1 //===- HexagonTargetTransformInfo.cpp - Hexagon specific TTI pass ---------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 /// \file
9 /// This file implements a TargetTransformInfo analysis pass specific to the
10 /// Hexagon target machine. It uses the target's detailed information to provide
11 /// more precise answers to certain TTI queries, while letting the target
12 /// independent and default TTI implementations handle the rest.
13 ///
14 //===----------------------------------------------------------------------===//
15 
16 #include "HexagonTargetTransformInfo.h"
17 #include "HexagonSubtarget.h"
18 #include "llvm/Analysis/TargetTransformInfo.h"
19 #include "llvm/CodeGen/ValueTypes.h"
20 #include "llvm/IR/InstrTypes.h"
21 #include "llvm/IR/Instructions.h"
22 #include "llvm/IR/User.h"
23 #include "llvm/Support/Casting.h"
24 #include "llvm/Support/CommandLine.h"
25 #include "llvm/Transforms/Utils/UnrollLoop.h"
26 
27 using namespace llvm;
28 
29 #define DEBUG_TYPE "hexagontti"
30 
31 static cl::opt<bool> HexagonAutoHVX("hexagon-autohvx", cl::init(false),
32   cl::Hidden, cl::desc("Enable loop vectorizer for HVX"));
33 
34 static cl::opt<bool> EmitLookupTables("hexagon-emit-lookup-tables",
35   cl::init(true), cl::Hidden,
36   cl::desc("Control lookup table emission on Hexagon target"));
37 
38 // Constant "cost factor" to make floating point operations more expensive
39 // in terms of vectorization cost. This isn't the best way, but it should
40 // do. Ultimately, the cost should use cycles.
41 static const unsigned FloatFactor = 4;
42 
useHVX() const43 bool HexagonTTIImpl::useHVX() const {
44   return ST.useHVXOps() && HexagonAutoHVX;
45 }
46 
isTypeForHVX(Type * VecTy) const47 bool HexagonTTIImpl::isTypeForHVX(Type *VecTy) const {
48   assert(VecTy->isVectorTy());
49   // Avoid types like <2 x i32*>.
50   if (!cast<VectorType>(VecTy)->getElementType()->isIntegerTy())
51     return false;
52   EVT VecVT = EVT::getEVT(VecTy);
53   if (!VecVT.isSimple() || VecVT.getSizeInBits() <= 64)
54     return false;
55   if (ST.isHVXVectorType(VecVT.getSimpleVT()))
56     return true;
57   auto Action = TLI.getPreferredVectorAction(VecVT);
58   return Action == TargetLoweringBase::TypeWidenVector;
59 }
60 
getTypeNumElements(Type * Ty) const61 unsigned HexagonTTIImpl::getTypeNumElements(Type *Ty) const {
62   if (Ty->isVectorTy())
63     return Ty->getVectorNumElements();
64   assert((Ty->isIntegerTy() || Ty->isFloatingPointTy()) &&
65          "Expecting scalar type");
66   return 1;
67 }
68 
69 TargetTransformInfo::PopcntSupportKind
getPopcntSupport(unsigned IntTyWidthInBit) const70 HexagonTTIImpl::getPopcntSupport(unsigned IntTyWidthInBit) const {
71   // Return fast hardware support as every input < 64 bits will be promoted
72   // to 64 bits.
73   return TargetTransformInfo::PSK_FastHardware;
74 }
75 
76 // The Hexagon target can unroll loops with run-time trip counts.
getUnrollingPreferences(Loop * L,ScalarEvolution & SE,TTI::UnrollingPreferences & UP)77 void HexagonTTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE,
78                                              TTI::UnrollingPreferences &UP) {
79   UP.Runtime = UP.Partial = true;
80   // Only try to peel innermost loops with small runtime trip counts.
