1 //===- HexagonEarlyIfConv.cpp ---------------------------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This implements a Hexagon-specific if-conversion pass that runs on the
11 // SSA form.
12 // In SSA it is not straightforward to represent instructions that condi-
13 // tionally define registers, since a conditionally-defined register may
14 // only be used under the same condition on which the definition was based.
15 // To avoid complications of this nature, this patch will only generate
16 // predicated stores, and speculate other instructions from the "if-conver-
17 // ted" block.
18 // The code will recognize CFG patterns where a block with a conditional
19 // branch "splits" into a "true block" and a "false block". Either of these
20 // could be omitted (in case of a triangle, for example).
21 // If after conversion of the side block(s) the CFG allows it, the resul-
22 // ting blocks may be merged. If the "join" block contained PHI nodes, they
23 // will be replaced with MUX (or MUX-like) instructions to maintain the
24 // semantics of the PHI.
25 //
26 // Example:
27 //
28 // %40 = L2_loadrub_io killed %39, 1
29 // %41 = S2_tstbit_i killed %40, 0
30 // J2_jumpt killed %41, <%bb.5>, implicit dead %pc
31 // J2_jump <%bb.4>, implicit dead %pc
32 // Successors according to CFG: %bb.4(62) %bb.5(62)
33 //
34 // %bb.4: derived from LLVM BB %if.then
35 // Predecessors according to CFG: %bb.3
36 // %11 = A2_addp %6, %10
37 // S2_storerd_io %32, 16, %11
38 // Successors according to CFG: %bb.5
39 //
40 // %bb.5: derived from LLVM BB %if.end
41 // Predecessors according to CFG: %bb.3 %bb.4
42 // %12 = PHI %6, <%bb.3>, %11, <%bb.4>
43 // %13 = A2_addp %7, %12
44 // %42 = C2_cmpeqi %9, 10
45 // J2_jumpf killed %42, <%bb.3>, implicit dead %pc
46 // J2_jump <%bb.6>, implicit dead %pc
47 // Successors according to CFG: %bb.6(4) %bb.3(124)
48 //
49 // would become:
50 //
51 // %40 = L2_loadrub_io killed %39, 1
52 // %41 = S2_tstbit_i killed %40, 0
53 // spec-> %11 = A2_addp %6, %10
54 // pred-> S2_pstorerdf_io %41, %32, 16, %11
55 // %46 = PS_pselect %41, %6, %11
56 // %13 = A2_addp %7, %46
57 // %42 = C2_cmpeqi %9, 10
58 // J2_jumpf killed %42, <%bb.3>, implicit dead %pc
59 // J2_jump <%bb.6>, implicit dead %pc
60 // Successors according to CFG: %bb.6 %bb.3
61
62 #include "Hexagon.h"
63 #include "HexagonInstrInfo.h"
64 #include "HexagonSubtarget.h"
65 #include "llvm/ADT/DenseSet.h"
66 #include "llvm/ADT/SmallVector.h"
67 #include "llvm/ADT/StringRef.h"
68 #include "llvm/ADT/iterator_range.h"
69 #include "llvm/CodeGen/MachineBasicBlock.h"
70 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
71 #include "llvm/CodeGen/MachineDominators.h"
72 #include "llvm/CodeGen/MachineFunction.h"
73 #include "llvm/CodeGen/MachineFunctionPass.h"
74 #include "llvm/CodeGen/MachineInstr.h"
75 #include "llvm/CodeGen/MachineInstrBuilder.h"
76 #include "llvm/CodeGen/MachineLoopInfo.h"
77 #include "llvm/CodeGen/MachineOperand.h"
78 #include "llvm/CodeGen/MachineRegisterInfo.h"
79 #include "llvm/CodeGen/TargetRegisterInfo.h"
80 #include "llvm/IR/DebugLoc.h"
81 #include "llvm/Pass.h"
82 #include "llvm/Support/BranchProbability.h"
83 #include "llvm/Support/CommandLine.h"
84 #include "llvm/Support/Compiler.h"
85 #include "llvm/Support/Debug.h"
86 #include "llvm/Support/ErrorHandling.h"
87 #include "llvm/Support/raw_ostream.h"
88 #include <cassert>
89 #include <iterator>
90
91 #define DEBUG_TYPE "hexagon-eif"
92
93 using namespace llvm;
94
95 namespace llvm {
96
97 FunctionPass *createHexagonEarlyIfConversion();
98 void initializeHexagonEarlyIfConversionPass(PassRegistry& Registry);
99
100 } // end namespace llvm
101
102 static cl::opt<bool> EnableHexagonBP("enable-hexagon-br-prob", cl::Hidden,
103 cl::init(true), cl::desc("Enable branch probability info"));
104 static cl::opt<unsigned> SizeLimit("eif-limit", cl::init(6), cl::Hidden,
105 cl::desc("Size limit in Hexagon early if-conversion"));
106 static cl::opt<bool> SkipExitBranches("eif-no-loop-exit", cl::init(false),
107 cl::Hidden, cl::desc("Do not convert branches that may exit the loop"));
108
109 namespace {
110
111 struct PrintMB {
PrintMB__anon42c720250111::PrintMB112 PrintMB(const MachineBasicBlock *B) : MB(B) {}
113
114 const MachineBasicBlock *MB;
115 };
operator <<(raw_ostream & OS,const PrintMB & P)116 raw_ostream &operator<< (raw_ostream &OS, const PrintMB &P) {
117 if (!P.MB)
118 return OS << "<none>";
119 return OS << '#' << P.MB->getNumber();
120 }
121
122 struct FlowPattern {
123 FlowPattern() = default;
FlowPattern__anon42c720250111::FlowPattern124 FlowPattern(MachineBasicBlock *B, unsigned PR, MachineBasicBlock *TB,
125 MachineBasicBlock *FB, MachineBasicBlock *JB)
126 : SplitB(B), TrueB(TB), FalseB(FB), JoinB(JB), PredR(PR) {}
127
128 MachineBasicBlock *SplitB = nullptr;
129 MachineBasicBlock *TrueB = nullptr;
130 MachineBasicBlock *FalseB = nullptr;
131 MachineBasicBlock *JoinB = nullptr;
132 unsigned PredR = 0;
133 };
134
135 struct PrintFP {
