1//===- Mips16InstrInfo.td - Target Description for Mips16  -*- tablegen -*-=//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file describes Mips16 instructions.
11//
12//===----------------------------------------------------------------------===//
13//
14//
15// Mips Address
16//
17def addr16 : ComplexPattern<iPTR, 2, "selectAddr16", [frameindex]>;
18def addr16sp : ComplexPattern<iPTR, 2, "selectAddr16SP", [frameindex]>;
19
20//
21// Address operand
22def mem16 : Operand<i32> {
23  let PrintMethod = "printMemOperand";
24  let MIOperandInfo = (ops CPU16Regs, simm16);
25  let EncoderMethod = "getMemEncoding";
26}
27
28def mem16sp : Operand<i32> {
29  let PrintMethod = "printMemOperand";
30  // This should be CPUSPReg but the MIPS16 subtarget isn't good enough at
31  // keeping the sp-relative load and the other varieties separate at the
32  // moment. This lie fixes the problem sufficiently well to fix the errors
33  // emitted by -verify-machineinstrs and the output ends up correct as long
34  // as we use an external assembler (which is already a requirement for MIPS16
35  // for several other reasons).
36  let MIOperandInfo = (ops CPU16RegsPlusSP, simm16);
37  let EncoderMethod = "getMemEncoding";
38}
39
40def mem16_ea : Operand<i32> {
41  let PrintMethod = "printMemOperandEA";
42  let MIOperandInfo = (ops CPU16RegsPlusSP, simm16);
43  let EncoderMethod = "getMemEncoding";
44}
45
46def pcrel16 : Operand<i32>;
47
48//
49// I-type instruction format
50//
51// this is only used by bimm. the actual assembly value is a 12 bit signed
52// number
53//
54class FI16_ins<bits<5> op, string asmstr, InstrItinClass itin>:
55  FI16<op, (outs), (ins brtarget:$imm16),
56            !strconcat(asmstr, "\t$imm16 # 16 bit inst"), [], itin>;
57
58//
59//
60// I8 instruction format
61//
62
63class FI816_ins_base<bits<3> _func, string asmstr,
64                     string asmstr2, InstrItinClass itin>:
65  FI816<_func, (outs), (ins simm16:$imm), !strconcat(asmstr, asmstr2),
66        [], itin>;
67
68class FI816_ins<bits<3> _func, string asmstr,
69                InstrItinClass itin>:
70  FI816_ins_base<_func, asmstr, "\t$imm  # 16 bit inst", itin>;
71
72class FI816_SP_ins<bits<3> _func, string asmstr,
73                   InstrItinClass itin>:
74  FI816_ins_base<_func, asmstr, "\t$$sp, $imm # 16 bit inst", itin>;
75
76//
77// RI instruction format
78//
79
80
81class FRI16_ins_base<bits<5> op, string asmstr, string asmstr2,
82                     InstrItinClass itin>:
83  FRI16<op, (outs CPU16Regs:$rx), (ins simm16:$imm),
84        !strconcat(asmstr, asmstr2), [], itin>;
85
86class FRI16_ins<bits<5> op, string asmstr,
87                InstrItinClass itin>:
88  FRI16_ins_base<op, asmstr, "\t$rx, $imm \t# 16 bit inst", itin>;
89
90class FRI16_TCP_ins<bits<5> _op, string asmstr,
91                    InstrItinClass itin>:
92  FRI16<_op, (outs CPU16Regs:$rx), (ins pcrel16:$imm, i32imm:$size),
93            !strconcat(asmstr, "\t$rx, $imm\t# 16 bit inst"), [], itin>;
94
95class FRI16R_ins_base<bits<5> op, string asmstr, string asmstr2,
96                     InstrItinClass itin>:
97  FRI16<op, (outs), (ins CPU16Regs:$rx, simm16:$imm),
98        !strconcat(asmstr, asmstr2), [], itin>;
99
100class FRI16R_ins<bits<5> op, string asmstr,
101                InstrItinClass itin>:
102  FRI16R_ins_base<op, asmstr, "\t$rx, $imm \t# 16 bit inst", itin>;
103
104class F2RI16_ins<bits<5> _op, string asmstr,
105                     InstrItinClass itin>:
106  FRI16<_op, (outs CPU16Regs:$rx), (ins CPU16Regs:$rx_, simm16:$imm),
107        !strconcat(asmstr, "\t$rx, $imm\t# 16 bit inst"), [], itin> {
108  let Constraints = "$rx_ = $rx";
109}
110
111class FRI16_B_ins<bits<5> _op, string asmstr,
112                  InstrItinClass itin>:
113  FRI16<_op, (outs), (ins  CPU16Regs:$rx, brtarget:$imm),
114        !strconcat(asmstr, "\t$rx, $imm  # 16 bit inst"), [], itin>;
115//
116// Compare a register and immediate and place result in CC
117// Implicit use of T8
118//
119// EXT-CCRR Instruction format
120//
121class FEXT_CCRXI16_ins<string asmstr>:
122  MipsPseudo16<(outs CPU16Regs:$cc), (ins CPU16Regs:$rx, simm16:$imm),
123               !strconcat(asmstr, "\t$rx, $imm\n\tmove\t$cc, $$t8"), []> {
124  let isCodeGenOnly=1;
125  let usesCustomInserter = 1;
126}
127
128// JAL and JALX instruction format
129//
130class FJAL16_ins<bits<1> _X, string asmstr,
131                 InstrItinClass itin>:
132  FJAL16<_X, (outs), (ins uimm26:$imm),
133         !strconcat(asmstr, "\t$imm\n\tnop"),[],
134         itin>  {
135  let isCodeGenOnly=1;
136  let Size=6;
137}
138
139class FJALB16_ins<bits<1> _X, string asmstr,
140                 InstrItinClass itin>:
141  FJAL16<_X, (outs), (ins uimm26:$imm),
142         !strconcat(asmstr, "\t$imm\t# branch\n\tnop"),[],
143         itin>  {
144  let isCodeGenOnly=1;
145  let Size=6;
146}
147
148//
149// EXT-I instruction format
150//
151class FEXT_I16_ins<bits<5> eop, string asmstr, InstrItinClass itin> :
152  FEXT_I16<eop, (outs), (ins brtarget:$imm16),
153           !strconcat(asmstr, "\t$imm16"),[], itin>;
154
155//
156// EXT-I8 instruction format
157//
158
159class FEXT_I816_ins_base<bits<3> _func, string asmstr,
160                         string asmstr2, InstrItinClass itin>:
161  FEXT_I816<_func, (outs), (ins simm16:$imm), !strconcat(asmstr, asmstr2),
162            [], itin>;
163
164class FEXT_I816_ins<bits<3> _func, string asmstr,
165                    InstrItinClass itin>:
166  FEXT_I816_ins_base<_func, asmstr, "\t$imm", itin>;
167
168class FEXT_I816_SP_ins<bits<3> _func, string asmstr,
169                       InstrItinClass itin>:
170      FEXT_I816_ins_base<_func, asmstr, "\t$$sp, $imm", itin>;
171
172//
173// Assembler formats in alphabetical order.
174// Natural and pseudos are mixed together.
