1 //===- HexagonMCInstrInfo.cpp - Utility functions on Hexagon MCInsts ------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Utility functions for Hexagon specific MCInst queries
11 //
12 //===----------------------------------------------------------------------===//
13
14 #ifndef LLVM_LIB_TARGET_HEXAGON_MCTARGETDESC_HEXAGONMCINSTRINFO_H
15 #define LLVM_LIB_TARGET_HEXAGON_MCTARGETDESC_HEXAGONMCINSTRINFO_H
16
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/ADT/StringRef.h"
19 #include "llvm/ADT/iterator_range.h"
20 #include "llvm/MC/MCInst.h"
21 #include "llvm/Support/MathExtras.h"
22 #include <cstddef>
23 #include <cstdint>
24
25 namespace llvm {
26
27 class HexagonMCChecker;
28 class MCContext;
29 class MCExpr;
30 class MCInstrDesc;
31 class MCInstrInfo;
32 class MCSubtargetInfo;
33
34 class DuplexCandidate {
35 public:
36 unsigned packetIndexI, packetIndexJ, iClass;
37
DuplexCandidate(unsigned i,unsigned j,unsigned iClass)38 DuplexCandidate(unsigned i, unsigned j, unsigned iClass)
39 : packetIndexI(i), packetIndexJ(j), iClass(iClass) {}
40 };
41
42 namespace Hexagon {
43
44 class PacketIterator {
45 MCInstrInfo const &MCII;
46 MCInst::const_iterator BundleCurrent;
47 MCInst::const_iterator BundleEnd;
48 MCInst::const_iterator DuplexCurrent;
49 MCInst::const_iterator DuplexEnd;
50
51 public:
52 PacketIterator(MCInstrInfo const &MCII, MCInst const &Inst);
53 PacketIterator(MCInstrInfo const &MCII, MCInst const &Inst, std::nullptr_t);
54
55 PacketIterator &operator++();
56 MCInst const &operator*() const;
57 bool operator==(PacketIterator const &Other) const;
58 bool operator!=(PacketIterator const &Other) const {
59 return !(*this == Other);
60 }
61 };
62
63 } // end namespace Hexagon
64
65 namespace HexagonMCInstrInfo {
66
67 size_t const innerLoopOffset = 0;
68 int64_t const innerLoopMask = 1 << innerLoopOffset;
69
70 size_t const outerLoopOffset = 1;
71 int64_t const outerLoopMask = 1 << outerLoopOffset;
72
73 // do not reorder memory load/stores by default load/stores are re-ordered
74 // and by default loads can be re-ordered
75 size_t const memReorderDisabledOffset = 2;
76 int64_t const memReorderDisabledMask = 1 << memReorderDisabledOffset;
77
78 size_t const bundleInstructionsOffset = 1;
79
80 void addConstant(MCInst &MI, uint64_t Value, MCContext &Context);
81 void addConstExtender(MCContext &Context, MCInstrInfo const &MCII, MCInst &MCB,
82 MCInst const &MCI);
83
84 // Returns a iterator range of instructions in this bundle
85 iterator_range<Hexagon::PacketIterator>
86 bundleInstructions(MCInstrInfo const &MCII, MCInst const &MCI);
87 iterator_range<MCInst::const_iterator> bundleInstructions(MCInst const &MCI);
88
89 // Returns the number of instructions in the bundle
90 size_t bundleSize(MCInst const &MCI);
91
92 // Put the packet in to canonical form, compound, duplex, pad, and shuffle
93 bool canonicalizePacket(MCInstrInfo const &MCII, MCSubtargetInfo const &STI,
94 MCContext &Context, MCInst &MCB,
95 HexagonMCChecker *Checker);
96
97 // Create a duplex instruction given the two subinsts
98 MCInst *deriveDuplex(MCContext &Context, unsigned iClass, MCInst const &inst0,
99 MCInst const &inst1);
100 MCInst deriveExtender(MCInstrInfo const &MCII, MCInst const &Inst,
101 MCOperand const &MO);
102
103 // Convert this instruction in to a duplex subinst