PrintFP__anon42c720250111::PrintFP136 PrintFP(const FlowPattern &P, const TargetRegisterInfo &T)
137 : FP(P), TRI(T) {}
138
139 const FlowPattern &FP;
140 const TargetRegisterInfo &TRI;
141 friend raw_ostream &operator<< (raw_ostream &OS, const PrintFP &P);
142 };
143 raw_ostream &operator<<(raw_ostream &OS,
144 const PrintFP &P) LLVM_ATTRIBUTE_UNUSED;
operator <<(raw_ostream & OS,const PrintFP & P)145 raw_ostream &operator<<(raw_ostream &OS, const PrintFP &P) {
146 OS << "{ SplitB:" << PrintMB(P.FP.SplitB)
147 << ", PredR:" << printReg(P.FP.PredR, &P.TRI)
148 << ", TrueB:" << PrintMB(P.FP.TrueB)
149 << ", FalseB:" << PrintMB(P.FP.FalseB)
150 << ", JoinB:" << PrintMB(P.FP.JoinB) << " }";
151 return OS;
152 }
153
154 class HexagonEarlyIfConversion : public MachineFunctionPass {
155 public:
156 static char ID;
157
HexagonEarlyIfConversion()158 HexagonEarlyIfConversion() : MachineFunctionPass(ID) {}
159
getPassName() const160 StringRef getPassName() const override {
161 return "Hexagon early if conversion";
162 }
163
getAnalysisUsage(AnalysisUsage & AU) const164 void getAnalysisUsage(AnalysisUsage &AU) const override {
165 AU.addRequired<MachineBranchProbabilityInfo>();
166 AU.addRequired<MachineDominatorTree>();
167 AU.addPreserved<MachineDominatorTree>();
168 AU.addRequired<MachineLoopInfo>();
169 MachineFunctionPass::getAnalysisUsage(AU);
170 }
171
172 bool runOnMachineFunction(MachineFunction &MF) override;
173
174 private:
175 using BlockSetType = DenseSet<MachineBasicBlock *>;
176
177 bool isPreheader(const MachineBasicBlock *B) const;
178 bool matchFlowPattern(MachineBasicBlock *B, MachineLoop *L,
179 FlowPattern &FP);
180 bool visitBlock(MachineBasicBlock *B, MachineLoop *L);
181 bool visitLoop(MachineLoop *L);
182
183 bool hasEHLabel(const MachineBasicBlock *B) const;
184 bool hasUncondBranch(const MachineBasicBlock *B) const;
185 bool isValidCandidate(const MachineBasicBlock *B) const;
186 bool usesUndefVReg(const MachineInstr *MI) const;
187 bool isValid(const FlowPattern &FP) const;
188 unsigned countPredicateDefs(const MachineBasicBlock *B) const;
189 unsigned computePhiCost(const MachineBasicBlock *B,
190 const FlowPattern &FP) const;
191 bool isProfitable(const FlowPattern &FP) const;
192 bool isPredicableStore(const MachineInstr *MI) const;
193 bool isSafeToSpeculate(const MachineInstr *MI) const;
194 bool isPredicate(unsigned R) const;
195
196 unsigned getCondStoreOpcode(unsigned Opc, bool IfTrue) const;
197 void predicateInstr(MachineBasicBlock *ToB, MachineBasicBlock::iterator At,
198 MachineInstr *MI, unsigned PredR, bool IfTrue);
199 void predicateBlockNB(MachineBasicBlock *ToB,
200 MachineBasicBlock::iterator At, MachineBasicBlock *FromB,
201 unsigned PredR, bool IfTrue);
202
203 unsigned buildMux(MachineBasicBlock *B, MachineBasicBlock::iterator At,
204 const TargetRegisterClass *DRC, unsigned PredR, unsigned TR,
205 unsigned TSR, unsigned FR, unsigned FSR);
206 void updatePhiNodes(MachineBasicBlock *WhereB, const FlowPattern &FP);
207 void convert(const FlowPattern &FP);
208
209 void removeBlock(MachineBasicBlock *B);
210 void eliminatePhis(MachineBasicBlock *B);
211 void mergeBlocks(MachineBasicBlock *PredB, MachineBasicBlock *SuccB);
212 void simplifyFlowGraph(const FlowPattern &FP);
213
214 const HexagonInstrInfo *HII = nullptr;
215 const TargetRegisterInfo *TRI = nullptr;
216 MachineFunction *MFN = nullptr;
217 MachineRegisterInfo *MRI = nullptr;
218 MachineDominatorTree *MDT = nullptr;
219 MachineLoopInfo *MLI = nullptr;
220 BlockSetType Deleted;
221 const MachineBranchProbabilityInfo *MBPI;
222 };
223
224 } // end anonymous namespace
225
226 char HexagonEarlyIfConversion::ID = 0;
227
228 INITIALIZE_PASS(HexagonEarlyIfConversion, "hexagon-early-if",
229 "Hexagon early if conversion", false, false)
230
isPreheader(const MachineBasicBlock * B) const231 bool HexagonEarlyIfConversion::isPreheader(const MachineBasicBlock *B) const {
232 if (B->succ_size() != 1)
233 return false;
234 MachineBasicBlock *SB = *B->succ_begin();
235 MachineLoop *L = MLI->getLoopFor(SB);
236 return L && SB == L->getHeader() && MDT->dominates(B, SB);
237 }
238
matchFlowPattern(MachineBasicBlock * B,MachineLoop * L,FlowPattern & FP)239 bool HexagonEarlyIfConversion::matchFlowPattern(MachineBasicBlock *B,
240 MachineLoop *L, FlowPattern &FP) {
241 LLVM_DEBUG(dbgs() << "Checking flow pattern at " << printMBBReference(*B)
242 << "\n");
243
244 // Interested only in conditional branches, no .new, no new-value, etc.
245 // Check the terminators directly, it's easier than handling all responses
246 // from analyzeBranch.
247 MachineBasicBlock *TB = nullptr, *FB = nullptr;
248 MachineBasicBlock::const_iterator T1I = B->getFirstTerminator();
249 if (T1I == B->end())
250 return false;
251 unsigned Opc = T1I->getOpcode();
252 if (Opc != Hexagon::J2_jumpt && Opc != Hexagon::J2_jumpf)
253 return false;
254 unsigned PredR = T1I->getOperand(0).getReg();
255
256 // Get the layout successor, or 0 if B does not have one.