175//
176// Compare two registers and place result in CC
177// Implicit use of T8
178//
179// CC-RR Instruction format
180//
181class FCCRR16_ins<string asmstr> :
182  MipsPseudo16<(outs CPU16Regs:$cc), (ins CPU16Regs:$rx, CPU16Regs:$ry),
183               !strconcat(asmstr, "\t$rx, $ry\n\tmove\t$cc, $$t8"), []> {
184  let isCodeGenOnly=1;
185  let usesCustomInserter = 1;
186}
187
188//
189// EXT-RI instruction format
190//
191
192class FEXT_RI16_ins_base<bits<5> _op, string asmstr, string asmstr2,
193                         InstrItinClass itin>:
194  FEXT_RI16<_op, (outs CPU16Regs:$rx), (ins simm16:$imm),
195                  !strconcat(asmstr, asmstr2), [], itin>;
196
197class FEXT_RI16_ins<bits<5> _op, string asmstr,
198                    InstrItinClass itin>:
199  FEXT_RI16_ins_base<_op, asmstr, "\t$rx, $imm", itin>;
200
201class FEXT_RI16R_ins_base<bits<5> _op, string asmstr, string asmstr2,
202                         InstrItinClass itin>:
203  FEXT_RI16<_op, (outs ), (ins CPU16Regs:$rx, simm16:$imm),
204                  !strconcat(asmstr, asmstr2), [], itin>;
205
206class FEXT_RI16R_ins<bits<5> _op, string asmstr,
207                    InstrItinClass itin>:
208  FEXT_RI16R_ins_base<_op, asmstr, "\t$rx, $imm", itin>;
209
210class FEXT_RI16_PC_ins<bits<5> _op, string asmstr, InstrItinClass itin>:
211  FEXT_RI16_ins_base<_op, asmstr, "\t$rx, $$pc, $imm", itin>;
212
213class FEXT_RI16_B_ins<bits<5> _op, string asmstr,
214                      InstrItinClass itin>:
215  FEXT_RI16<_op, (outs), (ins  CPU16Regs:$rx, brtarget:$imm),
216            !strconcat(asmstr, "\t$rx, $imm"), [], itin>;
217
218class FEXT_RI16_TCP_ins<bits<5> _op, string asmstr,
219                        InstrItinClass itin>:
220  FEXT_RI16<_op, (outs CPU16Regs:$rx), (ins pcrel16:$imm, i32imm:$size),
221            !strconcat(asmstr, "\t$rx, $imm"), [], itin>;
222
223class FEXT_2RI16_ins<bits<5> _op, string asmstr,
224                     InstrItinClass itin>:
225  FEXT_RI16<_op, (outs CPU16Regs:$rx), (ins CPU16Regs:$rx_, simm16:$imm),
226            !strconcat(asmstr, "\t$rx, $imm"), [], itin> {
227  let Constraints = "$rx_ = $rx";
228}
229
230//
231// EXT-RRI instruction format
232//
233
234class FEXT_RRI16_mem_ins<bits<5> op, string asmstr, Operand MemOpnd,
235                         InstrItinClass itin>:
236  FEXT_RRI16<op, (outs CPU16Regs:$ry), (ins  MemOpnd:$addr),
237             !strconcat(asmstr, "\t$ry, $addr"), [], itin>;
238
239class FEXT_RRI16_mem2_ins<bits<5> op, string asmstr, Operand MemOpnd,
240                          InstrItinClass itin>:
241  FEXT_RRI16<op, (outs ), (ins  CPU16Regs:$ry, MemOpnd:$addr),
242             !strconcat(asmstr, "\t$ry, $addr"), [], itin>;
243
244//
245//
246// EXT-RRI-A instruction format
247//
248
249class FEXT_RRI_A16_mem_ins<bits<1> op, string asmstr, Operand MemOpnd,
250                           InstrItinClass itin>:
251  FEXT_RRI_A16<op, (outs CPU16Regs:$ry), (ins  MemOpnd:$addr),
252               !strconcat(asmstr, "\t$ry, $addr"), [], itin>;
253
254//
255// EXT-SHIFT instruction format
256//
257class FEXT_SHIFT16_ins<bits<2> _f, string asmstr, InstrItinClass itin>:
258  FEXT_SHIFT16<_f, (outs CPU16Regs:$rx), (ins CPU16Regs:$ry, uimm5:$sa),
259               !strconcat(asmstr, "\t$rx, $ry, $sa"), [], itin>;
260
261//
262// EXT-T8I8
263//
264class FEXT_T8I816_ins<string asmstr, string asmstr2>:
265  MipsPseudo16<(outs),
266               (ins CPU16Regs:$rx, CPU16Regs:$ry, brtarget:$imm),
267               !strconcat(asmstr2, !strconcat("\t$rx, $ry\n\t",
268               !strconcat(asmstr, "\t$imm"))),[]> {
269  let isCodeGenOnly=1;
270  let usesCustomInserter = 1;
271}
272
273//
274// EXT-T8I8I
275//
276class FEXT_T8I8I16_ins<string asmstr, string asmstr2>:
277  MipsPseudo16<(outs),
278               (ins CPU16Regs:$rx, simm16:$imm, brtarget:$targ),
279               !strconcat(asmstr2, !strconcat("\t$rx, $imm\n\t",
280               !strconcat(asmstr, "\t$targ"))), []> {
281  let isCodeGenOnly=1;
282  let usesCustomInserter = 1;
283}
284//
285
286
287//
288// I8_MOVR32 instruction format (used only by the MOVR32 instructio
289//
290class FI8_MOVR3216_ins<string asmstr, InstrItinClass itin>:
291       FI8_MOVR3216<(outs CPU16Regs:$rz), (ins GPR32:$r32),
292       !strconcat(asmstr,  "\t$rz, $r32"), [], itin>;
293
294//
295// I8_MOV32R instruction format (used only by MOV32R instruction)
296//
297
298class FI8_MOV32R16_ins<string asmstr, InstrItinClass itin>:
299  FI8_MOV32R16<(outs GPR32:$r32), (ins CPU16Regs:$rz),
300               !strconcat(asmstr,  "\t$r32, $rz"), [], itin>;
301
302//
303// This are pseudo formats for multiply
304// This first one can be changed to non-pseudo now.
305//
306// MULT
307//
308class FMULT16_ins<string asmstr, InstrItinClass itin> :
309  MipsPseudo16<(outs), (ins CPU16Regs:$rx, CPU16Regs:$ry),
310               !strconcat(asmstr, "\t$rx, $ry"), []>;
311
312//
313// MULT-LO
314//
315class FMULT16_LO_ins<string asmstr, InstrItinClass itin> :
316  MipsPseudo16<(outs CPU16Regs:$rz), (ins CPU16Regs:$rx, CPU16Regs:$ry),
317               !strconcat(asmstr, "\t$rx, $ry\n\tmflo\t$rz"), []> {
318  let isCodeGenOnly=1;
319}
320
321//
322// RR-type instruction format
323//
324
325class FRR16_ins<bits<5> f, string asmstr, InstrItinClass itin> :
326  FRR16<f, (outs CPU16Regs:$rx), (ins CPU16Regs:$ry),
327        !strconcat(asmstr, "\t$rx, $ry"), [], itin> {
328}
329
330class FRRBreakNull16_ins<string asmstr, InstrItinClass itin> :
331  FRRBreak16<(outs), (ins), asmstr, [], itin> {
332  let Code=0;
333}
334
335class FRR16R_ins<bits<5> f, string asmstr, InstrItinClass itin> :
336  FRR16<f, (outs), (ins  CPU16Regs:$rx, CPU16Regs:$ry),
337        !strconcat(asmstr, "\t$rx, $ry"), [], itin> {
338}
339
340class FRRTR16_ins<string asmstr> :
341  MipsPseudo16<(outs CPU16Regs:$rz), (ins CPU16Regs:$rx, CPU16Regs:$ry),
342               !strconcat(asmstr, "\t$rx, $ry\n\tmove\t$rz, $$t8"), []> ;
343
344//
345// maybe refactor but need a $zero as a dummy first parameter
346//
347class FRR16_div_ins<bits<5> f, string asmstr, InstrItinClass itin> :
348  FRR16<f, (outs ), (ins CPU16Regs:$rx, CPU16Regs:$ry),
349        !strconcat(asmstr, "\t$$zero, $rx, $ry"), [], itin> ;
350
351class FUnaryRR16_ins<bits<5> f, string asmstr, InstrItinClass itin> :
352  FRR16<f, (outs CPU16Regs:$rx), (ins CPU16Regs:$ry),
353        !strconcat(asmstr, "\t$rx, $ry"), [], itin> ;
354
355
356class FRR16_M_ins<bits<5> f, string asmstr,
357                  InstrItinClass itin> :
358  FRR16<f, (outs CPU16Regs:$rx), (ins),
359        !strconcat(asmstr, "\t$rx"), [], itin>;
360
361class FRxRxRy16_ins<bits<5> f, string asmstr,
362                    InstrItinClass itin> :
363  FRR16<f, (outs CPU16Regs:$rz), (ins CPU16Regs:$rx, CPU16Regs:$ry),
364            !strconcat(asmstr, "\t$rz, $ry"),
365            [], itin> {
366  let Constraints = "$rx = $rz";
367}
368
369let rx=0 in
370class FRR16_JALRC_RA_only_ins<bits<1> nd_, bits<1> l_,
371                              string asmstr, InstrItinClass itin>:
372  FRR16_JALRC<nd_, l_, 1, (outs), (ins), !strconcat(asmstr, "\t$$ra"),
373              [], itin> ;
374
375
376class FRR16_JALRC_ins<bits<1> nd, bits<1> l, bits<1> ra,
377                      string asmstr, InstrItinClass itin>:
378  FRR16_JALRC<nd, l, ra, (outs), (ins CPU16Regs:$rx),
379              !strconcat(asmstr, "\t$rx"), [], itin> ;
380
381class FRR_SF16_ins
382  <bits<5> _funct, bits<3> _subfunc,
383    string asmstr, InstrItinClass itin>:
384  FRR_SF16<_funct, _subfunc, (outs CPU16Regs:$rx), (ins CPU16Regs:$rx_),
385           !strconcat(asmstr, "\t $rx"),
386           [], itin> {
387  let Constraints = "$rx_ = $rx";
388  }
389//
390// RRR-type instruction format
391//
392
393class FRRR16_ins<bits<2> _f, string asmstr,  InstrItinClass itin> :
394  FRRR16<_f, (outs CPU16Regs:$rz), (ins CPU16Regs:$rx, CPU16Regs:$ry),
395         !strconcat(asmstr, "\t$rz, $rx, $ry"), [], itin>;
396
397//
398// These Sel patterns support the generation of conditional move
399// pseudo instructions.
400//
401// The nomenclature uses the components making up the pseudo and may
402// be a bit counter intuitive when compared with the end result we seek.
403// For example using a bqez in the example directly below results in the
404// conditional move being done if the tested register is not zero.
405// I considered in easier to check by keeping the pseudo consistent with
406// it's components but it could have been done differently.