104 MCInst deriveSubInst(MCInst const &Inst);
105
106 // Return the extender for instruction at Index or nullptr if none
107 MCInst const *extenderForIndex(MCInst const &MCB, size_t Index);
108 void extendIfNeeded(MCContext &Context, MCInstrInfo const &MCII, MCInst &MCB,
109 MCInst const &MCI);
110
111 // Return memory access size in bytes
112 unsigned getMemAccessSize(MCInstrInfo const &MCII, MCInst const &MCI);
113
114 // Return memory access size
115 unsigned getAddrMode(MCInstrInfo const &MCII, MCInst const &MCI);
116
117 MCInstrDesc const &getDesc(MCInstrInfo const &MCII, MCInst const &MCI);
118
119 // Return which duplex group this instruction belongs to
120 unsigned getDuplexCandidateGroup(MCInst const &MI);
121
122 // Return a list of all possible instruction duplex combinations
123 SmallVector<DuplexCandidate, 8>
124 getDuplexPossibilties(MCInstrInfo const &MCII, MCSubtargetInfo const &STI,
125 MCInst const &MCB);
126 unsigned getDuplexRegisterNumbering(unsigned Reg);
127
128 MCExpr const &getExpr(MCExpr const &Expr);
129
130 // Return the index of the extendable operand
131 unsigned short getExtendableOp(MCInstrInfo const &MCII, MCInst const &MCI);
132
133 // Return a reference to the extendable operand
134 MCOperand const &getExtendableOperand(MCInstrInfo const &MCII,
135 MCInst const &MCI);
136
137 // Return the implicit alignment of the extendable operand
138 unsigned getExtentAlignment(MCInstrInfo const &MCII, MCInst const &MCI);
139
140 // Return the number of logical bits of the extendable operand
141 unsigned getExtentBits(MCInstrInfo const &MCII, MCInst const &MCI);
142
143 // Check if the extendable operand is signed.
144 bool isExtentSigned(MCInstrInfo const &MCII, MCInst const &MCI);
145
146 // Return the max value that a constant extendable operand can have
147 // without being extended.
148 int getMaxValue(MCInstrInfo const &MCII, MCInst const &MCI);
149
150 // Return the min value that a constant extendable operand can have
151 // without being extended.
152 int getMinValue(MCInstrInfo const &MCII, MCInst const &MCI);
153
154 // Return instruction name
155 StringRef getName(MCInstrInfo const &MCII, MCInst const &MCI);
156
157 // Return the operand index for the new value.
158 unsigned short getNewValueOp(MCInstrInfo const &MCII, MCInst const &MCI);
159
160 // Return the operand that consumes or produces a new value.
161 MCOperand const &getNewValueOperand(MCInstrInfo const &MCII, MCInst const &MCI);
162 unsigned short getNewValueOp2(MCInstrInfo const &MCII, MCInst const &MCI);
163 MCOperand const &getNewValueOperand2(MCInstrInfo const &MCII,
164 MCInst const &MCI);
165
166 // Return the Hexagon ISA class for the insn.
167 unsigned getType(MCInstrInfo const &MCII, MCInst const &MCI);
168
169 /// Return the slots used by the insn.
170 unsigned getUnits(MCInstrInfo const &MCII, MCSubtargetInfo const &STI,
171 MCInst const &MCI);
172 unsigned getOtherReservedSlots(MCInstrInfo const &MCII,
173 MCSubtargetInfo const &STI, MCInst const &MCI);
174 bool hasDuplex(MCInstrInfo const &MCII, MCInst const &MCI);
175
176 // Does the packet have an extender for the instruction at Index
177 bool hasExtenderForIndex(MCInst const &MCB, size_t Index);
178
179 bool hasImmExt(MCInst const &MCI);
180
181 // Return whether the instruction is a legal new-value producer.
