1 //===- HexagonInstrInfo.cpp - Hexagon Instruction Information -------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains the Hexagon implementation of the TargetInstrInfo class.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "HexagonInstrInfo.h"
15 #include "Hexagon.h"
16 #include "HexagonFrameLowering.h"
17 #include "HexagonHazardRecognizer.h"
18 #include "HexagonRegisterInfo.h"
19 #include "HexagonSubtarget.h"
20 #include "llvm/ADT/ArrayRef.h"
21 #include "llvm/ADT/SmallPtrSet.h"
22 #include "llvm/ADT/SmallVector.h"
23 #include "llvm/ADT/StringRef.h"
24 #include "llvm/CodeGen/DFAPacketizer.h"
25 #include "llvm/CodeGen/LivePhysRegs.h"
26 #include "llvm/CodeGen/MachineBasicBlock.h"
27 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
28 #include "llvm/CodeGen/MachineFrameInfo.h"
29 #include "llvm/CodeGen/MachineFunction.h"
30 #include "llvm/CodeGen/MachineInstr.h"
31 #include "llvm/CodeGen/MachineInstrBuilder.h"
32 #include "llvm/CodeGen/MachineInstrBundle.h"
33 #include "llvm/CodeGen/MachineLoopInfo.h"
34 #include "llvm/CodeGen/MachineMemOperand.h"
35 #include "llvm/CodeGen/MachineOperand.h"
36 #include "llvm/CodeGen/MachineRegisterInfo.h"
37 #include "llvm/CodeGen/ScheduleDAG.h"
38 #include "llvm/CodeGen/TargetInstrInfo.h"
39 #include "llvm/CodeGen/TargetOpcodes.h"
40 #include "llvm/CodeGen/TargetRegisterInfo.h"
41 #include "llvm/CodeGen/TargetSubtargetInfo.h"
42 #include "llvm/IR/DebugLoc.h"
43 #include "llvm/MC/MCAsmInfo.h"
44 #include "llvm/MC/MCInstrDesc.h"
45 #include "llvm/MC/MCInstrItineraries.h"
46 #include "llvm/MC/MCRegisterInfo.h"
47 #include "llvm/Support/BranchProbability.h"
48 #include "llvm/Support/CommandLine.h"
49 #include "llvm/Support/Debug.h"
50 #include "llvm/Support/ErrorHandling.h"
51 #include "llvm/Support/MachineValueType.h"
52 #include "llvm/Support/MathExtras.h"
53 #include "llvm/Support/raw_ostream.h"
54 #include "llvm/Target/TargetMachine.h"
55 #include <cassert>
56 #include <cctype>
57 #include <cstdint>
58 #include <cstring>
59 #include <iterator>
60 #include <string>
61 #include <utility>
62
63 using namespace llvm;
64
65 #define DEBUG_TYPE "hexagon-instrinfo"
66
67 #define GET_INSTRINFO_CTOR_DTOR
68 #define GET_INSTRMAP_INFO
69 #include "HexagonDepTimingClasses.h"
70 #include "HexagonGenDFAPacketizer.inc"
71 #include "HexagonGenInstrInfo.inc"
72
73 cl::opt<bool> ScheduleInlineAsm("hexagon-sched-inline-asm", cl::Hidden,
74 cl::init(false), cl::desc("Do not consider inline-asm a scheduling/"
75 "packetization boundary."));
76
77 static cl::opt<bool> EnableBranchPrediction("hexagon-enable-branch-prediction",
78 cl::Hidden, cl::init(true), cl::desc("Enable branch prediction"));
79
80 static cl::opt<bool> DisableNVSchedule("disable-hexagon-nv-schedule",
81 cl::Hidden, cl::ZeroOrMore, cl::init(false),
82 cl::desc("Disable schedule adjustment for new value stores."));
83
84 static cl::opt<bool> EnableTimingClassLatency(
85 "enable-timing-class-latency", cl::Hidden, cl::init(false),
86 cl::desc("Enable timing class latency"));
87
88 static cl::opt<bool> EnableALUForwarding(
89 "enable-alu-forwarding", cl::Hidden, cl::init(true),
90 cl::desc("Enable vec alu forwarding"));
91
92 static cl::opt<bool> EnableACCForwarding(
93 "enable-acc-forwarding", cl::Hidden, cl::init(true),
94 cl::desc("Enable vec acc forwarding"));
95
96 static cl::opt<bool> BranchRelaxAsmLarge("branch-relax-asm-large",
97 cl::init(true), cl::Hidden, cl::ZeroOrMore, cl::desc("branch relax asm"));
98
99 static cl::opt<bool> UseDFAHazardRec("dfa-hazard-rec",
100 cl::init(true), cl::Hidden, cl::ZeroOrMore,
101 cl::desc("Use the DFA based hazard recognizer."));
102
103 /// Constants for Hexagon instructions.
104 const int Hexagon_MEMW_OFFSET_MAX = 4095;
105 const int Hexagon_MEMW_OFFSET_MIN = -4096;
106 const int Hexagon_MEMD_OFFSET_MAX = 8191;
107 const int Hexagon_MEMD_OFFSET_MIN = -8192;
108 const int Hexagon_MEMH_OFFSET_MAX = 2047;
109 const int Hexagon_MEMH_OFFSET_MIN = -2048;
110 const int Hexagon_MEMB_OFFSET_MAX = 1023;
111 const int Hexagon_MEMB_OFFSET_MIN = -1024;
112 const int Hexagon_ADDI_OFFSET_MAX = 32767;
113 const int Hexagon_ADDI_OFFSET_MIN = -32768;
114
115 // Pin the vtable to this file.
anchor()116 void HexagonInstrInfo::anchor() {}
117
HexagonInstrInfo(HexagonSubtarget & ST)118 HexagonInstrInfo::HexagonInstrInfo(HexagonSubtarget &ST)
119 : HexagonGenInstrInfo(Hexagon::ADJCALLSTACKDOWN, Hexagon::ADJCALLSTACKUP),
120 Subtarget(ST) {}
121
isIntRegForSubInst(unsigned Reg)122 static bool isIntRegForSubInst(unsigned Reg) {
123 return (Reg >= Hexagon::R0 && Reg <= Hexagon::R7) ||
124 (Reg >= Hexagon::R16 && Reg <= Hexagon::R23);
125 }
126
isDblRegForSubInst(unsigned Reg,const HexagonRegisterInfo & HRI)127 static bool isDblRegForSubInst(unsigned Reg, const HexagonRegisterInfo &HRI) {
128 return isIntRegForSubInst(HRI.getSubReg(Reg, Hexagon::isub_lo)) &&
129 isIntRegForSubInst(HRI.getSubReg(Reg, Hexagon::isub_hi));
130 }
131
132 /// Calculate number of instructions excluding the debug instructions.
nonDbgMICount(MachineBasicBlock::const_instr_iterator MIB,MachineBasicBlock::const_instr_iterator MIE)133 static unsigned nonDbgMICount(MachineBasicBlock::const_instr_iterator MIB,
134 MachineBasicBlock::const_instr_iterator MIE) {
135 unsigned Count = 0;
136 for (; MIB != MIE; ++MIB) {
137 if (!MIB->isDebugInstr())
138 ++Count;
139 }
140 return Count;
141 }
142
143 /// Find the hardware loop instruction used to set-up the specified loop.
144 /// On Hexagon, we have two instructions used to set-up the hardware loop
145 /// (LOOP0, LOOP1) with corresponding endloop (ENDLOOP0, ENDLOOP1) instructions
146 /// to indicate the end of a loop.
findLoopInstr(MachineBasicBlock * BB,unsigned EndLoopOp,MachineBasicBlock * TargetBB,SmallPtrSet<MachineBasicBlock *,8> & Visited) const147 MachineInstr *HexagonInstrInfo::findLoopInstr(MachineBasicBlock *BB,
148 unsigned EndLoopOp, MachineBasicBlock *TargetBB,
149 SmallPtrSet<MachineBasicBlock *, 8> &Visited) const {
150 unsigned LOOPi;
151 unsigned LOOPr;
152 if (EndLoopOp == Hexagon::ENDLOOP0) {
153 LOOPi = Hexagon::J2_loop0i;
154 LOOPr = Hexagon::J2_loop0r;
155 } else { // EndLoopOp == Hexagon::EndLOOP1
156 LOOPi = Hexagon::J2_loop1i;
157 LOOPr = Hexagon::J2_loop1r;
158 }
159
160 // The loop set-up instruction will be in a predecessor block
161 for (MachineBasicBlock *PB : BB->predecessors()) {
162 // If this has been visited, already skip it.
163 if (!Visited.insert(PB).second)
164 continue;
165 if (PB == BB)
166 continue;
167 for (auto I = PB->instr_rbegin(), E = PB->instr_rend(); I != E; ++I) {
168 unsigned Opc = I->getOpcode();
169 if (Opc == LOOPi || Opc == LOOPr)
170 return &*I;
171 // We've reached a different loop, which means the loop01 has been
172 // removed.
173 if (Opc == EndLoopOp && I->getOperand(0).getMBB() != TargetBB)
174 return nullptr;
175 }
176 // Check the predecessors for the LOOP instruction.
177 if (MachineInstr *Loop = findLoopInstr(PB, EndLoopOp, TargetBB, Visited))
178 return Loop;
179 }
180 return nullptr;
181 }
182
183 /// Gather register def/uses from MI.
184 /// This treats possible (predicated) defs as actually happening ones
185 /// (conservatively).
parseOperands(const MachineInstr & MI,SmallVector<unsigned,4> & Defs,SmallVector<unsigned,8> & Uses)186 static inline void parseOperands(const MachineInstr &MI,
187 SmallVector<unsigned, 4> &Defs, SmallVector<unsigned, 8> &Uses) {
188 Defs.clear();
189 Uses.clear();
190
191 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
192 const MachineOperand &MO = MI.getOperand(i);
193
194 if (!MO.isReg())
195 continue;
196
197 unsigned Reg = MO.getReg();
198 if (!Reg)
199 continue;
200
201 if (MO.isUse())
202 Uses.push_back(MO.getReg());
203
204 if (MO.isDef())
205 Defs.push_back(MO.getReg());
206 }
207 }
208
209 // Position dependent, so check twice for swap.
isDuplexPairMatch(unsigned Ga,unsigned Gb)210 static bool isDuplexPairMatch(unsigned Ga, unsigned Gb) {
211 switch (Ga) {
212 case HexagonII::HSIG_None:
213 default:
214 return false;
215 case HexagonII::HSIG_L1:
216 return (Gb == HexagonII::HSIG_L1 || Gb == HexagonII::HSIG_A);
217 case HexagonII::HSIG_L2:
218 return (Gb == HexagonII::HSIG_L1 || Gb == HexagonII::HSIG_L2 ||
219 Gb == HexagonII::HSIG_A);
220 case HexagonII::HSIG_S1:
221 return (Gb == HexagonII::HSIG_L1 || Gb == HexagonII::HSIG_L2 ||
222 Gb == HexagonII::HSIG_S1 || Gb == HexagonII::HSIG_A);
223 case HexagonII::HSIG_S2:
224 return (Gb == HexagonII::HSIG_L1 || Gb == HexagonII::HSIG_L2 ||
225 Gb == HexagonII::HSIG_S1 || Gb == HexagonII::HSIG_S2 ||
226 Gb == HexagonII::HSIG_A);
227 case HexagonII::HSIG_A:
228 return (Gb == HexagonII::HSIG_A);
229 case HexagonII::HSIG_Compound:
230 return (Gb == HexagonII::HSIG_Compound);
231 }
232 return false;
233 }
234
235 /// isLoadFromStackSlot - If the specified machine instruction is a direct
236 /// load from a stack slot, return the virtual or physical register number of
237 /// the destination along with the FrameIndex of the loaded stack slot. If
238 /// not, return 0. This predicate must return 0 if the instruction has
239 /// any side effects other than loading from the stack slot.
isLoadFromStackSlot(const MachineInstr & MI,int & FrameIndex) const240 unsigned HexagonInstrInfo::isLoadFromStackSlot(const MachineInstr &MI,
241 int &FrameIndex) const {
242 switch (MI.getOpcode()) {
243 default:
244 break;
245 case Hexagon::L2_loadri_io:
246 case Hexagon::L2_loadrd_io:
247 case Hexagon::V6_vL32b_ai:
248 case Hexagon::V6_vL32b_nt_ai:
249 case Hexagon::V6_vL32Ub_ai:
250 case Hexagon::LDriw_pred:
251 case Hexagon::LDriw_ctr:
252 case Hexagon::PS_vloadrq_ai:
253 case Hexagon::PS_vloadrw_ai:
254 case Hexagon::PS_vloadrw_nt_ai: {
255 const MachineOperand OpFI = MI.getOperand(1);
256 if (!OpFI.isFI())
257 return 0;
258 const MachineOperand OpOff = MI.getOperand(2);
259 if (!OpOff.isImm() || OpOff.getImm() != 0)
260 return 0;
261 FrameIndex = OpFI.getIndex();
262 return MI.getOperand(0).getReg();
263 }
264
265 case Hexagon::L2_ploadrit_io:
266 case Hexagon::L2_ploadrif_io:
267 case Hexagon::L2_ploadrdt_io:
268 case Hexagon::L2_ploadrdf_io: {
269 const MachineOperand OpFI = MI.getOperand(2);
270 if (!OpFI.isFI())
271 return 0;
272 const MachineOperand OpOff = MI.getOperand(3);
273 if (!OpOff.isImm() || OpOff.getImm() != 0)
274 return 0;
275 FrameIndex = OpFI.getIndex();
276 return MI.getOperand(0).getReg();
277 }
278 }
279
280 return 0;
281 }
282
283 /// isStoreToStackSlot - If the specified machine instruction is a direct
284 /// store to a stack slot, return the virtual or physical register number of
285 /// the source reg along with the FrameIndex of the loaded stack slot. If
286 /// not, return 0. This predicate must return 0 if the instruction has
287 /// any side effects other than storing to the stack slot.
isStoreToStackSlot(const MachineInstr & MI,int & FrameIndex) const288 unsigned HexagonInstrInfo::isStoreToStackSlot(const MachineInstr &MI,
289 int &FrameIndex) const {
290 switch (MI.getOpcode()) {
291 default:
292 break;
293 case Hexagon::S2_storerb_io:
294 case Hexagon::S2_storerh_io:
295 case Hexagon::S2_storeri_io:
296 case Hexagon::S2_storerd_io:
297 case Hexagon::V6_vS32b_ai:
298 case Hexagon::V6_vS32Ub_ai:
299 case Hexagon::STriw_pred:
300 case Hexagon::STriw_ctr:
301 case Hexagon::PS_vstorerq_ai:
302 case Hexagon::PS_vstorerw_ai: {
303 const MachineOperand &OpFI = MI.getOperand(0);
304 if (!OpFI.isFI())
305 return 0;
306 const MachineOperand &OpOff = MI.getOperand(1);
307 if (!OpOff.isImm() || OpOff.getImm() != 0)
308 return 0;
309 FrameIndex = OpFI.getIndex();
310 return MI.getOperand(2).getReg();
311 }
312
313 case Hexagon::S2_pstorerbt_io:
314 case Hexagon::S2_pstorerbf_io:
315 case Hexagon::S2_pstorerht_io:
316 case Hexagon::S2_pstorerhf_io:
317 case Hexagon::S2_pstorerit_io:
318 case Hexagon::S2_pstorerif_io:
319 case Hexagon::S2_pstorerdt_io:
320 case Hexagon::S2_pstorerdf_io: {
321 const MachineOperand &OpFI = MI.getOperand(1);
322 if (!OpFI.isFI())
323 return 0;
324 const MachineOperand &OpOff = MI.getOperand(2);
325 if (!OpOff.isImm() || OpOff.getImm() != 0)
326 return 0;
327 FrameIndex = OpFI.getIndex();
328 return MI.getOperand(3).getReg();
329 }
330 }
331
332 return 0;
333 }
334
335 /// This function checks if the instruction or bundle of instructions
336 /// has load from stack slot and returns frameindex and machine memory
337 /// operand of that instruction if true.
hasLoadFromStackSlot(const MachineInstr & MI,const MachineMemOperand * & MMO,int & FrameIndex) const338 bool HexagonInstrInfo::hasLoadFromStackSlot(const MachineInstr &MI,
339 const MachineMemOperand *&MMO,
340 int &FrameIndex) const {
341 if (MI.isBundle()) {
342 const MachineBasicBlock *MBB = MI.getParent();
343 MachineBasicBlock::const_instr_iterator MII = MI.getIterator();
344 for (++MII; MII != MBB->instr_end() && MII->isInsideBundle(); ++MII)
345 if (TargetInstrInfo::hasLoadFromStackSlot(*MII, MMO, FrameIndex))
346 return true;
347 return false;
348 }
349
350 return TargetInstrInfo::hasLoadFromStackSlot(MI, MMO, FrameIndex);
351 }
352
353 /// This function checks if the instruction or bundle of instructions
354 /// has store to stack slot and returns frameindex and machine memory
355 /// operand of that instruction if true.
hasStoreToStackSlot(const MachineInstr & MI,const MachineMemOperand * & MMO,int & FrameIndex) const356 bool HexagonInstrInfo::hasStoreToStackSlot(const MachineInstr &MI,
357 const MachineMemOperand *&MMO,
358 int &FrameIndex) const {
359 if (MI.isBundle()) {
360 const MachineBasicBlock *MBB = MI.getParent();
361 MachineBasicBlock::const_instr_iterator MII = MI.getIterator();
362 for (++MII; MII != MBB->instr_end() && MII->isInsideBundle(); ++MII)
363 if (TargetInstrInfo::hasStoreToStackSlot(*MII, MMO, FrameIndex))
364 return true;
365 return false;
366 }
367
368 return TargetInstrInfo::hasStoreToStackSlot(MI, MMO, FrameIndex);
369 }
370
371 /// This function can analyze one/two way branching only and should (mostly) be
372 /// called by target independent side.
373 /// First entry is always the opcode of the branching instruction, except when
374 /// the Cond vector is supposed to be empty, e.g., when AnalyzeBranch fails, a
375 /// BB with only unconditional jump. Subsequent entries depend upon the opcode,
376 /// e.g. Jump_c p will have
377 /// Cond[0] = Jump_c
378 /// Cond[1] = p
379 /// HW-loop ENDLOOP:
380 /// Cond[0] = ENDLOOP
381 /// Cond[1] = MBB
382 /// New value jump:
383 /// Cond[0] = Hexagon::CMPEQri_f_Jumpnv_t_V4 -- specific opcode
384 /// Cond[1] = R
385 /// Cond[2] = Imm
analyzeBranch(MachineBasicBlock & MBB,MachineBasicBlock * & TBB,MachineBasicBlock * & FBB,SmallVectorImpl<MachineOperand> & Cond,bool AllowModify) const386 bool HexagonInstrInfo::analyzeBranch(MachineBasicBlock &MBB,
387 MachineBasicBlock *&TBB,
388 MachineBasicBlock *&FBB,
389 SmallVectorImpl<MachineOperand> &Cond,
390 bool AllowModify) const {
391 TBB = nullptr;
392 FBB = nullptr;
393 Cond.clear();
394
395 // If the block has no terminators, it just falls into the block after it.
396 MachineBasicBlock::instr_iterator I = MBB.instr_end();
397 if (I == MBB.instr_begin())
398 return false;
399
400 // A basic block may looks like this:
401 //
402 // [ insn
403 // EH_LABEL
404 // insn
405 // insn
406 // insn
407 // EH_LABEL
408 // insn ]
409 //
410 // It has two succs but does not have a terminator
411 // Don't know how to handle it.
412 do {
413 --I;
414 if (I->isEHLabel())
415 // Don't analyze EH branches.
416 return true;
417 } while (I != MBB.instr_begin());
418
419 I = MBB.instr_end();
420 --I;
421
422 while (I->isDebugInstr()) {
423 if (I == MBB.instr_begin())
424 return false;
425 --I;
426 }
427
428 bool JumpToBlock = I->getOpcode() == Hexagon::J2_jump &&
429 I->getOperand(0).isMBB();
430 // Delete the J2_jump if it's equivalent to a fall-through.
431 if (AllowModify && JumpToBlock &&
432 MBB.isLayoutSuccessor(I->getOperand(0).getMBB())) {
433 LLVM_DEBUG(dbgs() << "\nErasing the jump to successor block\n";);
434 I->eraseFromParent();
435 I = MBB.instr_end();
436 if (I == MBB.instr_begin())
437 return false;
438 --I;
439 }
440 if (!isUnpredicatedTerminator(*I))
441 return false;
442
443 // Get the last instruction in the block.
444 MachineInstr *LastInst = &*I;
445 MachineInstr *SecondLastInst = nullptr;
446 // Find one more terminator if present.
447 while (true) {
448 if (&*I != LastInst && !I->isBundle() && isUnpredicatedTerminator(*I)) {
449 if (!SecondLastInst)
450 SecondLastInst = &*I;
451 else
452 // This is a third branch.
453 return true;
454 }
455 if (I == MBB.instr_begin())
456 break;
457 --I;
458 }
459
460 int LastOpcode = LastInst->getOpcode();
461 int SecLastOpcode = SecondLastInst ? SecondLastInst->getOpcode() : 0;
462 // If the branch target is not a basic block, it could be a tail call.
463 // (It is, if the target is a function.)
464 if (LastOpcode == Hexagon::J2_jump && !LastInst->getOperand(0).isMBB())
465 return true;
466 if (SecLastOpcode == Hexagon::J2_jump &&
467 !SecondLastInst->getOperand(0).isMBB())
468 return true;
469
470 bool LastOpcodeHasJMP_c = PredOpcodeHasJMP_c(LastOpcode);
471 bool LastOpcodeHasNVJump = isNewValueJump(*LastInst);
472
473 if (LastOpcodeHasJMP_c && !LastInst->getOperand(1).isMBB())
474 return true;
475
476 // If there is only one terminator instruction, process it.
477 if (LastInst && !SecondLastInst) {
478 if (LastOpcode == Hexagon::J2_jump) {
479 TBB = LastInst->getOperand(0).getMBB();
480 return false;
481 }
482 if (isEndLoopN(LastOpcode)) {
483 TBB = LastInst->getOperand(0).getMBB();
484 Cond.push_back(MachineOperand::CreateImm(LastInst->getOpcode()));
485 Cond.push_back(LastInst->getOperand(0));
486 return false;
487 }
488 if (LastOpcodeHasJMP_c) {
489 TBB = LastInst->getOperand(1).getMBB();
490 Cond.push_back(MachineOperand::CreateImm(LastInst->getOpcode()));
491 Cond.push_back(LastInst->getOperand(0));
492 return false;
493 }
494 // Only supporting rr/ri versions of new-value jumps.
495 if (LastOpcodeHasNVJump && (LastInst->getNumExplicitOperands() == 3)) {
496 TBB = LastInst->getOperand(2).getMBB();
497 Cond.push_back(MachineOperand::CreateImm(LastInst->getOpcode()));
498 Cond.push_back(LastInst->getOperand(0));
499 Cond.push_back(LastInst->getOperand(1));
500 return false;
501 }
502 LLVM_DEBUG(dbgs() << "\nCant analyze " << printMBBReference(MBB)
503 << " with one jump\n";);
504 // Otherwise, don't know what this is.
505 return true;
506 }
507
508 bool SecLastOpcodeHasJMP_c = PredOpcodeHasJMP_c(SecLastOpcode);
509 bool SecLastOpcodeHasNVJump = isNewValueJump(*SecondLastInst);
510 if (SecLastOpcodeHasJMP_c && (LastOpcode == Hexagon::J2_jump)) {
511 if (!SecondLastInst->getOperand(1).isMBB())
512 return true;
513 TBB = SecondLastInst->getOperand(1).getMBB();
514 Cond.push_back(MachineOperand::CreateImm(SecondLastInst->getOpcode()));
515 Cond.push_back(SecondLastInst->getOperand(0));
516 FBB = LastInst->getOperand(0).getMBB();
517 return false;
518 }
519
520 // Only supporting rr/ri versions of new-value jumps.
521 if (SecLastOpcodeHasNVJump &&
522 (SecondLastInst->getNumExplicitOperands() == 3) &&
523 (LastOpcode == Hexagon::J2_jump)) {
524 TBB = SecondLastInst->getOperand(2).getMBB();
525 Cond.push_back(MachineOperand::CreateImm(SecondLastInst->getOpcode()));
526 Cond.push_back(SecondLastInst->getOperand(0));
527 Cond.push_back(SecondLastInst->getOperand(1));
528 FBB = LastInst->getOperand(0).getMBB();
529 return false;
530 }
531
532 // If the block ends with two Hexagon:JMPs, handle it. The second one is not
533 // executed, so remove it.
534 if (SecLastOpcode == Hexagon::J2_jump && LastOpcode == Hexagon::J2_jump) {
535 TBB = SecondLastInst->getOperand(0).getMBB();
536 I = LastInst->getIterator();
537 if (AllowModify)
538 I->eraseFromParent();
539 return false;
540 }
541
542 // If the block ends with an ENDLOOP, and J2_jump, handle it.
543 if (isEndLoopN(SecLastOpcode) && LastOpcode == Hexagon::J2_jump) {
544 TBB = SecondLastInst->getOperand(0).getMBB();
545 Cond.push_back(MachineOperand::CreateImm(SecondLastInst->getOpcode()));
546 Cond.push_back(SecondLastInst->getOperand(0));
547 FBB = LastInst->getOperand(0).getMBB();
548 return false;
549 }
550 LLVM_DEBUG(dbgs() << "\nCant analyze " << printMBBReference(MBB)
551 << " with two jumps";);
552 // Otherwise, can't handle this.
553 return true;
554 }
555
removeBranch(MachineBasicBlock & MBB,int * BytesRemoved) const556 unsigned HexagonInstrInfo::removeBranch(MachineBasicBlock &MBB,
557 int *BytesRemoved) const {
558 assert(!BytesRemoved && "code size not handled");
559
560 LLVM_DEBUG(dbgs() << "\nRemoving branches out of " << printMBBReference(MBB));
561 MachineBasicBlock::iterator I = MBB.end();
562 unsigned Count = 0;
563 while (I != MBB.begin()) {
564 --I;
565 if (I->isDebugInstr())
566 continue;
567 // Only removing branches from end of MBB.
568 if (!I->isBranch())
569 return Count;
570 if (Count && (I->getOpcode() == Hexagon::J2_jump))
571 llvm_unreachable("Malformed basic block: unconditional branch not last");
572 MBB.erase(&MBB.back());
573 I = MBB.end();
574 ++Count;
575 }
576 return Count;
577 }
578
insertBranch(MachineBasicBlock & MBB,MachineBasicBlock * TBB,MachineBasicBlock * FBB,ArrayRef<MachineOperand> Cond,const DebugLoc & DL,int * BytesAdded) const579 unsigned HexagonInstrInfo::insertBranch(MachineBasicBlock &MBB,
580 MachineBasicBlock *TBB,
581 MachineBasicBlock *FBB,
582 ArrayRef<MachineOperand> Cond,
583 const DebugLoc &DL,
584 int *BytesAdded) const {
585 unsigned BOpc = Hexagon::J2_jump;
586 unsigned BccOpc = Hexagon::J2_jumpt;
587 assert(validateBranchCond(Cond) && "Invalid branching condition");
588 assert(TBB && "insertBranch must not be told to insert a fallthrough");
589 assert(!BytesAdded && "code size not handled");
590
591 // Check if reverseBranchCondition has asked to reverse this branch
592 // If we want to reverse the branch an odd number of times, we want
593 // J2_jumpf.
594 if (!Cond.empty() && Cond[0].isImm())
595 BccOpc = Cond[0].getImm();
596
597 if (!FBB) {
598 if (Cond.empty()) {
599 // Due to a bug in TailMerging/CFG Optimization, we need to add a
600 // special case handling of a predicated jump followed by an
601 // unconditional jump. If not, Tail Merging and CFG Optimization go
602 // into an infinite loop.
