// Emit unwind opcodes for .vsave directives
EmitVFPRegSave(uint32_t VFPRegSave)105 void UnwindOpcodeAssembler::EmitVFPRegSave(uint32_t VFPRegSave) {
106   // We only have 4 bits to save the offset in the opcode so look at the lower
107   // and upper 16 bits separately.
108   for (uint32_t Regs : {VFPRegSave & 0xffff0000u, VFPRegSave & 0x0000ffffu}) {
109     while (Regs) {
110       // Now look for a run of set bits. Remember the MSB and LSB of the run.
111       auto RangeMSB = 32 - countLeadingZeros(Regs);
112       auto RangeLen = countLeadingOnes(Regs << (32 - RangeMSB));
113       auto RangeLSB = RangeMSB - RangeLen;
114 
115       int Opcode = RangeLSB >= 16
116                        ? ARM::EHABI::UNWIND_OPCODE_POP_VFP_REG_RANGE_FSTMFDD_D16
117                        : ARM::EHABI::UNWIND_OPCODE_POP_VFP_REG_RANGE_FSTMFDD;
118 
119       EmitInt16(Opcode | ((RangeLSB % 16) << 4) | (RangeLen - 1));
120 
121       // Zero out bits we're done with.
122       Regs &= ~(-1u << RangeLSB);
123     }
124   }
125 }
126 
127 /// Emit unwind opcodes to copy address from source register to $sp.
EmitSetSP(uint16_t Reg)128 void UnwindOpcodeAssembler::EmitSetSP(uint16_t Reg) {
129   EmitInt8(ARM::EHABI::UNWIND_OPCODE_SET_VSP | Reg);
130 }
131 
132 /// Emit unwind opcodes to add $sp with an offset.
EmitSPOffset(int64_t Offset)133 void UnwindOpcodeAssembler::EmitSPOffset(int64_t Offset) {
134   if (Offset > 0x200) {
135     uint8_t Buff[16];
136     Buff[0] = ARM::EHABI::UNWIND_OPCODE_INC_VSP_ULEB128;
137     size_t ULEBSize = encodeULEB128((Offset - 0x204) >> 2, Buff + 1);
138     EmitBytes(Buff, ULEBSize + 1);
139   } else if (Offset > 0) {
140     if (Offset > 0x100) {
141       EmitInt8(ARM::EHABI::UNWIND_OPCODE_INC_VSP | 0x3fu);
142       Offset -= 0x100;
143     }
144     EmitInt8(ARM::EHABI::UNWIND_OPCODE_INC_VSP |
145              static_cast<uint8_t>((Offset - 4) >> 2));
146   } else if (Offset < 0) {
147     while (Offset < -0x100) {
148       EmitInt8(ARM::EHABI::UNWIND_OPCODE_DEC_VSP | 0x3fu);
149       Offset += 0x100;
150     }
151     EmitInt8(ARM::EHABI::UNWIND_OPCODE_DEC_VSP |
152              static_cast<uint8_t>(((-Offset) - 4) >> 2));
153   }
154 }
155 
Finalize(unsigned & PersonalityIndex,SmallVectorImpl<uint8_t> & Result)156 void UnwindOpcodeAssembler::Finalize(unsigned &PersonalityIndex,
157                                      SmallVectorImpl<uint8_t> &Result) {
158   UnwindOpcodeStreamer OpStreamer(Result);
159 
160   if (HasPersonality) {
161     // User-specifed personality routine: [ SIZE , OP1 , OP2 , ... ]
162     PersonalityIndex = ARM::EHABI::NUM_PERSONALITY_INDEX;
163     size_t TotalSize = Ops.size() + 1;
164     size_t RoundUpSize = (TotalSize + 3) / 4 * 4;
165     Result.resize(RoundUpSize);
166     OpStreamer.EmitSize(RoundUpSize);
167   } else {
168     // If no personalityindex is specified, select ane
169     if (PersonalityIndex == ARM::EHABI::NUM_PERSONALITY_INDEX)
170       PersonalityIndex = (Ops.size() <= 3) ? ARM::EHABI::AEABI_UNWIND_CPP_PR0
171                                            : ARM::EHABI::AEABI_UNWIND_CPP_PR1;
172     if (PersonalityIndex == ARM::EHABI::AEABI_UNWIND_CPP_PR0) {
173       // __aeabi_unwind_cpp_pr0: [ 0x80 , OP1 , OP2 , OP3 ]
174       assert(Ops.size() <= 3 && "too many opcodes for __aeabi_unwind_cpp_pr0");
175       Result.resize(4);
176       OpStreamer.EmitPersonalityIndex(PersonalityIndex);
177     } else {
178       // __aeabi_unwind_cpp_pr{1,2}: [ {0x81,0x82} , SIZE , OP1 , OP2 , ... ]
179       size_t TotalSize = Ops.size() + 2;
180       size_t RoundUpSize = (TotalSize + 3) / 4 * 4;
181       Result.resize(RoundUpSize);
182       OpStreamer.EmitPersonalityIndex(PersonalityIndex);
183       OpStreamer.EmitSize(RoundUpSize);
184     }
185   }
186 
187   // Copy the unwind opcodes
188   for (size_t i = OpBegins.size() - 1; i > 0; --i)
189     for (size_t j = OpBegins[i - 1], end = OpBegins[i]; j < end; ++j)
190       OpStreamer.EmitByte(Ops[j]);
191 
192   // Emit the padding finish opcodes if the size is not multiple of 4.
193   OpStreamer.FillFinishOpcode();
194 
195   // Reset the assembler state
196   Reset();
197 }
198