81   if (L && L->empty() && canPeel(L) &&
82       SE.getSmallConstantTripCount(L) == 0 &&
83       SE.getSmallConstantMaxTripCount(L) > 0 &&
84       SE.getSmallConstantMaxTripCount(L) <= 5) {
85     UP.PeelCount = 2;
86   }
87 }
88 
shouldFavorPostInc() const89 bool HexagonTTIImpl::shouldFavorPostInc() const {
90   return true;
91 }
92 
93 /// --- Vector TTI begin ---
94 
getNumberOfRegisters(bool Vector) const95 unsigned HexagonTTIImpl::getNumberOfRegisters(bool Vector) const {
96   if (Vector)
97     return useHVX() ? 32 : 0;
98   return 32;
99 }
100 
getMaxInterleaveFactor(unsigned VF)101 unsigned HexagonTTIImpl::getMaxInterleaveFactor(unsigned VF) {
102   return useHVX() ? 2 : 0;
103 }
104 
getRegisterBitWidth(bool Vector) const105 unsigned HexagonTTIImpl::getRegisterBitWidth(bool Vector) const {
106   return Vector ? getMinVectorRegisterBitWidth() : 32;
107 }
108 
getMinVectorRegisterBitWidth() const109 unsigned HexagonTTIImpl::getMinVectorRegisterBitWidth() const {
110   return useHVX() ? ST.getVectorLength()*8 : 0;
111 }
112 
getMinimumVF(unsigned ElemWidth) const113 unsigned HexagonTTIImpl::getMinimumVF(unsigned ElemWidth) const {
114   return (8 * ST.getVectorLength()) / ElemWidth;
115 }
116 
getScalarizationOverhead(Type * Ty,bool Insert,bool Extract)117 unsigned HexagonTTIImpl::getScalarizationOverhead(Type *Ty, bool Insert,
118       bool Extract) {
119   return BaseT::getScalarizationOverhead(Ty, Insert, Extract);
120 }
121 
getOperandsScalarizationOverhead(ArrayRef<const Value * > Args,unsigned VF)122 unsigned HexagonTTIImpl::getOperandsScalarizationOverhead(
123       ArrayRef<const Value*> Args, unsigned VF) {
124   return BaseT::getOperandsScalarizationOverhead(Args, VF);
125 }
126 
getCallInstrCost(Function * F,Type * RetTy,ArrayRef<Type * > Tys)127 unsigned HexagonTTIImpl::getCallInstrCost(Function *F, Type *RetTy,
128       ArrayRef<Type*> Tys) {
129   return BaseT::getCallInstrCost(F, RetTy, Tys);
130 }
131 
getIntrinsicInstrCost(Intrinsic::ID ID,Type * RetTy,ArrayRef<Value * > Args,FastMathFlags FMF,unsigned VF)132 unsigned HexagonTTIImpl::getIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy,
133       ArrayRef<Value*> Args, FastMathFlags FMF, unsigned VF) {
134   return BaseT::getIntrinsicInstrCost(ID, RetTy, Args, FMF, VF);
135 }
136 
getIntrinsicInstrCost(Intrinsic::ID ID,Type * RetTy,ArrayRef<Type * > Tys,FastMathFlags FMF,unsigned ScalarizationCostPassed)137 unsigned HexagonTTIImpl::getIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy,
138       ArrayRef<Type*> Tys, FastMathFlags FMF,
139       unsigned ScalarizationCostPassed) {
140   if (ID == Intrinsic::bswap) {
141     std::pair<int, MVT> LT = TLI.getTypeLegalizationCost(DL, RetTy);
142     return LT.first + 2;
143   }
144   return BaseT::getIntrinsicInstrCost(ID, RetTy, Tys, FMF,
145                                       ScalarizationCostPassed);
146 }
147 
getAddressComputationCost(Type * Tp,ScalarEvolution * SE,const SCEV * S)148 unsigned HexagonTTIImpl::getAddressComputationCost(Type *Tp,
149       ScalarEvolution *SE, const SCEV *S) {
150   return 0;
151 }
152 
getMemoryOpCost(unsigned Opcode,Type * Src,unsigned Alignment,unsigned AddressSpace,const Instruction * I)153 unsigned HexagonTTIImpl::getMemoryOpCost(unsigned Opcode, Type *Src,
154       unsigned Alignment, unsigned AddressSpace, const Instruction *I) {
155   assert(Opcode == Instruction::Load || Opcode == Instruction::Store);
156   if (Opcode == Instruction::Store)
157     return BaseT::getMemoryOpCost(Opcode, Src, Alignment, AddressSpace, I);
158 
159   if (Src->isVectorTy()) {
160     VectorType *VecTy = cast<VectorType>(Src);
161     unsigned VecWidth = VecTy->getBitWidth();
162     if (useHVX() && isTypeForHVX(VecTy)) {
163       unsigned RegWidth = getRegisterBitWidth(true);
164       Alignment = std::min(Alignment, RegWidth/8);
165       // Cost of HVX loads.