603 MachineBasicBlock *NewTBB, *NewFBB;
604 SmallVector<MachineOperand, 4> Cond;
605 auto Term = MBB.getFirstTerminator();
606 if (Term != MBB.end() && isPredicated(*Term) &&
607 !analyzeBranch(MBB, NewTBB, NewFBB, Cond, false) &&
608 MachineFunction::iterator(NewTBB) == ++MBB.getIterator()) {
609 reverseBranchCondition(Cond);
610 removeBranch(MBB);
611 return insertBranch(MBB, TBB, nullptr, Cond, DL);
612 }
613 BuildMI(&MBB, DL, get(BOpc)).addMBB(TBB);
614 } else if (isEndLoopN(Cond[0].getImm())) {
615 int EndLoopOp = Cond[0].getImm();
616 assert(Cond[1].isMBB());
617 // Since we're adding an ENDLOOP, there better be a LOOP instruction.
618 // Check for it, and change the BB target if needed.
619 SmallPtrSet<MachineBasicBlock *, 8> VisitedBBs;
620 MachineInstr *Loop = findLoopInstr(TBB, EndLoopOp, Cond[1].getMBB(),
621 VisitedBBs);
622 assert(Loop != nullptr && "Inserting an ENDLOOP without a LOOP");
623 Loop->getOperand(0).setMBB(TBB);
624 // Add the ENDLOOP after the finding the LOOP0.
625 BuildMI(&MBB, DL, get(EndLoopOp)).addMBB(TBB);
626 } else if (isNewValueJump(Cond[0].getImm())) {
627 assert((Cond.size() == 3) && "Only supporting rr/ri version of nvjump");
628 // New value jump
629 // (ins IntRegs:$src1, IntRegs:$src2, brtarget:$offset)
630 // (ins IntRegs:$src1, u5Imm:$src2, brtarget:$offset)
631 unsigned Flags1 = getUndefRegState(Cond[1].isUndef());
632 LLVM_DEBUG(dbgs() << "\nInserting NVJump for "
633 << printMBBReference(MBB););
634 if (Cond[2].isReg()) {
635 unsigned Flags2 = getUndefRegState(Cond[2].isUndef());
636 BuildMI(&MBB, DL, get(BccOpc)).addReg(Cond[1].getReg(), Flags1).
637 addReg(Cond[2].getReg(), Flags2).addMBB(TBB);
638 } else if(Cond[2].isImm()) {
639 BuildMI(&MBB, DL, get(BccOpc)).addReg(Cond[1].getReg(), Flags1).
640 addImm(Cond[2].getImm()).addMBB(TBB);
641 } else
642 llvm_unreachable("Invalid condition for branching");
643 } else {
644 assert((Cond.size() == 2) && "Malformed cond vector");
645 const MachineOperand &RO = Cond[1];
646 unsigned Flags = getUndefRegState(RO.isUndef());
647 BuildMI(&MBB, DL, get(BccOpc)).addReg(RO.getReg(), Flags).addMBB(TBB);
648 }
649 return 1;
650 }
651 assert((!Cond.empty()) &&
652 "Cond. cannot be empty when multiple branchings are required");
653 assert((!isNewValueJump(Cond[0].getImm())) &&
654 "NV-jump cannot be inserted with another branch");
655 // Special case for hardware loops. The condition is a basic block.
656 if (isEndLoopN(Cond[0].getImm())) {
657 int EndLoopOp = Cond[0].getImm();
658 assert(Cond[1].isMBB());
659 // Since we're adding an ENDLOOP, there better be a LOOP instruction.
660 // Check for it, and change the BB target if needed.
661 SmallPtrSet<MachineBasicBlock *, 8> VisitedBBs;
662 MachineInstr *Loop = findLoopInstr(TBB, EndLoopOp, Cond[1].getMBB(),
663 VisitedBBs);
664 assert(Loop != nullptr && "Inserting an ENDLOOP without a LOOP");
665 Loop->getOperand(0).setMBB(TBB);
666 // Add the ENDLOOP after the finding the LOOP0.
667 BuildMI(&MBB, DL, get(EndLoopOp)).addMBB(TBB);
668 } else {
669 const MachineOperand &RO = Cond[1];
670 unsigned Flags = getUndefRegState(RO.isUndef());
671 BuildMI(&MBB, DL, get(BccOpc)).addReg(RO.getReg(), Flags).addMBB(TBB);
672 }
673 BuildMI(&MBB, DL, get(BOpc)).addMBB(FBB);
674
675 return 2;
676 }
677
678 /// Analyze the loop code to find the loop induction variable and compare used
679 /// to compute the number of iterations. Currently, we analyze loop that are
680 /// controlled using hardware loops. In this case, the induction variable
681 /// instruction is null. For all other cases, this function returns true, which
682 /// means we're unable to analyze it.
analyzeLoop(MachineLoop & L,MachineInstr * & IndVarInst,MachineInstr * & CmpInst) const683 bool HexagonInstrInfo::analyzeLoop(MachineLoop &L,
684 MachineInstr *&IndVarInst,
685 MachineInstr *&CmpInst) const {
686
687 MachineBasicBlock *LoopEnd = L.getBottomBlock();
688 MachineBasicBlock::iterator I = LoopEnd->getFirstTerminator();
689 // We really "analyze" only hardware loops right now.
690 if (I != LoopEnd->end() && isEndLoopN(I->getOpcode())) {
691 IndVarInst = nullptr;
692 CmpInst = &*I;
693 return false;
694 }
695 return true;
696 }
697
698 /// Generate code to reduce the loop iteration by one and check if the loop is
699 /// finished. Return the value/register of the new loop count. this function
700 /// assumes the nth iteration is peeled first.
reduceLoopCount(MachineBasicBlock & MBB,MachineInstr * IndVar,MachineInstr & Cmp,SmallVectorImpl<MachineOperand> & Cond,SmallVectorImpl<MachineInstr * > & PrevInsts,unsigned Iter,unsigned MaxIter) const701 unsigned HexagonInstrInfo::reduceLoopCount(MachineBasicBlock &MBB,
702 MachineInstr *IndVar, MachineInstr &Cmp,
703 SmallVectorImpl<MachineOperand> &Cond,
704 SmallVectorImpl<MachineInstr *> &PrevInsts,
705 unsigned Iter, unsigned MaxIter) const {
706 // We expect a hardware loop currently. This means that IndVar is set
707 // to null, and the compare is the ENDLOOP instruction.
708 assert((!IndVar) && isEndLoopN(Cmp.getOpcode())
709 && "Expecting a hardware loop");
710 MachineFunction *MF = MBB.getParent();
711 DebugLoc DL = Cmp.getDebugLoc();
712 SmallPtrSet<MachineBasicBlock *, 8> VisitedBBs;
713 MachineInstr *Loop = findLoopInstr(&MBB, Cmp.getOpcode(),
714 Cmp.getOperand(0).getMBB(), VisitedBBs);
715 if (!Loop)
716 return 0;
717 // If the loop trip count is a compile-time value, then just change the
718 // value.
719 if (Loop->getOpcode() == Hexagon::J2_loop0i ||
720 Loop->getOpcode() == Hexagon::J2_loop1i) {
721 int64_t Offset = Loop->getOperand(1).getImm();
722 if (Offset <= 1)
723 Loop->eraseFromParent();
724 else
725 Loop->getOperand(1).setImm(Offset - 1);
726 return Offset - 1;
727 }
728 // The loop trip count is a run-time value. We generate code to subtract
729 // one from the trip count, and update the loop instruction.
730 assert(Loop->getOpcode() == Hexagon::J2_loop0r && "Unexpected instruction");
731 unsigned LoopCount = Loop->getOperand(1).getReg();
732 // Check if we're done with the loop.
733 unsigned LoopEnd = createVR(MF, MVT::i1);
734 MachineInstr *NewCmp = BuildMI(&MBB, DL, get(Hexagon::C2_cmpgtui), LoopEnd).
735 addReg(LoopCount).addImm(1);
736 unsigned NewLoopCount = createVR(MF, MVT::i32);
737 MachineInstr *NewAdd = BuildMI(&MBB, DL, get(Hexagon::A2_addi), NewLoopCount).
738 addReg(LoopCount).addImm(-1);
739 const HexagonRegisterInfo &HRI = *Subtarget.getRegisterInfo();
740 // Update the previously generated instructions with the new loop counter.
741 for (SmallVectorImpl<MachineInstr *>::iterator I = PrevInsts.begin(),
742 E = PrevInsts.end(); I != E; ++I)
743 (*I)->substituteRegister(LoopCount, NewLoopCount, 0, HRI);
744 PrevInsts.clear();
745 PrevInsts.push_back(NewCmp);
746 PrevInsts.push_back(NewAdd);
747 // Insert the new loop instruction if this is the last time the loop is
748 // decremented.
749 if (Iter == MaxIter)
750 BuildMI(&MBB, DL, get(Hexagon::J2_loop0r)).
751 addMBB(Loop->getOperand(0).getMBB()).addReg(NewLoopCount);
752 // Delete the old loop instruction.
753 if (Iter == 0)
754 Loop->eraseFromParent();
755 Cond.push_back(MachineOperand::CreateImm(Hexagon::J2_jumpf));
756 Cond.push_back(NewCmp->getOperand(0));
757 return NewLoopCount;
758 }
759
isProfitableToIfCvt(MachineBasicBlock & MBB,unsigned NumCycles,unsigned ExtraPredCycles,BranchProbability Probability) const760 bool HexagonInstrInfo::isProfitableToIfCvt(MachineBasicBlock &MBB,
761 unsigned NumCycles, unsigned ExtraPredCycles,
762 BranchProbability Probability) const {
763 return nonDbgBBSize(&MBB) <= 3;
764 }
765
isProfitableToIfCvt(MachineBasicBlock & TMBB,unsigned NumTCycles,unsigned ExtraTCycles,MachineBasicBlock & FMBB,unsigned NumFCycles,unsigned ExtraFCycles,BranchProbability Probability) const766 bool HexagonInstrInfo::isProfitableToIfCvt(MachineBasicBlock &TMBB,
767 unsigned NumTCycles, unsigned ExtraTCycles, MachineBasicBlock &FMBB,
768 unsigned NumFCycles, unsigned ExtraFCycles, BranchProbability Probability)
769 const {
770 return nonDbgBBSize(&TMBB) <= 3 && nonDbgBBSize(&FMBB) <= 3;
771 }
772
isProfitableToDupForIfCvt(MachineBasicBlock & MBB,unsigned NumInstrs,BranchProbability Probability) const773 bool HexagonInstrInfo::isProfitableToDupForIfCvt(MachineBasicBlock &MBB,
774 unsigned NumInstrs, BranchProbability Probability) const {
775 return NumInstrs <= 4;
776 }
777
copyPhysReg(MachineBasicBlock & MBB,MachineBasicBlock::iterator I,const DebugLoc & DL,unsigned DestReg,unsigned SrcReg,bool KillSrc) const778 void HexagonInstrInfo::copyPhysReg(MachineBasicBlock &MBB,
779 MachineBasicBlock::iterator I,
780 const DebugLoc &DL, unsigned DestReg,
781 unsigned SrcReg, bool KillSrc) const {
782 const HexagonRegisterInfo &HRI = *Subtarget.getRegisterInfo();
783 unsigned KillFlag = getKillRegState(KillSrc);
784
785 if (Hexagon::IntRegsRegClass.contains(SrcReg, DestReg)) {
786 BuildMI(MBB, I, DL, get(Hexagon::A2_tfr), DestReg)
787 .addReg(SrcReg, KillFlag);
788 return;
789 }
790 if (Hexagon::DoubleRegsRegClass.contains(SrcReg, DestReg)) {
791 BuildMI(MBB, I, DL, get(Hexagon::A2_tfrp), DestReg)
792 .addReg(SrcReg, KillFlag);
793 return;
794 }
795 if (Hexagon::PredRegsRegClass.contains(SrcReg, DestReg)) {
796 // Map Pd = Ps to Pd = or(Ps, Ps).
797 BuildMI(MBB, I, DL, get(Hexagon::C2_or), DestReg)
798 .addReg(SrcReg).addReg(SrcReg, KillFlag);
799 return;
800 }
801 if (Hexagon::CtrRegsRegClass.contains(DestReg) &&
802 Hexagon::IntRegsRegClass.contains(SrcReg)) {
803 BuildMI(MBB, I, DL, get(Hexagon::A2_tfrrcr), DestReg)
804 .addReg(SrcReg, KillFlag);
805 return;
806 }
807 if (Hexagon::IntRegsRegClass.contains(DestReg) &&
808 Hexagon::CtrRegsRegClass.contains(SrcReg)) {
809 BuildMI(MBB, I, DL, get(Hexagon::A2_tfrcrr), DestReg)
810 .addReg(SrcReg, KillFlag);
811 return;
812 }
813 if (Hexagon::ModRegsRegClass.contains(DestReg) &&
814 Hexagon::IntRegsRegClass.contains(SrcReg)) {
815 BuildMI(MBB, I, DL, get(Hexagon::A2_tfrrcr), DestReg)
816 .addReg(SrcReg, KillFlag);
817 return;
818 }
819 if (Hexagon::PredRegsRegClass.contains(SrcReg) &&
820 Hexagon::IntRegsRegClass.contains(DestReg)) {
821 BuildMI(MBB, I, DL, get(Hexagon::C2_tfrpr), DestReg)
822 .addReg(SrcReg, KillFlag);
823 return;
824 }
825 if (Hexagon::IntRegsRegClass.contains(SrcReg) &&
826 Hexagon::PredRegsRegClass.contains(DestReg)) {
827 BuildMI(MBB, I, DL, get(Hexagon::C2_tfrrp), DestReg)
828 .addReg(SrcReg, KillFlag);
829 return;
830 }
831 if (Hexagon::PredRegsRegClass.contains(SrcReg) &&
832 Hexagon::IntRegsRegClass.contains(DestReg)) {
833 BuildMI(MBB, I, DL, get(Hexagon::C2_tfrpr), DestReg)
834 .addReg(SrcReg, KillFlag);
835 return;
836 }
837 if (Hexagon::HvxVRRegClass.contains(SrcReg, DestReg)) {
838 BuildMI(MBB, I, DL, get(Hexagon::V6_vassign), DestReg).
839 addReg(SrcReg, KillFlag);
840 return;
841 }
842 if (Hexagon::HvxWRRegClass.contains(SrcReg, DestReg)) {
843 unsigned LoSrc = HRI.getSubReg(SrcReg, Hexagon::vsub_lo);
844 unsigned HiSrc = HRI.getSubReg(SrcReg, Hexagon::vsub_hi);
845 BuildMI(MBB, I, DL, get(Hexagon::V6_vcombine), DestReg)
846 .addReg(HiSrc, KillFlag)
847 .addReg(LoSrc, KillFlag);
848 return;
849 }
850 if (Hexagon::HvxQRRegClass.contains(SrcReg, DestReg)) {
851 BuildMI(MBB, I, DL, get(Hexagon::V6_pred_and), DestReg)
852 .addReg(SrcReg)
853 .addReg(SrcReg, KillFlag);
854 return;
855 }
856 if (Hexagon::HvxQRRegClass.contains(SrcReg) &&
857 Hexagon::HvxVRRegClass.contains(DestReg)) {
858 llvm_unreachable("Unimplemented pred to vec");
859 return;
860 }
861 if (Hexagon::HvxQRRegClass.contains(DestReg) &&
862 Hexagon::HvxVRRegClass.contains(SrcReg)) {
863 llvm_unreachable("Unimplemented vec to pred");
864 return;
865 }
866
867 #ifndef NDEBUG
868 // Show the invalid registers to ease debugging.
869 dbgs() << "Invalid registers for copy in " << printMBBReference(MBB) << ": "
870 << printReg(DestReg, &HRI) << " = " << printReg(SrcReg, &HRI) << '\n';
871 #endif
872 llvm_unreachable("Unimplemented");
873 }
874
storeRegToStackSlot(MachineBasicBlock & MBB,MachineBasicBlock::iterator I,unsigned SrcReg,bool isKill,int FI,const TargetRegisterClass * RC,const TargetRegisterInfo * TRI) const875 void HexagonInstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB,
876 MachineBasicBlock::iterator I, unsigned SrcReg, bool isKill, int FI,
877 const TargetRegisterClass *RC, const TargetRegisterInfo *TRI) const {
878 DebugLoc DL = MBB.findDebugLoc(I);
879 MachineFunction &MF = *MBB.getParent();
880 MachineFrameInfo &MFI = MF.getFrameInfo();
881 unsigned SlotAlign = MFI.getObjectAlignment(FI);
882 unsigned RegAlign = TRI->getSpillAlignment(*RC);
883 unsigned KillFlag = getKillRegState(isKill);
884 bool HasAlloca = MFI.hasVarSizedObjects();
885 const HexagonFrameLowering &HFI = *Subtarget.getFrameLowering();
886
887 MachineMemOperand *MMO = MF.getMachineMemOperand(
888 MachinePointerInfo::getFixedStack(MF, FI), MachineMemOperand::MOStore,
889 MFI.getObjectSize(FI), SlotAlign);
890
891 if (Hexagon::IntRegsRegClass.hasSubClassEq(RC)) {
892 BuildMI(MBB, I, DL, get(Hexagon::S2_storeri_io))
893 .addFrameIndex(FI).addImm(0)
894 .addReg(SrcReg, KillFlag).addMemOperand(MMO);
895 } else if (Hexagon::DoubleRegsRegClass.hasSubClassEq(RC)) {
896 BuildMI(MBB, I, DL, get(Hexagon::S2_storerd_io))
897 .addFrameIndex(FI).addImm(0)
898 .addReg(SrcReg, KillFlag).addMemOperand(MMO);
899 } else if (Hexagon::PredRegsRegClass.hasSubClassEq(RC)) {
900 BuildMI(MBB, I, DL, get(Hexagon::STriw_pred))
901 .addFrameIndex(FI).addImm(0)
902 .addReg(SrcReg, KillFlag).addMemOperand(MMO);
903 } else if (Hexagon::ModRegsRegClass.hasSubClassEq(RC)) {
904 BuildMI(MBB, I, DL, get(Hexagon::STriw_ctr))
905 .addFrameIndex(FI).addImm(0)
906 .addReg(SrcReg, KillFlag).addMemOperand(MMO);
907 } else if (Hexagon::HvxQRRegClass.hasSubClassEq(RC)) {
908 BuildMI(MBB, I, DL, get(Hexagon::PS_vstorerq_ai))
909 .addFrameIndex(FI).addImm(0)
910 .addReg(SrcReg, KillFlag).addMemOperand(MMO);
911 } else if (Hexagon::HvxVRRegClass.hasSubClassEq(RC)) {
912 // If there are variable-sized objects, spills will not be aligned.
913 if (HasAlloca)
914 SlotAlign = HFI.getStackAlignment();
915 unsigned Opc = SlotAlign < RegAlign ? Hexagon::V6_vS32Ub_ai
916 : Hexagon::V6_vS32b_ai;
917 MachineMemOperand *MMOA = MF.getMachineMemOperand(
918 MachinePointerInfo::getFixedStack(MF, FI), MachineMemOperand::MOStore,
919 MFI.getObjectSize(FI), SlotAlign);
920 BuildMI(MBB, I, DL, get(Opc))
921 .addFrameIndex(FI).addImm(0)
922 .addReg(SrcReg, KillFlag).addMemOperand(MMOA);
923 } else if (Hexagon::HvxWRRegClass.hasSubClassEq(RC)) {
924 // If there are variable-sized objects, spills will not be aligned.
925 if (HasAlloca)
926 SlotAlign = HFI.getStackAlignment();
927 unsigned Opc = SlotAlign < RegAlign ? Hexagon::PS_vstorerwu_ai
928 : Hexagon::PS_vstorerw_ai;
929 MachineMemOperand *MMOA = MF.getMachineMemOperand(
930 MachinePointerInfo::getFixedStack(MF, FI), MachineMemOperand::MOStore,
931 MFI.getObjectSize(FI), SlotAlign);
932 BuildMI(MBB, I, DL, get(Opc))
933 .addFrameIndex(FI).addImm(0)
934 .addReg(SrcReg, KillFlag).addMemOperand(MMOA);
935 } else {
936 llvm_unreachable("Unimplemented");
937 }
938 }
939
loadRegFromStackSlot(MachineBasicBlock & MBB,MachineBasicBlock::iterator I,unsigned DestReg,int FI,const TargetRegisterClass * RC,const TargetRegisterInfo * TRI) const940 void HexagonInstrInfo::loadRegFromStackSlot(
941 MachineBasicBlock &MBB, MachineBasicBlock::iterator I, unsigned DestReg,
942 int FI, const TargetRegisterClass *RC,
943 const TargetRegisterInfo *TRI) const {
944 DebugLoc DL = MBB.findDebugLoc(I);
945 MachineFunction &MF = *MBB.getParent();
946 MachineFrameInfo &MFI = MF.getFrameInfo();
947 unsigned SlotAlign = MFI.getObjectAlignment(FI);
948 unsigned RegAlign = TRI->getSpillAlignment(*RC);
949 bool HasAlloca = MFI.hasVarSizedObjects();
950 const HexagonFrameLowering &HFI = *Subtarget.getFrameLowering();
951
952 MachineMemOperand *MMO = MF.getMachineMemOperand(
953 MachinePointerInfo::getFixedStack(MF, FI), MachineMemOperand::MOLoad,
954 MFI.getObjectSize(FI), SlotAlign);
955
956 if (Hexagon::IntRegsRegClass.hasSubClassEq(RC)) {
957 BuildMI(MBB, I, DL, get(Hexagon::L2_loadri_io), DestReg)
958 .addFrameIndex(FI).addImm(0).addMemOperand(MMO);
959 } else if (Hexagon::DoubleRegsRegClass.hasSubClassEq(RC)) {
960 BuildMI(MBB, I, DL, get(Hexagon::L2_loadrd_io), DestReg)
961 .addFrameIndex(FI).addImm(0).addMemOperand(MMO);
962 } else if (Hexagon::PredRegsRegClass.hasSubClassEq(RC)) {
963 BuildMI(MBB, I, DL, get(Hexagon::LDriw_pred), DestReg)
964 .addFrameIndex(FI).addImm(0).addMemOperand(MMO);
965 } else if (Hexagon::ModRegsRegClass.hasSubClassEq(RC)) {
966 BuildMI(MBB, I, DL, get(Hexagon::LDriw_ctr), DestReg)
967 .addFrameIndex(FI).addImm(0).addMemOperand(MMO);
968 } else if (Hexagon::HvxQRRegClass.hasSubClassEq(RC)) {
969 BuildMI(MBB, I, DL, get(Hexagon::PS_vloadrq_ai), DestReg)
970 .addFrameIndex(FI).addImm(0).addMemOperand(MMO);
971 } else if (Hexagon::HvxVRRegClass.hasSubClassEq(RC)) {
972 // If there are variable-sized objects, spills will not be aligned.
973 if (HasAlloca)
974 SlotAlign = HFI.getStackAlignment();
975 unsigned Opc = SlotAlign < RegAlign ? Hexagon::V6_vL32Ub_ai
976 : Hexagon::V6_vL32b_ai;
977 MachineMemOperand *MMOA = MF.getMachineMemOperand(
978 MachinePointerInfo::getFixedStack(MF, FI), MachineMemOperand::MOLoad,
979 MFI.getObjectSize(FI), SlotAlign);
980 BuildMI(MBB, I, DL, get(Opc), DestReg)
981 .addFrameIndex(FI).addImm(0).addMemOperand(MMOA);
982 } else if (Hexagon::HvxWRRegClass.hasSubClassEq(RC)) {
983 // If there are variable-sized objects, spills will not be aligned.
984 if (HasAlloca)
985 SlotAlign = HFI.getStackAlignment();
986 unsigned Opc = SlotAlign < RegAlign ? Hexagon::PS_vloadrwu_ai
987 : Hexagon::PS_vloadrw_ai;
988 MachineMemOperand *MMOA = MF.getMachineMemOperand(
989 MachinePointerInfo::getFixedStack(MF, FI), MachineMemOperand::MOLoad,
990 MFI.getObjectSize(FI), SlotAlign);
991 BuildMI(MBB, I, DL, get(Opc), DestReg)
992 .addFrameIndex(FI).addImm(0).addMemOperand(MMOA);
993 } else {
994 llvm_unreachable("Can't store this register to stack slot");
995 }
996 }
997
getLiveRegsAt(LivePhysRegs & Regs,const MachineInstr & MI)998 static void getLiveRegsAt(LivePhysRegs &Regs, const MachineInstr &MI) {
999 const MachineBasicBlock &B = *MI.getParent();
1000 Regs.addLiveOuts(B);
1001 auto E = ++MachineBasicBlock::const_iterator(MI.getIterator()).getReverse();
1002 for (auto I = B.rbegin(); I != E; ++I)
1003 Regs.stepBackward(*I);
1004 }
1005
1006 /// expandPostRAPseudo - This function is called for all pseudo instructions
1007 /// that remain after register allocation. Many pseudo instructions are
1008 /// created to help register allocation. This is the place to convert them
1009 /// into real instructions. The target can edit MI in place, or it can insert
1010 /// new instructions and erase MI. The function should return true if
1011 /// anything was changed.
expandPostRAPseudo(MachineInstr & MI) const1012 bool HexagonInstrInfo::expandPostRAPseudo(MachineInstr &MI) const {
1013 MachineBasicBlock &MBB = *MI.getParent();
1014 MachineFunction &MF = *MBB.getParent();
1015 MachineRegisterInfo &MRI = MF.getRegInfo();
1016 const HexagonRegisterInfo &HRI = *Subtarget.getRegisterInfo();
1017 DebugLoc DL = MI.getDebugLoc();
1018 unsigned Opc = MI.getOpcode();
1019
1020 auto RealCirc = [&](unsigned Opc, bool HasImm, unsigned MxOp) {
1021 unsigned Mx = MI.getOperand(MxOp).getReg();
1022 unsigned CSx = (Mx == Hexagon::M0 ? Hexagon::CS0 : Hexagon::CS1);
1023 BuildMI(MBB, MI, DL, get(Hexagon::A2_tfrrcr), CSx)
1024 .add(MI.getOperand((HasImm ? 5 : 4)));
1025 auto MIB = BuildMI(MBB, MI, DL, get(Opc)).add(MI.getOperand(0))
1026 .add(MI.getOperand(1)).add(MI.getOperand(2)).add(MI.getOperand(3));
1027 if (HasImm)
1028 MIB.add(MI.getOperand(4));
1029 MIB.addReg(CSx, RegState::Implicit);
1030 MBB.erase(MI);
1031 return true;
1032 };
1033
1034 switch (Opc) {
1035 case TargetOpcode::COPY: {
1036 MachineOperand &MD = MI.getOperand(0);
1037 MachineOperand &MS = MI.getOperand(1);
1038 MachineBasicBlock::iterator MBBI = MI.getIterator();
1039 if (MD.getReg() != MS.getReg() && !MS.isUndef()) {
1040 copyPhysReg(MBB, MI, DL, MD.getReg(), MS.getReg(), MS.isKill());
1041 std::prev(MBBI)->copyImplicitOps(*MBB.getParent(), MI);
1042 }
1043 MBB.erase(MBBI);
1044 return true;
1045 }
1046 case Hexagon::PS_aligna:
1047 BuildMI(MBB, MI, DL, get(Hexagon::A2_andir), MI.getOperand(0).getReg())
1048 .addReg(HRI.getFrameRegister())
1049 .addImm(-MI.getOperand(1).getImm());
1050 MBB.erase(MI);
1051 return true;
1052 case Hexagon::V6_vassignp: {
1053 unsigned SrcReg = MI.getOperand(1).getReg();
1054 unsigned DstReg = MI.getOperand(0).getReg();
1055 unsigned Kill = getKillRegState(MI.getOperand(1).isKill());
1056 BuildMI(MBB, MI, DL, get(Hexagon::V6_vcombine), DstReg)
1057 .addReg(HRI.getSubReg(SrcReg, Hexagon::vsub_hi), Kill)
1058 .addReg(HRI.getSubReg(SrcReg, Hexagon::vsub_lo), Kill);
1059 MBB.erase(MI);
1060 return true;
1061 }
1062 case Hexagon::V6_lo: {
1063 unsigned SrcReg = MI.getOperand(1).getReg();
1064 unsigned DstReg = MI.getOperand(0).getReg();
1065 unsigned SrcSubLo = HRI.getSubReg(SrcReg, Hexagon::vsub_lo);
1066 copyPhysReg(MBB, MI, DL, DstReg, SrcSubLo, MI.getOperand(1).isKill());
1067 MBB.erase(MI);
1068 MRI.clearKillFlags(SrcSubLo);
1069 return true;
1070 }
1071 case Hexagon::V6_hi: {
1072 unsigned SrcReg = MI.getOperand(1).getReg();
1073 unsigned DstReg = MI.getOperand(0).getReg();
1074 unsigned SrcSubHi = HRI.getSubReg(SrcReg, Hexagon::vsub_hi);
1075 copyPhysReg(MBB, MI, DL, DstReg, SrcSubHi, MI.getOperand(1).isKill());
1076 MBB.erase(MI);
1077 MRI.clearKillFlags(SrcSubHi);
1078 return true;
1079 }
1080 case Hexagon::PS_vstorerw_ai:
1081 case Hexagon::PS_vstorerwu_ai: {
1082 bool Aligned = Opc == Hexagon::PS_vstorerw_ai;
1083 unsigned SrcReg = MI.getOperand(2).getReg();
1084 unsigned SrcSubHi = HRI.getSubReg(SrcReg, Hexagon::vsub_hi);
1085 unsigned SrcSubLo = HRI.getSubReg(SrcReg, Hexagon::vsub_lo);
1086 unsigned NewOpc = Aligned ? Hexagon::V6_vS32b_ai : Hexagon::V6_vS32Ub_ai;
1087 unsigned Offset = HRI.getSpillSize(Hexagon::HvxVRRegClass);
1088
1089 MachineInstr *MI1New =
1090 BuildMI(MBB, MI, DL, get(NewOpc))
1091 .add(MI.getOperand(0))
1092 .addImm(MI.getOperand(1).getImm())
1093 .addReg(SrcSubLo)
1094 .setMemRefs(MI.memoperands_begin(), MI.memoperands_end());
1095 MI1New->getOperand(0).setIsKill(false);
1096 BuildMI(MBB, MI, DL, get(NewOpc))
1097 .add(MI.getOperand(0))
1098 // The Vectors are indexed in multiples of vector size.