407//
408// The simplest case is when can test and operand directly and do the
409// conditional move based on a simple mips16 conditional
410//  branch instruction.
411// for example:
412// if $op == beqz or bnez:
413//
414// $op1 $rt, .+4
415// move $rd, $rs
416//
417// if $op == beqz, then if $rt != 0, then the conditional assignment
418// $rd = $rs is done.
419
420// if $op == bnez, then if $rt == 0, then the conditional assignment
421// $rd = $rs is done.
422//
423// So this pseudo class only has one operand, i.e. op
424//
425class Sel<string op>:
426  MipsPseudo16<(outs CPU16Regs:$rd_), (ins CPU16Regs:$rd, CPU16Regs:$rs,
427               CPU16Regs:$rt),
428               !strconcat(op, "\t$rt, .+4\n\t\n\tmove $rd, $rs"), []> {
429  //let isCodeGenOnly=1;
430  let Constraints = "$rd = $rd_";
431  let usesCustomInserter = 1;
432}
433
434//
435// The next two instruction classes allow for an operand which tests
436// two operands and returns a value in register T8 and
437//then does a conditional branch based on the value of T8
438//
439
440// op2 can be cmpi or slti/sltiu
441// op1 can bteqz or btnez
442// the operands for op2 are a register and a signed constant
443//
444// $op2 $t, $imm  ;test register t and branch conditionally
445// $op1 .+4       ;op1 is a conditional branch
446// move $rd, $rs
447//
448//
449class SeliT<string op1, string op2>:
450  MipsPseudo16<(outs CPU16Regs:$rd_), (ins CPU16Regs:$rd, CPU16Regs:$rs,
451                                       CPU16Regs:$rl, simm16:$imm),
452               !strconcat(op2,
453               !strconcat("\t$rl, $imm\n\t",
454               !strconcat(op1, "\t.+4\n\tmove $rd, $rs"))), []> {
455  let isCodeGenOnly=1;
456  let Constraints = "$rd = $rd_";
457  let usesCustomInserter = 1;
458}
459
460//
461// op2 can be cmp or slt/sltu
462// op1 can be bteqz or btnez
463// the operands for op2 are two registers
464// op1 is a conditional branch
465//
466//
467// $op2 $rl, $rr  ;test registers rl,rr
468// $op1 .+4       ;op2 is a conditional branch
469// move $rd, $rs
470//
471//
472class SelT<string op1, string op2>:
473  MipsPseudo16<(outs CPU16Regs:$rd_),
474               (ins CPU16Regs:$rd, CPU16Regs:$rs,
475                CPU16Regs:$rl, CPU16Regs:$rr),
476               !strconcat(op2,
477               !strconcat("\t$rl, $rr\n\t",
478               !strconcat(op1, "\t.+4\n\tmove $rd, $rs"))), []> {
479  let isCodeGenOnly=1;
480  let Constraints = "$rd = $rd_";
481  let usesCustomInserter = 1;
482}
483
484//
485// 32 bit constant
486//
487def Constant32:
488  MipsPseudo16<(outs), (ins simm32:$imm), "\t.word $imm", []>;
489
490def LwConstant32:
491  MipsPseudo16<(outs CPU16Regs:$rx), (ins simm32:$imm, simm32:$constid),
492    "lw\t$rx, 1f\n\tb\t2f\n\t.align\t2\n1: \t.word\t$imm\n2:", []>;
493
494
495//
496// Some general instruction class info
497//
498//
499
500class ArithLogic16Defs<bit isCom=0> {
501  bits<5> shamt = 0;
502  bit isCommutable = isCom;
503  bit isReMaterializable = 1;
504  bit hasSideEffects = 0;
505}
506
507class branch16 {
508  bit isBranch = 1;
509  bit isTerminator = 1;
510  bit isBarrier = 1;
511}
512
513class cbranch16 {
514  bit isBranch = 1;
515  bit isTerminator = 1;
516}
517
518class MayLoad {
519  bit mayLoad = 1;
520}
521
522class MayStore {
523  bit mayStore = 1;
524}
525//
526
527
528// Format: ADDIU rx, immediate MIPS16e
529// Purpose: Add Immediate Unsigned Word (2-Operand, Extended)
530// To add a constant to a 32-bit integer.
531//
532def AddiuRxImmX16: FEXT_RI16_ins<0b01001, "addiu", IIM16Alu>;
533
534def AddiuRxRxImm16: F2RI16_ins<0b01001, "addiu", IIM16Alu>,
535  ArithLogic16Defs<0> {
536  let AddedComplexity = 5;
537}
538def AddiuRxRxImmX16: FEXT_2RI16_ins<0b01001, "addiu", IIM16Alu>,
539  ArithLogic16Defs<0> {
540  let isCodeGenOnly = 1;
541}
542
543def AddiuRxRyOffMemX16:
544  FEXT_RRI_A16_mem_ins<0, "addiu", mem16_ea, IIM16Alu>;
545
546//
547
548// Format: ADDIU rx, pc, immediate MIPS16e
549// Purpose: Add Immediate Unsigned Word (3-Operand, PC-Relative, Extended)
550// To add a constant to the program counter.
551//
552def AddiuRxPcImmX16: FEXT_RI16_PC_ins<0b00001, "addiu", IIM16Alu>;
553
554//
555// Format: ADDIU sp, immediate MIPS16e
556// Purpose: Add Immediate Unsigned Word (2-Operand, SP-Relative, Extended)
557// To add a constant to the stack pointer.
558//
559def AddiuSpImm16
560  : FI816_SP_ins<0b011, "addiu", IIM16Alu> {
561  let Defs = [SP];
562  let Uses = [SP];
563  let AddedComplexity = 5;
564}
565
566def AddiuSpImmX16
567  : FEXT_I816_SP_ins<0b011, "addiu", IIM16Alu> {
568  let Defs = [SP];
569  let Uses = [SP];
570}
571
572//
573// Format: ADDU rz, rx, ry MIPS16e
574// Purpose: Add Unsigned Word (3-Operand)
575// To add 32-bit integers.
576//
577
578def AdduRxRyRz16: FRRR16_ins<01, "addu", IIM16Alu>, ArithLogic16Defs<1>;
579
580//
581// Format: AND rx, ry MIPS16e
582// Purpose: AND
583// To do a bitwise logical AND.
584
585def AndRxRxRy16: FRxRxRy16_ins<0b01100, "and", IIM16Alu>, ArithLogic16Defs<1>;
586
587
588//
589// Format: BEQZ rx, offset MIPS16e
590// Purpose: Branch on Equal to Zero
591// To test a GPR then do a PC-relative conditional branch.
592//
593def BeqzRxImm16: FRI16_B_ins<0b00100, "beqz", IIM16Alu>, cbranch16;
594
595
596//
597// Format: BEQZ rx, offset MIPS16e
598// Purpose: Branch on Equal to Zero (Extended)
599// To test a GPR then do a PC-relative conditional branch.
600//
601def BeqzRxImmX16: FEXT_RI16_B_ins<0b00100, "beqz", IIM16Alu>, cbranch16;
602
603//
604// Format: B offset MIPS16e
605// Purpose: Unconditional Branch (Extended)
606// To do an unconditional PC-relative branch.
607//
608
609def Bimm16: FI16_ins<0b00010, "b", IIM16Alu>, branch16;
610
611// Format: B offset MIPS16e
612// Purpose: Unconditional Branch
613// To do an unconditional PC-relative branch.
614//
615def BimmX16: FEXT_I16_ins<0b00010, "b", IIM16Alu>, branch16;
616
617//
618// Format: BNEZ rx, offset MIPS16e
619// Purpose: Branch on Not Equal to Zero
620// To test a GPR then do a PC-relative conditional branch.
621//
622def BnezRxImm16: FRI16_B_ins<0b00101, "bnez", IIM16Alu>, cbranch16;
623
624//
625// Format: BNEZ rx, offset MIPS16e
626// Purpose: Branch on Not Equal to Zero (Extended)
627// To test a GPR then do a PC-relative conditional branch.
628//
629def BnezRxImmX16: FEXT_RI16_B_ins<0b00101, "bnez", IIM16Alu>, cbranch16;
630
631
632//
633//Format: BREAK immediate
634// Purpose: Breakpoint
635// To cause a Breakpoint exception.
636
637def Break16: FRRBreakNull16_ins<"break 0", IIM16Alu>;
638//
639// Format: BTEQZ offset MIPS16e
640// Purpose: Branch on T Equal to Zero (Extended)
641// To test special register T then do a PC-relative conditional branch.
642//
643def Bteqz16: FI816_ins<0b000, "bteqz", IIM16Alu>, cbranch16 {
644  let Uses = [T8];
645}
646
647def BteqzX16: FEXT_I816_ins<0b000, "bteqz", IIM16Alu>, cbranch16 {
648  let Uses = [T8];
649}
650
651def BteqzT8CmpX16: FEXT_T8I816_ins<"bteqz", "cmp">, cbranch16;
652
653def BteqzT8CmpiX16: FEXT_T8I8I16_ins<"bteqz", "cmpi">,
654  cbranch16;
655
656def BteqzT8SltX16: FEXT_T8I816_ins<"bteqz", "slt">, cbranch16;
657
658def BteqzT8SltuX16: FEXT_T8I816_ins<"bteqz", "sltu">, cbranch16;
659
660def BteqzT8SltiX16: FEXT_T8I8I16_ins<"bteqz", "slti">, cbranch16;
661
662def BteqzT8SltiuX16: FEXT_T8I8I16_ins<"bteqz", "sltiu">,
663  cbranch16;
664
665//
666// Format: BTNEZ offset MIPS16e
667// Purpose: Branch on T Not Equal to Zero (Extended)
668// To test special register T then do a PC-relative conditional branch.