166       if (VecWidth % RegWidth == 0)
167         return VecWidth / RegWidth;
168       // Cost of constructing HVX vector from scalar loads.
169       unsigned AlignWidth = 8 * std::max(1u, Alignment);
170       unsigned NumLoads = alignTo(VecWidth, AlignWidth) / AlignWidth;
171       return 3*NumLoads;
172     }
173 
174     // Non-HVX vectors.
175     // Add extra cost for floating point types.
176     unsigned Cost = VecTy->getElementType()->isFloatingPointTy() ? FloatFactor
177                                                                  : 1;
178     Alignment = std::min(Alignment, 8u);
179     unsigned AlignWidth = 8 * std::max(1u, Alignment);
180     unsigned NumLoads = alignTo(VecWidth, AlignWidth) / AlignWidth;
181     if (Alignment == 4 || Alignment == 8)
182       return Cost * NumLoads;
183     // Loads of less than 32 bits will need extra inserts to compose a vector.
184     unsigned LogA = Log2_32(Alignment);
185     return (3 - LogA) * Cost * NumLoads;
186   }
187 
188   return BaseT::getMemoryOpCost(Opcode, Src, Alignment, AddressSpace, I);
189 }
190 
getMaskedMemoryOpCost(unsigned Opcode,Type * Src,unsigned Alignment,unsigned AddressSpace)191 unsigned HexagonTTIImpl::getMaskedMemoryOpCost(unsigned Opcode,
192       Type *Src, unsigned Alignment, unsigned AddressSpace) {
193   return BaseT::getMaskedMemoryOpCost(Opcode, Src, Alignment, AddressSpace);
194 }
195 
getShuffleCost(TTI::ShuffleKind Kind,Type * Tp,int Index,Type * SubTp)196 unsigned HexagonTTIImpl::getShuffleCost(TTI::ShuffleKind Kind, Type *Tp,
197       int Index, Type *SubTp) {
198   return 1;
199 }
200 
getGatherScatterOpCost(unsigned Opcode,Type * DataTy,Value * Ptr,bool VariableMask,unsigned Alignment)201 unsigned HexagonTTIImpl::getGatherScatterOpCost(unsigned Opcode, Type *DataTy,
202       Value *Ptr, bool VariableMask, unsigned Alignment) {
203   return BaseT::getGatherScatterOpCost(Opcode, DataTy, Ptr, VariableMask,
204                                        Alignment);
205 }
206 
getInterleavedMemoryOpCost(unsigned Opcode,Type * VecTy,unsigned Factor,ArrayRef<unsigned> Indices,unsigned Alignment,unsigned AddressSpace)207 unsigned HexagonTTIImpl::getInterleavedMemoryOpCost(unsigned Opcode,
208       Type *VecTy, unsigned Factor, ArrayRef<unsigned> Indices,
209       unsigned Alignment, unsigned AddressSpace) {
210   return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
211                                            Alignment, AddressSpace);
212 }
213 
getCmpSelInstrCost(unsigned Opcode,Type * ValTy,Type * CondTy,const Instruction * I)214 unsigned HexagonTTIImpl::getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
215       Type *CondTy, const Instruction *I) {
216   if (ValTy->isVectorTy()) {
217     std::pair<int, MVT> LT = TLI.getTypeLegalizationCost(DL, ValTy);
218     if (Opcode == Instruction::FCmp)
219       return LT.first + FloatFactor * getTypeNumElements(ValTy);
220   }
221   return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, I);
222 }
223 
getArithmeticInstrCost(unsigned Opcode,Type * Ty,TTI::OperandValueKind Opd1Info,TTI::OperandValueKind Opd2Info,TTI::OperandValueProperties Opd1PropInfo,TTI::OperandValueProperties Opd2PropInfo,ArrayRef<const Value * > Args)224 unsigned HexagonTTIImpl::getArithmeticInstrCost(unsigned Opcode, Type *Ty,
225       TTI::OperandValueKind Opd1Info, TTI::OperandValueKind Opd2Info,
226       TTI::OperandValueProperties Opd1PropInfo,
227       TTI::OperandValueProperties Opd2PropInfo, ArrayRef<const Value*> Args) {