1099 .addImm(MI.getOperand(1).getImm() + Offset)
1100 .addReg(SrcSubHi)
1101 .setMemRefs(MI.memoperands_begin(), MI.memoperands_end());
1102 MBB.erase(MI);
1103 return true;
1104 }
1105 case Hexagon::PS_vloadrw_ai:
1106 case Hexagon::PS_vloadrwu_ai: {
1107 bool Aligned = Opc == Hexagon::PS_vloadrw_ai;
1108 unsigned DstReg = MI.getOperand(0).getReg();
1109 unsigned NewOpc = Aligned ? Hexagon::V6_vL32b_ai : Hexagon::V6_vL32Ub_ai;
1110 unsigned Offset = HRI.getSpillSize(Hexagon::HvxVRRegClass);
1111
1112 MachineInstr *MI1New = BuildMI(MBB, MI, DL, get(NewOpc),
1113 HRI.getSubReg(DstReg, Hexagon::vsub_lo))
1114 .add(MI.getOperand(1))
1115 .addImm(MI.getOperand(2).getImm())
1116 .setMemRefs(MI.memoperands_begin(), MI.memoperands_end());
1117 MI1New->getOperand(1).setIsKill(false);
1118 BuildMI(MBB, MI, DL, get(NewOpc), HRI.getSubReg(DstReg, Hexagon::vsub_hi))
1119 .add(MI.getOperand(1))
1120 // The Vectors are indexed in multiples of vector size.
1121 .addImm(MI.getOperand(2).getImm() + Offset)
1122 .setMemRefs(MI.memoperands_begin(), MI.memoperands_end());
1123 MBB.erase(MI);
1124 return true;
1125 }
1126 case Hexagon::PS_true: {
1127 unsigned Reg = MI.getOperand(0).getReg();
1128 BuildMI(MBB, MI, DL, get(Hexagon::C2_orn), Reg)
1129 .addReg(Reg, RegState::Undef)
1130 .addReg(Reg, RegState::Undef);
1131 MBB.erase(MI);
1132 return true;
1133 }
1134 case Hexagon::PS_false: {
1135 unsigned Reg = MI.getOperand(0).getReg();
1136 BuildMI(MBB, MI, DL, get(Hexagon::C2_andn), Reg)
1137 .addReg(Reg, RegState::Undef)
1138 .addReg(Reg, RegState::Undef);
1139 MBB.erase(MI);
1140 return true;
1141 }
1142 case Hexagon::PS_qtrue: {
1143 BuildMI(MBB, MI, DL, get(Hexagon::V6_veqw), MI.getOperand(0).getReg())
1144 .addReg(Hexagon::V0, RegState::Undef)
1145 .addReg(Hexagon::V0, RegState::Undef);
1146 MBB.erase(MI);
1147 return true;
1148 }
1149 case Hexagon::PS_qfalse: {
1150 BuildMI(MBB, MI, DL, get(Hexagon::V6_vgtw), MI.getOperand(0).getReg())
1151 .addReg(Hexagon::V0, RegState::Undef)
1152 .addReg(Hexagon::V0, RegState::Undef);
1153 MBB.erase(MI);
1154 return true;
1155 }
1156 case Hexagon::PS_vdd0: {
1157 unsigned Vd = MI.getOperand(0).getReg();
1158 BuildMI(MBB, MI, DL, get(Hexagon::V6_vsubw_dv), Vd)
1159 .addReg(Vd, RegState::Undef)
1160 .addReg(Vd, RegState::Undef);
1161 MBB.erase(MI);
1162 return true;
1163 }
1164 case Hexagon::PS_vmulw: {
1165 // Expand a 64-bit vector multiply into 2 32-bit scalar multiplies.
1166 unsigned DstReg = MI.getOperand(0).getReg();
1167 unsigned Src1Reg = MI.getOperand(1).getReg();
1168 unsigned Src2Reg = MI.getOperand(2).getReg();
1169 unsigned Src1SubHi = HRI.getSubReg(Src1Reg, Hexagon::isub_hi);
1170 unsigned Src1SubLo = HRI.getSubReg(Src1Reg, Hexagon::isub_lo);
1171 unsigned Src2SubHi = HRI.getSubReg(Src2Reg, Hexagon::isub_hi);
1172 unsigned Src2SubLo = HRI.getSubReg(Src2Reg, Hexagon::isub_lo);
1173 BuildMI(MBB, MI, MI.getDebugLoc(), get(Hexagon::M2_mpyi),
1174 HRI.getSubReg(DstReg, Hexagon::isub_hi))
1175 .addReg(Src1SubHi)
1176 .addReg(Src2SubHi);
1177 BuildMI(MBB, MI, MI.getDebugLoc(), get(Hexagon::M2_mpyi),
1178 HRI.getSubReg(DstReg, Hexagon::isub_lo))
1179 .addReg(Src1SubLo)
1180 .addReg(Src2SubLo);
1181 MBB.erase(MI);
1182 MRI.clearKillFlags(Src1SubHi);
1183 MRI.clearKillFlags(Src1SubLo);
1184 MRI.clearKillFlags(Src2SubHi);
1185 MRI.clearKillFlags(Src2SubLo);
1186 return true;
1187 }
1188 case Hexagon::PS_vmulw_acc: {
1189 // Expand 64-bit vector multiply with addition into 2 scalar multiplies.
1190 unsigned DstReg = MI.getOperand(0).getReg();
1191 unsigned Src1Reg = MI.getOperand(1).getReg();
1192 unsigned Src2Reg = MI.getOperand(2).getReg();
1193 unsigned Src3Reg = MI.getOperand(3).getReg();
1194 unsigned Src1SubHi = HRI.getSubReg(Src1Reg, Hexagon::isub_hi);
1195 unsigned Src1SubLo = HRI.getSubReg(Src1Reg, Hexagon::isub_lo);
1196 unsigned Src2SubHi = HRI.getSubReg(Src2Reg, Hexagon::isub_hi);
1197 unsigned Src2SubLo = HRI.getSubReg(Src2Reg, Hexagon::isub_lo);
1198 unsigned Src3SubHi = HRI.getSubReg(Src3Reg, Hexagon::isub_hi);
1199 unsigned Src3SubLo = HRI.getSubReg(Src3Reg, Hexagon::isub_lo);
1200 BuildMI(MBB, MI, MI.getDebugLoc(), get(Hexagon::M2_maci),
1201 HRI.getSubReg(DstReg, Hexagon::isub_hi))
1202 .addReg(Src1SubHi)
1203 .addReg(Src2SubHi)
1204 .addReg(Src3SubHi);
1205 BuildMI(MBB, MI, MI.getDebugLoc(), get(Hexagon::M2_maci),
1206 HRI.getSubReg(DstReg, Hexagon::isub_lo))
1207 .addReg(Src1SubLo)
1208 .addReg(Src2SubLo)
1209 .addReg(Src3SubLo);
1210 MBB.erase(MI);
1211 MRI.clearKillFlags(Src1SubHi);
1212 MRI.clearKillFlags(Src1SubLo);
1213 MRI.clearKillFlags(Src2SubHi);
1214 MRI.clearKillFlags(Src2SubLo);
1215 MRI.clearKillFlags(Src3SubHi);
1216 MRI.clearKillFlags(Src3SubLo);
1217 return true;
1218 }
1219 case Hexagon::PS_pselect: {
1220 const MachineOperand &Op0 = MI.getOperand(0);
1221 const MachineOperand &Op1 = MI.getOperand(1);
1222 const MachineOperand &Op2 = MI.getOperand(2);
1223 const MachineOperand &Op3 = MI.getOperand(3);
1224 unsigned Rd = Op0.getReg();
1225 unsigned Pu = Op1.getReg();
1226 unsigned Rs = Op2.getReg();
1227 unsigned Rt = Op3.getReg();
1228 DebugLoc DL = MI.getDebugLoc();
1229 unsigned K1 = getKillRegState(Op1.isKill());
1230 unsigned K2 = getKillRegState(Op2.isKill());
1231 unsigned K3 = getKillRegState(Op3.isKill());
1232 if (Rd != Rs)
1233 BuildMI(MBB, MI, DL, get(Hexagon::A2_tfrpt), Rd)
1234 .addReg(Pu, (Rd == Rt) ? K1 : 0)
1235 .addReg(Rs, K2);
1236 if (Rd != Rt)
1237 BuildMI(MBB, MI, DL, get(Hexagon::A2_tfrpf), Rd)
1238 .addReg(Pu, K1)
1239 .addReg(Rt, K3);
1240 MBB.erase(MI);
1241 return true;
1242 }
1243 case Hexagon::PS_vselect: {
1244 const MachineOperand &Op0 = MI.getOperand(0);
1245 const MachineOperand &Op1 = MI.getOperand(1);
1246 const MachineOperand &Op2 = MI.getOperand(2);
1247 const MachineOperand &Op3 = MI.getOperand(3);
1248 LivePhysRegs LiveAtMI(HRI);
1249 getLiveRegsAt(LiveAtMI, MI);
1250 bool IsDestLive = !LiveAtMI.available(MRI, Op0.getReg());
1251 unsigned PReg = Op1.getReg();
1252 assert(Op1.getSubReg() == 0);
1253 unsigned PState = getRegState(Op1);
1254
1255 if (Op0.getReg() != Op2.getReg()) {
1256 unsigned S = Op0.getReg() != Op3.getReg() ? PState & ~RegState::Kill
1257 : PState;
1258 auto T = BuildMI(MBB, MI, DL, get(Hexagon::V6_vcmov))
1259 .add(Op0)
1260 .addReg(PReg, S)
1261 .add(Op2);
1262 if (IsDestLive)
1263 T.addReg(Op0.getReg(), RegState::Implicit);
1264 IsDestLive = true;
1265 }
1266 if (Op0.getReg() != Op3.getReg()) {
1267 auto T = BuildMI(MBB, MI, DL, get(Hexagon::V6_vncmov))
1268 .add(Op0)
1269 .addReg(PReg, PState)
1270 .add(Op3);
1271 if (IsDestLive)
1272 T.addReg(Op0.getReg(), RegState::Implicit);
1273 }
1274 MBB.erase(MI);
1275 return true;
1276 }
1277 case Hexagon::PS_wselect: {
1278 MachineOperand &Op0 = MI.getOperand(0);
1279 MachineOperand &Op1 = MI.getOperand(1);
1280 MachineOperand &Op2 = MI.getOperand(2);
1281 MachineOperand &Op3 = MI.getOperand(3);
1282 LivePhysRegs LiveAtMI(HRI);
1283 getLiveRegsAt(LiveAtMI, MI);
1284 bool IsDestLive = !LiveAtMI.available(MRI, Op0.getReg());
1285 unsigned PReg = Op1.getReg();
1286 assert(Op1.getSubReg() == 0);
1287 unsigned PState = getRegState(Op1);
1288
1289 if (Op0.getReg() != Op2.getReg()) {
1290 unsigned S = Op0.getReg() != Op3.getReg() ? PState & ~RegState::Kill
1291 : PState;
1292 unsigned SrcLo = HRI.getSubReg(Op2.getReg(), Hexagon::vsub_lo);
1293 unsigned SrcHi = HRI.getSubReg(Op2.getReg(), Hexagon::vsub_hi);
1294 auto T = BuildMI(MBB, MI, DL, get(Hexagon::V6_vccombine))
1295 .add(Op0)
1296 .addReg(PReg, S)
1297 .add(Op1)
1298 .addReg(SrcHi)
1299 .addReg(SrcLo);
1300 if (IsDestLive)
1301 T.addReg(Op0.getReg(), RegState::Implicit);
1302 IsDestLive = true;
1303 }
1304 if (Op0.getReg() != Op3.getReg()) {
1305 unsigned SrcLo = HRI.getSubReg(Op3.getReg(), Hexagon::vsub_lo);
1306 unsigned SrcHi = HRI.getSubReg(Op3.getReg(), Hexagon::vsub_hi);
1307 auto T = BuildMI(MBB, MI, DL, get(Hexagon::V6_vnccombine))
1308 .add(Op0)
1309 .addReg(PReg, PState)
1310 .addReg(SrcHi)
1311 .addReg(SrcLo);
1312 if (IsDestLive)
1313 T.addReg(Op0.getReg(), RegState::Implicit);
1314 }
1315 MBB.erase(MI);
1316 return true;
1317 }
1318
1319 case Hexagon::PS_tailcall_i:
1320 MI.setDesc(get(Hexagon::J2_jump));
1321 return true;
1322 case Hexagon::PS_tailcall_r:
1323 case Hexagon::PS_jmpret:
1324 MI.setDesc(get(Hexagon::J2_jumpr));
1325 return true;
1326 case Hexagon::PS_jmprett:
1327 MI.setDesc(get(Hexagon::J2_jumprt));
1328 return true;
1329 case Hexagon::PS_jmpretf:
1330 MI.setDesc(get(Hexagon::J2_jumprf));
1331 return true;
1332 case Hexagon::PS_jmprettnewpt:
1333 MI.setDesc(get(Hexagon::J2_jumprtnewpt));
1334 return true;
1335 case Hexagon::PS_jmpretfnewpt:
1336 MI.setDesc(get(Hexagon::J2_jumprfnewpt));
1337 return true;
1338 case Hexagon::PS_jmprettnew:
1339 MI.setDesc(get(Hexagon::J2_jumprtnew));
1340 return true;
1341 case Hexagon::PS_jmpretfnew:
1342 MI.setDesc(get(Hexagon::J2_jumprfnew));
1343 return true;
1344
1345 case Hexagon::V6_vgathermh_pseudo:
1346 BuildMI(MBB, MI, DL, get(Hexagon::V6_vgathermh))
1347 .add(MI.getOperand(1))
1348 .add(MI.getOperand(2))
1349 .add(MI.getOperand(3));
1350 BuildMI(MBB, MI, DL, get(Hexagon::V6_vS32b_new_ai))
1351 .add(MI.getOperand(0))
1352 .addImm(0)
1353 .addReg(Hexagon::VTMP);
1354 MBB.erase(MI);
1355 return true;
1356
1357 case Hexagon::V6_vgathermw_pseudo:
1358 BuildMI(MBB, MI, DL, get(Hexagon::V6_vgathermw))
1359 .add(MI.getOperand(1))
1360 .add(MI.getOperand(2))
1361 .add(MI.getOperand(3));
1362 BuildMI(MBB, MI, DL, get(Hexagon::V6_vS32b_new_ai))
1363 .add(MI.getOperand(0))
1364 .addImm(0)
1365 .addReg(Hexagon::VTMP);
1366 MBB.erase(MI);
1367 return true;
1368
1369 case Hexagon::V6_vgathermhw_pseudo:
1370 BuildMI(MBB, MI, DL, get(Hexagon::V6_vgathermhw))
1371 .add(MI.getOperand(1))
1372 .add(MI.getOperand(2))
1373 .add(MI.getOperand(3));
1374 BuildMI(MBB, MI, DL, get(Hexagon::V6_vS32b_new_ai))
1375 .add(MI.getOperand(0))
1376 .addImm(0)
1377 .addReg(Hexagon::VTMP);
1378 MBB.erase(MI);
1379 return true;
1380
1381 case Hexagon::V6_vgathermhq_pseudo:
1382 BuildMI(MBB, MI, DL, get(Hexagon::V6_vgathermhq))
1383 .add(MI.getOperand(1))
1384 .add(MI.getOperand(2))
1385 .add(MI.getOperand(3))
1386 .add(MI.getOperand(4));
1387 BuildMI(MBB, MI, DL, get(Hexagon::V6_vS32b_new_ai))
1388 .add(MI.getOperand(0))
1389 .addImm(0)
1390 .addReg(Hexagon::VTMP);
1391 MBB.erase(MI);
1392 return true;
1393
1394 case Hexagon::V6_vgathermwq_pseudo:
1395 BuildMI(MBB, MI, DL, get(Hexagon::V6_vgathermwq))
1396 .add(MI.getOperand(1))
1397 .add(MI.getOperand(2))
1398 .add(MI.getOperand(3))
1399 .add(MI.getOperand(4));
1400 BuildMI(MBB, MI, DL, get(Hexagon::V6_vS32b_new_ai))
1401 .add(MI.getOperand(0))
1402 .addImm(0)
1403 .addReg(Hexagon::VTMP);
1404 MBB.erase(MI);
1405 return true;
1406
1407 case Hexagon::V6_vgathermhwq_pseudo:
1408 BuildMI(MBB, MI, DL, get(Hexagon::V6_vgathermhwq))
1409 .add(MI.getOperand(1))
1410 .add(MI.getOperand(2))
1411 .add(MI.getOperand(3))
1412 .add(MI.getOperand(4));
1413 BuildMI(MBB, MI, DL, get(Hexagon::V6_vS32b_new_ai))
1414 .add(MI.getOperand(0))
1415 .addImm(0)
1416 .addReg(Hexagon::VTMP);
1417 MBB.erase(MI);
1418 return true;
1419
1420 case Hexagon::PS_loadrub_pci:
1421 return RealCirc(Hexagon::L2_loadrub_pci, /*HasImm*/true, /*MxOp*/4);
1422 case Hexagon::PS_loadrb_pci:
1423 return RealCirc(Hexagon::L2_loadrb_pci, /*HasImm*/true, /*MxOp*/4);
1424 case Hexagon::PS_loadruh_pci:
1425 return RealCirc(Hexagon::L2_loadruh_pci, /*HasImm*/true, /*MxOp*/4);
1426 case Hexagon::PS_loadrh_pci:
1427 return RealCirc(Hexagon::L2_loadrh_pci, /*HasImm*/true, /*MxOp*/4);
1428 case Hexagon::PS_loadri_pci:
1429 return RealCirc(Hexagon::L2_loadri_pci, /*HasImm*/true, /*MxOp*/4);
1430 case Hexagon::PS_loadrd_pci:
1431 return RealCirc(Hexagon::L2_loadrd_pci, /*HasImm*/true, /*MxOp*/4);
1432 case Hexagon::PS_loadrub_pcr:
1433 return RealCirc(Hexagon::L2_loadrub_pcr, /*HasImm*/false, /*MxOp*/3);
1434 case Hexagon::PS_loadrb_pcr:
1435 return RealCirc(Hexagon::L2_loadrb_pcr, /*HasImm*/false, /*MxOp*/3);
1436 case Hexagon::PS_loadruh_pcr:
1437 return RealCirc(Hexagon::L2_loadruh_pcr, /*HasImm*/false, /*MxOp*/3);
1438 case Hexagon::PS_loadrh_pcr:
1439 return RealCirc(Hexagon::L2_loadrh_pcr, /*HasImm*/false, /*MxOp*/3);
1440 case Hexagon::PS_loadri_pcr:
1441 return RealCirc(Hexagon::L2_loadri_pcr, /*HasImm*/false, /*MxOp*/3);
1442 case Hexagon::PS_loadrd_pcr:
1443 return RealCirc(Hexagon::L2_loadrd_pcr, /*HasImm*/false, /*MxOp*/3);
1444 case Hexagon::PS_storerb_pci:
1445 return RealCirc(Hexagon::S2_storerb_pci, /*HasImm*/true, /*MxOp*/3);
1446 case Hexagon::PS_storerh_pci:
1447 return RealCirc(Hexagon::S2_storerh_pci, /*HasImm*/true, /*MxOp*/3);
1448 case Hexagon::PS_storerf_pci:
1449 return RealCirc(Hexagon::S2_storerf_pci, /*HasImm*/true, /*MxOp*/3);
1450 case Hexagon::PS_storeri_pci:
1451 return RealCirc(Hexagon::S2_storeri_pci, /*HasImm*/true, /*MxOp*/3);
1452 case Hexagon::PS_storerd_pci:
1453 return RealCirc(Hexagon::S2_storerd_pci, /*HasImm*/true, /*MxOp*/3);
1454 case Hexagon::PS_storerb_pcr:
1455 return RealCirc(Hexagon::S2_storerb_pcr, /*HasImm*/false, /*MxOp*/2);
1456 case Hexagon::PS_storerh_pcr:
1457 return RealCirc(Hexagon::S2_storerh_pcr, /*HasImm*/false, /*MxOp*/2);
1458 case Hexagon::PS_storerf_pcr:
1459 return RealCirc(Hexagon::S2_storerf_pcr, /*HasImm*/false, /*MxOp*/2);
1460 case Hexagon::PS_storeri_pcr:
1461 return RealCirc(Hexagon::S2_storeri_pcr, /*HasImm*/false, /*MxOp*/2);
1462 case Hexagon::PS_storerd_pcr:
1463 return RealCirc(Hexagon::S2_storerd_pcr, /*HasImm*/false, /*MxOp*/2);
1464 }
1465
1466 return false;
1467 }
1468
1469 // We indicate that we want to reverse the branch by
1470 // inserting the reversed branching opcode.
reverseBranchCondition(SmallVectorImpl<MachineOperand> & Cond) const1471 bool HexagonInstrInfo::reverseBranchCondition(
1472 SmallVectorImpl<MachineOperand> &Cond) const {
1473 if (Cond.empty())
1474 return true;
1475 assert(Cond[0].isImm() && "First entry in the cond vector not imm-val");
1476 unsigned opcode = Cond[0].getImm();
1477 //unsigned temp;
1478 assert(get(opcode).isBranch() && "Should be a branching condition.");
1479 if (isEndLoopN(opcode))
1480 return true;
1481 unsigned NewOpcode = getInvertedPredicatedOpcode(opcode);
1482 Cond[0].setImm(NewOpcode);
1483 return false;
1484 }
1485
insertNoop(MachineBasicBlock & MBB,MachineBasicBlock::iterator MI) const1486 void HexagonInstrInfo::insertNoop(MachineBasicBlock &MBB,
1487 MachineBasicBlock::iterator MI) const {
1488 DebugLoc DL;
1489 BuildMI(MBB, MI, DL, get(Hexagon::A2_nop));
1490 }
1491
isPostIncrement(const MachineInstr & MI) const1492 bool HexagonInstrInfo::isPostIncrement(const MachineInstr &MI) const {
1493 return getAddrMode(MI) == HexagonII::PostInc;
1494 }
1495
1496 // Returns true if an instruction is predicated irrespective of the predicate
1497 // sense. For example, all of the following will return true.
1498 // if (p0) R1 = add(R2, R3)
1499 // if (!p0) R1 = add(R2, R3)
1500 // if (p0.new) R1 = add(R2, R3)
1501 // if (!p0.new) R1 = add(R2, R3)
1502 // Note: New-value stores are not included here as in the current
1503 // implementation, we don't need to check their predicate sense.
isPredicated(const MachineInstr & MI) const1504 bool HexagonInstrInfo::isPredicated(const MachineInstr &MI) const {
1505 const uint64_t F = MI.getDesc().TSFlags;
1506 return (F >> HexagonII::PredicatedPos) & HexagonII::PredicatedMask;
1507 }
1508
PredicateInstruction(MachineInstr & MI,ArrayRef<MachineOperand> Cond) const1509 bool HexagonInstrInfo::PredicateInstruction(
1510 MachineInstr &MI, ArrayRef<MachineOperand> Cond) const {
1511 if (Cond.empty() || isNewValueJump(Cond[0].getImm()) ||
1512 isEndLoopN(Cond[0].getImm())) {
1513 LLVM_DEBUG(dbgs() << "\nCannot predicate:"; MI.dump(););
1514 return false;
1515 }
1516 int Opc = MI.getOpcode();
1517 assert (isPredicable(MI) && "Expected predicable instruction");
1518 bool invertJump = predOpcodeHasNot(Cond);
1519
1520 // We have to predicate MI "in place", i.e. after this function returns,
1521 // MI will need to be transformed into a predicated form. To avoid com-
1522 // plicated manipulations with the operands (handling tied operands,
1523 // etc.), build a new temporary instruction, then overwrite MI with it.
1524
1525 MachineBasicBlock &B = *MI.getParent();
1526 DebugLoc DL = MI.getDebugLoc();
1527 unsigned PredOpc = getCondOpcode(Opc, invertJump);
1528 MachineInstrBuilder T = BuildMI(B, MI, DL, get(PredOpc));
1529 unsigned NOp = 0, NumOps = MI.getNumOperands();
1530 while (NOp < NumOps) {
1531 MachineOperand &Op = MI.getOperand(NOp);
1532 if (!Op.isReg() || !Op.isDef() || Op.isImplicit())
1533 break;
1534 T.add(Op);
1535 NOp++;
1536 }
1537
1538 unsigned PredReg, PredRegPos, PredRegFlags;
1539 bool GotPredReg = getPredReg(Cond, PredReg, PredRegPos, PredRegFlags);
1540 (void)GotPredReg;
1541 assert(GotPredReg);
1542 T.addReg(PredReg, PredRegFlags);
1543 while (NOp < NumOps)
1544 T.add(MI.getOperand(NOp++));
1545
1546 MI.setDesc(get(PredOpc));
1547 while (unsigned n = MI.getNumOperands())
1548 MI.RemoveOperand(n-1);
1549 for (unsigned i = 0, n = T->getNumOperands(); i < n; ++i)
1550 MI.addOperand(T->getOperand(i));
1551
1552 MachineBasicBlock::instr_iterator TI = T->getIterator();
1553 B.erase(TI);
1554
1555 MachineRegisterInfo &MRI = B.getParent()->getRegInfo();
1556 MRI.clearKillFlags(PredReg);
1557 return true;
1558 }
1559
SubsumesPredicate(ArrayRef<MachineOperand> Pred1,ArrayRef<MachineOperand> Pred2) const1560 bool HexagonInstrInfo::SubsumesPredicate(ArrayRef<MachineOperand> Pred1,
1561 ArrayRef<MachineOperand> Pred2) const {
1562 // TODO: Fix this
1563 return false;
1564 }
1565
DefinesPredicate(MachineInstr & MI,std::vector<MachineOperand> & Pred) const1566 bool HexagonInstrInfo::DefinesPredicate(MachineInstr &MI,
1567 std::vector<MachineOperand> &Pred) const {
1568 const HexagonRegisterInfo &HRI = *Subtarget.getRegisterInfo();
1569
1570 for (unsigned oper = 0; oper < MI.getNumOperands(); ++oper) {
1571 MachineOperand MO = MI.getOperand(oper);
1572 if (MO.isReg()) {
1573 if (!MO.isDef())
1574 continue;
1575 const TargetRegisterClass* RC = HRI.getMinimalPhysRegClass(MO.getReg());
1576 if (RC == &Hexagon::PredRegsRegClass) {
1577 Pred.push_back(MO);
1578 return true;
1579 }
1580 continue;
1581 } else if (MO.isRegMask()) {
1582 for (unsigned PR : Hexagon::PredRegsRegClass) {
1583 if (!MI.modifiesRegister(PR, &HRI))
1584 continue;
1585 Pred.push_back(MO);
1586 return true;
1587 }
1588 }
1589 }
1590 return false;
1591 }
1592
isPredicable(const MachineInstr & MI) const1593 bool HexagonInstrInfo::isPredicable(const MachineInstr &MI) const {
1594 if (!MI.getDesc().isPredicable())
1595 return false;
1596
1597 if (MI.isCall() || isTailCall(MI)) {
1598 if (!Subtarget.usePredicatedCalls())
1599 return false;
1600 }
1601
1602 // HVX loads are not predicable on v60, but are on v62.