257 MachineFunction::iterator NextBI = std::next(MachineFunction::iterator(B));
258 MachineBasicBlock *NextB = (NextBI != MFN->end()) ? &*NextBI : nullptr;
259
260 MachineBasicBlock *T1B = T1I->getOperand(1).getMBB();
261 MachineBasicBlock::const_iterator T2I = std::next(T1I);
262 // The second terminator should be an unconditional branch.
263 assert(T2I == B->end() || T2I->getOpcode() == Hexagon::J2_jump);
264 MachineBasicBlock *T2B = (T2I == B->end()) ? NextB
265 : T2I->getOperand(0).getMBB();
266 if (T1B == T2B) {
267 // XXX merge if T1B == NextB, or convert branch to unconditional.
268 // mark as diamond with both sides equal?
269 return false;
270 }
271
272 // Record the true/false blocks in such a way that "true" means "if (PredR)",
273 // and "false" means "if (!PredR)".
274 if (Opc == Hexagon::J2_jumpt)
275 TB = T1B, FB = T2B;
276 else
277 TB = T2B, FB = T1B;
278
279 if (!MDT->properlyDominates(B, TB) || !MDT->properlyDominates(B, FB))
280 return false;
281
282 // Detect triangle first. In case of a triangle, one of the blocks TB/FB
283 // can fall through into the other, in other words, it will be executed
284 // in both cases. We only want to predicate the block that is executed
285 // conditionally.
286 unsigned TNP = TB->pred_size(), FNP = FB->pred_size();
287 unsigned TNS = TB->succ_size(), FNS = FB->succ_size();
288
289 // A block is predicable if it has one predecessor (it must be B), and
290 // it has a single successor. In fact, the block has to end either with
291 // an unconditional branch (which can be predicated), or with a fall-
292 // through.
293 // Also, skip blocks that do not belong to the same loop.
294 bool TOk = (TNP == 1 && TNS == 1 && MLI->getLoopFor(TB) == L);
295 bool FOk = (FNP == 1 && FNS == 1 && MLI->getLoopFor(FB) == L);
296
297 // If requested (via an option), do not consider branches where the
298 // true and false targets do not belong to the same loop.
299 if (SkipExitBranches && MLI->getLoopFor(TB) != MLI->getLoopFor(FB))
300 return false;
301
302 // If neither is predicable, there is nothing interesting.
303 if (!TOk && !FOk)
304 return false;
305
306 MachineBasicBlock *TSB = (TNS > 0) ? *TB->succ_begin() : nullptr;
307 MachineBasicBlock *FSB = (FNS > 0) ? *FB->succ_begin() : nullptr;
308 MachineBasicBlock *JB = nullptr;
309
310 if (TOk) {
311 if (FOk) {
312 if (TSB == FSB)
313 JB = TSB;
314 // Diamond: "if (P) then TB; else FB;".
315 } else {
316 // TOk && !FOk
317 if (TSB == FB)
318 JB = FB;
319 FB = nullptr;
320 }
321 } else {
322 // !TOk && FOk (at least one must be true by now).
323 if (FSB == TB)
324 JB = TB;
325 TB = nullptr;
326 }
327 // Don't try to predicate loop preheaders.
328 if ((TB && isPreheader(TB)) || (FB && isPreheader(FB))) {
329 LLVM_DEBUG(dbgs() << "One of blocks " << PrintMB(TB) << ", " << PrintMB(FB)
330 << " is a loop preheader. Skipping.\n");
331 return false;
332 }
333
334 FP = FlowPattern(B, PredR, TB, FB, JB);
335 LLVM_DEBUG(dbgs() << "Detected " << PrintFP(FP, *TRI) << "\n");
336 return true;
337 }
338
339 // KLUDGE: HexagonInstrInfo::analyzeBranch won't work on a block that
340 // contains EH_LABEL.
hasEHLabel(const MachineBasicBlock * B) const341 bool HexagonEarlyIfConversion::hasEHLabel(const MachineBasicBlock *B) const {
342 for (auto &I : *B)
343 if (I.isEHLabel())
344 return true;
345 return false;
346 }
347
348 // KLUDGE: HexagonInstrInfo::analyzeBranch may be unable to recognize
349 // that a block can never fall-through.
hasUncondBranch(const MachineBasicBlock * B) const350 bool HexagonEarlyIfConversion::hasUncondBranch(const MachineBasicBlock *B)
351 const {
352 MachineBasicBlock::const_iterator I = B->getFirstTerminator(), E = B->end();
353 while (I != E) {
354 if (I->isBarrier())
355 return true;
356 ++I;
357 }
358 return false;
359 }
360
isValidCandidate(const MachineBasicBlock * B) const361 bool HexagonEarlyIfConversion::isValidCandidate(const MachineBasicBlock *B)
362 const {
363 if (!B)
364 return true;
365 if (B->isEHPad() || B->hasAddressTaken())
366 return false;
367 if (B->succ_size() == 0)
368 return false;
369
370 for (auto &MI : *B) {
371 if (MI.isDebugInstr())
372 continue;
373 if (MI.isConditionalBranch())
374 return false;
375 unsigned Opc = MI.getOpcode();
376 bool IsJMP = (Opc == Hexagon::J2_jump);
377 if (!isPredicableStore(&MI) && !IsJMP && !isSafeToSpeculate(&MI))
378 return false;
379 // Look for predicate registers defined by this instruction. It's ok
380 // to speculate such an instruction, but the predicate register cannot
381 // be used outside of this block (or else it won't be possible to
382 // update the use of it after predication). PHI uses will be updated
383 // to use a result of a MUX, and a MUX cannot be created for predicate
384 // registers.
385 for (const MachineOperand &MO : MI.operands()) {
386 if (!MO.isReg() || !MO.isDef())
387 continue;
388 unsigned R = MO.getReg();
389 if (!TargetRegisterInfo::isVirtualRegister(R))
390 continue;
391 if (!isPredicate(R))
392 continue;
393 for (auto U = MRI->use_begin(R); U != MRI->use_end(); ++U)
394 if (U->getParent()->isPHI())
395 return false;
396 }
397 }
398 return true;
399 }
400
usesUndefVReg(const MachineInstr * MI) const401 bool HexagonEarlyIfConversion::usesUndefVReg(const MachineInstr *MI) const {
402 for (const MachineOperand &MO : MI->operands()) {
403 if (!MO.isReg() || !MO.isUse())
404 continue;
405 unsigned R = MO.getReg();
406 if (!TargetRegisterInfo::isVirtualRegister(R))
407 continue;
408 const MachineInstr *DefI = MRI->getVRegDef(R);
409 // "Undefined" virtual registers are actually defined via IMPLICIT_DEF.