669//
670
671def Btnez16: FI816_ins<0b001, "btnez", IIM16Alu>, cbranch16 {
672  let Uses = [T8];
673}
674
675def BtnezX16: FEXT_I816_ins<0b001, "btnez", IIM16Alu> ,cbranch16 {
676  let Uses = [T8];
677}
678
679def BtnezT8CmpX16: FEXT_T8I816_ins<"btnez", "cmp">, cbranch16;
680
681def BtnezT8CmpiX16: FEXT_T8I8I16_ins<"btnez", "cmpi">, cbranch16;
682
683def BtnezT8SltX16: FEXT_T8I816_ins<"btnez", "slt">, cbranch16;
684
685def BtnezT8SltuX16: FEXT_T8I816_ins<"btnez", "sltu">, cbranch16;
686
687def BtnezT8SltiX16: FEXT_T8I8I16_ins<"btnez", "slti">, cbranch16;
688
689def BtnezT8SltiuX16: FEXT_T8I8I16_ins<"btnez", "sltiu">,
690  cbranch16;
691
692//
693// Format: CMP rx, ry MIPS16e
694// Purpose: Compare
695// To compare the contents of two GPRs.
696//
697def CmpRxRy16: FRR16R_ins<0b01010, "cmp", IIM16Alu> {
698  let Defs = [T8];
699}
700
701//
702// Format: CMPI rx, immediate MIPS16e
703// Purpose: Compare Immediate
704// To compare a constant with the contents of a GPR.
705//
706def CmpiRxImm16: FRI16R_ins<0b01110, "cmpi", IIM16Alu> {
707  let Defs = [T8];
708}
709
710//
711// Format: CMPI rx, immediate MIPS16e
712// Purpose: Compare Immediate (Extended)
713// To compare a constant with the contents of a GPR.
714//
715def CmpiRxImmX16: FEXT_RI16R_ins<0b01110, "cmpi", IIM16Alu> {
716  let Defs = [T8];
717}
718
719
720//
721// Format: DIV rx, ry MIPS16e
722// Purpose: Divide Word
723// To divide 32-bit signed integers.
724//
725def DivRxRy16: FRR16_div_ins<0b11010, "div", IIM16Alu> {
726  let Defs = [HI0, LO0];
727}
728
729//
730// Format: DIVU rx, ry MIPS16e
731// Purpose: Divide Unsigned Word
732// To divide 32-bit unsigned integers.
733//
734def DivuRxRy16: FRR16_div_ins<0b11011, "divu", IIM16Alu> {
735  let Defs = [HI0, LO0];
736}
737//
738// Format: JAL target MIPS16e
739// Purpose: Jump and Link
740// To execute a procedure call within the current 256 MB-aligned
741// region and preserve the current ISA.
742//
743
744def Jal16 : FJAL16_ins<0b0, "jal", IIM16Alu> {
745  let hasDelaySlot = 0;  // not true, but we add the nop for now
746  let isCall=1;
747  let Defs = [RA];
748}
749
750def JalB16 : FJALB16_ins<0b0, "jal", IIM16Alu>, branch16 {
751  let hasDelaySlot = 0;  // not true, but we add the nop for now
752  let isBranch=1;
753  let Defs = [RA];
754}
755
756//
757// Format: JR ra MIPS16e
758// Purpose: Jump Register Through Register ra
759// To execute a branch to the instruction address in the return
760// address register.
761//
762
763def JrRa16: FRR16_JALRC_RA_only_ins<0, 0, "jr", IIM16Alu> {
764  let isBranch = 1;
765  let isIndirectBranch = 1;
766  let hasDelaySlot = 1;
767  let isTerminator=1;
768  let isBarrier=1;
769  let isReturn=1;
770}
771
772def JrcRa16: FRR16_JALRC_RA_only_ins<1, 1, "jrc", IIM16Alu> {
773  let isBranch = 1;
774  let isIndirectBranch = 1;
775  let isTerminator=1;
776  let isBarrier=1;
777  let isReturn=1;
778}
779
780def JrcRx16: FRR16_JALRC_ins<1, 1, 0, "jrc", IIM16Alu> {
781  let isBranch = 1;
782  let isIndirectBranch = 1;
783  let isTerminator=1;
784  let isBarrier=1;
785}
786//
787// Format: LB ry, offset(rx) MIPS16e
788// Purpose: Load Byte (Extended)
789// To load a byte from memory as a signed value.
790//
791def LbRxRyOffMemX16: FEXT_RRI16_mem_ins<0b10011, "lb", mem16, II_LB>, MayLoad{
792  let isCodeGenOnly = 1;
793}
794
795//
796// Format: LBU ry, offset(rx) MIPS16e
797// Purpose: Load Byte Unsigned (Extended)
798// To load a byte from memory as a unsigned value.
799//
800def LbuRxRyOffMemX16:
801  FEXT_RRI16_mem_ins<0b10100, "lbu", mem16, II_LBU>, MayLoad {
802  let isCodeGenOnly = 1;
803}
804
805//
806// Format: LH ry, offset(rx) MIPS16e
807// Purpose: Load Halfword signed (Extended)
808// To load a halfword from memory as a signed value.
809//
810def LhRxRyOffMemX16: FEXT_RRI16_mem_ins<0b10100, "lh", mem16, II_LH>, MayLoad{
811  let isCodeGenOnly = 1;
812}
813
814//
815// Format: LHU ry, offset(rx) MIPS16e
816// Purpose: Load Halfword unsigned (Extended)
817// To load a halfword from memory as an unsigned value.
818//
819def LhuRxRyOffMemX16:
820  FEXT_RRI16_mem_ins<0b10100, "lhu", mem16, II_LHU>, MayLoad {
821  let isCodeGenOnly = 1;
822}
823
824//
825// Format: LI rx, immediate MIPS16e
826// Purpose: Load Immediate
827// To load a constant into a GPR.
828//
829def LiRxImm16: FRI16_ins<0b01101, "li", IIM16Alu>;
830
831//
832// Format: LI rx, immediate MIPS16e
833// Purpose: Load Immediate (Extended)
834// To load a constant into a GPR.
835//
836def LiRxImmX16: FEXT_RI16_ins<0b01101, "li", IIM16Alu>;
837
838def LiRxImmAlignX16: FEXT_RI16_ins<0b01101, ".align 2\n\tli", IIM16Alu> {
839  let isCodeGenOnly = 1;
840}
841
842//
843// Format: LW ry, offset(rx) MIPS16e
844// Purpose: Load Word (Extended)
845// To load a word from memory as a signed value.
846//
847def LwRxRyOffMemX16: FEXT_RRI16_mem_ins<0b10011, "lw", mem16, II_LW>, MayLoad{
848  let isCodeGenOnly = 1;
849}
850
851// Format: LW rx, offset(sp) MIPS16e
852// Purpose: Load Word (SP-Relative, Extended)
853// To load an SP-relative word from memory as a signed value.
854//
855def LwRxSpImmX16: FEXT_RRI16_mem_ins<0b10010, "lw", mem16sp, II_LW>, MayLoad;
856
857def LwRxPcTcp16: FRI16_TCP_ins<0b10110, "lw", II_LW>, MayLoad;
858
859def LwRxPcTcpX16: FEXT_RI16_TCP_ins<0b10110, "lw", II_LW>, MayLoad;
860//
861// Format: MOVE r32, rz MIPS16e
862// Purpose: Move
863// To move the contents of a GPR to a GPR.
864//
865def Move32R16: FI8_MOV32R16_ins<"move", IIM16Alu>;
866
867//
868// Format: MOVE ry, r32 MIPS16e
869//Purpose: Move
870// To move the contents of a GPR to a GPR.
871//
872def MoveR3216: FI8_MOVR3216_ins<"move", IIM16Alu> {
873  let isMoveReg = 1;
874}
875
876//
877// Format: MFHI rx MIPS16e
878// Purpose: Move From HI Register
879// To copy the special purpose HI register to a GPR.
880//
881def Mfhi16: FRR16_M_ins<0b10000, "mfhi", IIM16Alu> {
882  let Uses = [HI0];
883  let hasSideEffects = 0;
884  let isMoveReg = 1;
885}
886
887//
888// Format: MFLO rx MIPS16e
889// Purpose: Move From LO Register
890// To copy the special purpose LO register to a GPR.