1603 if (!Subtarget.hasV62Ops()) {
1604 switch (MI.getOpcode()) {
1605 case Hexagon::V6_vL32b_ai:
1606 case Hexagon::V6_vL32b_pi:
1607 case Hexagon::V6_vL32b_ppu:
1608 case Hexagon::V6_vL32b_cur_ai:
1609 case Hexagon::V6_vL32b_cur_pi:
1610 case Hexagon::V6_vL32b_cur_ppu:
1611 case Hexagon::V6_vL32b_nt_ai:
1612 case Hexagon::V6_vL32b_nt_pi:
1613 case Hexagon::V6_vL32b_nt_ppu:
1614 case Hexagon::V6_vL32b_tmp_ai:
1615 case Hexagon::V6_vL32b_tmp_pi:
1616 case Hexagon::V6_vL32b_tmp_ppu:
1617 case Hexagon::V6_vL32b_nt_cur_ai:
1618 case Hexagon::V6_vL32b_nt_cur_pi:
1619 case Hexagon::V6_vL32b_nt_cur_ppu:
1620 case Hexagon::V6_vL32b_nt_tmp_ai:
1621 case Hexagon::V6_vL32b_nt_tmp_pi:
1622 case Hexagon::V6_vL32b_nt_tmp_ppu:
1623 return false;
1624 }
1625 }
1626 return true;
1627 }
1628
isSchedulingBoundary(const MachineInstr & MI,const MachineBasicBlock * MBB,const MachineFunction & MF) const1629 bool HexagonInstrInfo::isSchedulingBoundary(const MachineInstr &MI,
1630 const MachineBasicBlock *MBB,
1631 const MachineFunction &MF) const {
1632 // Debug info is never a scheduling boundary. It's necessary to be explicit
1633 // due to the special treatment of IT instructions below, otherwise a
1634 // dbg_value followed by an IT will result in the IT instruction being
1635 // considered a scheduling hazard, which is wrong. It should be the actual
1636 // instruction preceding the dbg_value instruction(s), just like it is
1637 // when debug info is not present.
1638 if (MI.isDebugInstr())
1639 return false;
1640
1641 // Throwing call is a boundary.
1642 if (MI.isCall()) {
1643 // Don't mess around with no return calls.
1644 if (doesNotReturn(MI))
1645 return true;
1646 // If any of the block's successors is a landing pad, this could be a
1647 // throwing call.
1648 for (auto I : MBB->successors())
1649 if (I->isEHPad())
1650 return true;
1651 }
1652
1653 // Terminators and labels can't be scheduled around.
1654 if (MI.getDesc().isTerminator() || MI.isPosition())
1655 return true;
1656
1657 if (MI.isInlineAsm() && !ScheduleInlineAsm)
1658 return true;
1659
1660 return false;
1661 }
1662
1663 /// Measure the specified inline asm to determine an approximation of its
1664 /// length.
1665 /// Comments (which run till the next SeparatorString or newline) do not
1666 /// count as an instruction.
1667 /// Any other non-whitespace text is considered an instruction, with
1668 /// multiple instructions separated by SeparatorString or newlines.
1669 /// Variable-length instructions are not handled here; this function
1670 /// may be overloaded in the target code to do that.
1671 /// Hexagon counts the number of ##'s and adjust for that many
1672 /// constant exenders.
getInlineAsmLength(const char * Str,const MCAsmInfo & MAI) const1673 unsigned HexagonInstrInfo::getInlineAsmLength(const char *Str,
1674 const MCAsmInfo &MAI) const {
1675 StringRef AStr(Str);
1676 // Count the number of instructions in the asm.
1677 bool atInsnStart = true;
1678 unsigned Length = 0;
1679 for (; *Str; ++Str) {
1680 if (*Str == '\n' || strncmp(Str, MAI.getSeparatorString(),
1681 strlen(MAI.getSeparatorString())) == 0)
1682 atInsnStart = true;
1683 if (atInsnStart && !std::isspace(static_cast<unsigned char>(*Str))) {
1684 Length += MAI.getMaxInstLength();
1685 atInsnStart = false;
1686 }
1687 if (atInsnStart && strncmp(Str, MAI.getCommentString().data(),
1688 MAI.getCommentString().size()) == 0)
1689 atInsnStart = false;
1690 }
1691
1692 // Add to size number of constant extenders seen * 4.
1693 StringRef Occ("##");
1694 Length += AStr.count(Occ)*4;
1695 return Length;
1696 }
1697
1698 ScheduleHazardRecognizer*
CreateTargetPostRAHazardRecognizer(const InstrItineraryData * II,const ScheduleDAG * DAG) const1699 HexagonInstrInfo::CreateTargetPostRAHazardRecognizer(
1700 const InstrItineraryData *II, const ScheduleDAG *DAG) const {
1701 if (UseDFAHazardRec)
1702 return new HexagonHazardRecognizer(II, this, Subtarget);
1703 return TargetInstrInfo::CreateTargetPostRAHazardRecognizer(II, DAG);
1704 }
1705
1706 /// For a comparison instruction, return the source registers in
1707 /// \p SrcReg and \p SrcReg2 if having two register operands, and the value it
1708 /// compares against in CmpValue. Return true if the comparison instruction
1709 /// can be analyzed.
analyzeCompare(const MachineInstr & MI,unsigned & SrcReg,unsigned & SrcReg2,int & Mask,int & Value) const1710 bool HexagonInstrInfo::analyzeCompare(const MachineInstr &MI, unsigned &SrcReg,
1711 unsigned &SrcReg2, int &Mask,
1712 int &Value) const {
1713 unsigned Opc = MI.getOpcode();
1714
1715 // Set mask and the first source register.
1716 switch (Opc) {
1717 case Hexagon::C2_cmpeq:
1718 case Hexagon::C2_cmpeqp:
1719 case Hexagon::C2_cmpgt:
1720 case Hexagon::C2_cmpgtp:
1721 case Hexagon::C2_cmpgtu:
1722 case Hexagon::C2_cmpgtup:
1723 case Hexagon::C4_cmpneq:
1724 case Hexagon::C4_cmplte:
1725 case Hexagon::C4_cmplteu:
1726 case Hexagon::C2_cmpeqi:
1727 case Hexagon::C2_cmpgti:
1728 case Hexagon::C2_cmpgtui:
1729 case Hexagon::C4_cmpneqi:
1730 case Hexagon::C4_cmplteui:
1731 case Hexagon::C4_cmpltei:
1732 SrcReg = MI.getOperand(1).getReg();
1733 Mask = ~0;
1734 break;
1735 case Hexagon::A4_cmpbeq:
1736 case Hexagon::A4_cmpbgt:
1737 case Hexagon::A4_cmpbgtu:
1738 case Hexagon::A4_cmpbeqi:
1739 case Hexagon::A4_cmpbgti:
1740 case Hexagon::A4_cmpbgtui:
1741 SrcReg = MI.getOperand(1).getReg();
1742 Mask = 0xFF;
1743 break;
1744 case Hexagon::A4_cmpheq:
1745 case Hexagon::A4_cmphgt:
1746 case Hexagon::A4_cmphgtu:
1747 case Hexagon::A4_cmpheqi:
1748 case Hexagon::A4_cmphgti:
1749 case Hexagon::A4_cmphgtui:
1750 SrcReg = MI.getOperand(1).getReg();
1751 Mask = 0xFFFF;
1752 break;
1753 }
1754
1755 // Set the value/second source register.
1756 switch (Opc) {
1757 case Hexagon::C2_cmpeq:
1758 case Hexagon::C2_cmpeqp:
1759 case Hexagon::C2_cmpgt:
1760 case Hexagon::C2_cmpgtp:
1761 case Hexagon::C2_cmpgtu:
1762 case Hexagon::C2_cmpgtup:
1763 case Hexagon::A4_cmpbeq:
1764 case Hexagon::A4_cmpbgt:
1765 case Hexagon::A4_cmpbgtu:
1766 case Hexagon::A4_cmpheq:
1767 case Hexagon::A4_cmphgt:
1768 case Hexagon::A4_cmphgtu:
1769 case Hexagon::C4_cmpneq:
1770 case Hexagon::C4_cmplte:
1771 case Hexagon::C4_cmplteu:
1772 SrcReg2 = MI.getOperand(2).getReg();
1773 return true;
1774
1775 case Hexagon::C2_cmpeqi:
1776 case Hexagon::C2_cmpgtui:
1777 case Hexagon::C2_cmpgti:
1778 case Hexagon::C4_cmpneqi:
1779 case Hexagon::C4_cmplteui:
1780 case Hexagon::C4_cmpltei:
1781 case Hexagon::A4_cmpbeqi:
1782 case Hexagon::A4_cmpbgti:
1783 case Hexagon::A4_cmpbgtui:
1784 case Hexagon::A4_cmpheqi:
1785 case Hexagon::A4_cmphgti:
1786 case Hexagon::A4_cmphgtui: {
1787 SrcReg2 = 0;
1788 const MachineOperand &Op2 = MI.getOperand(2);
1789 if (!Op2.isImm())
1790 return false;
1791 Value = MI.getOperand(2).getImm();
1792 return true;
1793 }
1794 }
1795
1796 return false;
1797 }
1798
getInstrLatency(const InstrItineraryData * ItinData,const MachineInstr & MI,unsigned * PredCost) const1799 unsigned HexagonInstrInfo::getInstrLatency(const InstrItineraryData *ItinData,
1800 const MachineInstr &MI,
1801 unsigned *PredCost) const {
1802 return getInstrTimingClassLatency(ItinData, MI);
1803 }
1804
CreateTargetScheduleState(const TargetSubtargetInfo & STI) const1805 DFAPacketizer *HexagonInstrInfo::CreateTargetScheduleState(
1806 const TargetSubtargetInfo &STI) const {
1807 const InstrItineraryData *II = STI.getInstrItineraryData();
1808 return static_cast<const HexagonSubtarget&>(STI).createDFAPacketizer(II);
1809 }
1810
1811 // Inspired by this pair:
1812 // %r13 = L2_loadri_io %r29, 136; mem:LD4[FixedStack0]
1813 // S2_storeri_io %r29, 132, killed %r1; flags: mem:ST4[FixedStack1]
1814 // Currently AA considers the addresses in these instructions to be aliasing.
areMemAccessesTriviallyDisjoint(MachineInstr & MIa,MachineInstr & MIb,AliasAnalysis * AA) const1815 bool HexagonInstrInfo::areMemAccessesTriviallyDisjoint(
1816 MachineInstr &MIa, MachineInstr &MIb, AliasAnalysis *AA) const {
1817 if (MIa.hasUnmodeledSideEffects() || MIb.hasUnmodeledSideEffects() ||
1818 MIa.hasOrderedMemoryRef() || MIb.hasOrderedMemoryRef())
1819 return false;
1820
1821 // Instructions that are pure loads, not loads and stores like memops are not
1822 // dependent.
1823 if (MIa.mayLoad() && !isMemOp(MIa) && MIb.mayLoad() && !isMemOp(MIb))
1824 return true;
1825
1826 // Get the base register in MIa.
1827 unsigned BasePosA, OffsetPosA;
1828 if (!getBaseAndOffsetPosition(MIa, BasePosA, OffsetPosA))
1829 return false;
1830 const MachineOperand &BaseA = MIa.getOperand(BasePosA);
1831 unsigned BaseRegA = BaseA.getReg();
1832 unsigned BaseSubA = BaseA.getSubReg();
1833
1834 // Get the base register in MIb.
1835 unsigned BasePosB, OffsetPosB;
1836 if (!getBaseAndOffsetPosition(MIb, BasePosB, OffsetPosB))
1837 return false;
1838 const MachineOperand &BaseB = MIb.getOperand(BasePosB);
1839 unsigned BaseRegB = BaseB.getReg();
1840 unsigned BaseSubB = BaseB.getSubReg();
1841
1842 if (BaseRegA != BaseRegB || BaseSubA != BaseSubB)
1843 return false;
1844
1845 // Get the access sizes.
1846 unsigned SizeA = getMemAccessSize(MIa);
1847 unsigned SizeB = getMemAccessSize(MIb);
1848
1849 // Get the offsets. Handle immediates only for now.
1850 const MachineOperand &OffA = MIa.getOperand(OffsetPosA);
1851 const MachineOperand &OffB = MIb.getOperand(OffsetPosB);
1852 if (!MIa.getOperand(OffsetPosA).isImm() ||
1853 !MIb.getOperand(OffsetPosB).isImm())
1854 return false;
1855 int OffsetA = isPostIncrement(MIa) ? 0 : OffA.getImm();
1856 int OffsetB = isPostIncrement(MIb) ? 0 : OffB.getImm();
1857
1858 // This is a mem access with the same base register and known offsets from it.
1859 // Reason about it.
1860 if (OffsetA > OffsetB) {
1861 uint64_t OffDiff = (uint64_t)((int64_t)OffsetA - (int64_t)OffsetB);
1862 return SizeB <= OffDiff;
1863 }
1864 if (OffsetA < OffsetB) {
1865 uint64_t OffDiff = (uint64_t)((int64_t)OffsetB - (int64_t)OffsetA);
1866 return SizeA <= OffDiff;
1867 }
1868
1869 return false;
1870 }
1871
1872 /// If the instruction is an increment of a constant value, return the amount.
getIncrementValue(const MachineInstr & MI,int & Value) const1873 bool HexagonInstrInfo::getIncrementValue(const MachineInstr &MI,
1874 int &Value) const {
1875 if (isPostIncrement(MI)) {
1876 unsigned BasePos = 0, OffsetPos = 0;
1877 if (!getBaseAndOffsetPosition(MI, BasePos, OffsetPos))
1878 return false;
1879 const MachineOperand &OffsetOp = MI.getOperand(OffsetPos);
1880 if (OffsetOp.isImm()) {
1881 Value = OffsetOp.getImm();
1882 return true;
1883 }
1884 } else if (MI.getOpcode() == Hexagon::A2_addi) {
1885 const MachineOperand &AddOp = MI.getOperand(2);
1886 if (AddOp.isImm()) {
1887 Value = AddOp.getImm();
1888 return true;
1889 }
1890 }
1891
1892 return false;
1893 }
1894
1895 std::pair<unsigned, unsigned>
decomposeMachineOperandsTargetFlags(unsigned TF) const1896 HexagonInstrInfo::decomposeMachineOperandsTargetFlags(unsigned TF) const {
1897 return std::make_pair(TF & ~HexagonII::MO_Bitmasks,
1898 TF & HexagonII::MO_Bitmasks);
1899 }
1900
1901 ArrayRef<std::pair<unsigned, const char*>>
getSerializableDirectMachineOperandTargetFlags() const1902 HexagonInstrInfo::getSerializableDirectMachineOperandTargetFlags() const {
1903 using namespace HexagonII;
1904
1905 static const std::pair<unsigned, const char*> Flags[] = {
1906 {MO_PCREL, "hexagon-pcrel"},
1907 {MO_GOT, "hexagon-got"},
1908 {MO_LO16, "hexagon-lo16"},
1909 {MO_HI16, "hexagon-hi16"},
1910 {MO_GPREL, "hexagon-gprel"},
1911 {MO_GDGOT, "hexagon-gdgot"},
1912 {MO_GDPLT, "hexagon-gdplt"},
1913 {MO_IE, "hexagon-ie"},
1914 {MO_IEGOT, "hexagon-iegot"},
1915 {MO_TPREL, "hexagon-tprel"}
1916 };
1917 return makeArrayRef(Flags);
1918 }
1919
1920 ArrayRef<std::pair<unsigned, const char*>>
getSerializableBitmaskMachineOperandTargetFlags() const1921 HexagonInstrInfo::getSerializableBitmaskMachineOperandTargetFlags() const {
1922 using namespace HexagonII;
1923
1924 static const std::pair<unsigned, const char*> Flags[] = {
1925 {HMOTF_ConstExtended, "hexagon-ext"}
1926 };
1927 return makeArrayRef(Flags);
1928 }
1929
createVR(MachineFunction * MF,MVT VT) const1930 unsigned HexagonInstrInfo::createVR(MachineFunction *MF, MVT VT) const {
1931 MachineRegisterInfo &MRI = MF->getRegInfo();
1932 const TargetRegisterClass *TRC;
1933 if (VT == MVT::i1) {
1934 TRC = &Hexagon::PredRegsRegClass;
1935 } else if (VT == MVT::i32 || VT == MVT::f32) {
1936 TRC = &Hexagon::IntRegsRegClass;
1937 } else if (VT == MVT::i64 || VT == MVT::f64) {
1938 TRC = &Hexagon::DoubleRegsRegClass;
1939 } else {
1940 llvm_unreachable("Cannot handle this register class");
1941 }
1942
1943 unsigned NewReg = MRI.createVirtualRegister(TRC);
1944 return NewReg;
1945 }
1946
isAbsoluteSet(const MachineInstr & MI) const1947 bool HexagonInstrInfo::isAbsoluteSet(const MachineInstr &MI) const {
1948 return (getAddrMode(MI) == HexagonII::AbsoluteSet);
1949 }
1950
isAccumulator(const MachineInstr & MI) const1951 bool HexagonInstrInfo::isAccumulator(const MachineInstr &MI) const {
1952 const uint64_t F = MI.getDesc().TSFlags;
1953 return((F >> HexagonII::AccumulatorPos) & HexagonII::AccumulatorMask);
1954 }
1955
isBaseImmOffset(const MachineInstr & MI) const1956 bool HexagonInstrInfo::isBaseImmOffset(const MachineInstr &MI) const {
1957 return getAddrMode(MI) == HexagonII::BaseImmOffset;
1958 }
1959
isComplex(const MachineInstr & MI) const1960 bool HexagonInstrInfo::isComplex(const MachineInstr &MI) const {
1961 return !isTC1(MI) && !isTC2Early(MI) && !MI.getDesc().mayLoad() &&
1962 !MI.getDesc().mayStore() &&
1963 MI.getDesc().getOpcode() != Hexagon::S2_allocframe &&
1964 MI.getDesc().getOpcode() != Hexagon::L2_deallocframe &&
1965 !isMemOp(MI) && !MI.isBranch() && !MI.isReturn() && !MI.isCall();
1966 }
1967
1968 // Return true if the instruction is a compund branch instruction.
isCompoundBranchInstr(const MachineInstr & MI) const1969 bool HexagonInstrInfo::isCompoundBranchInstr(const MachineInstr &MI) const {
1970 return getType(MI) == HexagonII::TypeCJ && MI.isBranch();
1971 }
1972
1973 // TODO: In order to have isExtendable for fpimm/f32Ext, we need to handle
1974 // isFPImm and later getFPImm as well.
isConstExtended(const MachineInstr & MI) const1975 bool HexagonInstrInfo::isConstExtended(const MachineInstr &MI) const {
1976 const uint64_t F = MI.getDesc().TSFlags;
1977 unsigned isExtended = (F >> HexagonII::ExtendedPos) & HexagonII::ExtendedMask;
1978 if (isExtended) // Instruction must be extended.
1979 return true;
1980
1981 unsigned isExtendable =
1982 (F >> HexagonII::ExtendablePos) & HexagonII::ExtendableMask;
1983 if (!isExtendable)
1984 return false;
1985
1986 if (MI.isCall())
1987 return false;
1988
1989 short ExtOpNum = getCExtOpNum(MI);
1990 const MachineOperand &MO = MI.getOperand(ExtOpNum);
1991 // Use MO operand flags to determine if MO
1992 // has the HMOTF_ConstExtended flag set.
1993 if (MO.getTargetFlags() & HexagonII::HMOTF_ConstExtended)
1994 return true;
1995 // If this is a Machine BB address we are talking about, and it is
1996 // not marked as extended, say so.
1997 if (MO.isMBB())
1998 return false;
1999
2000 // We could be using an instruction with an extendable immediate and shoehorn
2001 // a global address into it. If it is a global address it will be constant
2002 // extended. We do this for COMBINE.
2003 if (MO.isGlobal() || MO.isSymbol() || MO.isBlockAddress() ||
2004 MO.isJTI() || MO.isCPI() || MO.isFPImm())
2005 return true;
2006
2007 // If the extendable operand is not 'Immediate' type, the instruction should
2008 // have 'isExtended' flag set.
2009 assert(MO.isImm() && "Extendable operand must be Immediate type");
2010
2011 int MinValue = getMinValue(MI);
2012 int MaxValue = getMaxValue(MI);
2013 int ImmValue = MO.getImm();
2014
2015 return (ImmValue < MinValue || ImmValue > MaxValue);
2016 }
2017
isDeallocRet(const MachineInstr & MI) const2018 bool HexagonInstrInfo::isDeallocRet(const MachineInstr &MI) const {
2019 switch (MI.getOpcode()) {
2020 case Hexagon::L4_return:
2021 case Hexagon::L4_return_t:
2022 case Hexagon::L4_return_f:
2023 case Hexagon::L4_return_tnew_pnt:
2024 case Hexagon::L4_return_fnew_pnt:
2025 case Hexagon::L4_return_tnew_pt:
2026 case Hexagon::L4_return_fnew_pt:
2027 return true;
2028 }
2029 return false;
2030 }
2031
2032 // Return true when ConsMI uses a register defined by ProdMI.
isDependent(const MachineInstr & ProdMI,const MachineInstr & ConsMI) const2033 bool HexagonInstrInfo::isDependent(const MachineInstr &ProdMI,
2034 const MachineInstr &ConsMI) const {
2035 if (!ProdMI.getDesc().getNumDefs())
2036 return false;
2037 const HexagonRegisterInfo &HRI = *Subtarget.getRegisterInfo();
2038
2039 SmallVector<unsigned, 4> DefsA;
2040 SmallVector<unsigned, 4> DefsB;
2041 SmallVector<unsigned, 8> UsesA;
2042 SmallVector<unsigned, 8> UsesB;
2043
2044 parseOperands(ProdMI, DefsA, UsesA);
2045 parseOperands(ConsMI, DefsB, UsesB);
2046
2047 for (auto &RegA : DefsA)
2048 for (auto &RegB : UsesB) {
2049 // True data dependency.
2050 if (RegA == RegB)
2051 return true;
2052
2053 if (TargetRegisterInfo::isPhysicalRegister(RegA))
2054 for (MCSubRegIterator SubRegs(RegA, &HRI); SubRegs.isValid(); ++SubRegs)
2055 if (RegB == *SubRegs)
2056 return true;
2057
2058 if (TargetRegisterInfo::isPhysicalRegister(RegB))
2059 for (MCSubRegIterator SubRegs(RegB, &HRI); SubRegs.isValid(); ++SubRegs)
2060 if (RegA == *SubRegs)
2061 return true;
2062 }
2063
2064 return false;
2065 }
2066
2067 // Returns true if the instruction is alread a .cur.
isDotCurInst(const MachineInstr & MI) const2068 bool HexagonInstrInfo::isDotCurInst(const MachineInstr &MI) const {
2069 switch (MI.getOpcode()) {
2070 case Hexagon::V6_vL32b_cur_pi:
2071 case Hexagon::V6_vL32b_cur_ai:
2072 return true;
2073 }
2074 return false;
2075 }
2076
2077 // Returns true, if any one of the operands is a dot new
2078 // insn, whether it is predicated dot new or register dot new.
isDotNewInst(const MachineInstr & MI) const2079 bool HexagonInstrInfo::isDotNewInst(const MachineInstr &MI) const {
2080 if (isNewValueInst(MI) || (isPredicated(MI) && isPredicatedNew(MI)))
2081 return true;
2082
2083 return false;
2084 }
2085
2086 /// Symmetrical. See if these two instructions are fit for duplex pair.
isDuplexPair(const MachineInstr & MIa,const MachineInstr & MIb) const2087 bool HexagonInstrInfo::isDuplexPair(const MachineInstr &MIa,
2088 const MachineInstr &MIb) const {
2089 HexagonII::SubInstructionGroup MIaG = getDuplexCandidateGroup(MIa);
2090 HexagonII::SubInstructionGroup MIbG = getDuplexCandidateGroup(MIb);
2091 return (isDuplexPairMatch(MIaG, MIbG) || isDuplexPairMatch(MIbG, MIaG));
2092 }
2093
isEarlySourceInstr(const MachineInstr & MI) const2094 bool HexagonInstrInfo::isEarlySourceInstr(const MachineInstr &MI) const {
2095 if (MI.mayLoad() || MI.mayStore() || MI.isCompare())
2096 return true;
2097
2098 // Multiply
2099 unsigned SchedClass = MI.getDesc().getSchedClass();
2100 return is_TC4x(SchedClass) || is_TC3x(SchedClass);
2101 }
2102
isEndLoopN(unsigned Opcode) const2103 bool HexagonInstrInfo::isEndLoopN(unsigned Opcode) const {
2104 return (Opcode == Hexagon::ENDLOOP0 ||
2105 Opcode == Hexagon::ENDLOOP1);
2106 }
2107
isExpr(unsigned OpType) const2108 bool HexagonInstrInfo::isExpr(unsigned OpType) const {
2109 switch(OpType) {
2110 case MachineOperand::MO_MachineBasicBlock:
2111 case MachineOperand::MO_GlobalAddress:
2112 case MachineOperand::MO_ExternalSymbol:
2113 case MachineOperand::MO_JumpTableIndex:
2114 case MachineOperand::MO_ConstantPoolIndex:
2115 case MachineOperand::MO_BlockAddress:
2116 return true;
2117 default:
2118 return false;
2119 }
2120 }
2121
isExtendable(const MachineInstr & MI) const2122 bool HexagonInstrInfo::isExtendable(const MachineInstr &MI) const {
2123 const MCInstrDesc &MID = MI.getDesc();
2124 const uint64_t F = MID.TSFlags;
2125 if ((F >> HexagonII::ExtendablePos) & HexagonII::ExtendableMask)
2126 return true;
2127
2128 // TODO: This is largely obsolete now. Will need to be removed
2129 // in consecutive patches.
2130 switch (MI.getOpcode()) {
2131 // PS_fi and PS_fia remain special cases.
2132 case Hexagon::PS_fi:
2133 case Hexagon::PS_fia:
2134 return true;
2135 default:
2136 return false;
2137 }
2138 return false;
2139 }
2140
2141 // This returns true in two cases:
2142 // - The OP code itself indicates that this is an extended instruction.
2143 // - One of MOs has been marked with HMOTF_ConstExtended flag.
isExtended(const MachineInstr & MI) const2144 bool HexagonInstrInfo::isExtended(const MachineInstr &MI) const {
2145 // First check if this is permanently extended op code.
2146 const uint64_t F = MI.getDesc().TSFlags;
2147 if ((F >> HexagonII::ExtendedPos) & HexagonII::ExtendedMask)
2148 return true;
2149 // Use MO operand flags to determine if one of MI's operands
2150 // has HMOTF_ConstExtended flag set.