410 assert(DefI && "Expecting a reaching def in MRI");
411 if (DefI->isImplicitDef())
412 return true;
413 }
414 return false;
415 }
416
isValid(const FlowPattern & FP) const417 bool HexagonEarlyIfConversion::isValid(const FlowPattern &FP) const {
418 if (hasEHLabel(FP.SplitB)) // KLUDGE: see function definition
419 return false;
420 if (FP.TrueB && !isValidCandidate(FP.TrueB))
421 return false;
422 if (FP.FalseB && !isValidCandidate(FP.FalseB))
423 return false;
424 // Check the PHIs in the join block. If any of them use a register
425 // that is defined as IMPLICIT_DEF, do not convert this. This can
426 // legitimately happen if one side of the split never executes, but
427 // the compiler is unable to prove it. That side may then seem to
428 // provide an "undef" value to the join block, however it will never
429 // execute at run-time. If we convert this case, the "undef" will
430 // be used in a MUX instruction, and that may seem like actually
431 // using an undefined value to other optimizations. This could lead
432 // to trouble further down the optimization stream, cause assertions
433 // to fail, etc.
434 if (FP.JoinB) {
435 const MachineBasicBlock &B = *FP.JoinB;
436 for (auto &MI : B) {
437 if (!MI.isPHI())
438 break;
439 if (usesUndefVReg(&MI))
440 return false;
441 unsigned DefR = MI.getOperand(0).getReg();
442 if (isPredicate(DefR))
443 return false;
444 }
445 }
446 return true;
447 }
448
computePhiCost(const MachineBasicBlock * B,const FlowPattern & FP) const449 unsigned HexagonEarlyIfConversion::computePhiCost(const MachineBasicBlock *B,
450 const FlowPattern &FP) const {
451 if (B->pred_size() < 2)
452 return 0;
453
454 unsigned Cost = 0;
455 for (const MachineInstr &MI : *B) {
456 if (!MI.isPHI())
457 break;
458 // If both incoming blocks are one of the TrueB/FalseB/SplitB, then
459 // a MUX may be needed. Otherwise the PHI will need to be updated at
460 // no extra cost.
461 // Find the interesting PHI operands for further checks.
462 SmallVector<unsigned,2> Inc;
463 for (unsigned i = 1, e = MI.getNumOperands(); i != e; i += 2) {
464 const MachineBasicBlock *BB = MI.getOperand(i+1).getMBB();
465 if (BB == FP.SplitB || BB == FP.TrueB || BB == FP.FalseB)
466 Inc.push_back(i);
467 }
468 assert(Inc.size() <= 2);
469 if (Inc.size() < 2)
470 continue;
471
472 const MachineOperand &RA = MI.getOperand(1);
473 const MachineOperand &RB = MI.getOperand(3);
474 assert(RA.isReg() && RB.isReg());
475 // Must have a MUX if the phi uses a subregister.
476 if (RA.getSubReg() != 0 || RB.getSubReg() != 0) {
477 Cost++;
478 continue;
479 }
480 const MachineInstr *Def1 = MRI->getVRegDef(RA.getReg());
481 const MachineInstr *Def3 = MRI->getVRegDef(RB.getReg());
482 if (!HII->isPredicable(*Def1) || !HII->isPredicable(*Def3))
483 Cost++;
484 }
485 return Cost;
486 }
487
countPredicateDefs(const MachineBasicBlock * B) const488 unsigned HexagonEarlyIfConversion::countPredicateDefs(
489 const MachineBasicBlock *B) const {
490 unsigned PredDefs = 0;
491 for (auto &MI : *B) {
492 for (const MachineOperand &MO : MI.operands()) {
493 if (!MO.isReg() || !MO.isDef())
494 continue;
495 unsigned R = MO.getReg();
496 if (!TargetRegisterInfo::isVirtualRegister(R))
497 continue;
498 if (isPredicate(R))
499 PredDefs++;
500 }
501 }
502 return PredDefs;
503 }
504
isProfitable(const FlowPattern & FP) const505 bool HexagonEarlyIfConversion::isProfitable(const FlowPattern &FP) const {
506 BranchProbability JumpProb(1, 10);
507 BranchProbability Prob(9, 10);
508 if (MBPI && FP.TrueB && !FP.FalseB &&
509 (MBPI->getEdgeProbability(FP.SplitB, FP.TrueB) < JumpProb ||
510 MBPI->getEdgeProbability(FP.SplitB, FP.TrueB) > Prob))
511 return false;
512
513 if (MBPI && !FP.TrueB && FP.FalseB &&
514 (MBPI->getEdgeProbability(FP.SplitB, FP.FalseB) < JumpProb ||
515 MBPI->getEdgeProbability(FP.SplitB, FP.FalseB) > Prob))
516 return false;
517
518 if (FP.TrueB && FP.FalseB) {
519 // Do not IfCovert if the branch is one sided.
520 if (MBPI) {
521 if (MBPI->getEdgeProbability(FP.SplitB, FP.TrueB) > Prob)
522 return false;
523 if (MBPI->getEdgeProbability(FP.SplitB, FP.FalseB) > Prob)
524 return false;
525 }
526
527 // If both sides are predicable, convert them if they join, and the
528 // join block has no other predecessors.
529 MachineBasicBlock *TSB = *FP.TrueB->succ_begin();
530 MachineBasicBlock *FSB = *FP.FalseB->succ_begin();
531 if (TSB != FSB)
532 return false;
533 if (TSB->pred_size() != 2)
534 return false;
535 }
536
537 // Calculate the total size of the predicated blocks.
538 // Assume instruction counts without branches to be the approximation of
539 // the code size. If the predicated blocks are smaller than a packet size,
540 // approximate the spare room in the packet that could be filled with the
541 // predicated/speculated instructions.