228   if (Ty->isVectorTy()) {
229     std::pair<int, MVT> LT = TLI.getTypeLegalizationCost(DL, Ty);
230     if (LT.second.isFloatingPoint())
231       return LT.first + FloatFactor * getTypeNumElements(Ty);
232   }
233   return BaseT::getArithmeticInstrCost(Opcode, Ty, Opd1Info, Opd2Info,
234                                        Opd1PropInfo, Opd2PropInfo, Args);
235 }
236 
getCastInstrCost(unsigned Opcode,Type * DstTy,Type * SrcTy,const Instruction * I)237 unsigned HexagonTTIImpl::getCastInstrCost(unsigned Opcode, Type *DstTy,
238       Type *SrcTy, const Instruction *I) {
239   if (SrcTy->isFPOrFPVectorTy() || DstTy->isFPOrFPVectorTy()) {
240     unsigned SrcN = SrcTy->isFPOrFPVectorTy() ? getTypeNumElements(SrcTy) : 0;
241     unsigned DstN = DstTy->isFPOrFPVectorTy() ? getTypeNumElements(DstTy) : 0;
242 
243     std::pair<int, MVT> SrcLT = TLI.getTypeLegalizationCost(DL, SrcTy);
244     std::pair<int, MVT> DstLT = TLI.getTypeLegalizationCost(DL, DstTy);
245     return std::max(SrcLT.first, DstLT.first) + FloatFactor * (SrcN + DstN);
246   }
247   return 1;
248 }
249 
getVectorInstrCost(unsigned Opcode,Type * Val,unsigned Index)250 unsigned HexagonTTIImpl::getVectorInstrCost(unsigned Opcode, Type *Val,
251       unsigned Index) {
252   Type *ElemTy = Val->isVectorTy() ? cast<VectorType>(Val)->getElementType()
253                                    : Val;
254   if (Opcode == Instruction::InsertElement) {
255     // Need two rotations for non-zero index.
256     unsigned Cost = (Index != 0) ? 2 : 0;
257     if (ElemTy->isIntegerTy(32))
258       return Cost;
259     // If it's not a 32-bit value, there will need to be an extract.
260     return Cost + getVectorInstrCost(Instruction::ExtractElement, Val, Index);
261   }
262 
263   if (Opcode == Instruction::ExtractElement)
264     return 2;
265 
266   return 1;
267 }
268 
269 /// --- Vector TTI end ---
270 
getPrefetchDistance() const271 unsigned HexagonTTIImpl::getPrefetchDistance() const {
272   return ST.getL1PrefetchDistance();
273 }
274 
getCacheLineSize() const275 unsigned HexagonTTIImpl::getCacheLineSize() const {
276   return ST.getL1CacheLineSize();
277 }
278 
getUserCost(const User * U,ArrayRef<const Value * > Operands)279 int HexagonTTIImpl::getUserCost(const User *U,
280                                 ArrayRef<const Value *> Operands) {
281   auto isCastFoldedIntoLoad = [this](const CastInst *CI) -> bool {
282     if (!CI->isIntegerCast())
283       return false;
284     // Only extensions from an integer type shorter than 32-bit to i32
285     // can be folded into the load.
286     const DataLayout &DL = getDataLayout();
287     unsigned SBW = DL.getTypeSizeInBits(CI->getSrcTy());
288     unsigned DBW = DL.getTypeSizeInBits(CI->getDestTy());
289     if (DBW != 32 || SBW >= DBW)
290       return false;
291 
292     const LoadInst *LI = dyn_cast<const LoadInst>(CI->getOperand(0));
293     // Technically, this code could allow multiple uses of the load, and
294     // check if all the uses are the same extension operation, but this
295     // should be sufficient for most cases.
296     return LI && LI->hasOneUse();
297   };
298 
299   if (const CastInst *CI = dyn_cast<const CastInst>(U))
300     if (isCastFoldedIntoLoad(CI))
301       return TargetTransformInfo::TCC_Free;
302   return BaseT::getUserCost(U, Operands);
303 }
304 
shouldBuildLookupTables() const305 bool HexagonTTIImpl::shouldBuildLookupTables() const {
306   return EmitLookupTables;
307 }
308