2151 for (const MachineOperand &MO : MI.operands())
2152 if (MO.getTargetFlags() & HexagonII::HMOTF_ConstExtended)
2153 return true;
2154 return false;
2155 }
2156
isFloat(const MachineInstr & MI) const2157 bool HexagonInstrInfo::isFloat(const MachineInstr &MI) const {
2158 unsigned Opcode = MI.getOpcode();
2159 const uint64_t F = get(Opcode).TSFlags;
2160 return (F >> HexagonII::FPPos) & HexagonII::FPMask;
2161 }
2162
2163 // No V60 HVX VMEM with A_INDIRECT.
isHVXMemWithAIndirect(const MachineInstr & I,const MachineInstr & J) const2164 bool HexagonInstrInfo::isHVXMemWithAIndirect(const MachineInstr &I,
2165 const MachineInstr &J) const {
2166 if (!isHVXVec(I))
2167 return false;
2168 if (!I.mayLoad() && !I.mayStore())
2169 return false;
2170 return J.isIndirectBranch() || isIndirectCall(J) || isIndirectL4Return(J);
2171 }
2172
isIndirectCall(const MachineInstr & MI) const2173 bool HexagonInstrInfo::isIndirectCall(const MachineInstr &MI) const {
2174 switch (MI.getOpcode()) {
2175 case Hexagon::J2_callr:
2176 case Hexagon::J2_callrf:
2177 case Hexagon::J2_callrt:
2178 case Hexagon::PS_call_nr:
2179 return true;
2180 }
2181 return false;
2182 }
2183
isIndirectL4Return(const MachineInstr & MI) const2184 bool HexagonInstrInfo::isIndirectL4Return(const MachineInstr &MI) const {
2185 switch (MI.getOpcode()) {
2186 case Hexagon::L4_return:
2187 case Hexagon::L4_return_t:
2188 case Hexagon::L4_return_f:
2189 case Hexagon::L4_return_fnew_pnt:
2190 case Hexagon::L4_return_fnew_pt:
2191 case Hexagon::L4_return_tnew_pnt:
2192 case Hexagon::L4_return_tnew_pt:
2193 return true;
2194 }
2195 return false;
2196 }
2197
isJumpR(const MachineInstr & MI) const2198 bool HexagonInstrInfo::isJumpR(const MachineInstr &MI) const {
2199 switch (MI.getOpcode()) {
2200 case Hexagon::J2_jumpr:
2201 case Hexagon::J2_jumprt:
2202 case Hexagon::J2_jumprf:
2203 case Hexagon::J2_jumprtnewpt:
2204 case Hexagon::J2_jumprfnewpt:
2205 case Hexagon::J2_jumprtnew:
2206 case Hexagon::J2_jumprfnew:
2207 return true;
2208 }
2209 return false;
2210 }
2211
2212 // Return true if a given MI can accommodate given offset.
2213 // Use abs estimate as oppose to the exact number.
2214 // TODO: This will need to be changed to use MC level
2215 // definition of instruction extendable field size.
isJumpWithinBranchRange(const MachineInstr & MI,unsigned offset) const2216 bool HexagonInstrInfo::isJumpWithinBranchRange(const MachineInstr &MI,
2217 unsigned offset) const {
2218 // This selection of jump instructions matches to that what
2219 // analyzeBranch can parse, plus NVJ.
2220 if (isNewValueJump(MI)) // r9:2
2221 return isInt<11>(offset);
2222
2223 switch (MI.getOpcode()) {
2224 // Still missing Jump to address condition on register value.
2225 default:
2226 return false;
2227 case Hexagon::J2_jump: // bits<24> dst; // r22:2
2228 case Hexagon::J2_call:
2229 case Hexagon::PS_call_nr:
2230 return isInt<24>(offset);
2231 case Hexagon::J2_jumpt: //bits<17> dst; // r15:2
2232 case Hexagon::J2_jumpf:
2233 case Hexagon::J2_jumptnew:
2234 case Hexagon::J2_jumptnewpt:
2235 case Hexagon::J2_jumpfnew:
2236 case Hexagon::J2_jumpfnewpt:
2237 case Hexagon::J2_callt:
2238 case Hexagon::J2_callf:
2239 return isInt<17>(offset);
2240 case Hexagon::J2_loop0i:
2241 case Hexagon::J2_loop0iext:
2242 case Hexagon::J2_loop0r:
2243 case Hexagon::J2_loop0rext:
2244 case Hexagon::J2_loop1i:
2245 case Hexagon::J2_loop1iext:
2246 case Hexagon::J2_loop1r:
2247 case Hexagon::J2_loop1rext:
2248 return isInt<9>(offset);
2249 // TODO: Add all the compound branches here. Can we do this in Relation model?
2250 case Hexagon::J4_cmpeqi_tp0_jump_nt:
2251 case Hexagon::J4_cmpeqi_tp1_jump_nt:
2252 case Hexagon::J4_cmpeqn1_tp0_jump_nt:
2253 case Hexagon::J4_cmpeqn1_tp1_jump_nt:
2254 return isInt<11>(offset);
2255 }
2256 }
2257
isLateInstrFeedsEarlyInstr(const MachineInstr & LRMI,const MachineInstr & ESMI) const2258 bool HexagonInstrInfo::isLateInstrFeedsEarlyInstr(const MachineInstr &LRMI,
2259 const MachineInstr &ESMI) const {
2260 bool isLate = isLateResultInstr(LRMI);
2261 bool isEarly = isEarlySourceInstr(ESMI);
2262
2263 LLVM_DEBUG(dbgs() << "V60" << (isLate ? "-LR " : " -- "));
2264 LLVM_DEBUG(LRMI.dump());
2265 LLVM_DEBUG(dbgs() << "V60" << (isEarly ? "-ES " : " -- "));
2266 LLVM_DEBUG(ESMI.dump());
2267
2268 if (isLate && isEarly) {
2269 LLVM_DEBUG(dbgs() << "++Is Late Result feeding Early Source\n");
2270 return true;
2271 }
2272
2273 return false;
2274 }
2275
isLateResultInstr(const MachineInstr & MI) const2276 bool HexagonInstrInfo::isLateResultInstr(const MachineInstr &MI) const {
2277 switch (MI.getOpcode()) {
2278 case TargetOpcode::EXTRACT_SUBREG:
2279 case TargetOpcode::INSERT_SUBREG:
2280 case TargetOpcode::SUBREG_TO_REG:
2281 case TargetOpcode::REG_SEQUENCE:
2282 case TargetOpcode::IMPLICIT_DEF:
2283 case TargetOpcode::COPY:
2284 case TargetOpcode::INLINEASM:
2285 case TargetOpcode::PHI:
2286 return false;
2287 default:
2288 break;
2289 }
2290
2291 unsigned SchedClass = MI.getDesc().getSchedClass();
2292 return !is_TC1(SchedClass);
2293 }
2294
isLateSourceInstr(const MachineInstr & MI) const2295 bool HexagonInstrInfo::isLateSourceInstr(const MachineInstr &MI) const {
2296 // Instructions with iclass A_CVI_VX and attribute A_CVI_LATE uses a multiply
2297 // resource, but all operands can be received late like an ALU instruction.
2298 return getType(MI) == HexagonII::TypeCVI_VX_LATE;
2299 }
2300
isLoopN(const MachineInstr & MI) const2301 bool HexagonInstrInfo::isLoopN(const MachineInstr &MI) const {
2302 unsigned Opcode = MI.getOpcode();
2303 return Opcode == Hexagon::J2_loop0i ||
2304 Opcode == Hexagon::J2_loop0r ||
2305 Opcode == Hexagon::J2_loop0iext ||
2306 Opcode == Hexagon::J2_loop0rext ||
2307 Opcode == Hexagon::J2_loop1i ||
2308 Opcode == Hexagon::J2_loop1r ||
2309 Opcode == Hexagon::J2_loop1iext ||
2310 Opcode == Hexagon::J2_loop1rext;
2311 }
2312
isMemOp(const MachineInstr & MI) const2313 bool HexagonInstrInfo::isMemOp(const MachineInstr &MI) const {
2314 switch (MI.getOpcode()) {
2315 default: return false;
2316 case Hexagon::L4_iadd_memopw_io:
2317 case Hexagon::L4_isub_memopw_io:
2318 case Hexagon::L4_add_memopw_io:
2319 case Hexagon::L4_sub_memopw_io:
2320 case Hexagon::L4_and_memopw_io:
2321 case Hexagon::L4_or_memopw_io:
2322 case Hexagon::L4_iadd_memoph_io:
2323 case Hexagon::L4_isub_memoph_io:
2324 case Hexagon::L4_add_memoph_io:
2325 case Hexagon::L4_sub_memoph_io:
2326 case Hexagon::L4_and_memoph_io:
2327 case Hexagon::L4_or_memoph_io:
2328 case Hexagon::L4_iadd_memopb_io:
2329 case Hexagon::L4_isub_memopb_io:
2330 case Hexagon::L4_add_memopb_io:
2331 case Hexagon::L4_sub_memopb_io:
2332 case Hexagon::L4_and_memopb_io:
2333 case Hexagon::L4_or_memopb_io:
2334 case Hexagon::L4_ior_memopb_io:
2335 case Hexagon::L4_ior_memoph_io:
2336 case Hexagon::L4_ior_memopw_io:
2337 case Hexagon::L4_iand_memopb_io:
2338 case Hexagon::L4_iand_memoph_io:
2339 case Hexagon::L4_iand_memopw_io:
2340 return true;
2341 }
2342 return false;
2343 }
2344
isNewValue(const MachineInstr & MI) const2345 bool HexagonInstrInfo::isNewValue(const MachineInstr &MI) const {
2346 const uint64_t F = MI.getDesc().TSFlags;
2347 return (F >> HexagonII::NewValuePos) & HexagonII::NewValueMask;
2348 }
2349
isNewValue(unsigned Opcode) const2350 bool HexagonInstrInfo::isNewValue(unsigned Opcode) const {
2351 const uint64_t F = get(Opcode).TSFlags;
2352 return (F >> HexagonII::NewValuePos) & HexagonII::NewValueMask;
2353 }
2354
isNewValueInst(const MachineInstr & MI) const2355 bool HexagonInstrInfo::isNewValueInst(const MachineInstr &MI) const {
2356 return isNewValueJump(MI) || isNewValueStore(MI);
2357 }
2358
isNewValueJump(const MachineInstr & MI) const2359 bool HexagonInstrInfo::isNewValueJump(const MachineInstr &MI) const {
2360 return isNewValue(MI) && MI.isBranch();
2361 }
2362
isNewValueJump(unsigned Opcode) const2363 bool HexagonInstrInfo::isNewValueJump(unsigned Opcode) const {
2364 return isNewValue(Opcode) && get(Opcode).isBranch() && isPredicated(Opcode);
2365 }
2366
isNewValueStore(const MachineInstr & MI) const2367 bool HexagonInstrInfo::isNewValueStore(const MachineInstr &MI) const {
2368 const uint64_t F = MI.getDesc().TSFlags;
2369 return (F >> HexagonII::NVStorePos) & HexagonII::NVStoreMask;
2370 }
2371
isNewValueStore(unsigned Opcode) const2372 bool HexagonInstrInfo::isNewValueStore(unsigned Opcode) const {
2373 const uint64_t F = get(Opcode).TSFlags;
2374 return (F >> HexagonII::NVStorePos) & HexagonII::NVStoreMask;
2375 }
2376
2377 // Returns true if a particular operand is extendable for an instruction.
isOperandExtended(const MachineInstr & MI,unsigned OperandNum) const2378 bool HexagonInstrInfo::isOperandExtended(const MachineInstr &MI,
2379 unsigned OperandNum) const {
2380 const uint64_t F = MI.getDesc().TSFlags;
2381 return ((F >> HexagonII::ExtendableOpPos) & HexagonII::ExtendableOpMask)
2382 == OperandNum;
2383 }
2384
isPredicatedNew(const MachineInstr & MI) const2385 bool HexagonInstrInfo::isPredicatedNew(const MachineInstr &MI) const {
2386 const uint64_t F = MI.getDesc().TSFlags;
2387 assert(isPredicated(MI));
2388 return (F >> HexagonII::PredicatedNewPos) & HexagonII::PredicatedNewMask;
2389 }
2390
isPredicatedNew(unsigned Opcode) const2391 bool HexagonInstrInfo::isPredicatedNew(unsigned Opcode) const {
2392 const uint64_t F = get(Opcode).TSFlags;
2393 assert(isPredicated(Opcode));
2394 return (F >> HexagonII::PredicatedNewPos) & HexagonII::PredicatedNewMask;
2395 }
2396
isPredicatedTrue(const MachineInstr & MI) const2397 bool HexagonInstrInfo::isPredicatedTrue(const MachineInstr &MI) const {
2398 const uint64_t F = MI.getDesc().TSFlags;
2399 return !((F >> HexagonII::PredicatedFalsePos) &
2400 HexagonII::PredicatedFalseMask);
2401 }
2402
isPredicatedTrue(unsigned Opcode) const2403 bool HexagonInstrInfo::isPredicatedTrue(unsigned Opcode) const {
2404 const uint64_t F = get(Opcode).TSFlags;
2405 // Make sure that the instruction is predicated.
2406 assert((F>> HexagonII::PredicatedPos) & HexagonII::PredicatedMask);
2407 return !((F >> HexagonII::PredicatedFalsePos) &
2408 HexagonII::PredicatedFalseMask);
2409 }
2410
isPredicated(unsigned Opcode) const2411 bool HexagonInstrInfo::isPredicated(unsigned Opcode) const {
2412 const uint64_t F = get(Opcode).TSFlags;
2413 return (F >> HexagonII::PredicatedPos) & HexagonII::PredicatedMask;
2414 }
2415
isPredicateLate(unsigned Opcode) const2416 bool HexagonInstrInfo::isPredicateLate(unsigned Opcode) const {
2417 const uint64_t F = get(Opcode).TSFlags;
2418 return ~(F >> HexagonII::PredicateLatePos) & HexagonII::PredicateLateMask;
2419 }
2420
isPredictedTaken(unsigned Opcode) const2421 bool HexagonInstrInfo::isPredictedTaken(unsigned Opcode) const {
2422 const uint64_t F = get(Opcode).TSFlags;
2423 assert(get(Opcode).isBranch() &&
2424 (isPredicatedNew(Opcode) || isNewValue(Opcode)));
2425 return (F >> HexagonII::TakenPos) & HexagonII::TakenMask;
2426 }
2427
isSaveCalleeSavedRegsCall(const MachineInstr & MI) const2428 bool HexagonInstrInfo::isSaveCalleeSavedRegsCall(const MachineInstr &MI) const {
2429 return MI.getOpcode() == Hexagon::SAVE_REGISTERS_CALL_V4 ||
2430 MI.getOpcode() == Hexagon::SAVE_REGISTERS_CALL_V4_EXT ||
2431 MI.getOpcode() == Hexagon::SAVE_REGISTERS_CALL_V4_PIC ||
2432 MI.getOpcode() == Hexagon::SAVE_REGISTERS_CALL_V4_EXT_PIC;
2433 }
2434
isSignExtendingLoad(const MachineInstr & MI) const2435 bool HexagonInstrInfo::isSignExtendingLoad(const MachineInstr &MI) const {
2436 switch (MI.getOpcode()) {
2437 // Byte
2438 case Hexagon::L2_loadrb_io:
2439 case Hexagon::L4_loadrb_ur:
2440 case Hexagon::L4_loadrb_ap:
2441 case Hexagon::L2_loadrb_pr:
2442 case Hexagon::L2_loadrb_pbr:
2443 case Hexagon::L2_loadrb_pi:
2444 case Hexagon::L2_loadrb_pci:
2445 case Hexagon::L2_loadrb_pcr:
2446 case Hexagon::L2_loadbsw2_io:
2447 case Hexagon::L4_loadbsw2_ur:
2448 case Hexagon::L4_loadbsw2_ap:
2449 case Hexagon::L2_loadbsw2_pr:
2450 case Hexagon::L2_loadbsw2_pbr:
2451 case Hexagon::L2_loadbsw2_pi:
2452 case Hexagon::L2_loadbsw2_pci:
2453 case Hexagon::L2_loadbsw2_pcr:
2454 case Hexagon::L2_loadbsw4_io:
2455 case Hexagon::L4_loadbsw4_ur:
2456 case Hexagon::L4_loadbsw4_ap:
2457 case Hexagon::L2_loadbsw4_pr:
2458 case Hexagon::L2_loadbsw4_pbr:
2459 case Hexagon::L2_loadbsw4_pi:
2460 case Hexagon::L2_loadbsw4_pci:
2461 case Hexagon::L2_loadbsw4_pcr:
2462 case Hexagon::L4_loadrb_rr:
2463 case Hexagon::L2_ploadrbt_io:
2464 case Hexagon::L2_ploadrbt_pi:
2465 case Hexagon::L2_ploadrbf_io:
2466 case Hexagon::L2_ploadrbf_pi:
2467 case Hexagon::L2_ploadrbtnew_io:
2468 case Hexagon::L2_ploadrbfnew_io:
2469 case Hexagon::L4_ploadrbt_rr:
2470 case Hexagon::L4_ploadrbf_rr:
2471 case Hexagon::L4_ploadrbtnew_rr:
2472 case Hexagon::L4_ploadrbfnew_rr:
2473 case Hexagon::L2_ploadrbtnew_pi:
2474 case Hexagon::L2_ploadrbfnew_pi:
2475 case Hexagon::L4_ploadrbt_abs:
2476 case Hexagon::L4_ploadrbf_abs:
2477 case Hexagon::L4_ploadrbtnew_abs:
2478 case Hexagon::L4_ploadrbfnew_abs:
2479 case Hexagon::L2_loadrbgp:
2480 // Half
2481 case Hexagon::L2_loadrh_io:
2482 case Hexagon::L4_loadrh_ur:
2483 case Hexagon::L4_loadrh_ap:
2484 case Hexagon::L2_loadrh_pr:
2485 case Hexagon::L2_loadrh_pbr:
2486 case Hexagon::L2_loadrh_pi:
2487 case Hexagon::L2_loadrh_pci:
2488 case Hexagon::L2_loadrh_pcr:
2489 case Hexagon::L4_loadrh_rr:
2490 case Hexagon::L2_ploadrht_io:
2491 case Hexagon::L2_ploadrht_pi:
2492 case Hexagon::L2_ploadrhf_io:
2493 case Hexagon::L2_ploadrhf_pi:
2494 case Hexagon::L2_ploadrhtnew_io:
2495 case Hexagon::L2_ploadrhfnew_io:
2496 case Hexagon::L4_ploadrht_rr:
2497 case Hexagon::L4_ploadrhf_rr:
2498 case Hexagon::L4_ploadrhtnew_rr:
2499 case Hexagon::L4_ploadrhfnew_rr:
2500 case Hexagon::L2_ploadrhtnew_pi:
2501 case Hexagon::L2_ploadrhfnew_pi:
2502 case Hexagon::L4_ploadrht_abs:
2503 case Hexagon::L4_ploadrhf_abs:
2504 case Hexagon::L4_ploadrhtnew_abs:
2505 case Hexagon::L4_ploadrhfnew_abs:
2506 case Hexagon::L2_loadrhgp:
2507 return true;
2508 default:
2509 return false;
2510 }
2511 }
2512
isSolo(const MachineInstr & MI) const2513 bool HexagonInstrInfo::isSolo(const MachineInstr &MI) const {
2514 const uint64_t F = MI.getDesc().TSFlags;
2515 return (F >> HexagonII::SoloPos) & HexagonII::SoloMask;
2516 }
2517
isSpillPredRegOp(const MachineInstr & MI) const2518 bool HexagonInstrInfo::isSpillPredRegOp(const MachineInstr &MI) const {
2519 switch (MI.getOpcode()) {
2520 case Hexagon::STriw_pred:
2521 case Hexagon::LDriw_pred:
2522 return true;
2523 default:
2524 return false;
2525 }
2526 }
2527
isTailCall(const MachineInstr & MI) const2528 bool HexagonInstrInfo::isTailCall(const MachineInstr &MI) const {
2529 if (!MI.isBranch())
2530 return false;
2531
2532 for (auto &Op : MI.operands())
2533 if (Op.isGlobal() || Op.isSymbol())
2534 return true;
2535 return false;
2536 }
2537
2538 // Returns true when SU has a timing class TC1.
isTC1(const MachineInstr & MI) const2539 bool HexagonInstrInfo::isTC1(const MachineInstr &MI) const {
2540 unsigned SchedClass = MI.getDesc().getSchedClass();
2541 return is_TC1(SchedClass);
2542 }
2543
isTC2(const MachineInstr & MI) const2544 bool HexagonInstrInfo::isTC2(const MachineInstr &MI) const {
2545 unsigned SchedClass = MI.getDesc().getSchedClass();
2546 return is_TC2(SchedClass);
2547 }
2548
isTC2Early(const MachineInstr & MI) const2549 bool HexagonInstrInfo::isTC2Early(const MachineInstr &MI) const {
2550 unsigned SchedClass = MI.getDesc().getSchedClass();
2551 return is_TC2early(SchedClass);
2552 }
2553
isTC4x(const MachineInstr & MI) const2554 bool HexagonInstrInfo::isTC4x(const MachineInstr &MI) const {
2555 unsigned SchedClass = MI.getDesc().getSchedClass();
2556 return is_TC4x(SchedClass);
2557 }
2558
2559 // Schedule this ASAP.
isToBeScheduledASAP(const MachineInstr & MI1,const MachineInstr & MI2) const2560 bool HexagonInstrInfo::isToBeScheduledASAP(const MachineInstr &MI1,
2561 const MachineInstr &MI2) const {
2562 if (mayBeCurLoad(MI1)) {
2563 // if (result of SU is used in Next) return true;
2564 unsigned DstReg = MI1.getOperand(0).getReg();
2565 int N = MI2.getNumOperands();
2566 for (int I = 0; I < N; I++)
2567 if (MI2.getOperand(I).isReg() && DstReg == MI2.getOperand(I).getReg())
2568 return true;
2569 }
2570 if (mayBeNewStore(MI2))
2571 if (MI2.getOpcode() == Hexagon::V6_vS32b_pi)
2572 if (MI1.getOperand(0).isReg() && MI2.getOperand(3).isReg() &&
2573 MI1.getOperand(0).getReg() == MI2.getOperand(3).getReg())
2574 return true;
2575 return false;
2576 }
2577
isHVXVec(const MachineInstr & MI) const2578 bool HexagonInstrInfo::isHVXVec(const MachineInstr &MI) const {
2579 const uint64_t V = getType(MI);
2580 return HexagonII::TypeCVI_FIRST <= V && V <= HexagonII::TypeCVI_LAST;
2581 }
2582
2583 // Check if the Offset is a valid auto-inc imm by Load/Store Type.
isValidAutoIncImm(const EVT VT,int Offset) const2584 bool HexagonInstrInfo::isValidAutoIncImm(const EVT VT, int Offset) const {
2585 int Size = VT.getSizeInBits() / 8;
2586 if (Offset % Size != 0)
2587 return false;
2588 int Count = Offset / Size;
2589
2590 switch (VT.getSimpleVT().SimpleTy) {
2591 // For scalars the auto-inc is s4
2592 case MVT::i8:
2593 case MVT::i16:
2594 case MVT::i32:
2595 case MVT::i64:
2596 case MVT::f32:
2597 case MVT::f64:
2598 case MVT::v2i16:
2599 case MVT::v2i32:
2600 case MVT::v4i8:
2601 case MVT::v4i16:
2602 case MVT::v8i8:
2603 return isInt<4>(Count);
2604 // For HVX vectors the auto-inc is s3
2605 case MVT::v64i8:
2606 case MVT::v32i16:
2607 case MVT::v16i32:
2608 case MVT::v8i64:
2609 case MVT::v128i8:
2610 case MVT::v64i16:
2611 case MVT::v32i32:
2612 case MVT::v16i64:
2613 return isInt<3>(Count);
2614 default:
2615 break;
2616 }
2617
2618 llvm_unreachable("Not an valid type!");
2619 }
2620
isValidOffset(unsigned Opcode,int Offset,const TargetRegisterInfo * TRI,bool Extend) const2621 bool HexagonInstrInfo::isValidOffset(unsigned Opcode, int Offset,
2622 const TargetRegisterInfo *TRI, bool Extend) const {
2623 // This function is to check whether the "Offset" is in the correct range of
2624 // the given "Opcode". If "Offset" is not in the correct range, "A2_addi" is
2625 // inserted to calculate the final address. Due to this reason, the function
2626 // assumes that the "Offset" has correct alignment.
2627 // We used to assert if the offset was not properly aligned, however,
2628 // there are cases where a misaligned pointer recast can cause this
2629 // problem, and we need to allow for it. The front end warns of such
2630 // misaligns with respect to load size.
2631 switch (Opcode) {
2632 case Hexagon::PS_vstorerq_ai:
2633 case Hexagon::PS_vstorerw_ai:
2634 case Hexagon::PS_vstorerw_nt_ai:
2635 case Hexagon::PS_vloadrq_ai:
2636 case Hexagon::PS_vloadrw_ai:
2637 case Hexagon::PS_vloadrw_nt_ai:
2638 case Hexagon::V6_vL32b_ai:
2639 case Hexagon::V6_vS32b_ai:
2640 case Hexagon::V6_vL32b_nt_ai:
2641 case Hexagon::V6_vS32b_nt_ai:
2642 case Hexagon::V6_vL32Ub_ai:
2643 case Hexagon::V6_vS32Ub_ai: {
2644 unsigned VectorSize = TRI->getSpillSize(Hexagon::HvxVRRegClass);
2645 assert(isPowerOf2_32(VectorSize));
2646 if (Offset & (VectorSize-1))
2647 return false;
2648 return isInt<4>(Offset >> Log2_32(VectorSize));
2649 }
2650
2651 case Hexagon::J2_loop0i:
2652 case Hexagon::J2_loop1i:
2653 return isUInt<10>(Offset);
2654
2655 case Hexagon::S4_storeirb_io:
2656 case Hexagon::S4_storeirbt_io:
2657 case Hexagon::S4_storeirbf_io:
2658 return isUInt<6>(Offset);
2659
2660 case Hexagon::S4_storeirh_io:
2661 case Hexagon::S4_storeirht_io:
2662 case Hexagon::S4_storeirhf_io:
2663 return isShiftedUInt<6,1>(Offset);
2664
2665 case Hexagon::S4_storeiri_io:
2666 case Hexagon::S4_storeirit_io:
2667 case Hexagon::S4_storeirif_io:
2668 return isShiftedUInt<6,2>(Offset);
2669 }
2670
2671 if (Extend)
2672 return true;
2673
2674 switch (Opcode) {
2675 case Hexagon::L2_loadri_io:
2676 case Hexagon::S2_storeri_io:
2677 return (Offset >= Hexagon_MEMW_OFFSET_MIN) &&
2678 (Offset <= Hexagon_MEMW_OFFSET_MAX);
2679
2680 case Hexagon::L2_loadrd_io:
2681 case Hexagon::S2_storerd_io:
2682 return (Offset >= Hexagon_MEMD_OFFSET_MIN) &&
2683 (Offset <= Hexagon_MEMD_OFFSET_MAX);
2684
2685 case Hexagon::L2_loadrh_io:
2686 case Hexagon::L2_loadruh_io:
2687 case Hexagon::S2_storerh_io:
2688 case Hexagon::S2_storerf_io:
2689 return (Offset >= Hexagon_MEMH_OFFSET_MIN) &&
2690 (Offset <= Hexagon_MEMH_OFFSET_MAX);
2691
2692 case Hexagon::L2_loadrb_io:
2693 case Hexagon::L2_loadrub_io:
2694 case Hexagon::S2_storerb_io:
2695 return (Offset >= Hexagon_MEMB_OFFSET_MIN) &&
2696 (Offset <= Hexagon_MEMB_OFFSET_MAX);
2697
2698 case Hexagon::A2_addi:
2699 return (Offset >= Hexagon_ADDI_OFFSET_MIN) &&
2700 (Offset <= Hexagon_ADDI_OFFSET_MAX);
2701
2702 case Hexagon::L4_iadd_memopw_io:
2703 case Hexagon::L4_isub_memopw_io:
2704 case Hexagon::L4_add_memopw_io:
2705 case Hexagon::L4_sub_memopw_io:
2706 case Hexagon::L4_and_memopw_io:
2707 case Hexagon::L4_or_memopw_io:
2708 return (0 <= Offset && Offset <= 255);
2709
2710 case Hexagon::L4_iadd_memoph_io:
2711 case Hexagon::L4_isub_memoph_io:
2712 case Hexagon::L4_add_memoph_io:
2713 case Hexagon::L4_sub_memoph_io:
2714 case Hexagon::L4_and_memoph_io:
2715 case Hexagon::L4_or_memoph_io:
2716 return (0 <= Offset && Offset <= 127);
2717
2718 case Hexagon::L4_iadd_memopb_io:
2719 case Hexagon::L4_isub_memopb_io:
2720 case Hexagon::L4_add_memopb_io:
2721 case Hexagon::L4_sub_memopb_io:
2722 case Hexagon::L4_and_memopb_io:
2723 case Hexagon::L4_or_memopb_io:
2724 return (0 <= Offset && Offset <= 63);
2725
2726 // LDriw_xxx and STriw_xxx are pseudo operations, so it has to take offset of
2727 // any size. Later pass knows how to handle it.