542 auto TotalCount = [] (const MachineBasicBlock *B, unsigned &Spare) {
543 if (!B)
544 return 0u;
545 unsigned T = std::count_if(B->begin(), B->getFirstTerminator(),
546 [](const MachineInstr &MI) {
547 return !MI.isMetaInstruction();
548 });
549 if (T < HEXAGON_PACKET_SIZE)
550 Spare += HEXAGON_PACKET_SIZE-T;
551 return T;
552 };
553 unsigned Spare = 0;
554 unsigned TotalIn = TotalCount(FP.TrueB, Spare) + TotalCount(FP.FalseB, Spare);
555 LLVM_DEBUG(
556 dbgs() << "Total number of instructions to be predicated/speculated: "
557 << TotalIn << ", spare room: " << Spare << "\n");
558 if (TotalIn >= SizeLimit+Spare)
559 return false;
560
561 // Count the number of PHI nodes that will need to be updated (converted
562 // to MUX). Those can be later converted to predicated instructions, so
563 // they aren't always adding extra cost.
564 // KLUDGE: Also, count the number of predicate register definitions in
565 // each block. The scheduler may increase the pressure of these and cause
566 // expensive spills (e.g. bitmnp01).
567 unsigned TotalPh = 0;
568 unsigned PredDefs = countPredicateDefs(FP.SplitB);
569 if (FP.JoinB) {
570 TotalPh = computePhiCost(FP.JoinB, FP);
571 PredDefs += countPredicateDefs(FP.JoinB);
572 } else {
573 if (FP.TrueB && FP.TrueB->succ_size() > 0) {
574 MachineBasicBlock *SB = *FP.TrueB->succ_begin();
575 TotalPh += computePhiCost(SB, FP);
576 PredDefs += countPredicateDefs(SB);
577 }
578 if (FP.FalseB && FP.FalseB->succ_size() > 0) {
579 MachineBasicBlock *SB = *FP.FalseB->succ_begin();
580 TotalPh += computePhiCost(SB, FP);
581 PredDefs += countPredicateDefs(SB);
582 }
583 }
584 LLVM_DEBUG(dbgs() << "Total number of extra muxes from converted phis: "
585 << TotalPh << "\n");
586 if (TotalIn+TotalPh >= SizeLimit+Spare)
587 return false;
588
589 LLVM_DEBUG(dbgs() << "Total number of predicate registers: " << PredDefs
590 << "\n");
591 if (PredDefs > 4)
592 return false;
593
594 return true;
595 }
596
visitBlock(MachineBasicBlock * B,MachineLoop * L)597 bool HexagonEarlyIfConversion::visitBlock(MachineBasicBlock *B,
598 MachineLoop *L) {
599 bool Changed = false;
600
601 // Visit all dominated blocks from the same loop first, then process B.
602 MachineDomTreeNode *N = MDT->getNode(B);
603
604 using GTN = GraphTraits<MachineDomTreeNode *>;
605
606 // We will change CFG/DT during this traversal, so take precautions to
607 // avoid problems related to invalidated iterators. In fact, processing
608 // a child C of B cannot cause another child to be removed, but it can
609 // cause a new child to be added (which was a child of C before C itself
610 // was removed. This new child C, however, would have been processed
611 // prior to processing B, so there is no need to process it again.
612 // Simply keep a list of children of B, and traverse that list.
613 using DTNodeVectType = SmallVector<MachineDomTreeNode *, 4>;
614 DTNodeVectType Cn(GTN::child_begin(N), GTN::child_end(N));
615 for (DTNodeVectType::iterator I = Cn.begin(), E = Cn.end(); I != E; ++I) {
616 MachineBasicBlock *SB = (*I)->getBlock();
617 if (!Deleted.count(SB))
618 Changed |= visitBlock(SB, L);
619 }
620 // When walking down the dominator tree, we want to traverse through
621 // blocks from nested (other) loops, because they can dominate blocks
622 // that are in L. Skip the non-L blocks only after the tree traversal.
623 if (MLI->getLoopFor(B) != L)
624 return Changed;
625
626 FlowPattern FP;
627 if (!matchFlowPattern(B, L, FP))
628 return Changed;
629
630 if (!isValid(FP)) {
631 LLVM_DEBUG(dbgs() << "Conversion is not valid\n");
632 return Changed;
633 }
634 if (!isProfitable(FP)) {
635 LLVM_DEBUG(dbgs() << "Conversion is not profitable\n");
636 return Changed;
637 }
638
639 convert(FP);
640 simplifyFlowGraph(FP);
641 return true;
642 }
643
visitLoop(MachineLoop * L)644 bool HexagonEarlyIfConversion::visitLoop(MachineLoop *L) {
645 MachineBasicBlock *HB = L ? L->getHeader() : nullptr;
646 LLVM_DEBUG((L ? dbgs() << "Visiting loop H:" << PrintMB(HB)
647 : dbgs() << "Visiting function")
648 << "\n");
649 bool Changed = false;
650 if (L) {
651 for (MachineLoop::iterator I = L->begin(), E = L->end(); I != E; ++I)
652 Changed |= visitLoop(*I);
653 }
654
655 MachineBasicBlock *EntryB = GraphTraits<MachineFunction*>::getEntryNode(MFN);
656 Changed |= visitBlock(L ? HB : EntryB, L);
657 return Changed;
658 }
659
isPredicableStore(const MachineInstr * MI) const660 bool HexagonEarlyIfConversion::isPredicableStore(const MachineInstr *MI)
661 const {
662 // HexagonInstrInfo::isPredicable will consider these stores are non-
663 // -predicable if the offset would become constant-extended after
664 // predication.
665 unsigned Opc = MI->getOpcode();
666 switch (Opc) {
667 case Hexagon::S2_storerb_io:
668 case Hexagon::S2_storerbnew_io:
669 case Hexagon::S2_storerh_io:
670 case Hexagon::S2_storerhnew_io:
671 case Hexagon::S2_storeri_io:
672 case Hexagon::S2_storerinew_io:
673 case Hexagon::S2_storerd_io:
674 case Hexagon::S4_storeirb_io:
675 case Hexagon::S4_storeirh_io:
676 case Hexagon::S4_storeiri_io:
677 return true;
678 }
679
680 // TargetInstrInfo::isPredicable takes a non-const pointer.