182 bool hasNewValue(MCInstrInfo const &MCII, MCInst const &MCI);
183 bool hasNewValue2(MCInstrInfo const &MCII, MCInst const &MCI);
184 bool hasTmpDst(MCInstrInfo const &MCII, MCInst const &MCI);
185 unsigned iClassOfDuplexPair(unsigned Ga, unsigned Gb);
186
187 int64_t minConstant(MCInst const &MCI, size_t Index);
188 template <unsigned N, unsigned S>
inRange(MCInst const & MCI,size_t Index)189 bool inRange(MCInst const &MCI, size_t Index) {
190 return isShiftedUInt<N, S>(minConstant(MCI, Index));
191 }
192 template <unsigned N, unsigned S>
inSRange(MCInst const & MCI,size_t Index)193 bool inSRange(MCInst const &MCI, size_t Index) {
194 return isShiftedInt<N, S>(minConstant(MCI, Index));
195 }
inRange(MCInst const & MCI,size_t Index)196 template <unsigned N> bool inRange(MCInst const &MCI, size_t Index) {
197 return isUInt<N>(minConstant(MCI, Index));
198 }
199
200 // Return the instruction at Index
201 MCInst const &instruction(MCInst const &MCB, size_t Index);
202 bool isAccumulator(MCInstrInfo const &MCII, MCInst const &MCI);
203
204 // Returns whether this MCInst is a wellformed bundle
205 bool isBundle(MCInst const &MCI);
206
207 // Return whether the insn is an actual insn.
208 bool isCanon(MCInstrInfo const &MCII, MCInst const &MCI);
209 bool isCofMax1(MCInstrInfo const &MCII, MCInst const &MCI);
210 bool isCofRelax1(MCInstrInfo const &MCII, MCInst const &MCI);
211 bool isCofRelax2(MCInstrInfo const &MCII, MCInst const &MCI);
212 bool isCompound(MCInstrInfo const &MCII, MCInst const &MCI);
213
214 // Return whether the instruction needs to be constant extended.
215 bool isConstExtended(MCInstrInfo const &MCII, MCInst const &MCI);
216 bool isCVINew(MCInstrInfo const &MCII, MCInst const &MCI);
217
218 // Is this double register suitable for use in a duplex subinst
219 bool isDblRegForSubInst(unsigned Reg);
220
221 // Is this a duplex instruction
222 bool isDuplex(MCInstrInfo const &MCII, MCInst const &MCI);
223
224 // Can these instructions be duplexed
225 bool isDuplexPair(MCInst const &MIa, MCInst const &MIb);
226
227 // Can these duplex classes be combine in to a duplex instruction
228 bool isDuplexPairMatch(unsigned Ga, unsigned Gb);
229
230 // Return true if the insn may be extended based on the operand value.
231 bool isExtendable(MCInstrInfo const &MCII, MCInst const &MCI);
232
233 // Return whether the instruction must be always extended.
234 bool isExtended(MCInstrInfo const &MCII, MCInst const &MCI);
235
236 /// Return whether it is a floating-point insn.
237 bool isFloat(MCInstrInfo const &MCII, MCInst const &MCI);
238
239 bool isHVX(MCInstrInfo const &MCII, MCInst const &MCI);
240
241 // Returns whether this instruction is an immediate extender
242 bool isImmext(MCInst const &MCI);
243
244 // Returns whether this bundle is an endloop0
245 bool isInnerLoop(MCInst const &MCI);
246
247 // Is this an integer register
248 bool isIntReg(unsigned Reg);
249
250 // Is this register suitable for use in a duplex subinst
251 bool isIntRegForSubInst(unsigned Reg);
252 bool isMemReorderDisabled(MCInst const &MCI);
253
254 // Return whether the insn is a new-value consumer.