2728 case Hexagon::STriw_pred:
2729 case Hexagon::LDriw_pred:
2730 case Hexagon::STriw_ctr:
2731 case Hexagon::LDriw_ctr:
2732 return true;
2733
2734 case Hexagon::PS_fi:
2735 case Hexagon::PS_fia:
2736 case Hexagon::INLINEASM:
2737 return true;
2738
2739 case Hexagon::L2_ploadrbt_io:
2740 case Hexagon::L2_ploadrbf_io:
2741 case Hexagon::L2_ploadrubt_io:
2742 case Hexagon::L2_ploadrubf_io:
2743 case Hexagon::S2_pstorerbt_io:
2744 case Hexagon::S2_pstorerbf_io:
2745 return isUInt<6>(Offset);
2746
2747 case Hexagon::L2_ploadrht_io:
2748 case Hexagon::L2_ploadrhf_io:
2749 case Hexagon::L2_ploadruht_io:
2750 case Hexagon::L2_ploadruhf_io:
2751 case Hexagon::S2_pstorerht_io:
2752 case Hexagon::S2_pstorerhf_io:
2753 return isShiftedUInt<6,1>(Offset);
2754
2755 case Hexagon::L2_ploadrit_io:
2756 case Hexagon::L2_ploadrif_io:
2757 case Hexagon::S2_pstorerit_io:
2758 case Hexagon::S2_pstorerif_io:
2759 return isShiftedUInt<6,2>(Offset);
2760
2761 case Hexagon::L2_ploadrdt_io:
2762 case Hexagon::L2_ploadrdf_io:
2763 case Hexagon::S2_pstorerdt_io:
2764 case Hexagon::S2_pstorerdf_io:
2765 return isShiftedUInt<6,3>(Offset);
2766 } // switch
2767
2768 llvm_unreachable("No offset range is defined for this opcode. "
2769 "Please define it in the above switch statement!");
2770 }
2771
isVecAcc(const MachineInstr & MI) const2772 bool HexagonInstrInfo::isVecAcc(const MachineInstr &MI) const {
2773 return isHVXVec(MI) && isAccumulator(MI);
2774 }
2775
isVecALU(const MachineInstr & MI) const2776 bool HexagonInstrInfo::isVecALU(const MachineInstr &MI) const {
2777 const uint64_t F = get(MI.getOpcode()).TSFlags;
2778 const uint64_t V = ((F >> HexagonII::TypePos) & HexagonII::TypeMask);
2779 return
2780 V == HexagonII::TypeCVI_VA ||
2781 V == HexagonII::TypeCVI_VA_DV;
2782 }
2783
isVecUsableNextPacket(const MachineInstr & ProdMI,const MachineInstr & ConsMI) const2784 bool HexagonInstrInfo::isVecUsableNextPacket(const MachineInstr &ProdMI,
2785 const MachineInstr &ConsMI) const {
2786 if (EnableACCForwarding && isVecAcc(ProdMI) && isVecAcc(ConsMI))
2787 return true;
2788
2789 if (EnableALUForwarding && (isVecALU(ConsMI) || isLateSourceInstr(ConsMI)))
2790 return true;
2791
2792 if (mayBeNewStore(ConsMI))
2793 return true;
2794
2795 return false;
2796 }
2797
isZeroExtendingLoad(const MachineInstr & MI) const2798 bool HexagonInstrInfo::isZeroExtendingLoad(const MachineInstr &MI) const {
2799 switch (MI.getOpcode()) {
2800 // Byte
2801 case Hexagon::L2_loadrub_io:
2802 case Hexagon::L4_loadrub_ur:
2803 case Hexagon::L4_loadrub_ap:
2804 case Hexagon::L2_loadrub_pr:
2805 case Hexagon::L2_loadrub_pbr:
2806 case Hexagon::L2_loadrub_pi:
2807 case Hexagon::L2_loadrub_pci:
2808 case Hexagon::L2_loadrub_pcr:
2809 case Hexagon::L2_loadbzw2_io:
2810 case Hexagon::L4_loadbzw2_ur:
2811 case Hexagon::L4_loadbzw2_ap:
2812 case Hexagon::L2_loadbzw2_pr:
2813 case Hexagon::L2_loadbzw2_pbr:
2814 case Hexagon::L2_loadbzw2_pi:
2815 case Hexagon::L2_loadbzw2_pci:
2816 case Hexagon::L2_loadbzw2_pcr:
2817 case Hexagon::L2_loadbzw4_io:
2818 case Hexagon::L4_loadbzw4_ur:
2819 case Hexagon::L4_loadbzw4_ap:
2820 case Hexagon::L2_loadbzw4_pr:
2821 case Hexagon::L2_loadbzw4_pbr:
2822 case Hexagon::L2_loadbzw4_pi:
2823 case Hexagon::L2_loadbzw4_pci:
2824 case Hexagon::L2_loadbzw4_pcr:
2825 case Hexagon::L4_loadrub_rr:
2826 case Hexagon::L2_ploadrubt_io:
2827 case Hexagon::L2_ploadrubt_pi:
2828 case Hexagon::L2_ploadrubf_io:
2829 case Hexagon::L2_ploadrubf_pi:
2830 case Hexagon::L2_ploadrubtnew_io:
2831 case Hexagon::L2_ploadrubfnew_io:
2832 case Hexagon::L4_ploadrubt_rr:
2833 case Hexagon::L4_ploadrubf_rr:
2834 case Hexagon::L4_ploadrubtnew_rr:
2835 case Hexagon::L4_ploadrubfnew_rr:
2836 case Hexagon::L2_ploadrubtnew_pi:
2837 case Hexagon::L2_ploadrubfnew_pi:
2838 case Hexagon::L4_ploadrubt_abs:
2839 case Hexagon::L4_ploadrubf_abs:
2840 case Hexagon::L4_ploadrubtnew_abs:
2841 case Hexagon::L4_ploadrubfnew_abs:
2842 case Hexagon::L2_loadrubgp:
2843 // Half
2844 case Hexagon::L2_loadruh_io:
2845 case Hexagon::L4_loadruh_ur:
2846 case Hexagon::L4_loadruh_ap:
2847 case Hexagon::L2_loadruh_pr:
2848 case Hexagon::L2_loadruh_pbr:
2849 case Hexagon::L2_loadruh_pi:
2850 case Hexagon::L2_loadruh_pci:
2851 case Hexagon::L2_loadruh_pcr:
2852 case Hexagon::L4_loadruh_rr:
2853 case Hexagon::L2_ploadruht_io:
2854 case Hexagon::L2_ploadruht_pi:
2855 case Hexagon::L2_ploadruhf_io:
2856 case Hexagon::L2_ploadruhf_pi:
2857 case Hexagon::L2_ploadruhtnew_io:
2858 case Hexagon::L2_ploadruhfnew_io:
2859 case Hexagon::L4_ploadruht_rr:
2860 case Hexagon::L4_ploadruhf_rr:
2861 case Hexagon::L4_ploadruhtnew_rr:
2862 case Hexagon::L4_ploadruhfnew_rr:
2863 case Hexagon::L2_ploadruhtnew_pi:
2864 case Hexagon::L2_ploadruhfnew_pi:
2865 case Hexagon::L4_ploadruht_abs:
2866 case Hexagon::L4_ploadruhf_abs:
2867 case Hexagon::L4_ploadruhtnew_abs:
2868 case Hexagon::L4_ploadruhfnew_abs:
2869 case Hexagon::L2_loadruhgp:
2870 return true;
2871 default:
2872 return false;
2873 }
2874 }
2875
2876 // Add latency to instruction.
addLatencyToSchedule(const MachineInstr & MI1,const MachineInstr & MI2) const2877 bool HexagonInstrInfo::addLatencyToSchedule(const MachineInstr &MI1,
2878 const MachineInstr &MI2) const {
2879 if (isHVXVec(MI1) && isHVXVec(MI2))
2880 if (!isVecUsableNextPacket(MI1, MI2))
2881 return true;
2882 return false;
2883 }
2884
2885 /// Get the base register and byte offset of a load/store instr.
getMemOpBaseRegImmOfs(MachineInstr & LdSt,unsigned & BaseReg,int64_t & Offset,const TargetRegisterInfo * TRI) const2886 bool HexagonInstrInfo::getMemOpBaseRegImmOfs(MachineInstr &LdSt,
2887 unsigned &BaseReg, int64_t &Offset, const TargetRegisterInfo *TRI)
2888 const {
2889 unsigned AccessSize = 0;
2890 int OffsetVal = 0;
2891 BaseReg = getBaseAndOffset(LdSt, OffsetVal, AccessSize);
2892 Offset = OffsetVal;
2893 return BaseReg != 0;
2894 }
2895
2896 /// Can these instructions execute at the same time in a bundle.
canExecuteInBundle(const MachineInstr & First,const MachineInstr & Second) const2897 bool HexagonInstrInfo::canExecuteInBundle(const MachineInstr &First,
2898 const MachineInstr &Second) const {
2899 if (Second.mayStore() && First.getOpcode() == Hexagon::S2_allocframe) {
2900 const MachineOperand &Op = Second.getOperand(0);
2901 if (Op.isReg() && Op.isUse() && Op.getReg() == Hexagon::R29)
2902 return true;
2903 }
2904 if (DisableNVSchedule)
2905 return false;
2906 if (mayBeNewStore(Second)) {
2907 // Make sure the definition of the first instruction is the value being
2908 // stored.
2909 const MachineOperand &Stored =
2910 Second.getOperand(Second.getNumOperands() - 1);
2911 if (!Stored.isReg())
2912 return false;
2913 for (unsigned i = 0, e = First.getNumOperands(); i < e; ++i) {
2914 const MachineOperand &Op = First.getOperand(i);
2915 if (Op.isReg() && Op.isDef() && Op.getReg() == Stored.getReg())
2916 return true;
2917 }
2918 }
2919 return false;
2920 }
2921
doesNotReturn(const MachineInstr & CallMI) const2922 bool HexagonInstrInfo::doesNotReturn(const MachineInstr &CallMI) const {
2923 unsigned Opc = CallMI.getOpcode();
2924 return Opc == Hexagon::PS_call_nr || Opc == Hexagon::PS_callr_nr;
2925 }
2926
hasEHLabel(const MachineBasicBlock * B) const2927 bool HexagonInstrInfo::hasEHLabel(const MachineBasicBlock *B) const {
2928 for (auto &I : *B)
2929 if (I.isEHLabel())
2930 return true;
2931 return false;
2932 }
2933
2934 // Returns true if an instruction can be converted into a non-extended
2935 // equivalent instruction.
hasNonExtEquivalent(const MachineInstr & MI) const2936 bool HexagonInstrInfo::hasNonExtEquivalent(const MachineInstr &MI) const {
2937 short NonExtOpcode;
2938 // Check if the instruction has a register form that uses register in place
2939 // of the extended operand, if so return that as the non-extended form.
2940 if (Hexagon::getRegForm(MI.getOpcode()) >= 0)
2941 return true;
2942
2943 if (MI.getDesc().mayLoad() || MI.getDesc().mayStore()) {
2944 // Check addressing mode and retrieve non-ext equivalent instruction.
2945
2946 switch (getAddrMode(MI)) {
2947 case HexagonII::Absolute:
2948 // Load/store with absolute addressing mode can be converted into
2949 // base+offset mode.
2950 NonExtOpcode = Hexagon::changeAddrMode_abs_io(MI.getOpcode());
2951 break;
2952 case HexagonII::BaseImmOffset:
2953 // Load/store with base+offset addressing mode can be converted into
2954 // base+register offset addressing mode. However left shift operand should
2955 // be set to 0.
2956 NonExtOpcode = Hexagon::changeAddrMode_io_rr(MI.getOpcode());
2957 break;
2958 case HexagonII::BaseLongOffset:
2959 NonExtOpcode = Hexagon::changeAddrMode_ur_rr(MI.getOpcode());
2960 break;
2961 default:
2962 return false;
2963 }
2964 if (NonExtOpcode < 0)
2965 return false;
2966 return true;
2967 }
2968 return false;
2969 }
2970
hasPseudoInstrPair(const MachineInstr & MI) const2971 bool HexagonInstrInfo::hasPseudoInstrPair(const MachineInstr &MI) const {
2972 return Hexagon::getRealHWInstr(MI.getOpcode(),
2973 Hexagon::InstrType_Pseudo) >= 0;
2974 }
2975
hasUncondBranch(const MachineBasicBlock * B) const2976 bool HexagonInstrInfo::hasUncondBranch(const MachineBasicBlock *B)
2977 const {
2978 MachineBasicBlock::const_iterator I = B->getFirstTerminator(), E = B->end();
2979 while (I != E) {
2980 if (I->isBarrier())
2981 return true;
2982 ++I;
2983 }
2984 return false;
2985 }
2986
2987 // Returns true, if a LD insn can be promoted to a cur load.
mayBeCurLoad(const MachineInstr & MI) const2988 bool HexagonInstrInfo::mayBeCurLoad(const MachineInstr &MI) const {
2989 const uint64_t F = MI.getDesc().TSFlags;
2990 return ((F >> HexagonII::mayCVLoadPos) & HexagonII::mayCVLoadMask) &&
2991 Subtarget.hasV60Ops();
2992 }
2993
2994 // Returns true, if a ST insn can be promoted to a new-value store.
mayBeNewStore(const MachineInstr & MI) const2995 bool HexagonInstrInfo::mayBeNewStore(const MachineInstr &MI) const {
2996 if (MI.mayStore() && !Subtarget.useNewValueStores())
2997 return false;
2998
2999 const uint64_t F = MI.getDesc().TSFlags;
3000 return (F >> HexagonII::mayNVStorePos) & HexagonII::mayNVStoreMask;
3001 }
3002
producesStall(const MachineInstr & ProdMI,const MachineInstr & ConsMI) const3003 bool HexagonInstrInfo::producesStall(const MachineInstr &ProdMI,
3004 const MachineInstr &ConsMI) const {
3005 // There is no stall when ProdMI is not a V60 vector.
3006 if (!isHVXVec(ProdMI))
3007 return false;
3008
3009 // There is no stall when ProdMI and ConsMI are not dependent.
3010 if (!isDependent(ProdMI, ConsMI))
3011 return false;
3012
3013 // When Forward Scheduling is enabled, there is no stall if ProdMI and ConsMI
3014 // are scheduled in consecutive packets.
3015 if (isVecUsableNextPacket(ProdMI, ConsMI))
3016 return false;
3017
3018 return true;
3019 }
3020
producesStall(const MachineInstr & MI,MachineBasicBlock::const_instr_iterator BII) const3021 bool HexagonInstrInfo::producesStall(const MachineInstr &MI,
3022 MachineBasicBlock::const_instr_iterator BII) const {
3023 // There is no stall when I is not a V60 vector.
3024 if (!isHVXVec(MI))
3025 return false;
3026
3027 MachineBasicBlock::const_instr_iterator MII = BII;
3028 MachineBasicBlock::const_instr_iterator MIE = MII->getParent()->instr_end();
3029
3030 if (!MII->isBundle())
3031 return producesStall(*MII, MI);
3032
3033 for (++MII; MII != MIE && MII->isInsideBundle(); ++MII) {
3034 const MachineInstr &J = *MII;
3035 if (producesStall(J, MI))
3036 return true;
3037 }
3038 return false;
3039 }
3040
predCanBeUsedAsDotNew(const MachineInstr & MI,unsigned PredReg) const3041 bool HexagonInstrInfo::predCanBeUsedAsDotNew(const MachineInstr &MI,
3042 unsigned PredReg) const {
3043 for (const MachineOperand &MO : MI.operands()) {
3044 // Predicate register must be explicitly defined.
3045 if (MO.isRegMask() && MO.clobbersPhysReg(PredReg))
3046 return false;
3047 if (MO.isReg() && MO.isDef() && MO.isImplicit() && (MO.getReg() == PredReg))
3048 return false;
3049 }
3050
3051 // Instruction that produce late predicate cannot be used as sources of
3052 // dot-new.
3053 switch (MI.getOpcode()) {
3054 case Hexagon::A4_addp_c:
3055 case Hexagon::A4_subp_c:
3056 case Hexagon::A4_tlbmatch:
3057 case Hexagon::A5_ACS:
3058 case Hexagon::F2_sfinvsqrta:
3059 case Hexagon::F2_sfrecipa:
3060 case Hexagon::J2_endloop0:
3061 case Hexagon::J2_endloop01:
3062 case Hexagon::J2_ploop1si:
3063 case Hexagon::J2_ploop1sr:
3064 case Hexagon::J2_ploop2si:
3065 case Hexagon::J2_ploop2sr:
3066 case Hexagon::J2_ploop3si:
3067 case Hexagon::J2_ploop3sr:
3068 case Hexagon::S2_cabacdecbin:
3069 case Hexagon::S2_storew_locked:
3070 case Hexagon::S4_stored_locked:
3071 return false;
3072 }
3073 return true;
3074 }
3075
PredOpcodeHasJMP_c(unsigned Opcode) const3076 bool HexagonInstrInfo::PredOpcodeHasJMP_c(unsigned Opcode) const {
3077 return Opcode == Hexagon::J2_jumpt ||
3078 Opcode == Hexagon::J2_jumptpt ||
3079 Opcode == Hexagon::J2_jumpf ||
3080 Opcode == Hexagon::J2_jumpfpt ||
3081 Opcode == Hexagon::J2_jumptnew ||
3082 Opcode == Hexagon::J2_jumpfnew ||
3083 Opcode == Hexagon::J2_jumptnewpt ||
3084 Opcode == Hexagon::J2_jumpfnewpt;
3085 }
3086
predOpcodeHasNot(ArrayRef<MachineOperand> Cond) const3087 bool HexagonInstrInfo::predOpcodeHasNot(ArrayRef<MachineOperand> Cond) const {
3088 if (Cond.empty() || !isPredicated(Cond[0].getImm()))
3089 return false;
3090 return !isPredicatedTrue(Cond[0].getImm());
3091 }
3092
getAddrMode(const MachineInstr & MI) const3093 unsigned HexagonInstrInfo::getAddrMode(const MachineInstr &MI) const {
3094 const uint64_t F = MI.getDesc().TSFlags;
3095 return (F >> HexagonII::AddrModePos) & HexagonII::AddrModeMask;
3096 }
3097
3098 // Returns the base register in a memory access (load/store). The offset is
3099 // returned in Offset and the access size is returned in AccessSize.
3100 // If the base register has a subregister or the offset field does not contain
3101 // an immediate value, return 0.
getBaseAndOffset(const MachineInstr & MI,int & Offset,unsigned & AccessSize) const3102 unsigned HexagonInstrInfo::getBaseAndOffset(const MachineInstr &MI,
3103 int &Offset, unsigned &AccessSize) const {
3104 // Return if it is not a base+offset type instruction or a MemOp.
3105 if (getAddrMode(MI) != HexagonII::BaseImmOffset &&
3106 getAddrMode(MI) != HexagonII::BaseLongOffset &&
3107 !isMemOp(MI) && !isPostIncrement(MI))
3108 return 0;
3109
3110 AccessSize = getMemAccessSize(MI);
3111
3112 unsigned BasePos = 0, OffsetPos = 0;
3113 if (!getBaseAndOffsetPosition(MI, BasePos, OffsetPos))
3114 return 0;
3115
3116 // Post increment updates its EA after the mem access,
3117 // so we need to treat its offset as zero.
3118 if (isPostIncrement(MI)) {
3119 Offset = 0;
3120 } else {
3121 const MachineOperand &OffsetOp = MI.getOperand(OffsetPos);
3122 if (!OffsetOp.isImm())
3123 return 0;
3124 Offset = OffsetOp.getImm();
3125 }
3126
3127 const MachineOperand &BaseOp = MI.getOperand(BasePos);
3128 if (BaseOp.getSubReg() != 0)
3129 return 0;
3130 return BaseOp.getReg();
3131 }
3132
3133 /// Return the position of the base and offset operands for this instruction.
getBaseAndOffsetPosition(const MachineInstr & MI,unsigned & BasePos,unsigned & OffsetPos) const3134 bool HexagonInstrInfo::getBaseAndOffsetPosition(const MachineInstr &MI,
3135 unsigned &BasePos, unsigned &OffsetPos) const {
3136 if (!isAddrModeWithOffset(MI) && !isPostIncrement(MI))
3137 return false;
3138
3139 // Deal with memops first.
3140 if (isMemOp(MI)) {
3141 BasePos = 0;
3142 OffsetPos = 1;
3143 } else if (MI.mayStore()) {
3144 BasePos = 0;
3145 OffsetPos = 1;
3146 } else if (MI.mayLoad()) {
3147 BasePos = 1;
3148 OffsetPos = 2;
3149 } else
3150 return false;
3151
3152 if (isPredicated(MI)) {
3153 BasePos++;
3154 OffsetPos++;
3155 }
3156 if (isPostIncrement(MI)) {
3157 BasePos++;
3158 OffsetPos++;
3159 }
3160
3161 if (!MI.getOperand(BasePos).isReg() || !MI.getOperand(OffsetPos).isImm())
3162 return false;
3163
3164 return true;
3165 }
3166
3167 // Inserts branching instructions in reverse order of their occurrence.
3168 // e.g. jump_t t1 (i1)
3169 // jump t2 (i2)
3170 // Jumpers = {i2, i1}
getBranchingInstrs(MachineBasicBlock & MBB) const3171 SmallVector<MachineInstr*, 2> HexagonInstrInfo::getBranchingInstrs(
3172 MachineBasicBlock& MBB) const {
3173 SmallVector<MachineInstr*, 2> Jumpers;
3174 // If the block has no terminators, it just falls into the block after it.
3175 MachineBasicBlock::instr_iterator I = MBB.instr_end();
3176 if (I == MBB.instr_begin())
3177 return Jumpers;
3178
3179 // A basic block may looks like this:
3180 //
3181 // [ insn
3182 // EH_LABEL
3183 // insn
3184 // insn
3185 // insn
3186 // EH_LABEL
3187 // insn ]
3188 //
3189 // It has two succs but does not have a terminator
3190 // Don't know how to handle it.
3191 do {
3192 --I;
3193 if (I->isEHLabel())
3194 return Jumpers;
3195 } while (I != MBB.instr_begin());
3196
3197 I = MBB.instr_end();
3198 --I;
3199
3200 while (I->isDebugInstr()) {
3201 if (I == MBB.instr_begin())
3202 return Jumpers;
3203 --I;
3204 }
3205 if (!isUnpredicatedTerminator(*I))
3206 return Jumpers;
3207
3208 // Get the last instruction in the block.
3209 MachineInstr *LastInst = &*I;
3210 Jumpers.push_back(LastInst);
3211 MachineInstr *SecondLastInst = nullptr;
3212 // Find one more terminator if present.
3213 do {
3214 if (&*I != LastInst && !I->isBundle() && isUnpredicatedTerminator(*I)) {
3215 if (!SecondLastInst) {
3216 SecondLastInst = &*I;
3217 Jumpers.push_back(SecondLastInst);
3218 } else // This is a third branch.
3219 return Jumpers;
3220 }
3221 if (I == MBB.instr_begin())
3222 break;
3223 --I;
3224 } while (true);
3225 return Jumpers;
3226 }
3227
3228 // Returns Operand Index for the constant extended instruction.
getCExtOpNum(const MachineInstr & MI) const3229 unsigned HexagonInstrInfo::getCExtOpNum(const MachineInstr &MI) const {
3230 const uint64_t F = MI.getDesc().TSFlags;
3231 return (F >> HexagonII::ExtendableOpPos) & HexagonII::ExtendableOpMask;
3232 }
3233
3234 // See if instruction could potentially be a duplex candidate.
3235 // If so, return its group. Zero otherwise.
getCompoundCandidateGroup(const MachineInstr & MI) const3236 HexagonII::CompoundGroup HexagonInstrInfo::getCompoundCandidateGroup(
3237 const MachineInstr &MI) const {
3238 unsigned DstReg, SrcReg, Src1Reg, Src2Reg;
3239
3240 switch (MI.getOpcode()) {
3241 default:
3242 return HexagonII::HCG_None;
3243 //
3244 // Compound pairs.
3245 // "p0=cmp.eq(Rs16,Rt16); if (p0.new) jump:nt #r9:2"
3246 // "Rd16=#U6 ; jump #r9:2"
3247 // "Rd16=Rs16 ; jump #r9:2"
3248 //
3249 case Hexagon::C2_cmpeq:
3250 case Hexagon::C2_cmpgt:
3251 case Hexagon::C2_cmpgtu:
3252 DstReg = MI.getOperand(0).getReg();
3253 Src1Reg = MI.getOperand(1).getReg();
3254 Src2Reg = MI.getOperand(2).getReg();
3255 if (Hexagon::PredRegsRegClass.contains(DstReg) &&
3256 (Hexagon::P0 == DstReg || Hexagon::P1 == DstReg) &&
3257 isIntRegForSubInst(Src1Reg) && isIntRegForSubInst(Src2Reg))
3258 return HexagonII::HCG_A;
3259 break;
3260 case Hexagon::C2_cmpeqi:
3261 case Hexagon::C2_cmpgti:
3262 case Hexagon::C2_cmpgtui:
3263 // P0 = cmp.eq(Rs,#u2)
3264 DstReg = MI.getOperand(0).getReg();
3265 SrcReg = MI.getOperand(1).getReg();
3266 if (Hexagon::PredRegsRegClass.contains(DstReg) &&
3267 (Hexagon::P0 == DstReg || Hexagon::P1 == DstReg) &&
3268 isIntRegForSubInst(SrcReg) && MI.getOperand(2).isImm() &&
3269 ((isUInt<5>(MI.getOperand(2).getImm())) ||
3270 (MI.getOperand(2).getImm() == -1)))
3271 return HexagonII::HCG_A;
3272 break;
3273 case Hexagon::A2_tfr:
3274 // Rd = Rs
3275 DstReg = MI.getOperand(0).getReg();
3276 SrcReg = MI.getOperand(1).getReg();
3277 if (isIntRegForSubInst(DstReg) && isIntRegForSubInst(SrcReg))
3278 return HexagonII::HCG_A;
3279 break;
3280 case Hexagon::A2_tfrsi:
3281 // Rd = #u6
3282 // Do not test for #u6 size since the const is getting extended
3283 // regardless and compound could be formed.
3284 DstReg = MI.getOperand(0).getReg();
3285 if (isIntRegForSubInst(DstReg))
3286 return HexagonII::HCG_A;
3287 break;
3288 case Hexagon::S2_tstbit_i:
3289 DstReg = MI.getOperand(0).getReg();
3290 Src1Reg = MI.getOperand(1).getReg();
3291 if (Hexagon::PredRegsRegClass.contains(DstReg) &&
3292 (Hexagon::P0 == DstReg || Hexagon::P1 == DstReg) &&
3293 MI.getOperand(2).isImm() &&
3294 isIntRegForSubInst(Src1Reg) && (MI.getOperand(2).getImm() == 0))
3295 return HexagonII::HCG_A;
3296 break;
3297 // The fact that .new form is used pretty much guarantees
3298 // that predicate register will match. Nevertheless,
3299 // there could be some false positives without additional
3300 // checking.
3301 case Hexagon::J2_jumptnew:
3302 case Hexagon::J2_jumpfnew:
3303 case Hexagon::J2_jumptnewpt:
3304 case Hexagon::J2_jumpfnewpt:
3305 Src1Reg = MI.getOperand(0).getReg();
3306 if (Hexagon::PredRegsRegClass.contains(Src1Reg) &&
3307 (Hexagon::P0 == Src1Reg || Hexagon::P1 == Src1Reg))
3308 return HexagonII::HCG_B;
3309 break;
3310 // Transfer and jump:
3311 // Rd=#U6 ; jump #r9:2
3312 // Rd=Rs ; jump #r9:2
3313 // Do not test for jump range here.