681 return MI->mayStore() && HII->isPredicable(const_cast<MachineInstr&>(*MI));
682 }
683
isSafeToSpeculate(const MachineInstr * MI) const684 bool HexagonEarlyIfConversion::isSafeToSpeculate(const MachineInstr *MI)
685 const {
686 if (MI->mayLoad() || MI->mayStore())
687 return false;
688 if (MI->isCall() || MI->isBarrier() || MI->isBranch())
689 return false;
690 if (MI->hasUnmodeledSideEffects())
691 return false;
692 if (MI->getOpcode() == TargetOpcode::LIFETIME_END)
693 return false;
694
695 return true;
696 }
697
isPredicate(unsigned R) const698 bool HexagonEarlyIfConversion::isPredicate(unsigned R) const {
699 const TargetRegisterClass *RC = MRI->getRegClass(R);
700 return RC == &Hexagon::PredRegsRegClass ||
701 RC == &Hexagon::HvxQRRegClass;
702 }
703
getCondStoreOpcode(unsigned Opc,bool IfTrue) const704 unsigned HexagonEarlyIfConversion::getCondStoreOpcode(unsigned Opc,
705 bool IfTrue) const {
706 return HII->getCondOpcode(Opc, !IfTrue);
707 }
708
predicateInstr(MachineBasicBlock * ToB,MachineBasicBlock::iterator At,MachineInstr * MI,unsigned PredR,bool IfTrue)709 void HexagonEarlyIfConversion::predicateInstr(MachineBasicBlock *ToB,
710 MachineBasicBlock::iterator At, MachineInstr *MI,
711 unsigned PredR, bool IfTrue) {
712 DebugLoc DL;
713 if (At != ToB->end())
714 DL = At->getDebugLoc();
715 else if (!ToB->empty())
716 DL = ToB->back().getDebugLoc();
717
718 unsigned Opc = MI->getOpcode();
719
720 if (isPredicableStore(MI)) {
721 unsigned COpc = getCondStoreOpcode(Opc, IfTrue);
722 assert(COpc);
723 MachineInstrBuilder MIB = BuildMI(*ToB, At, DL, HII->get(COpc));
724 MachineInstr::mop_iterator MOI = MI->operands_begin();
725 if (HII->isPostIncrement(*MI)) {
726 MIB.add(*MOI);
727 ++MOI;
728 }
729 MIB.addReg(PredR);
730 for (const MachineOperand &MO : make_range(MOI, MI->operands_end()))
731 MIB.add(MO);
732
733 // Set memory references.
734 MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin();
735 MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end();
736 MIB.setMemRefs(MMOBegin, MMOEnd);
737
738 MI->eraseFromParent();
739 return;
740 }
741
742 if (Opc == Hexagon::J2_jump) {
743 MachineBasicBlock *TB = MI->getOperand(0).getMBB();
744 const MCInstrDesc &D = HII->get(IfTrue ? Hexagon::J2_jumpt
745 : Hexagon::J2_jumpf);
746 BuildMI(*ToB, At, DL, D)
747 .addReg(PredR)
748 .addMBB(TB);
749 MI->eraseFromParent();
750 return;
751 }
752
753 // Print the offending instruction unconditionally as we are about to
754 // abort.
755 dbgs() << *MI;
756 llvm_unreachable("Unexpected instruction");
757 }
758
759 // Predicate/speculate non-branch instructions from FromB into block ToB.
760 // Leave the branches alone, they will be handled later. Btw, at this point
761 // FromB should have at most one branch, and it should be unconditional.
predicateBlockNB(MachineBasicBlock * ToB,MachineBasicBlock::iterator At,MachineBasicBlock * FromB,unsigned PredR,bool IfTrue)762 void HexagonEarlyIfConversion::predicateBlockNB(MachineBasicBlock *ToB,
763 MachineBasicBlock::iterator At, MachineBasicBlock *FromB,
764 unsigned PredR, bool IfTrue) {
765 LLVM_DEBUG(dbgs() << "Predicating block " << PrintMB(FromB) << "\n");
766 MachineBasicBlock::iterator End = FromB->getFirstTerminator();
767 MachineBasicBlock::iterator I, NextI;
768
769 for (I = FromB->begin(); I != End; I = NextI) {
770 assert(!I->isPHI());
771 NextI = std::next(I);
772 if (isSafeToSpeculate(&*I))
773 ToB->splice(At, FromB, I);
774 else
775 predicateInstr(ToB, At, &*I, PredR, IfTrue);
776 }
777 }
778
buildMux(MachineBasicBlock * B,MachineBasicBlock::iterator At,const TargetRegisterClass * DRC,unsigned PredR,unsigned TR,unsigned TSR,unsigned FR,unsigned FSR)779 unsigned HexagonEarlyIfConversion::buildMux(MachineBasicBlock *B,
780 MachineBasicBlock::iterator At, const TargetRegisterClass *DRC,
781 unsigned PredR, unsigned TR, unsigned TSR, unsigned FR, unsigned FSR) {
782 unsigned Opc = 0;
783 switch (DRC->getID()) {
784 case Hexagon::IntRegsRegClassID:
785 case Hexagon::IntRegsLow8RegClassID:
786 Opc = Hexagon::C2_mux;
787 break;
788 case Hexagon::DoubleRegsRegClassID:
789 case Hexagon::GeneralDoubleLow8RegsRegClassID:
790 Opc = Hexagon::PS_pselect;
791 break;
792 case Hexagon::HvxVRRegClassID:
793 Opc = Hexagon::PS_vselect;
794 break;
795 case Hexagon::HvxWRRegClassID:
796 Opc = Hexagon::PS_wselect;
797 break;
798 default:
799 llvm_unreachable("unexpected register type");
800 }
801 const MCInstrDesc &D = HII->get(Opc);
802
803 DebugLoc DL = B->findBranchDebugLoc();
804 unsigned MuxR = MRI->createVirtualRegister(DRC);
805 BuildMI(*B, At, DL, D, MuxR)
806 .addReg(PredR)
807 .addReg(TR, 0, TSR)
808 .addReg(FR, 0, FSR);
809 return MuxR;
810 }
811
updatePhiNodes(MachineBasicBlock * WhereB,const FlowPattern & FP)812 void HexagonEarlyIfConversion::updatePhiNodes(MachineBasicBlock *WhereB,
813 const FlowPattern &FP) {
814 // Visit all PHI nodes in the WhereB block and generate MUX instructions
815 // in the split block. Update the PHI nodes with the values of the MUX.