255 bool isNewValue(MCInstrInfo const &MCII, MCInst const &MCI);
256 bool isOpExtendable(MCInstrInfo const &MCII, MCInst const &MCI, unsigned short);
257
258 // Can these two instructions be duplexed
259 bool isOrderedDuplexPair(MCInstrInfo const &MCII, MCInst const &MIa,
260 bool ExtendedA, MCInst const &MIb, bool ExtendedB,
261 bool bisReversable, MCSubtargetInfo const &STI);
262
263 // Returns whether this bundle is an endloop1
264 bool isOuterLoop(MCInst const &MCI);
265
266 // Return whether this instruction is predicated
267 bool isPredicated(MCInstrInfo const &MCII, MCInst const &MCI);
268 bool isPredicateLate(MCInstrInfo const &MCII, MCInst const &MCI);
269 bool isPredicatedNew(MCInstrInfo const &MCII, MCInst const &MCI);
270
271 // Return whether the predicate sense is true
272 bool isPredicatedTrue(MCInstrInfo const &MCII, MCInst const &MCI);
273
274 // Is this a predicate register
275 bool isPredReg(unsigned Reg);
276
277 // Return whether the insn is a prefix.
278 bool isPrefix(MCInstrInfo const &MCII, MCInst const &MCI);
279
280 // Return whether the insn is solo, i.e., cannot be in a packet.
281 bool isSolo(MCInstrInfo const &MCII, MCInst const &MCI);
282
283 /// Return whether the insn can be packaged only with A and X-type insns.
284 bool isSoloAX(MCInstrInfo const &MCII, MCInst const &MCI);
285
286 /// Return whether the insn can be packaged only with an A-type insn in slot #1.
287 bool isRestrictSlot1AOK(MCInstrInfo const &MCII, MCInst const &MCI);
288 bool isRestrictNoSlot1Store(MCInstrInfo const &MCII, MCInst const &MCI);
289 bool isSubInstruction(MCInst const &MCI);
290 bool isVector(MCInstrInfo const &MCII, MCInst const &MCI);
291 bool mustExtend(MCExpr const &Expr);
292 bool mustNotExtend(MCExpr const &Expr);
293
294 // Pad the bundle with nops to satisfy endloop requirements
295 void padEndloop(MCInst &MCI, MCContext &Context);
296 class PredicateInfo {
297 public:
PredicateInfo()298 PredicateInfo() : Register(0), Operand(0), PredicatedTrue(false) {}
PredicateInfo(unsigned Register,unsigned Operand,bool PredicatedTrue)299 PredicateInfo(unsigned Register, unsigned Operand, bool PredicatedTrue)
300 : Register(Register), Operand(Operand), PredicatedTrue(PredicatedTrue) {}
301 bool isPredicated() const;
302 unsigned Register;
303 unsigned Operand;
304 bool PredicatedTrue;
305 };
306 PredicateInfo predicateInfo(MCInstrInfo const &MCII, MCInst const &MCI);
307 bool prefersSlot3(MCInstrInfo const &MCII, MCInst const &MCI);
308
309 // Replace the instructions inside MCB, represented by Candidate
310 void replaceDuplex(MCContext &Context, MCInst &MCI, DuplexCandidate Candidate);
311
312 bool s27_2_reloc(MCExpr const &Expr);
313 // Marks a bundle as endloop0
314 void setInnerLoop(MCInst &MCI);
315 void setMemReorderDisabled(MCInst &MCI);
316 void setMustExtend(MCExpr const &Expr, bool Val = true);
317 void setMustNotExtend(MCExpr const &Expr, bool Val = true);
318 void setS27_2_reloc(MCExpr const &Expr, bool Val = true);
319
320 // Marks a bundle as endloop1
321 void setOuterLoop(MCInst &MCI);
322
323 // Would duplexing this instruction create a requirement to extend
324 bool subInstWouldBeExtended(MCInst const &potentialDuplex);
325 unsigned SubregisterBit(unsigned Consumer, unsigned Producer,
326 unsigned Producer2);
327
328 // Attempt to find and replace compound pairs
329 void tryCompound(MCInstrInfo const &MCII, MCSubtargetInfo const &STI,
330 MCContext &Context, MCInst &MCI);
331
332 } // end namespace HexagonMCInstrInfo
333
334 } // end namespace llvm
335
336 #endif // LLVM_LIB_TARGET_HEXAGON_MCTARGETDESC_HEXAGONMCINSTRINFO_H
337