891//
892def Mflo16: FRR16_M_ins<0b10010, "mflo", IIM16Alu> {
893  let Uses = [LO0];
894  let hasSideEffects = 0;
895  let isMoveReg = 0;
896}
897
898//
899// Pseudo Instruction for mult
900//
901def MultRxRy16:  FMULT16_ins<"mult",  IIM16Alu> {
902  let isCommutable = 1;
903  let hasSideEffects = 0;
904  let Defs = [HI0, LO0];
905}
906
907def MultuRxRy16: FMULT16_ins<"multu", IIM16Alu> {
908  let isCommutable = 1;
909  let hasSideEffects = 0;
910  let Defs = [HI0, LO0];
911}
912
913//
914// Format: MULT rx, ry MIPS16e
915// Purpose: Multiply Word
916// To multiply 32-bit signed integers.
917//
918def MultRxRyRz16: FMULT16_LO_ins<"mult", IIM16Alu> {
919  let isCommutable = 1;
920  let hasSideEffects = 0;
921  let Defs = [HI0, LO0];
922}
923
924//
925// Format: MULTU rx, ry MIPS16e
926// Purpose: Multiply Unsigned Word
927// To multiply 32-bit unsigned integers.
928//
929def MultuRxRyRz16: FMULT16_LO_ins<"multu", IIM16Alu> {
930  let isCommutable = 1;
931  let hasSideEffects = 0;
932  let Defs = [HI0, LO0];
933}
934
935//
936// Format: NEG rx, ry MIPS16e
937// Purpose: Negate
938// To negate an integer value.
939//
940def NegRxRy16: FUnaryRR16_ins<0b11101, "neg", IIM16Alu>;
941
942//
943// Format: NOT rx, ry MIPS16e
944// Purpose: Not
945// To complement an integer value
946//
947def NotRxRy16: FUnaryRR16_ins<0b01111, "not", IIM16Alu>;
948
949//
950// Format: OR rx, ry MIPS16e
951// Purpose: Or
952// To do a bitwise logical OR.
953//
954def OrRxRxRy16: FRxRxRy16_ins<0b01101, "or", IIM16Alu>, ArithLogic16Defs<1>;
955
956//
957// Format: RESTORE {ra,}{s0/s1/s0-1,}{framesize}
958// (All args are optional) MIPS16e
959// Purpose: Restore Registers and Deallocate Stack Frame
960// To deallocate a stack frame before exit from a subroutine,
961// restoring return address and static registers, and adjusting
962// stack
963//
964
965def Restore16:
966  FI8_SVRS16<0b1, (outs), (ins variable_ops),
967             "", [], II_RESTORE >, MayLoad {
968  let isCodeGenOnly = 1;
969  let Defs = [SP];
970  let Uses = [SP];
971}
972
973
974def RestoreX16:
975  FI8_SVRS16<0b1, (outs), (ins variable_ops),
976             "", [], II_RESTORE >, MayLoad {
977  let isCodeGenOnly = 1;
978  let Defs = [SP];
979  let Uses = [SP];
980}
981
982//
983// Format: SAVE {ra,}{s0/s1/s0-1,}{framesize} (All arguments are optional)
984// MIPS16e
985// Purpose: Save Registers and Set Up Stack Frame
986// To set up a stack frame on entry to a subroutine,
987// saving return address and static registers, and adjusting stack
988//
989def Save16:
990  FI8_SVRS16<0b1, (outs), (ins variable_ops),
991             "", [], II_SAVE >, MayStore {
992  let isCodeGenOnly = 1;
993  let Uses = [SP];
994  let Defs = [SP];
995}
996
997def SaveX16:
998  FI8_SVRS16<0b1, (outs), (ins variable_ops),
999             "", [], II_SAVE >, MayStore {
1000  let isCodeGenOnly = 1;
1001  let Uses = [SP];
1002  let Defs = [SP];
1003}
1004//
1005// Format: SB ry, offset(rx) MIPS16e
1006// Purpose: Store Byte (Extended)
1007// To store a byte to memory.
1008//
1009def SbRxRyOffMemX16:
1010  FEXT_RRI16_mem2_ins<0b11000, "sb", mem16, II_SB>, MayStore;
1011
1012//
1013// Format: SEB rx MIPS16e
1014// Purpose: Sign-Extend Byte
1015// Sign-extend least significant byte in register rx.
1016//
1017def SebRx16
1018  : FRR_SF16_ins<0b10001, 0b100, "seb", IIM16Alu>;
1019
1020//
1021// Format: SEH rx MIPS16e
1022// Purpose: Sign-Extend Halfword
1023// Sign-extend least significant word in register rx.
1024//
1025def SehRx16
1026  : FRR_SF16_ins<0b10001, 0b101, "seh", IIM16Alu>;
1027
1028//
1029// The Sel(T) instructions are pseudos
1030// T means that they use T8 implicitly.
1031//
1032//
1033// Format: SelBeqZ rd, rs, rt
1034// Purpose: if rt==0, do nothing
1035//          else rs = rt
1036//
1037def SelBeqZ: Sel<"beqz">;
1038
1039//
1040// Format:  SelTBteqZCmp rd, rs, rl, rr
1041// Purpose: b = Cmp rl, rr.
1042//          If b==0 then do nothing.
1043//          if b!=0 then rd = rs
1044//
1045def SelTBteqZCmp: SelT<"bteqz", "cmp">;
1046
1047//
1048// Format:  SelTBteqZCmpi rd, rs, rl, rr
1049// Purpose: b = Cmpi rl, imm.
1050//          If b==0 then do nothing.
1051//          if b!=0 then rd = rs
1052//
1053def SelTBteqZCmpi: SeliT<"bteqz", "cmpi">;
1054
1055//
1056// Format:  SelTBteqZSlt rd, rs, rl, rr
1057// Purpose: b = Slt rl, rr.
1058//          If b==0 then do nothing.
1059//          if b!=0 then rd = rs
1060//
1061def SelTBteqZSlt: SelT<"bteqz", "slt">;
1062
1063//
1064// Format:  SelTBteqZSlti rd, rs, rl, rr
1065// Purpose: b = Slti rl, imm.
1066//          If b==0 then do nothing.
1067//          if b!=0 then rd = rs
1068//
1069def SelTBteqZSlti: SeliT<"bteqz", "slti">;
1070
1071//
1072// Format:  SelTBteqZSltu rd, rs, rl, rr
1073// Purpose: b = Sltu rl, rr.
1074//          If b==0 then do nothing.
1075//          if b!=0 then rd = rs
1076//
1077def SelTBteqZSltu: SelT<"bteqz", "sltu">;
1078
1079//
1080// Format:  SelTBteqZSltiu rd, rs, rl, rr
1081// Purpose: b = Sltiu rl, imm.
1082//          If b==0 then do nothing.
1083//          if b!=0 then rd = rs
1084//
1085def SelTBteqZSltiu: SeliT<"bteqz", "sltiu">;
1086
1087//
1088// Format: SelBnez rd, rs, rt
1089// Purpose: if rt!=0, do nothing
1090//          else rs = rt
1091//
1092def SelBneZ: Sel<"bnez">;
1093
1094//
1095// Format:  SelTBtneZCmp rd, rs, rl, rr
1096// Purpose: b = Cmp rl, rr.
1097//          If b!=0 then do nothing.
1098//          if b0=0 then rd = rs
1099//
1100def SelTBtneZCmp: SelT<"btnez", "cmp">;
1101
1102//
1103// Format:  SelTBtnezCmpi rd, rs, rl, rr
1104// Purpose: b = Cmpi rl, imm.
1105//          If b!=0 then do nothing.
1106//          if b==0 then rd = rs
1107//
1108def SelTBtneZCmpi: SeliT<"btnez", "cmpi">;
1109
1110//
1111// Format:  SelTBtneZSlt rd, rs, rl, rr
1112// Purpose: b = Slt rl, rr.
1113//          If b!=0 then do nothing.
1114//          if b==0 then rd = rs
1115//
1116def SelTBtneZSlt: SelT<"btnez", "slt">;
1117
1118//
1119// Format:  SelTBtneZSlti rd, rs, rl, rr
1120// Purpose: b = Slti rl, imm.
1121//          If b!=0 then do nothing.
1122//          if b==0 then rd = rs
1123//
1124def SelTBtneZSlti: SeliT<"btnez", "slti">;
1125
1126//
1127// Format:  SelTBtneZSltu rd, rs, rl, rr
1128// Purpose: b = Sltu rl, rr.
1129//          If b!=0 then do nothing.
1130//          if b==0 then rd = rs
1131//
1132def SelTBtneZSltu: SelT<"btnez", "sltu">;
1133
1134//
1135// Format:  SelTBtneZSltiu rd, rs, rl, rr
1136// Purpose: b = Slti rl, imm.
1137//          If b!=0 then do nothing.
1138//          if b==0 then rd = rs
1139//
1140def SelTBtneZSltiu: SeliT<"btnez", "sltiu">;
1141//
1142//
1143// Format: SH ry, offset(rx) MIPS16e
1144// Purpose: Store Halfword (Extended)
1145// To store a halfword to memory.
1146//
1147def ShRxRyOffMemX16:
1148  FEXT_RRI16_mem2_ins<0b11001, "sh", mem16, II_SH>, MayStore;
1149
1150//
1151// Format: SLL rx, ry, sa MIPS16e
1152// Purpose: Shift Word Left Logical (Extended)
1153// To execute a left-shift of a word by a fixed number of bits-0 to 31 bits.