816 auto NonPHI = WhereB->getFirstNonPHI();
817 for (auto I = WhereB->begin(); I != NonPHI; ++I) {
818 MachineInstr *PN = &*I;
819 // Registers and subregisters corresponding to TrueB, FalseB and SplitB.
820 unsigned TR = 0, TSR = 0, FR = 0, FSR = 0, SR = 0, SSR = 0;
821 for (int i = PN->getNumOperands()-2; i > 0; i -= 2) {
822 const MachineOperand &RO = PN->getOperand(i), &BO = PN->getOperand(i+1);
823 if (BO.getMBB() == FP.SplitB)
824 SR = RO.getReg(), SSR = RO.getSubReg();
825 else if (BO.getMBB() == FP.TrueB)
826 TR = RO.getReg(), TSR = RO.getSubReg();
827 else if (BO.getMBB() == FP.FalseB)
828 FR = RO.getReg(), FSR = RO.getSubReg();
829 else
830 continue;
831 PN->RemoveOperand(i+1);
832 PN->RemoveOperand(i);
833 }
834 if (TR == 0)
835 TR = SR, TSR = SSR;
836 else if (FR == 0)
837 FR = SR, FSR = SSR;
838
839 assert(TR || FR);
840 unsigned MuxR = 0, MuxSR = 0;
841
842 if (TR && FR) {
843 unsigned DR = PN->getOperand(0).getReg();
844 const TargetRegisterClass *RC = MRI->getRegClass(DR);
845 MuxR = buildMux(FP.SplitB, FP.SplitB->getFirstTerminator(), RC,
846 FP.PredR, TR, TSR, FR, FSR);
847 } else if (TR) {
848 MuxR = TR;
849 MuxSR = TSR;
850 } else {
851 MuxR = FR;
852 MuxSR = FSR;
853 }
854
855 PN->addOperand(MachineOperand::CreateReg(MuxR, false, false, false, false,
856 false, false, MuxSR));
857 PN->addOperand(MachineOperand::CreateMBB(FP.SplitB));
858 }
859 }
860
convert(const FlowPattern & FP)861 void HexagonEarlyIfConversion::convert(const FlowPattern &FP) {
862 MachineBasicBlock *TSB = nullptr, *FSB = nullptr;
863 MachineBasicBlock::iterator OldTI = FP.SplitB->getFirstTerminator();
864 assert(OldTI != FP.SplitB->end());
865 DebugLoc DL = OldTI->getDebugLoc();
866
867 if (FP.TrueB) {
868 TSB = *FP.TrueB->succ_begin();
869 predicateBlockNB(FP.SplitB, OldTI, FP.TrueB, FP.PredR, true);
870 }
871 if (FP.FalseB) {
872 FSB = *FP.FalseB->succ_begin();
873 MachineBasicBlock::iterator At = FP.SplitB->getFirstTerminator();
874 predicateBlockNB(FP.SplitB, At, FP.FalseB, FP.PredR, false);
875 }
876
877 // Regenerate new terminators in the split block and update the successors.
878 // First, remember any information that may be needed later and remove the
879 // existing terminators/successors from the split block.
880 MachineBasicBlock *SSB = nullptr;
881 FP.SplitB->erase(OldTI, FP.SplitB->end());
882 while (FP.SplitB->succ_size() > 0) {
883 MachineBasicBlock *T = *FP.SplitB->succ_begin();
884 // It's possible that the split block had a successor that is not a pre-
885 // dicated block. This could only happen if there was only one block to
886 // be predicated. Example:
887 // split_b:
888 // if (p) jump true_b
889 // jump unrelated2_b
890 // unrelated1_b:
891 // ...
892 // unrelated2_b: ; can have other predecessors, so it's not "false_b"
893 // jump other_b
894 // true_b: ; only reachable from split_b, can be predicated
895 // ...
896 //
897 // Find this successor (SSB) if it exists.
898 if (T != FP.TrueB && T != FP.FalseB) {
899 assert(!SSB);
900 SSB = T;
901 }
902 FP.SplitB->removeSuccessor(FP.SplitB->succ_begin());
903 }
904
905 // Insert new branches and update the successors of the split block. This
906 // may create unconditional branches to the layout successor, etc., but
907 // that will be cleaned up later. For now, make sure that correct code is
908 // generated.
909 if (FP.JoinB) {
910 assert(!SSB || SSB == FP.JoinB);
911 BuildMI(*FP.SplitB, FP.SplitB->end(), DL, HII->get(Hexagon::J2_jump))
912 .addMBB(FP.JoinB);
913 FP.SplitB->addSuccessor(FP.JoinB);
914 } else {
915 bool HasBranch = false;
916 if (TSB) {
917 BuildMI(*FP.SplitB, FP.SplitB->end(), DL, HII->get(Hexagon::J2_jumpt))
918 .addReg(FP.PredR)
919 .addMBB(TSB);
920 FP.SplitB->addSuccessor(TSB);
921 HasBranch = true;
922 }
923 if (FSB) {
924 const MCInstrDesc &D = HasBranch ? HII->get(Hexagon::J2_jump)
925 : HII->get(Hexagon::J2_jumpf);
926 MachineInstrBuilder MIB = BuildMI(*FP.SplitB, FP.SplitB->end(), DL, D);
927 if (!HasBranch)
928 MIB.addReg(FP.PredR);
929 MIB.addMBB(FSB);
930 FP.SplitB->addSuccessor(FSB);
931 }
932 if (SSB) {
933 // This cannot happen if both TSB and FSB are set. [TF]SB are the
934 // successor blocks of the TrueB and FalseB (or null of the TrueB
935 // or FalseB block is null). SSB is the potential successor block
936 // of the SplitB that is neither TrueB nor FalseB.
937 BuildMI(*FP.SplitB, FP.SplitB->end(), DL, HII->get(Hexagon::J2_jump))
938 .addMBB(SSB);
939 FP.SplitB->addSuccessor(SSB);
940 }
941 }
942
943 // What is left to do is to update the PHI nodes that could have entries
944 // referring to predicated blocks.
945 if (FP.JoinB) {
946 updatePhiNodes(FP.JoinB, FP);
947 } else {
948 if (TSB)
949 updatePhiNodes(TSB, FP);
950 if (FSB)
951 updatePhiNodes(FSB, FP);
952 // Nothing to update in SSB, since SSB's predecessors haven't changed.