3314 case Hexagon::J2_jump:
3315 case Hexagon::RESTORE_DEALLOC_RET_JMP_V4:
3316 case Hexagon::RESTORE_DEALLOC_RET_JMP_V4_PIC:
3317 return HexagonII::HCG_C;
3318 }
3319
3320 return HexagonII::HCG_None;
3321 }
3322
3323 // Returns -1 when there is no opcode found.
getCompoundOpcode(const MachineInstr & GA,const MachineInstr & GB) const3324 unsigned HexagonInstrInfo::getCompoundOpcode(const MachineInstr &GA,
3325 const MachineInstr &GB) const {
3326 assert(getCompoundCandidateGroup(GA) == HexagonII::HCG_A);
3327 assert(getCompoundCandidateGroup(GB) == HexagonII::HCG_B);
3328 if ((GA.getOpcode() != Hexagon::C2_cmpeqi) ||
3329 (GB.getOpcode() != Hexagon::J2_jumptnew))
3330 return -1u;
3331 unsigned DestReg = GA.getOperand(0).getReg();
3332 if (!GB.readsRegister(DestReg))
3333 return -1u;
3334 if (DestReg != Hexagon::P0 && DestReg != Hexagon::P1)
3335 return -1u;
3336 // The value compared against must be either u5 or -1.
3337 const MachineOperand &CmpOp = GA.getOperand(2);
3338 if (!CmpOp.isImm())
3339 return -1u;
3340 int V = CmpOp.getImm();
3341 if (V == -1)
3342 return DestReg == Hexagon::P0 ? Hexagon::J4_cmpeqn1_tp0_jump_nt
3343 : Hexagon::J4_cmpeqn1_tp1_jump_nt;
3344 if (!isUInt<5>(V))
3345 return -1u;
3346 return DestReg == Hexagon::P0 ? Hexagon::J4_cmpeqi_tp0_jump_nt
3347 : Hexagon::J4_cmpeqi_tp1_jump_nt;
3348 }
3349
getCondOpcode(int Opc,bool invertPredicate) const3350 int HexagonInstrInfo::getCondOpcode(int Opc, bool invertPredicate) const {
3351 enum Hexagon::PredSense inPredSense;
3352 inPredSense = invertPredicate ? Hexagon::PredSense_false :
3353 Hexagon::PredSense_true;
3354 int CondOpcode = Hexagon::getPredOpcode(Opc, inPredSense);
3355 if (CondOpcode >= 0) // Valid Conditional opcode/instruction
3356 return CondOpcode;
3357
3358 llvm_unreachable("Unexpected predicable instruction");
3359 }
3360
3361 // Return the cur value instruction for a given store.
getDotCurOp(const MachineInstr & MI) const3362 int HexagonInstrInfo::getDotCurOp(const MachineInstr &MI) const {
3363 switch (MI.getOpcode()) {
3364 default: llvm_unreachable("Unknown .cur type");
3365 case Hexagon::V6_vL32b_pi:
3366 return Hexagon::V6_vL32b_cur_pi;
3367 case Hexagon::V6_vL32b_ai:
3368 return Hexagon::V6_vL32b_cur_ai;
3369 case Hexagon::V6_vL32b_nt_pi:
3370 return Hexagon::V6_vL32b_nt_cur_pi;
3371 case Hexagon::V6_vL32b_nt_ai:
3372 return Hexagon::V6_vL32b_nt_cur_ai;
3373 }
3374 return 0;
3375 }
3376
3377 // Return the regular version of the .cur instruction.
getNonDotCurOp(const MachineInstr & MI) const3378 int HexagonInstrInfo::getNonDotCurOp(const MachineInstr &MI) const {
3379 switch (MI.getOpcode()) {
3380 default: llvm_unreachable("Unknown .cur type");
3381 case Hexagon::V6_vL32b_cur_pi:
3382 return Hexagon::V6_vL32b_pi;
3383 case Hexagon::V6_vL32b_cur_ai:
3384 return Hexagon::V6_vL32b_ai;
3385 case Hexagon::V6_vL32b_nt_cur_pi:
3386 return Hexagon::V6_vL32b_nt_pi;
3387 case Hexagon::V6_vL32b_nt_cur_ai:
3388 return Hexagon::V6_vL32b_nt_ai;
3389 }
3390 return 0;
3391 }
3392
3393 // The diagram below shows the steps involved in the conversion of a predicated
3394 // store instruction to its .new predicated new-value form.
3395 //
3396 // Note: It doesn't include conditional new-value stores as they can't be
3397 // converted to .new predicate.
3398 //
3399 // p.new NV store [ if(p0.new)memw(R0+#0)=R2.new ]
3400 // ^ ^
3401 // / \ (not OK. it will cause new-value store to be
3402 // / X conditional on p0.new while R2 producer is
3403 // / \ on p0)
3404 // / \.
3405 // p.new store p.old NV store
3406 // [if(p0.new)memw(R0+#0)=R2] [if(p0)memw(R0+#0)=R2.new]
3407 // ^ ^
3408 // \ /
3409 // \ /
3410 // \ /
3411 // p.old store
3412 // [if (p0)memw(R0+#0)=R2]
3413 //
3414 // The following set of instructions further explains the scenario where
3415 // conditional new-value store becomes invalid when promoted to .new predicate
3416 // form.
3417 //
3418 // { 1) if (p0) r0 = add(r1, r2)
3419 // 2) p0 = cmp.eq(r3, #0) }
3420 //
3421 // 3) if (p0) memb(r1+#0) = r0 --> this instruction can't be grouped with
3422 // the first two instructions because in instr 1, r0 is conditional on old value
3423 // of p0 but its use in instr 3 is conditional on p0 modified by instr 2 which
3424 // is not valid for new-value stores.
3425 // Predicated new value stores (i.e. if (p0) memw(..)=r0.new) are excluded
3426 // from the "Conditional Store" list. Because a predicated new value store
3427 // would NOT be promoted to a double dot new store. See diagram below:
3428 // This function returns yes for those stores that are predicated but not
3429 // yet promoted to predicate dot new instructions.
3430 //
3431 // +---------------------+
3432 // /-----| if (p0) memw(..)=r0 |---------\~
3433 // || +---------------------+ ||
3434 // promote || /\ /\ || promote
3435 // || /||\ /||\ ||
3436 // \||/ demote || \||/
3437 // \/ || || \/
3438 // +-------------------------+ || +-------------------------+
3439 // | if (p0.new) memw(..)=r0 | || | if (p0) memw(..)=r0.new |
3440 // +-------------------------+ || +-------------------------+
3441 // || || ||
3442 // || demote \||/
3443 // promote || \/ NOT possible
3444 // || || /\~
3445 // \||/ || /||\~
3446 // \/ || ||
3447 // +-----------------------------+
3448 // | if (p0.new) memw(..)=r0.new |
3449 // +-----------------------------+
3450 // Double Dot New Store
3451 //
3452 // Returns the most basic instruction for the .new predicated instructions and
3453 // new-value stores.
3454 // For example, all of the following instructions will be converted back to the
3455 // same instruction:
3456 // 1) if (p0.new) memw(R0+#0) = R1.new --->
3457 // 2) if (p0) memw(R0+#0)= R1.new -------> if (p0) memw(R0+#0) = R1
3458 // 3) if (p0.new) memw(R0+#0) = R1 --->
3459 //
3460 // To understand the translation of instruction 1 to its original form, consider
3461 // a packet with 3 instructions.
3462 // { p0 = cmp.eq(R0,R1)
3463 // if (p0.new) R2 = add(R3, R4)
3464 // R5 = add (R3, R1)
3465 // }
3466 // if (p0) memw(R5+#0) = R2 <--- trying to include it in the previous packet
3467 //
3468 // This instruction can be part of the previous packet only if both p0 and R2
3469 // are promoted to .new values. This promotion happens in steps, first
3470 // predicate register is promoted to .new and in the next iteration R2 is
3471 // promoted. Therefore, in case of dependence check failure (due to R5) during
3472 // next iteration, it should be converted back to its most basic form.
3473
3474 // Return the new value instruction for a given store.
getDotNewOp(const MachineInstr & MI) const3475 int HexagonInstrInfo::getDotNewOp(const MachineInstr &MI) const {
3476 int NVOpcode = Hexagon::getNewValueOpcode(MI.getOpcode());
3477 if (NVOpcode >= 0) // Valid new-value store instruction.
3478 return NVOpcode;
3479
3480 switch (MI.getOpcode()) {
3481 default:
3482 report_fatal_error(std::string("Unknown .new type: ") +
3483 std::to_string(MI.getOpcode()));
3484 case Hexagon::S4_storerb_ur:
3485 return Hexagon::S4_storerbnew_ur;
3486
3487 case Hexagon::S2_storerb_pci:
3488 return Hexagon::S2_storerb_pci;
3489
3490 case Hexagon::S2_storeri_pci:
3491 return Hexagon::S2_storeri_pci;
3492
3493 case Hexagon::S2_storerh_pci:
3494 return Hexagon::S2_storerh_pci;
3495
3496 case Hexagon::S2_storerd_pci:
3497 return Hexagon::S2_storerd_pci;
3498
3499 case Hexagon::S2_storerf_pci:
3500 return Hexagon::S2_storerf_pci;
3501
3502 case Hexagon::V6_vS32b_ai:
3503 return Hexagon::V6_vS32b_new_ai;
3504
3505 case Hexagon::V6_vS32b_pi:
3506 return Hexagon::V6_vS32b_new_pi;
3507 }
3508 return 0;
3509 }
3510
3511 // Returns the opcode to use when converting MI, which is a conditional jump,
3512 // into a conditional instruction which uses the .new value of the predicate.
3513 // We also use branch probabilities to add a hint to the jump.
3514 // If MBPI is null, all edges will be treated as equally likely for the
3515 // purposes of establishing a predication hint.
getDotNewPredJumpOp(const MachineInstr & MI,const MachineBranchProbabilityInfo * MBPI) const3516 int HexagonInstrInfo::getDotNewPredJumpOp(const MachineInstr &MI,
3517 const MachineBranchProbabilityInfo *MBPI) const {
3518 // We assume that block can have at most two successors.
3519 const MachineBasicBlock *Src = MI.getParent();
3520 const MachineOperand &BrTarget = MI.getOperand(1);
3521 bool Taken = false;
3522 const BranchProbability OneHalf(1, 2);
3523
3524 auto getEdgeProbability = [MBPI] (const MachineBasicBlock *Src,
3525 const MachineBasicBlock *Dst) {
3526 if (MBPI)
3527 return MBPI->getEdgeProbability(Src, Dst);
3528 return BranchProbability(1, Src->succ_size());
3529 };
3530
3531 if (BrTarget.isMBB()) {
3532 const MachineBasicBlock *Dst = BrTarget.getMBB();
3533 Taken = getEdgeProbability(Src, Dst) >= OneHalf;
3534 } else {
3535 // The branch target is not a basic block (most likely a function).
3536 // Since BPI only gives probabilities for targets that are basic blocks,
3537 // try to identify another target of this branch (potentially a fall-
3538 // -through) and check the probability of that target.
3539 //
3540 // The only handled branch combinations are:
3541 // - one conditional branch,
3542 // - one conditional branch followed by one unconditional branch.
3543 // Otherwise, assume not-taken.
3544 assert(MI.isConditionalBranch());
3545 const MachineBasicBlock &B = *MI.getParent();
3546 bool SawCond = false, Bad = false;
3547 for (const MachineInstr &I : B) {
3548 if (!I.isBranch())
3549 continue;
3550 if (I.isConditionalBranch()) {
3551 SawCond = true;
3552 if (&I != &MI) {
3553 Bad = true;
3554 break;
3555 }
3556 }
3557 if (I.isUnconditionalBranch() && !SawCond) {
3558 Bad = true;
3559 break;
3560 }
3561 }
3562 if (!Bad) {
3563 MachineBasicBlock::const_instr_iterator It(MI);
3564 MachineBasicBlock::const_instr_iterator NextIt = std::next(It);
3565 if (NextIt == B.instr_end()) {
3566 // If this branch is the last, look for the fall-through block.
3567 for (const MachineBasicBlock *SB : B.successors()) {
3568 if (!B.isLayoutSuccessor(SB))
3569 continue;
3570 Taken = getEdgeProbability(Src, SB) < OneHalf;
3571 break;
3572 }
3573 } else {
3574 assert(NextIt->isUnconditionalBranch());
3575 // Find the first MBB operand and assume it's the target.
3576 const MachineBasicBlock *BT = nullptr;
3577 for (const MachineOperand &Op : NextIt->operands()) {
3578 if (!Op.isMBB())
3579 continue;
3580 BT = Op.getMBB();
3581 break;
3582 }
3583 Taken = BT && getEdgeProbability(Src, BT) < OneHalf;
3584 }
3585 } // if (!Bad)
3586 }
3587
3588 // The Taken flag should be set to something reasonable by this point.
3589
3590 switch (MI.getOpcode()) {
3591 case Hexagon::J2_jumpt:
3592 return Taken ? Hexagon::J2_jumptnewpt : Hexagon::J2_jumptnew;
3593 case Hexagon::J2_jumpf:
3594 return Taken ? Hexagon::J2_jumpfnewpt : Hexagon::J2_jumpfnew;
3595
3596 default:
3597 llvm_unreachable("Unexpected jump instruction.");
3598 }
3599 }
3600
3601 // Return .new predicate version for an instruction.
getDotNewPredOp(const MachineInstr & MI,const MachineBranchProbabilityInfo * MBPI) const3602 int HexagonInstrInfo::getDotNewPredOp(const MachineInstr &MI,
3603 const MachineBranchProbabilityInfo *MBPI) const {
3604 switch (MI.getOpcode()) {
3605 // Condtional Jumps
3606 case Hexagon::J2_jumpt:
3607 case Hexagon::J2_jumpf:
3608 return getDotNewPredJumpOp(MI, MBPI);
3609 }
3610
3611 int NewOpcode = Hexagon::getPredNewOpcode(MI.getOpcode());
3612 if (NewOpcode >= 0)
3613 return NewOpcode;
3614 return 0;
3615 }
3616
getDotOldOp(const MachineInstr & MI) const3617 int HexagonInstrInfo::getDotOldOp(const MachineInstr &MI) const {
3618 int NewOp = MI.getOpcode();
3619 if (isPredicated(NewOp) && isPredicatedNew(NewOp)) { // Get predicate old form
3620 NewOp = Hexagon::getPredOldOpcode(NewOp);
3621 // All Hexagon architectures have prediction bits on dot-new branches,
3622 // but only Hexagon V60+ has prediction bits on dot-old ones. Make sure
3623 // to pick the right opcode when converting back to dot-old.
3624 if (!Subtarget.getFeatureBits()[Hexagon::ArchV60]) {
3625 switch (NewOp) {
3626 case Hexagon::J2_jumptpt:
3627 NewOp = Hexagon::J2_jumpt;
3628 break;
3629 case Hexagon::J2_jumpfpt:
3630 NewOp = Hexagon::J2_jumpf;
3631 break;
3632 case Hexagon::J2_jumprtpt:
3633 NewOp = Hexagon::J2_jumprt;
3634 break;
3635 case Hexagon::J2_jumprfpt:
3636 NewOp = Hexagon::J2_jumprf;
3637 break;
3638 }
3639 }
3640 assert(NewOp >= 0 &&
3641 "Couldn't change predicate new instruction to its old form.");
3642 }
3643
3644 if (isNewValueStore(NewOp)) { // Convert into non-new-value format
3645 NewOp = Hexagon::getNonNVStore(NewOp);
3646 assert(NewOp >= 0 && "Couldn't change new-value store to its old form.");
3647 }
3648
3649 if (Subtarget.hasV60Ops())
3650 return NewOp;
3651
3652 // Subtargets prior to V60 didn't support 'taken' forms of predicated jumps.
3653 switch (NewOp) {
3654 case Hexagon::J2_jumpfpt:
3655 return Hexagon::J2_jumpf;
3656 case Hexagon::J2_jumptpt:
3657 return Hexagon::J2_jumpt;
3658 case Hexagon::J2_jumprfpt:
3659 return Hexagon::J2_jumprf;
3660 case Hexagon::J2_jumprtpt:
3661 return Hexagon::J2_jumprt;
3662 }
3663 return NewOp;
3664 }
3665
3666 // See if instruction could potentially be a duplex candidate.
3667 // If so, return its group. Zero otherwise.
getDuplexCandidateGroup(const MachineInstr & MI) const3668 HexagonII::SubInstructionGroup HexagonInstrInfo::getDuplexCandidateGroup(
3669 const MachineInstr &MI) const {
3670 unsigned DstReg, SrcReg, Src1Reg, Src2Reg;
3671 const HexagonRegisterInfo &HRI = *Subtarget.getRegisterInfo();
3672
3673 switch (MI.getOpcode()) {
3674 default:
3675 return HexagonII::HSIG_None;
3676 //
3677 // Group L1:
3678 //
3679 // Rd = memw(Rs+#u4:2)
3680 // Rd = memub(Rs+#u4:0)
3681 case Hexagon::L2_loadri_io:
3682 DstReg = MI.getOperand(0).getReg();
3683 SrcReg = MI.getOperand(1).getReg();
3684 // Special case this one from Group L2.
3685 // Rd = memw(r29+#u5:2)
3686 if (isIntRegForSubInst(DstReg)) {
3687 if (Hexagon::IntRegsRegClass.contains(SrcReg) &&
3688 HRI.getStackRegister() == SrcReg &&
3689 MI.getOperand(2).isImm() &&
3690 isShiftedUInt<5,2>(MI.getOperand(2).getImm()))
3691 return HexagonII::HSIG_L2;
3692 // Rd = memw(Rs+#u4:2)
3693 if (isIntRegForSubInst(SrcReg) &&
3694 (MI.getOperand(2).isImm() &&
3695 isShiftedUInt<4,2>(MI.getOperand(2).getImm())))
3696 return HexagonII::HSIG_L1;
3697 }
3698 break;
3699 case Hexagon::L2_loadrub_io:
3700 // Rd = memub(Rs+#u4:0)
3701 DstReg = MI.getOperand(0).getReg();
3702 SrcReg = MI.getOperand(1).getReg();
3703 if (isIntRegForSubInst(DstReg) && isIntRegForSubInst(SrcReg) &&
3704 MI.getOperand(2).isImm() && isUInt<4>(MI.getOperand(2).getImm()))
3705 return HexagonII::HSIG_L1;
3706 break;
3707 //
3708 // Group L2:
3709 //
3710 // Rd = memh/memuh(Rs+#u3:1)
3711 // Rd = memb(Rs+#u3:0)
3712 // Rd = memw(r29+#u5:2) - Handled above.
3713 // Rdd = memd(r29+#u5:3)
3714 // deallocframe
3715 // [if ([!]p0[.new])] dealloc_return
3716 // [if ([!]p0[.new])] jumpr r31
3717 case Hexagon::L2_loadrh_io:
3718 case Hexagon::L2_loadruh_io:
3719 // Rd = memh/memuh(Rs+#u3:1)
3720 DstReg = MI.getOperand(0).getReg();
3721 SrcReg = MI.getOperand(1).getReg();
3722 if (isIntRegForSubInst(DstReg) && isIntRegForSubInst(SrcReg) &&
3723 MI.getOperand(2).isImm() &&
3724 isShiftedUInt<3,1>(MI.getOperand(2).getImm()))
3725 return HexagonII::HSIG_L2;
3726 break;
3727 case Hexagon::L2_loadrb_io:
3728 // Rd = memb(Rs+#u3:0)
3729 DstReg = MI.getOperand(0).getReg();
3730 SrcReg = MI.getOperand(1).getReg();
3731 if (isIntRegForSubInst(DstReg) && isIntRegForSubInst(SrcReg) &&
3732 MI.getOperand(2).isImm() &&
3733 isUInt<3>(MI.getOperand(2).getImm()))
3734 return HexagonII::HSIG_L2;
3735 break;
3736 case Hexagon::L2_loadrd_io:
3737 // Rdd = memd(r29+#u5:3)
3738 DstReg = MI.getOperand(0).getReg();
3739 SrcReg = MI.getOperand(1).getReg();
3740 if (isDblRegForSubInst(DstReg, HRI) &&
3741 Hexagon::IntRegsRegClass.contains(SrcReg) &&
3742 HRI.getStackRegister() == SrcReg &&
3743 MI.getOperand(2).isImm() &&
3744 isShiftedUInt<5,3>(MI.getOperand(2).getImm()))
3745 return HexagonII::HSIG_L2;
3746 break;
3747 // dealloc_return is not documented in Hexagon Manual, but marked
3748 // with A_SUBINSN attribute in iset_v4classic.py.
3749 case Hexagon::RESTORE_DEALLOC_RET_JMP_V4:
3750 case Hexagon::RESTORE_DEALLOC_RET_JMP_V4_PIC:
3751 case Hexagon::L4_return:
3752 case Hexagon::L2_deallocframe:
3753 return HexagonII::HSIG_L2;
3754 case Hexagon::EH_RETURN_JMPR:
3755 case Hexagon::PS_jmpret:
3756 case Hexagon::SL2_jumpr31:
3757 // jumpr r31
3758 // Actual form JMPR implicit-def %pc, implicit %r31, implicit internal %r0
3759 DstReg = MI.getOperand(0).getReg();
3760 if (Hexagon::IntRegsRegClass.contains(DstReg) && (Hexagon::R31 == DstReg))
3761 return HexagonII::HSIG_L2;
3762 break;
3763 case Hexagon::PS_jmprett:
3764 case Hexagon::PS_jmpretf:
3765 case Hexagon::PS_jmprettnewpt:
3766 case Hexagon::PS_jmpretfnewpt:
3767 case Hexagon::PS_jmprettnew:
3768 case Hexagon::PS_jmpretfnew:
3769 case Hexagon::SL2_jumpr31_t:
3770 case Hexagon::SL2_jumpr31_f:
3771 case Hexagon::SL2_jumpr31_tnew:
3772 DstReg = MI.getOperand(1).getReg();
3773 SrcReg = MI.getOperand(0).getReg();
3774 // [if ([!]p0[.new])] jumpr r31
3775 if ((Hexagon::PredRegsRegClass.contains(SrcReg) &&
3776 (Hexagon::P0 == SrcReg)) &&
3777 (Hexagon::IntRegsRegClass.contains(DstReg) && (Hexagon::R31 == DstReg)))
3778 return HexagonII::HSIG_L2;
3779 break;
3780 case Hexagon::L4_return_t:
3781 case Hexagon::L4_return_f:
3782 case Hexagon::L4_return_tnew_pnt:
3783 case Hexagon::L4_return_fnew_pnt:
3784 case Hexagon::L4_return_tnew_pt:
3785 case Hexagon::L4_return_fnew_pt:
3786 // [if ([!]p0[.new])] dealloc_return
3787 SrcReg = MI.getOperand(0).getReg();
3788 if (Hexagon::PredRegsRegClass.contains(SrcReg) && (Hexagon::P0 == SrcReg))
3789 return HexagonII::HSIG_L2;
3790 break;
3791 //
3792 // Group S1:
3793 //
3794 // memw(Rs+#u4:2) = Rt
3795 // memb(Rs+#u4:0) = Rt
3796 case Hexagon::S2_storeri_io:
3797 // Special case this one from Group S2.
3798 // memw(r29+#u5:2) = Rt
3799 Src1Reg = MI.getOperand(0).getReg();
3800 Src2Reg = MI.getOperand(2).getReg();
3801 if (Hexagon::IntRegsRegClass.contains(Src1Reg) &&
3802 isIntRegForSubInst(Src2Reg) &&
3803 HRI.getStackRegister() == Src1Reg && MI.getOperand(1).isImm() &&
3804 isShiftedUInt<5,2>(MI.getOperand(1).getImm()))
3805 return HexagonII::HSIG_S2;
3806 // memw(Rs+#u4:2) = Rt
3807 if (isIntRegForSubInst(Src1Reg) && isIntRegForSubInst(Src2Reg) &&
3808 MI.getOperand(1).isImm() &&
3809 isShiftedUInt<4,2>(MI.getOperand(1).getImm()))
3810 return HexagonII::HSIG_S1;
3811 break;
3812 case Hexagon::S2_storerb_io:
3813 // memb(Rs+#u4:0) = Rt
3814 Src1Reg = MI.getOperand(0).getReg();
3815 Src2Reg = MI.getOperand(2).getReg();
3816 if (isIntRegForSubInst(Src1Reg) && isIntRegForSubInst(Src2Reg) &&
3817 MI.getOperand(1).isImm() && isUInt<4>(MI.getOperand(1).getImm()))
3818 return HexagonII::HSIG_S1;
3819 break;
3820 //
3821 // Group S2:
3822 //
3823 // memh(Rs+#u3:1) = Rt
3824 // memw(r29+#u5:2) = Rt
3825 // memd(r29+#s6:3) = Rtt
3826 // memw(Rs+#u4:2) = #U1
3827 // memb(Rs+#u4) = #U1
3828 // allocframe(#u5:3)
3829 case Hexagon::S2_storerh_io:
3830 // memh(Rs+#u3:1) = Rt
3831 Src1Reg = MI.getOperand(0).getReg();
3832 Src2Reg = MI.getOperand(2).getReg();
3833 if (isIntRegForSubInst(Src1Reg) && isIntRegForSubInst(Src2Reg) &&
3834 MI.getOperand(1).isImm() &&
3835 isShiftedUInt<3,1>(MI.getOperand(1).getImm()))
3836 return HexagonII::HSIG_S1;
3837 break;
3838 case Hexagon::S2_storerd_io:
3839 // memd(r29+#s6:3) = Rtt
3840 Src1Reg = MI.getOperand(0).getReg();
3841 Src2Reg = MI.getOperand(2).getReg();
3842 if (isDblRegForSubInst(Src2Reg, HRI) &&
3843 Hexagon::IntRegsRegClass.contains(Src1Reg) &&
3844 HRI.getStackRegister() == Src1Reg && MI.getOperand(1).isImm() &&
3845 isShiftedInt<6,3>(MI.getOperand(1).getImm()))
3846 return HexagonII::HSIG_S2;
3847 break;
3848 case Hexagon::S4_storeiri_io:
3849 // memw(Rs+#u4:2) = #U1
3850 Src1Reg = MI.getOperand(0).getReg();
3851 if (isIntRegForSubInst(Src1Reg) && MI.getOperand(1).isImm() &&
3852 isShiftedUInt<4,2>(MI.getOperand(1).getImm()) &&
3853 MI.getOperand(2).isImm() && isUInt<1>(MI.getOperand(2).getImm()))
3854 return HexagonII::HSIG_S2;
3855 break;
3856 case Hexagon::S4_storeirb_io:
3857 // memb(Rs+#u4) = #U1
3858 Src1Reg = MI.getOperand(0).getReg();
3859 if (isIntRegForSubInst(Src1Reg) &&
3860 MI.getOperand(1).isImm() && isUInt<4>(MI.getOperand(1).getImm()) &&
3861 MI.getOperand(2).isImm() && isUInt<1>(MI.getOperand(2).getImm()))
3862 return HexagonII::HSIG_S2;
3863 break;
3864 case Hexagon::S2_allocframe:
3865 if (MI.getOperand(2).isImm() &&
3866 isShiftedUInt<5,3>(MI.getOperand(2).getImm()))
3867 return HexagonII::HSIG_S1;
3868 break;
3869 //
3870 // Group A:
3871 //
3872 // Rx = add(Rx,#s7)
3873 // Rd = Rs
3874 // Rd = #u6
3875 // Rd = #-1
3876 // if ([!]P0[.new]) Rd = #0
3877 // Rd = add(r29,#u6:2)
3878 // Rx = add(Rx,Rs)
3879 // P0 = cmp.eq(Rs,#u2)
3880 // Rdd = combine(#0,Rs)
3881 // Rdd = combine(Rs,#0)
3882 // Rdd = combine(#u2,#U2)
3883 // Rd = add(Rs,#1)
3884 // Rd = add(Rs,#-1)
3885 // Rd = sxth/sxtb/zxtb/zxth(Rs)
3886 // Rd = and(Rs,#1)
3887 case Hexagon::A2_addi:
3888 DstReg = MI.getOperand(0).getReg();
3889 SrcReg = MI.getOperand(1).getReg();
3890 if (isIntRegForSubInst(DstReg)) {
3891 // Rd = add(r29,#u6:2)
3892 if (Hexagon::IntRegsRegClass.contains(SrcReg) &&
3893 HRI.getStackRegister() == SrcReg && MI.getOperand(2).isImm() &&
3894 isShiftedUInt<6,2>(MI.getOperand(2).getImm()))
3895 return HexagonII::HSIG_A;
3896 // Rx = add(Rx,#s7)
3897 if ((DstReg == SrcReg) && MI.getOperand(2).isImm() &&
3898 isInt<7>(MI.getOperand(2).getImm()))
3899 return HexagonII::HSIG_A;
3900 // Rd = add(Rs,#1)
3901 // Rd = add(Rs,#-1)
3902 if (isIntRegForSubInst(SrcReg) && MI.getOperand(2).isImm() &&
3903 ((MI.getOperand(2).getImm() == 1) ||
3904 (MI.getOperand(2).getImm() == -1)))
3905 return HexagonII::HSIG_A;
3906 }
3907 break;
3908 case Hexagon::A2_add:
3909 // Rx = add(Rx,Rs)
3910 DstReg = MI.getOperand(0).getReg();
3911 Src1Reg = MI.getOperand(1).getReg();
3912 Src2Reg = MI.getOperand(2).getReg();
3913 if (isIntRegForSubInst(DstReg) && (DstReg == Src1Reg) &&
3914 isIntRegForSubInst(Src2Reg))
3915 return HexagonII::HSIG_A;
3916 break;
3917 case Hexagon::A2_andir:
3918 // Same as zxtb.