1154//
1155def SllX16: FEXT_SHIFT16_ins<0b00, "sll", IIM16Alu>;
1156
1157//
1158// Format: SLLV ry, rx MIPS16e
1159// Purpose: Shift Word Left Logical Variable
1160// To execute a left-shift of a word by a variable number of bits.
1161//
1162def SllvRxRy16 : FRxRxRy16_ins<0b00100, "sllv", IIM16Alu>;
1163
1164// Format: SLTI rx, immediate MIPS16e
1165// Purpose: Set on Less Than Immediate
1166// To record the result of a less-than comparison with a constant.
1167//
1168//
1169def SltiRxImm16: FRI16R_ins<0b01010, "slti", IIM16Alu> {
1170  let Defs = [T8];
1171}
1172
1173//
1174// Format: SLTI rx, immediate MIPS16e
1175// Purpose: Set on Less Than Immediate (Extended)
1176// To record the result of a less-than comparison with a constant.
1177//
1178//
1179def SltiRxImmX16: FEXT_RI16R_ins<0b01010, "slti", IIM16Alu> {
1180  let Defs = [T8];
1181}
1182
1183def SltiCCRxImmX16: FEXT_CCRXI16_ins<"slti">;
1184
1185// Format: SLTIU rx, immediate MIPS16e
1186// Purpose: Set on Less Than Immediate Unsigned
1187// To record the result of a less-than comparison with a constant.
1188//
1189//
1190def SltiuRxImm16: FRI16R_ins<0b01011, "sltiu", IIM16Alu> {
1191  let Defs = [T8];
1192}
1193
1194//
1195// Format: SLTI rx, immediate MIPS16e
1196// Purpose: Set on Less Than Immediate Unsigned (Extended)
1197// To record the result of a less-than comparison with a constant.
1198//
1199//
1200def SltiuRxImmX16: FEXT_RI16R_ins<0b01011, "sltiu", IIM16Alu> {
1201  let Defs = [T8];
1202}
1203//
1204// Format: SLTIU rx, immediate MIPS16e
1205// Purpose: Set on Less Than Immediate Unsigned (Extended)
1206// To record the result of a less-than comparison with a constant.
1207//
1208def SltiuCCRxImmX16: FEXT_CCRXI16_ins<"sltiu">;
1209
1210//
1211// Format: SLT rx, ry MIPS16e
1212// Purpose: Set on Less Than
1213// To record the result of a less-than comparison.
1214//
1215def SltRxRy16: FRR16R_ins<0b00010, "slt", IIM16Alu>{
1216  let Defs = [T8];
1217}
1218
1219def SltCCRxRy16: FCCRR16_ins<"slt">;
1220
1221// Format: SLTU rx, ry MIPS16e
1222// Purpose: Set on Less Than Unsigned
1223// To record the result of an unsigned less-than comparison.
1224//
1225def SltuRxRy16: FRR16R_ins<0b00011, "sltu", IIM16Alu>{
1226  let Defs = [T8];
1227}
1228
1229def SltuRxRyRz16: FRRTR16_ins<"sltu"> {
1230  let isCodeGenOnly=1;
1231  let Defs = [T8];
1232}
1233
1234
1235def SltuCCRxRy16: FCCRR16_ins<"sltu">;
1236//
1237// Format: SRAV ry, rx MIPS16e
1238// Purpose: Shift Word Right Arithmetic Variable
1239// To execute an arithmetic right-shift of a word by a variable
1240// number of bits.
1241//
1242def SravRxRy16: FRxRxRy16_ins<0b00111, "srav", IIM16Alu>;
1243
1244
1245//
1246// Format: SRA rx, ry, sa MIPS16e
1247// Purpose: Shift Word Right Arithmetic (Extended)
1248// To execute an arithmetic right-shift of a word by a fixed
1249// number of bits-1 to 8 bits.
1250//
1251def SraX16: FEXT_SHIFT16_ins<0b11, "sra", IIM16Alu>;
1252
1253
1254//
1255// Format: SRLV ry, rx MIPS16e
1256// Purpose: Shift Word Right Logical Variable
1257// To execute a logical right-shift of a word by a variable
1258// number of bits.
1259//
1260def SrlvRxRy16: FRxRxRy16_ins<0b00110, "srlv", IIM16Alu>;
1261
1262
1263//
1264// Format: SRL rx, ry, sa MIPS16e
1265// Purpose: Shift Word Right Logical (Extended)
1266// To execute a logical right-shift of a word by a fixed
1267// number of bits-1 to 31 bits.
1268//
1269def SrlX16: FEXT_SHIFT16_ins<0b10, "srl", IIM16Alu>;
1270
1271//
1272// Format: SUBU rz, rx, ry MIPS16e
1273// Purpose: Subtract Unsigned Word
1274// To subtract 32-bit integers
1275//
1276def SubuRxRyRz16: FRRR16_ins<0b11, "subu", IIM16Alu>, ArithLogic16Defs<0>;
1277
1278//
1279// Format: SW ry, offset(rx) MIPS16e
1280// Purpose: Store Word (Extended)
1281// To store a word to memory.
1282//
1283def SwRxRyOffMemX16: FEXT_RRI16_mem2_ins<0b11011, "sw", mem16, II_SW>, MayStore;
1284
1285//
1286// Format: SW rx, offset(sp) MIPS16e
1287// Purpose: Store Word rx (SP-Relative)
1288// To store an SP-relative word to memory.
1289//
1290def SwRxSpImmX16: FEXT_RRI16_mem2_ins<0b11010, "sw", mem16sp, II_SW>, MayStore;
1291
1292//
1293//
1294// Format: XOR rx, ry MIPS16e
1295// Purpose: Xor
1296// To do a bitwise logical XOR.
1297//
1298def XorRxRxRy16: FRxRxRy16_ins<0b01110, "xor", IIM16Alu>, ArithLogic16Defs<1>;
1299
1300class Mips16Pat<dag pattern, dag result> : Pat<pattern, result> {
1301  let Predicates = [InMips16Mode];
1302}
1303
1304// Unary Arith/Logic
1305//
1306class ArithLogicU_pat<PatFrag OpNode, Instruction I> :
1307  Mips16Pat<(OpNode CPU16Regs:$r),
1308            (I CPU16Regs:$r)>;
1309
1310def: ArithLogicU_pat<not, NotRxRy16>;
1311def: ArithLogicU_pat<ineg, NegRxRy16>;
1312
1313class ArithLogic16_pat<SDNode OpNode, Instruction I> :
1314  Mips16Pat<(OpNode CPU16Regs:$l, CPU16Regs:$r),
1315            (I CPU16Regs:$l, CPU16Regs:$r)>;
1316
1317def: ArithLogic16_pat<add, AdduRxRyRz16>;
1318def: ArithLogic16_pat<and, AndRxRxRy16>;
1319def: ArithLogic16_pat<mul, MultRxRyRz16>;
1320def: ArithLogic16_pat<or, OrRxRxRy16>;
1321def: ArithLogic16_pat<sub, SubuRxRyRz16>;
1322def: ArithLogic16_pat<xor, XorRxRxRy16>;
1323
1324// Arithmetic and logical instructions with 2 register operands.
1325
1326class ArithLogicI16_pat<SDNode OpNode, PatFrag imm_type, Instruction I> :
1327  Mips16Pat<(OpNode CPU16Regs:$in, imm_type:$imm),
1328            (I CPU16Regs:$in, imm_type:$imm)>;
1329
1330def: ArithLogicI16_pat<add, immSExt8, AddiuRxRxImm16>;
1331def: ArithLogicI16_pat<add, immSExt16, AddiuRxRxImmX16>;
1332def: ArithLogicI16_pat<shl, immZExt5, SllX16>;
1333def: ArithLogicI16_pat<srl, immZExt5, SrlX16>;
1334def: ArithLogicI16_pat<sra, immZExt5, SraX16>;
1335
1336class shift_rotate_reg16_pat<SDNode OpNode, Instruction I> :
1337  Mips16Pat<(OpNode CPU16Regs:$r, CPU16Regs:$ra),
1338            (I CPU16Regs:$r, CPU16Regs:$ra)>;
1339
1340def: shift_rotate_reg16_pat<shl, SllvRxRy16>;
1341def: shift_rotate_reg16_pat<sra, SravRxRy16>;
1342def: shift_rotate_reg16_pat<srl, SrlvRxRy16>;
1343
1344class LoadM16_pat<PatFrag OpNode, Instruction I, ComplexPattern Addr> :
1345  Mips16Pat<(OpNode Addr:$addr), (I Addr:$addr)>;
1346
1347def: LoadM16_pat<sextloadi8, LbRxRyOffMemX16, addr16>;
1348def: LoadM16_pat<zextloadi8, LbuRxRyOffMemX16, addr16>;
1349def: LoadM16_pat<sextloadi16, LhRxRyOffMemX16, addr16>;
1350def: LoadM16_pat<zextloadi16, LhuRxRyOffMemX16, addr16>;
1351def: LoadM16_pat<load, LwRxSpImmX16, addr16sp>;
1352
1353class StoreM16_pat<PatFrag OpNode, Instruction I, ComplexPattern Addr> :
1354  Mips16Pat<(OpNode CPU16Regs:$r, Addr:$addr), (I CPU16Regs:$r, Addr:$addr)>;
1355
1356def: StoreM16_pat<truncstorei8, SbRxRyOffMemX16, addr16>;
1357def: StoreM16_pat<truncstorei16, ShRxRyOffMemX16, addr16>;
1358def: StoreM16_pat<store, SwRxSpImmX16, addr16sp>;
1359
1360// Unconditional branch
1361class UncondBranch16_pat<SDNode OpNode, Instruction I>:
1362  Mips16Pat<(OpNode bb:$imm16), (I bb:$imm16)> {
1363    let Predicates = [InMips16Mode];
1364  }
1365
1366def : Mips16Pat<(MipsJmpLink (i32 tglobaladdr:$dst)),
1367                (Jal16 tglobaladdr:$dst)>;
1368
1369def : Mips16Pat<(MipsJmpLink (i32 texternalsym:$dst)),
1370                (Jal16 texternalsym:$dst)>;
1371
1372// Indirect branch
1373def: Mips16Pat<(brind CPU16Regs:$rs), (JrcRx16 CPU16Regs:$rs)> {
1374  // Ensure that the addition of MIPS32r6/MIPS64r6 support does not change
1375  // MIPS16's behaviour.