953 }
954 }
955
removeBlock(MachineBasicBlock * B)956 void HexagonEarlyIfConversion::removeBlock(MachineBasicBlock *B) {
957 LLVM_DEBUG(dbgs() << "Removing block " << PrintMB(B) << "\n");
958
959 // Transfer the immediate dominator information from B to its descendants.
960 MachineDomTreeNode *N = MDT->getNode(B);
961 MachineDomTreeNode *IDN = N->getIDom();
962 if (IDN) {
963 MachineBasicBlock *IDB = IDN->getBlock();
964
965 using GTN = GraphTraits<MachineDomTreeNode *>;
966 using DTNodeVectType = SmallVector<MachineDomTreeNode *, 4>;
967
968 DTNodeVectType Cn(GTN::child_begin(N), GTN::child_end(N));
969 for (DTNodeVectType::iterator I = Cn.begin(), E = Cn.end(); I != E; ++I) {
970 MachineBasicBlock *SB = (*I)->getBlock();
971 MDT->changeImmediateDominator(SB, IDB);
972 }
973 }
974
975 while (B->succ_size() > 0)
976 B->removeSuccessor(B->succ_begin());
977
978 for (auto I = B->pred_begin(), E = B->pred_end(); I != E; ++I)
979 (*I)->removeSuccessor(B, true);
980
981 Deleted.insert(B);
982 MDT->eraseNode(B);
983 MFN->erase(B->getIterator());
984 }
985
eliminatePhis(MachineBasicBlock * B)986 void HexagonEarlyIfConversion::eliminatePhis(MachineBasicBlock *B) {
987 LLVM_DEBUG(dbgs() << "Removing phi nodes from block " << PrintMB(B) << "\n");
988 MachineBasicBlock::iterator I, NextI, NonPHI = B->getFirstNonPHI();
989 for (I = B->begin(); I != NonPHI; I = NextI) {
990 NextI = std::next(I);
991 MachineInstr *PN = &*I;
992 assert(PN->getNumOperands() == 3 && "Invalid phi node");
993 MachineOperand &UO = PN->getOperand(1);
994 unsigned UseR = UO.getReg(), UseSR = UO.getSubReg();
995 unsigned DefR = PN->getOperand(0).getReg();
996 unsigned NewR = UseR;
997 if (UseSR) {
998 // MRI.replaceVregUsesWith does not allow to update the subregister,
999 // so instead of doing the use-iteration here, create a copy into a
1000 // "non-subregistered" register.
1001 const DebugLoc &DL = PN->getDebugLoc();
1002 const TargetRegisterClass *RC = MRI->getRegClass(DefR);
1003 NewR = MRI->createVirtualRegister(RC);
1004 NonPHI = BuildMI(*B, NonPHI, DL, HII->get(TargetOpcode::COPY), NewR)
1005 .addReg(UseR, 0, UseSR);
1006 }
1007 MRI->replaceRegWith(DefR, NewR);
1008 B->erase(I);
1009 }
1010 }
1011
mergeBlocks(MachineBasicBlock * PredB,MachineBasicBlock * SuccB)1012 void HexagonEarlyIfConversion::mergeBlocks(MachineBasicBlock *PredB,
1013 MachineBasicBlock *SuccB) {
1014 LLVM_DEBUG(dbgs() << "Merging blocks " << PrintMB(PredB) << " and "
1015 << PrintMB(SuccB) << "\n");
1016 bool TermOk = hasUncondBranch(SuccB);
1017 eliminatePhis(SuccB);
1018 HII->removeBranch(*PredB);
1019 PredB->removeSuccessor(SuccB);
1020 PredB->splice(PredB->end(), SuccB, SuccB->begin(), SuccB->end());
1021 PredB->transferSuccessorsAndUpdatePHIs(SuccB);
1022 removeBlock(SuccB);
1023 if (!TermOk)
1024 PredB->updateTerminator();
1025 }
1026
simplifyFlowGraph(const FlowPattern & FP)1027 void HexagonEarlyIfConversion::simplifyFlowGraph(const FlowPattern &FP) {
1028 if (FP.TrueB)
1029 removeBlock(FP.TrueB);
1030 if (FP.FalseB)
1031 removeBlock(FP.FalseB);
1032
1033 FP.SplitB->updateTerminator();
1034 if (FP.SplitB->succ_size() != 1)
1035 return;
1036
1037 MachineBasicBlock *SB = *FP.SplitB->succ_begin();
1038 if (SB->pred_size() != 1)
1039 return;
1040
1041 // By now, the split block has only one successor (SB), and SB has only
1042 // one predecessor. We can try to merge them. We will need to update ter-
1043 // minators in FP.Split+SB, and that requires working analyzeBranch, which
1044 // fails on Hexagon for blocks that have EH_LABELs. However, if SB ends
1045 // with an unconditional branch, we won't need to touch the terminators.
1046 if (!hasEHLabel(SB) || hasUncondBranch(SB))
1047 mergeBlocks(FP.SplitB, SB);
1048 }
1049
runOnMachineFunction(MachineFunction & MF)1050 bool HexagonEarlyIfConversion::runOnMachineFunction(MachineFunction &MF) {
1051 if (skipFunction(MF.getFunction()))
1052 return false;
1053
1054 auto &ST = MF.getSubtarget<HexagonSubtarget>();
1055 HII = ST.getInstrInfo();
1056 TRI = ST.getRegisterInfo();
1057 MFN = &MF;
1058 MRI = &MF.getRegInfo();
1059 MDT = &getAnalysis<MachineDominatorTree>();
1060 MLI = &getAnalysis<MachineLoopInfo>();
1061 MBPI = EnableHexagonBP ? &getAnalysis<MachineBranchProbabilityInfo>() :
1062 nullptr;
1063
1064 Deleted.clear();
1065 bool Changed = false;
1066
1067 for (MachineLoopInfo::iterator I = MLI->begin(), E = MLI->end(); I != E; ++I)
1068 Changed |= visitLoop(*I);
1069 Changed |= visitLoop(nullptr);
1070
1071 return Changed;
1072 }
1073
1074 //===----------------------------------------------------------------------===//
1075 // Public Constructor Functions
1076 //===----------------------------------------------------------------------===//
createHexagonEarlyIfConversion()1077 FunctionPass *llvm::createHexagonEarlyIfConversion() {
1078 return new HexagonEarlyIfConversion();
1079 }
1080