3919 // Rd16=and(Rs16,#255)
3920 // Rd16=and(Rs16,#1)
3921 DstReg = MI.getOperand(0).getReg();
3922 SrcReg = MI.getOperand(1).getReg();
3923 if (isIntRegForSubInst(DstReg) && isIntRegForSubInst(SrcReg) &&
3924 MI.getOperand(2).isImm() &&
3925 ((MI.getOperand(2).getImm() == 1) ||
3926 (MI.getOperand(2).getImm() == 255)))
3927 return HexagonII::HSIG_A;
3928 break;
3929 case Hexagon::A2_tfr:
3930 // Rd = Rs
3931 DstReg = MI.getOperand(0).getReg();
3932 SrcReg = MI.getOperand(1).getReg();
3933 if (isIntRegForSubInst(DstReg) && isIntRegForSubInst(SrcReg))
3934 return HexagonII::HSIG_A;
3935 break;
3936 case Hexagon::A2_tfrsi:
3937 // Rd = #u6
3938 // Do not test for #u6 size since the const is getting extended
3939 // regardless and compound could be formed.
3940 // Rd = #-1
3941 DstReg = MI.getOperand(0).getReg();
3942 if (isIntRegForSubInst(DstReg))
3943 return HexagonII::HSIG_A;
3944 break;
3945 case Hexagon::C2_cmoveit:
3946 case Hexagon::C2_cmovenewit:
3947 case Hexagon::C2_cmoveif:
3948 case Hexagon::C2_cmovenewif:
3949 // if ([!]P0[.new]) Rd = #0
3950 // Actual form:
3951 // %r16 = C2_cmovenewit internal %p0, 0, implicit undef %r16;
3952 DstReg = MI.getOperand(0).getReg();
3953 SrcReg = MI.getOperand(1).getReg();
3954 if (isIntRegForSubInst(DstReg) &&
3955 Hexagon::PredRegsRegClass.contains(SrcReg) && Hexagon::P0 == SrcReg &&
3956 MI.getOperand(2).isImm() && MI.getOperand(2).getImm() == 0)
3957 return HexagonII::HSIG_A;
3958 break;
3959 case Hexagon::C2_cmpeqi:
3960 // P0 = cmp.eq(Rs,#u2)
3961 DstReg = MI.getOperand(0).getReg();
3962 SrcReg = MI.getOperand(1).getReg();
3963 if (Hexagon::PredRegsRegClass.contains(DstReg) &&
3964 Hexagon::P0 == DstReg && isIntRegForSubInst(SrcReg) &&
3965 MI.getOperand(2).isImm() && isUInt<2>(MI.getOperand(2).getImm()))
3966 return HexagonII::HSIG_A;
3967 break;
3968 case Hexagon::A2_combineii:
3969 case Hexagon::A4_combineii:
3970 // Rdd = combine(#u2,#U2)
3971 DstReg = MI.getOperand(0).getReg();
3972 if (isDblRegForSubInst(DstReg, HRI) &&
3973 ((MI.getOperand(1).isImm() && isUInt<2>(MI.getOperand(1).getImm())) ||
3974 (MI.getOperand(1).isGlobal() &&
3975 isUInt<2>(MI.getOperand(1).getOffset()))) &&
3976 ((MI.getOperand(2).isImm() && isUInt<2>(MI.getOperand(2).getImm())) ||
3977 (MI.getOperand(2).isGlobal() &&
3978 isUInt<2>(MI.getOperand(2).getOffset()))))
3979 return HexagonII::HSIG_A;
3980 break;
3981 case Hexagon::A4_combineri:
3982 // Rdd = combine(Rs,#0)
3983 DstReg = MI.getOperand(0).getReg();
3984 SrcReg = MI.getOperand(1).getReg();
3985 if (isDblRegForSubInst(DstReg, HRI) && isIntRegForSubInst(SrcReg) &&
3986 ((MI.getOperand(2).isImm() && MI.getOperand(2).getImm() == 0) ||
3987 (MI.getOperand(2).isGlobal() && MI.getOperand(2).getOffset() == 0)))
3988 return HexagonII::HSIG_A;
3989 break;
3990 case Hexagon::A4_combineir:
3991 // Rdd = combine(#0,Rs)
3992 DstReg = MI.getOperand(0).getReg();
3993 SrcReg = MI.getOperand(2).getReg();
3994 if (isDblRegForSubInst(DstReg, HRI) && isIntRegForSubInst(SrcReg) &&
3995 ((MI.getOperand(1).isImm() && MI.getOperand(1).getImm() == 0) ||
3996 (MI.getOperand(1).isGlobal() && MI.getOperand(1).getOffset() == 0)))
3997 return HexagonII::HSIG_A;
3998 break;
3999 case Hexagon::A2_sxtb:
4000 case Hexagon::A2_sxth:
4001 case Hexagon::A2_zxtb:
4002 case Hexagon::A2_zxth:
4003 // Rd = sxth/sxtb/zxtb/zxth(Rs)
4004 DstReg = MI.getOperand(0).getReg();
4005 SrcReg = MI.getOperand(1).getReg();
4006 if (isIntRegForSubInst(DstReg) && isIntRegForSubInst(SrcReg))
4007 return HexagonII::HSIG_A;
4008 break;
4009 }
4010
4011 return HexagonII::HSIG_None;
4012 }
4013
getEquivalentHWInstr(const MachineInstr & MI) const4014 short HexagonInstrInfo::getEquivalentHWInstr(const MachineInstr &MI) const {
4015 return Hexagon::getRealHWInstr(MI.getOpcode(), Hexagon::InstrType_Real);
4016 }
4017
getInstrTimingClassLatency(const InstrItineraryData * ItinData,const MachineInstr & MI) const4018 unsigned HexagonInstrInfo::getInstrTimingClassLatency(
4019 const InstrItineraryData *ItinData, const MachineInstr &MI) const {
4020 // Default to one cycle for no itinerary. However, an "empty" itinerary may
4021 // still have a MinLatency property, which getStageLatency checks.
4022 if (!ItinData)
4023 return getInstrLatency(ItinData, MI);
4024
4025 if (MI.isTransient())
4026 return 0;
4027 return ItinData->getStageLatency(MI.getDesc().getSchedClass());
4028 }
4029
4030 /// getOperandLatency - Compute and return the use operand latency of a given
4031 /// pair of def and use.
4032 /// In most cases, the static scheduling itinerary was enough to determine the
4033 /// operand latency. But it may not be possible for instructions with variable
4034 /// number of defs / uses.
4035 ///
4036 /// This is a raw interface to the itinerary that may be directly overriden by
4037 /// a target. Use computeOperandLatency to get the best estimate of latency.
getOperandLatency(const InstrItineraryData * ItinData,const MachineInstr & DefMI,unsigned DefIdx,const MachineInstr & UseMI,unsigned UseIdx) const4038 int HexagonInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
4039 const MachineInstr &DefMI,
4040 unsigned DefIdx,
4041 const MachineInstr &UseMI,
4042 unsigned UseIdx) const {
4043 const HexagonRegisterInfo &HRI = *Subtarget.getRegisterInfo();
4044
4045 // Get DefIdx and UseIdx for super registers.
4046 const MachineOperand &DefMO = DefMI.getOperand(DefIdx);
4047
4048 if (DefMO.isReg() && HRI.isPhysicalRegister(DefMO.getReg())) {
4049 if (DefMO.isImplicit()) {
4050 for (MCSuperRegIterator SR(DefMO.getReg(), &HRI); SR.isValid(); ++SR) {
4051 int Idx = DefMI.findRegisterDefOperandIdx(*SR, false, false, &HRI);
4052 if (Idx != -1) {
4053 DefIdx = Idx;
4054 break;
4055 }
4056 }
4057 }
4058
4059 const MachineOperand &UseMO = UseMI.getOperand(UseIdx);
4060 if (UseMO.isImplicit()) {
4061 for (MCSuperRegIterator SR(UseMO.getReg(), &HRI); SR.isValid(); ++SR) {
4062 int Idx = UseMI.findRegisterUseOperandIdx(*SR, false, &HRI);
4063 if (Idx != -1) {
4064 UseIdx = Idx;
4065 break;
4066 }
4067 }
4068 }
4069 }
4070
4071 int Latency = TargetInstrInfo::getOperandLatency(ItinData, DefMI, DefIdx,
4072 UseMI, UseIdx);
4073 if (!Latency)
4074 // We should never have 0 cycle latency between two instructions unless
4075 // they can be packetized together. However, this decision can't be made
4076 // here.
4077 Latency = 1;
4078 return Latency;
4079 }
4080
4081 // inverts the predication logic.
4082 // p -> NotP
4083 // NotP -> P
getInvertedPredSense(SmallVectorImpl<MachineOperand> & Cond) const4084 bool HexagonInstrInfo::getInvertedPredSense(
4085 SmallVectorImpl<MachineOperand> &Cond) const {
4086 if (Cond.empty())
4087 return false;
4088 unsigned Opc = getInvertedPredicatedOpcode(Cond[0].getImm());
4089 Cond[0].setImm(Opc);
4090 return true;
4091 }
4092
getInvertedPredicatedOpcode(const int Opc) const4093 unsigned HexagonInstrInfo::getInvertedPredicatedOpcode(const int Opc) const {
4094 int InvPredOpcode;
4095 InvPredOpcode = isPredicatedTrue(Opc) ? Hexagon::getFalsePredOpcode(Opc)
4096 : Hexagon::getTruePredOpcode(Opc);
4097 if (InvPredOpcode >= 0) // Valid instruction with the inverted predicate.
4098 return InvPredOpcode;
4099
4100 llvm_unreachable("Unexpected predicated instruction");
4101 }
4102
4103 // Returns the max value that doesn't need to be extended.
getMaxValue(const MachineInstr & MI) const4104 int HexagonInstrInfo::getMaxValue(const MachineInstr &MI) const {
4105 const uint64_t F = MI.getDesc().TSFlags;
4106 unsigned isSigned = (F >> HexagonII::ExtentSignedPos)
4107 & HexagonII::ExtentSignedMask;
4108 unsigned bits = (F >> HexagonII::ExtentBitsPos)
4109 & HexagonII::ExtentBitsMask;
4110
4111 if (isSigned) // if value is signed
4112 return ~(-1U << (bits - 1));
4113 else
4114 return ~(-1U << bits);
4115 }
4116
4117
isAddrModeWithOffset(const MachineInstr & MI) const4118 bool HexagonInstrInfo::isAddrModeWithOffset(const MachineInstr &MI) const {
4119 switch (MI.getOpcode()) {
4120 case Hexagon::L2_loadrbgp:
4121 case Hexagon::L2_loadrdgp:
4122 case Hexagon::L2_loadrhgp:
4123 case Hexagon::L2_loadrigp:
4124 case Hexagon::L2_loadrubgp:
4125 case Hexagon::L2_loadruhgp:
4126 case Hexagon::S2_storerbgp:
4127 case Hexagon::S2_storerbnewgp:
4128 case Hexagon::S2_storerhgp:
4129 case Hexagon::S2_storerhnewgp:
4130 case Hexagon::S2_storerigp:
4131 case Hexagon::S2_storerinewgp:
4132 case Hexagon::S2_storerdgp:
4133 case Hexagon::S2_storerfgp:
4134 return true;
4135 }
4136 const uint64_t F = MI.getDesc().TSFlags;
4137 unsigned addrMode =
4138 ((F >> HexagonII::AddrModePos) & HexagonII::AddrModeMask);
4139 // Disallow any base+offset instruction. The assembler does not yet reorder
4140 // based up any zero offset instruction.
4141 return (addrMode == HexagonII::BaseRegOffset ||
4142 addrMode == HexagonII::BaseImmOffset ||
4143 addrMode == HexagonII::BaseLongOffset);
4144 }
4145
getMemAccessSize(const MachineInstr & MI) const4146 unsigned HexagonInstrInfo::getMemAccessSize(const MachineInstr &MI) const {
4147 using namespace HexagonII;
4148
4149 const uint64_t F = MI.getDesc().TSFlags;
4150 unsigned S = (F >> MemAccessSizePos) & MemAccesSizeMask;
4151 unsigned Size = getMemAccessSizeInBytes(MemAccessSize(S));
4152 if (Size != 0)
4153 return Size;
4154
4155 // Handle vector access sizes.
4156 const HexagonRegisterInfo &HRI = *Subtarget.getRegisterInfo();
4157 switch (S) {
4158 case HexagonII::HVXVectorAccess:
4159 return HRI.getSpillSize(Hexagon::HvxVRRegClass);
4160 default:
4161 llvm_unreachable("Unexpected instruction");
4162 }
4163 }
4164
4165 // Returns the min value that doesn't need to be extended.
getMinValue(const MachineInstr & MI) const4166 int HexagonInstrInfo::getMinValue(const MachineInstr &MI) const {
4167 const uint64_t F = MI.getDesc().TSFlags;
4168 unsigned isSigned = (F >> HexagonII::ExtentSignedPos)
4169 & HexagonII::ExtentSignedMask;
4170 unsigned bits = (F >> HexagonII::ExtentBitsPos)
4171 & HexagonII::ExtentBitsMask;
4172
4173 if (isSigned) // if value is signed
4174 return -1U << (bits - 1);
4175 else
4176 return 0;
4177 }
4178
4179 // Returns opcode of the non-extended equivalent instruction.
getNonExtOpcode(const MachineInstr & MI) const4180 short HexagonInstrInfo::getNonExtOpcode(const MachineInstr &MI) const {
4181 // Check if the instruction has a register form that uses register in place
4182 // of the extended operand, if so return that as the non-extended form.
4183 short NonExtOpcode = Hexagon::getRegForm(MI.getOpcode());
4184 if (NonExtOpcode >= 0)
4185 return NonExtOpcode;
4186
4187 if (MI.getDesc().mayLoad() || MI.getDesc().mayStore()) {
4188 // Check addressing mode and retrieve non-ext equivalent instruction.
4189 switch (getAddrMode(MI)) {
4190 case HexagonII::Absolute:
4191 return Hexagon::changeAddrMode_abs_io(MI.getOpcode());
4192 case HexagonII::BaseImmOffset:
4193 return Hexagon::changeAddrMode_io_rr(MI.getOpcode());
4194 case HexagonII::BaseLongOffset:
4195 return Hexagon::changeAddrMode_ur_rr(MI.getOpcode());
4196
4197 default:
4198 return -1;
4199 }
4200 }
4201 return -1;
4202 }
4203
getPredReg(ArrayRef<MachineOperand> Cond,unsigned & PredReg,unsigned & PredRegPos,unsigned & PredRegFlags) const4204 bool HexagonInstrInfo::getPredReg(ArrayRef<MachineOperand> Cond,
4205 unsigned &PredReg, unsigned &PredRegPos, unsigned &PredRegFlags) const {
4206 if (Cond.empty())
4207 return false;
4208 assert(Cond.size() == 2);
4209 if (isNewValueJump(Cond[0].getImm()) || Cond[1].isMBB()) {
4210 LLVM_DEBUG(dbgs() << "No predregs for new-value jumps/endloop");
4211 return false;
4212 }
4213 PredReg = Cond[1].getReg();
4214 PredRegPos = 1;
4215 // See IfConversion.cpp why we add RegState::Implicit | RegState::Undef
4216 PredRegFlags = 0;
4217 if (Cond[1].isImplicit())
4218 PredRegFlags = RegState::Implicit;
4219 if (Cond[1].isUndef())
4220 PredRegFlags |= RegState::Undef;
4221 return true;
4222 }
4223
getPseudoInstrPair(const MachineInstr & MI) const4224 short HexagonInstrInfo::getPseudoInstrPair(const MachineInstr &MI) const {
4225 return Hexagon::getRealHWInstr(MI.getOpcode(), Hexagon::InstrType_Pseudo);
4226 }
4227
getRegForm(const MachineInstr & MI) const4228 short HexagonInstrInfo::getRegForm(const MachineInstr &MI) const {
4229 return Hexagon::getRegForm(MI.getOpcode());
4230 }
4231
4232 // Return the number of bytes required to encode the instruction.
4233 // Hexagon instructions are fixed length, 4 bytes, unless they
4234 // use a constant extender, which requires another 4 bytes.
4235 // For debug instructions and prolog labels, return 0.
getSize(const MachineInstr & MI) const4236 unsigned HexagonInstrInfo::getSize(const MachineInstr &MI) const {
4237 if (MI.isDebugInstr() || MI.isPosition())
4238 return 0;
4239
4240 unsigned Size = MI.getDesc().getSize();
4241 if (!Size)
4242 // Assume the default insn size in case it cannot be determined
4243 // for whatever reason.
4244 Size = HEXAGON_INSTR_SIZE;
4245
4246 if (isConstExtended(MI) || isExtended(MI))
4247 Size += HEXAGON_INSTR_SIZE;
4248
4249 // Try and compute number of instructions in asm.
4250 if (BranchRelaxAsmLarge && MI.getOpcode() == Hexagon::INLINEASM) {
4251 const MachineBasicBlock &MBB = *MI.getParent();
4252 const MachineFunction *MF = MBB.getParent();
4253 const MCAsmInfo *MAI = MF->getTarget().getMCAsmInfo();
4254
4255 // Count the number of register definitions to find the asm string.
4256 unsigned NumDefs = 0;
4257 for (; MI.getOperand(NumDefs).isReg() && MI.getOperand(NumDefs).isDef();
4258 ++NumDefs)
4259 assert(NumDefs != MI.getNumOperands()-2 && "No asm string?");
4260
4261 assert(MI.getOperand(NumDefs).isSymbol() && "No asm string?");
4262 // Disassemble the AsmStr and approximate number of instructions.
4263 const char *AsmStr = MI.getOperand(NumDefs).getSymbolName();
4264 Size = getInlineAsmLength(AsmStr, *MAI);
4265 }
4266
4267 return Size;
4268 }
4269
getType(const MachineInstr & MI) const4270 uint64_t HexagonInstrInfo::getType(const MachineInstr &MI) const {
4271 const uint64_t F = MI.getDesc().TSFlags;
4272 return (F >> HexagonII::TypePos) & HexagonII::TypeMask;
4273 }
4274
getUnits(const MachineInstr & MI) const4275 unsigned HexagonInstrInfo::getUnits(const MachineInstr &MI) const {
4276 const InstrItineraryData &II = *Subtarget.getInstrItineraryData();
4277 const InstrStage &IS = *II.beginStage(MI.getDesc().getSchedClass());
4278
4279 return IS.getUnits();
4280 }
4281
4282 // Calculate size of the basic block without debug instructions.
nonDbgBBSize(const MachineBasicBlock * BB) const4283 unsigned HexagonInstrInfo::nonDbgBBSize(const MachineBasicBlock *BB) const {
4284 return nonDbgMICount(BB->instr_begin(), BB->instr_end());
4285 }
4286
nonDbgBundleSize(MachineBasicBlock::const_iterator BundleHead) const4287 unsigned HexagonInstrInfo::nonDbgBundleSize(
4288 MachineBasicBlock::const_iterator BundleHead) const {
4289 assert(BundleHead->isBundle() && "Not a bundle header");
4290 auto MII = BundleHead.getInstrIterator();
4291 // Skip the bundle header.
4292 return nonDbgMICount(++MII, getBundleEnd(BundleHead.getInstrIterator()));
4293 }
4294
4295 /// immediateExtend - Changes the instruction in place to one using an immediate
4296 /// extender.
immediateExtend(MachineInstr & MI) const4297 void HexagonInstrInfo::immediateExtend(MachineInstr &MI) const {
4298 assert((isExtendable(MI)||isConstExtended(MI)) &&
4299 "Instruction must be extendable");
4300 // Find which operand is extendable.
4301 short ExtOpNum = getCExtOpNum(MI);
4302 MachineOperand &MO = MI.getOperand(ExtOpNum);
4303 // This needs to be something we understand.
4304 assert((MO.isMBB() || MO.isImm()) &&
4305 "Branch with unknown extendable field type");
4306 // Mark given operand as extended.
4307 MO.addTargetFlag(HexagonII::HMOTF_ConstExtended);
4308 }
4309
invertAndChangeJumpTarget(MachineInstr & MI,MachineBasicBlock * NewTarget) const4310 bool HexagonInstrInfo::invertAndChangeJumpTarget(
4311 MachineInstr &MI, MachineBasicBlock *NewTarget) const {
4312 LLVM_DEBUG(dbgs() << "\n[invertAndChangeJumpTarget] to "
4313 << printMBBReference(*NewTarget);
4314 MI.dump(););
4315 assert(MI.isBranch());
4316 unsigned NewOpcode = getInvertedPredicatedOpcode(MI.getOpcode());
4317 int TargetPos = MI.getNumOperands() - 1;
4318 // In general branch target is the last operand,
4319 // but some implicit defs added at the end might change it.
4320 while ((TargetPos > -1) && !MI.getOperand(TargetPos).isMBB())
4321 --TargetPos;
4322 assert((TargetPos >= 0) && MI.getOperand(TargetPos).isMBB());
4323 MI.getOperand(TargetPos).setMBB(NewTarget);
4324 if (EnableBranchPrediction && isPredicatedNew(MI)) {
4325 NewOpcode = reversePrediction(NewOpcode);
4326 }
4327 MI.setDesc(get(NewOpcode));
4328 return true;
4329 }
4330
genAllInsnTimingClasses(MachineFunction & MF) const4331 void HexagonInstrInfo::genAllInsnTimingClasses(MachineFunction &MF) const {
4332 /* +++ The code below is used to generate complete set of Hexagon Insn +++ */
4333 MachineFunction::iterator A = MF.begin();
4334 MachineBasicBlock &B = *A;
4335 MachineBasicBlock::iterator I = B.begin();
4336 DebugLoc DL = I->getDebugLoc();
4337 MachineInstr *NewMI;
4338
4339 for (unsigned insn = TargetOpcode::GENERIC_OP_END+1;
4340 insn < Hexagon::INSTRUCTION_LIST_END; ++insn) {
4341 NewMI = BuildMI(B, I, DL, get(insn));
4342 LLVM_DEBUG(dbgs() << "\n"
4343 << getName(NewMI->getOpcode())
4344 << " Class: " << NewMI->getDesc().getSchedClass());
4345 NewMI->eraseFromParent();
4346 }
4347 /* --- The code above is used to generate complete set of Hexagon Insn --- */
4348 }
4349
4350 // inverts the predication logic.
4351 // p -> NotP
4352 // NotP -> P
reversePredSense(MachineInstr & MI) const4353 bool HexagonInstrInfo::reversePredSense(MachineInstr &MI) const {
4354 LLVM_DEBUG(dbgs() << "\nTrying to reverse pred. sense of:"; MI.dump());
4355 MI.setDesc(get(getInvertedPredicatedOpcode(MI.getOpcode())));
4356 return true;
4357 }
4358
4359 // Reverse the branch prediction.
reversePrediction(unsigned Opcode) const4360 unsigned HexagonInstrInfo::reversePrediction(unsigned Opcode) const {
4361 int PredRevOpcode = -1;
4362 if (isPredictedTaken(Opcode))
4363 PredRevOpcode = Hexagon::notTakenBranchPrediction(Opcode);
4364 else
4365 PredRevOpcode = Hexagon::takenBranchPrediction(Opcode);
4366 assert(PredRevOpcode > 0);
4367 return PredRevOpcode;
4368 }
4369
4370 // TODO: Add more rigorous validation.
validateBranchCond(const ArrayRef<MachineOperand> & Cond) const4371 bool HexagonInstrInfo::validateBranchCond(const ArrayRef<MachineOperand> &Cond)
4372 const {
4373 return Cond.empty() || (Cond[0].isImm() && (Cond.size() != 1));
4374 }
4375
4376 void HexagonInstrInfo::
setBundleNoShuf(MachineBasicBlock::instr_iterator MIB) const4377 setBundleNoShuf(MachineBasicBlock::instr_iterator MIB) const {
4378 assert(MIB->isBundle());
4379 MachineOperand &Operand = MIB->getOperand(0);
4380 if (Operand.isImm())
4381 Operand.setImm(Operand.getImm() | memShufDisabledMask);
4382 else
4383 MIB->addOperand(MachineOperand::CreateImm(memShufDisabledMask));
4384 }
4385
getBundleNoShuf(const MachineInstr & MIB) const4386 bool HexagonInstrInfo::getBundleNoShuf(const MachineInstr &MIB) const {
4387 assert(MIB.isBundle());
4388 const MachineOperand &Operand = MIB.getOperand(0);
4389 return (Operand.isImm() && (Operand.getImm() & memShufDisabledMask) != 0);
4390 }
4391
4392 // Addressing mode relations.
changeAddrMode_abs_io(short Opc) const4393 short HexagonInstrInfo::changeAddrMode_abs_io(short Opc) const {
4394 return Opc >= 0 ? Hexagon::changeAddrMode_abs_io(Opc) : Opc;
4395 }
4396
changeAddrMode_io_abs(short Opc) const4397 short HexagonInstrInfo::changeAddrMode_io_abs(short Opc) const {
4398 return Opc >= 0 ? Hexagon::changeAddrMode_io_abs(Opc) : Opc;
4399 }
4400
changeAddrMode_io_pi(short Opc) const4401 short HexagonInstrInfo::changeAddrMode_io_pi(short Opc) const {
4402 return Opc >= 0 ? Hexagon::changeAddrMode_io_pi(Opc) : Opc;
4403 }
4404
changeAddrMode_io_rr(short Opc) const4405 short HexagonInstrInfo::changeAddrMode_io_rr(short Opc) const {
4406 return Opc >= 0 ? Hexagon::changeAddrMode_io_rr(Opc) : Opc;
4407 }
4408
changeAddrMode_pi_io(short Opc) const4409 short HexagonInstrInfo::changeAddrMode_pi_io(short Opc) const {
4410 return Opc >= 0 ? Hexagon::changeAddrMode_pi_io(Opc) : Opc;
4411 }
4412
changeAddrMode_rr_io(short Opc) const4413 short HexagonInstrInfo::changeAddrMode_rr_io(short Opc) const {
4414 return Opc >= 0 ? Hexagon::changeAddrMode_rr_io(Opc) : Opc;
4415 }
4416
changeAddrMode_rr_ur(short Opc) const4417 short HexagonInstrInfo::changeAddrMode_rr_ur(short Opc) const {
4418 return Opc >= 0 ? Hexagon::changeAddrMode_rr_ur(Opc) : Opc;
4419 }
4420
changeAddrMode_ur_rr(short Opc) const4421 short HexagonInstrInfo::changeAddrMode_ur_rr(short Opc) const {
4422 return Opc >= 0 ? Hexagon::changeAddrMode_ur_rr(Opc) : Opc;
4423 }
4424