1376  let AddedComplexity = 1;
1377}
1378
1379// Jump and Link (Call)
1380let isCall=1, hasDelaySlot=0 in
1381def JumpLinkReg16:
1382  FRR16_JALRC<0, 0, 0, (outs), (ins CPU16Regs:$rs),
1383              "jalrc\t$rs", [(MipsJmpLink CPU16Regs:$rs)], II_JALRC> {
1384  let Defs = [RA];
1385}
1386
1387// Mips16 pseudos
1388let isReturn=1, isTerminator=1, hasDelaySlot=1, isBarrier=1, hasCtrlDep=1,
1389  hasExtraSrcRegAllocReq = 1 in
1390def RetRA16 : MipsPseudo16<(outs), (ins), "", [(MipsRet)]>;
1391
1392
1393// setcc patterns
1394
1395class SetCC_R16<PatFrag cond_op, Instruction I>:
1396  Mips16Pat<(cond_op CPU16Regs:$rx, CPU16Regs:$ry),
1397            (I CPU16Regs:$rx, CPU16Regs:$ry)>;
1398
1399class SetCC_I16<PatFrag cond_op, PatLeaf imm_type, Instruction I>:
1400  Mips16Pat<(cond_op CPU16Regs:$rx, imm_type:$imm16),
1401            (I CPU16Regs:$rx, imm_type:$imm16)>;
1402
1403
1404def: Mips16Pat<(i32 addr16sp:$addr), (AddiuRxRyOffMemX16 addr16sp:$addr)>;
1405
1406
1407// Large (>16 bit) immediate loads
1408def : Mips16Pat<(i32 imm:$imm), (LwConstant32 imm:$imm, -1)>;
1409
1410//
1411// Some branch conditional patterns are not generated by llvm at this time.
1412// Some are for seemingly arbitrary reasons not used: i.e. with signed number
1413// comparison they are used and for unsigned a different pattern is used.
1414// I am pushing upstream from the full mips16 port and it seemed that I needed
1415// these earlier and the mips32 port has these but now I cannot create test
1416// cases that use these patterns. While I sort this all out I will leave these
1417// extra patterns commented out and if I can be sure they are really not used,
1418// I will delete the code. I don't want to check the code in uncommented without
1419// a valid test case. In some cases, the compiler is generating patterns with
1420// setcc instead and earlier I had implemented setcc first so may have masked
1421// the problem. The setcc variants are suboptimal for mips16 so I may wantto
1422// figure out how to enable the brcond patterns or else possibly new
1423// combinations of brcond and setcc.
1424//
1425//
1426// bcond-seteq
1427//
1428def: Mips16Pat
1429  <(brcond (i32 (seteq CPU16Regs:$rx, CPU16Regs:$ry)), bb:$imm16),
1430   (BteqzT8CmpX16 CPU16Regs:$rx, CPU16Regs:$ry,  bb:$imm16)
1431  >;
1432
1433
1434def: Mips16Pat
1435  <(brcond (i32 (seteq CPU16Regs:$rx, immZExt16:$imm)), bb:$targ16),
1436   (BteqzT8CmpiX16 CPU16Regs:$rx, immSExt16:$imm,  bb:$targ16)
1437  >;
1438
1439def: Mips16Pat
1440  <(brcond (i32 (seteq CPU16Regs:$rx, 0)), bb:$targ16),
1441   (BeqzRxImm16 CPU16Regs:$rx, bb:$targ16)
1442  >;
1443
1444//
1445// bcond-setgt (do we need to have this pair of setlt, setgt??)
1446//
1447def: Mips16Pat
1448  <(brcond (i32 (setgt CPU16Regs:$rx, CPU16Regs:$ry)), bb:$imm16),
1449   (BtnezT8SltX16 CPU16Regs:$ry, CPU16Regs:$rx,  bb:$imm16)
1450  >;
1451
1452//
1453// bcond-setge
1454//
1455def: Mips16Pat
1456  <(brcond (i32 (setge CPU16Regs:$rx, CPU16Regs:$ry)), bb:$imm16),
1457   (BteqzT8SltX16 CPU16Regs:$rx, CPU16Regs:$ry,  bb:$imm16)
1458  >;
1459
1460//
1461// never called because compiler transforms a >= k to a > (k-1)
1462def: Mips16Pat
1463  <(brcond (i32 (setge CPU16Regs:$rx, immSExt16:$imm)), bb:$imm16),
1464   (BteqzT8SltiX16 CPU16Regs:$rx, immSExt16:$imm,  bb:$imm16)
1465  >;
1466
1467//
1468// bcond-setlt
1469//
1470def: Mips16Pat
1471  <(brcond (i32 (setlt CPU16Regs:$rx, CPU16Regs:$ry)), bb:$imm16),
1472   (BtnezT8SltX16 CPU16Regs:$rx, CPU16Regs:$ry,  bb:$imm16)
1473  >;
1474
1475def: Mips16Pat
1476  <(brcond (i32 (setlt CPU16Regs:$rx, immSExt16:$imm)), bb:$imm16),
1477   (BtnezT8SltiX16 CPU16Regs:$rx, immSExt16:$imm,  bb:$imm16)
1478  >;
1479
1480//
1481// bcond-setle
1482//
1483def: Mips16Pat
1484  <(brcond (i32 (setle CPU16Regs:$rx, CPU16Regs:$ry)), bb:$imm16),
1485   (BteqzT8SltX16 CPU16Regs:$ry, CPU16Regs:$rx,  bb:$imm16)
1486  >;
1487
1488//
1489// bcond-setne
1490//
1491def: Mips16Pat
1492  <(brcond (i32 (setne CPU16Regs:$rx, CPU16Regs:$ry)), bb:$imm16),
1493   (BtnezT8CmpX16 CPU16Regs:$rx, CPU16Regs:$ry,  bb:$imm16)
1494  >;
1495
1496def: Mips16Pat
1497  <(brcond (i32 (setne CPU16Regs:$rx, immZExt16:$imm)), bb:$targ16),
1498   (BtnezT8CmpiX16 CPU16Regs:$rx, immSExt16:$imm,  bb:$targ16)
1499  >;
1500
1501def: Mips16Pat
1502  <(brcond (i32 (setne CPU16Regs:$rx, 0)), bb:$targ16),
1503   (BnezRxImm16 CPU16Regs:$rx, bb:$targ16)
1504  >;
1505
1506//
1507// This needs to be there but I forget which code will generate it
1508//
1509def: Mips16Pat
1510  <(brcond CPU16Regs:$rx, bb:$targ16),
1511   (BnezRxImm16 CPU16Regs:$rx, bb:$targ16)
1512  >;
1513
1514//
1515
1516//
1517// bcond-setugt
1518//
1519//def: Mips16Pat
1520//  <(brcond (i32 (setugt CPU16Regs:$rx, CPU16Regs:$ry)), bb:$imm16),
1521//   (BtnezT8SltuX16 CPU16Regs:$ry, CPU16Regs:$rx,  bb:$imm16)
1522//  >;
1523
1524//
1525// bcond-setuge
1526//
1527//def: Mips16Pat
1528//  <(brcond (i32 (setuge CPU16Regs:$rx, CPU16Regs:$ry)), bb:$imm16),
1529//   (BteqzT8SltuX16 CPU16Regs:$rx, CPU16Regs:$ry,  bb:$imm16)
1530//  >;
1531
1532
1533//
1534// bcond-setult
1535//
1536//def: Mips16Pat
1537//  <(brcond (i32 (setult CPU16Regs:$rx, CPU16Regs:$ry)), bb:$imm16),
1538//   (BtnezT8SltuX16 CPU16Regs:$rx, CPU16Regs:$ry,  bb:$imm16)
1539//  >;
1540
1541def: UncondBranch16_pat<br, Bimm16>;
1542
1543// Small immediates
1544def: Mips16Pat<(i32 immSExt16:$in),
1545               (AddiuRxRxImmX16 (MoveR3216 ZERO), immSExt16:$in)>;
1546
1547def: Mips16Pat<(i32 immZExt16:$in), (LiRxImmX16 immZExt16:$in)>;
1548
1549//
1550// MipsDivRem
1551//
1552def: Mips16Pat
1553  <(MipsDivRem16 CPU16Regs:$rx, CPU16Regs:$ry),
1554   (DivRxRy16 CPU16Regs:$rx, CPU16Regs:$ry)>;
1555
1556//
1557// MipsDivRemU
1558//
1559def: Mips16Pat
1560  <(MipsDivRemU16 CPU16Regs:$rx, CPU16Regs:$ry),
1561   (DivuRxRy16 CPU16Regs:$rx, CPU16Regs:$ry)>;
1562
1563//  signed a,b
1564//  x = (a>=b)?x:y
1565//
1566//  if !(a < b) x = y
1567//
1568def : Mips16Pat<(select (i32 (setge CPU16Regs:$a, CPU16Regs:$b)),
1569                 CPU16Regs:$x, CPU16Regs:$y),
1570                (SelTBteqZSlt CPU16Regs:$x, CPU16Regs:$y,
1571                 CPU16Regs:$a, CPU16Regs:$b)>;
1572
1573//  signed a,b
1574//  x = (a>b)?x:y
1575//
1576//  if  (b < a) x = y
1577//
1578def : Mips16Pat<(select (i32 (setgt CPU16Regs:$a, CPU16Regs:$b)),
1579                 CPU16Regs:$x, CPU16Regs:$y),
1580                (SelTBtneZSlt CPU16Regs:$x, CPU16Regs:$y,
1581                 CPU16Regs:$b, CPU16Regs:$a)>;
1582
1583// unsigned a,b
1584// x = (a>=b)?x:y
1585//
1586// if !(a < b) x = y;
1587//
1588def : Mips16Pat<
1589  (select (i32 (setuge CPU16Regs:$a, CPU16Regs:$b)),
1590   CPU16Regs:$x, CPU16Regs:$y),
1591  (SelTBteqZSltu CPU16Regs:$x, CPU16Regs:$y,
1592   CPU16Regs:$a, CPU16Regs:$b)>;
1593
1594//  unsigned a,b
1595//  x = (a>b)?x:y
1596//
1597//  if (b < a) x = y
1598//
1599def : Mips16Pat<(select (i32 (setugt CPU16Regs:$a, CPU16Regs:$b)),
1600                 CPU16Regs:$x, CPU16Regs:$y),
1601                (SelTBtneZSltu CPU16Regs:$x, CPU16Regs:$y,
1602                 CPU16Regs:$b, CPU16Regs:$a)>;
1603
1604// signed
1605// x = (a >= k)?x:y
1606// due to an llvm optimization, i don't think that this will ever
1607// be used. This is transformed into x = (a > k-1)?x:y
1608//
1609//
1610
1611//def : Mips16Pat<
1612//  (select (i32 (setge CPU16Regs:$lhs, immSExt16:$rhs)),
1613//   CPU16Regs:$T, CPU16Regs:$F),
1614//  (SelTBteqZSlti CPU16Regs:$T, CPU16Regs:$F,
1615//   CPU16Regs:$lhs, immSExt16:$rhs)>;
1616
1617//def : Mips16Pat<
1618//  (select (i32 (setuge CPU16Regs:$lhs, immSExt16:$rhs)),
1619//   CPU16Regs:$T, CPU16Regs:$F),
1620//  (SelTBteqZSltiu CPU16Regs:$T, CPU16Regs:$F,
1621//   CPU16Regs:$lhs, immSExt16:$rhs)>;
1622
1623// signed
1624// x = (a < k)?x:y
1625//
1626// if !(a < k) x = y;
1627//
1628def : Mips16Pat<
1629  (select (i32 (setlt CPU16Regs:$a, immSExt16:$b)),
1630   CPU16Regs:$x, CPU16Regs:$y),
1631  (SelTBtneZSlti CPU16Regs:$x, CPU16Regs:$y,
1632   CPU16Regs:$a, immSExt16:$b)>;
1633
1634
1635//
1636//
1637// signed
1638// x = (a <= b)? x : y
1639//
1640// if  (b < a) x = y
1641//
1642def : Mips16Pat<(select (i32 (setle CPU16Regs:$a, CPU16Regs:$b)),
1643                 CPU16Regs:$x, CPU16Regs:$y),
1644                (SelTBteqZSlt CPU16Regs:$x, CPU16Regs:$y,
1645                 CPU16Regs:$b, CPU16Regs:$a)>;
1646
1647//
1648// unnsigned
1649// x = (a <= b)? x : y
1650//
1651// if  (b < a) x = y
1652//
1653def : Mips16Pat<(select (i32 (setule CPU16Regs:$a, CPU16Regs:$b)),
1654                 CPU16Regs:$x, CPU16Regs:$y),
1655                (SelTBteqZSltu CPU16Regs:$x, CPU16Regs:$y,
1656                 CPU16Regs:$b, CPU16Regs:$a)>;
1657
1658//
1659// signed/unsigned
1660// x = (a == b)? x : y
1661//
1662// if (a != b) x = y
1663//
1664def : Mips16Pat<(select (i32 (seteq CPU16Regs:$a, CPU16Regs:$b)),
1665                 CPU16Regs:$x, CPU16Regs:$y),
1666                (SelTBteqZCmp CPU16Regs:$x, CPU16Regs:$y,
1667                 CPU16Regs:$b, CPU16Regs:$a)>;
1668
1669//
1670// signed/unsigned
1671// x = (a == 0)? x : y
1672//
1673// if (a != 0) x = y
1674//
1675def : Mips16Pat<(select (i32 (seteq CPU16Regs:$a, 0)),
1676                 CPU16Regs:$x, CPU16Regs:$y),
1677                (SelBeqZ CPU16Regs:$x, CPU16Regs:$y,
1678                 CPU16Regs:$a)>;
1679
1680
1681//
1682// signed/unsigned
1683// x = (a == k)? x : y
1684//
1685// if (a != k) x = y
1686//
1687def : Mips16Pat<(select (i32 (seteq CPU16Regs:$a, immZExt16:$k)),
1688                 CPU16Regs:$x, CPU16Regs:$y),
1689                (SelTBteqZCmpi CPU16Regs:$x, CPU16Regs:$y,
1690                 CPU16Regs:$a, immZExt16:$k)>;
1691
1692
1693//
1694// signed/unsigned
1695// x = (a != b)? x : y
1696//
1697// if (a == b) x = y
1698//
1699//
1700def : Mips16Pat<(select (i32 (setne CPU16Regs:$a, CPU16Regs:$b)),
1701                 CPU16Regs:$x, CPU16Regs:$y),
1702                (SelTBtneZCmp CPU16Regs:$x, CPU16Regs:$y,
1703                 CPU16Regs:$b, CPU16Regs:$a)>;
1704
1705//
1706// signed/unsigned
1707// x = (a != 0)? x : y
1708//
1709// if (a == 0) x = y
1710//
1711def : Mips16Pat<(select (i32 (setne CPU16Regs:$a, 0)),
1712                 CPU16Regs:$x, CPU16Regs:$y),
1713                (SelBneZ CPU16Regs:$x, CPU16Regs:$y,
1714                 CPU16Regs:$a)>;
1715
1716// signed/unsigned
1717// x = (a)? x : y
1718//
1719// if (!a) x = y
1720//
1721def : Mips16Pat<(select  CPU16Regs:$a,
1722                 CPU16Regs:$x, CPU16Regs:$y),
1723      (SelBneZ CPU16Regs:$x, CPU16Regs:$y,
1724       CPU16Regs:$a)>;
1725
1726
1727//
1728// signed/unsigned
1729// x = (a != k)? x : y
1730//
1731// if (a == k) x = y
1732//
1733def : Mips16Pat<(select (i32 (setne CPU16Regs:$a, immZExt16:$k)),
1734                 CPU16Regs:$x, CPU16Regs:$y),
1735                (SelTBtneZCmpi CPU16Regs:$x, CPU16Regs:$y,
1736                 CPU16Regs:$a, immZExt16:$k)>;
1737
1738//
1739// When writing C code to test setxx these patterns,
1740// some will be transformed into
1741// other things. So we test using C code but using -O3 and -O0
1742//
1743// seteq
1744//
1745def : Mips16Pat
1746  <(seteq CPU16Regs:$lhs,CPU16Regs:$rhs),
1747   (SltiuCCRxImmX16 (XorRxRxRy16 CPU16Regs:$lhs, CPU16Regs:$rhs), 1)>;
1748
1749def : Mips16Pat
1750  <(seteq CPU16Regs:$lhs, 0),
1751   (SltiuCCRxImmX16 CPU16Regs:$lhs, 1)>;
1752
1753
1754//
1755// setge
1756//
1757
1758def: Mips16Pat
1759  <(setge CPU16Regs:$lhs, CPU16Regs:$rhs),
1760   (XorRxRxRy16 (SltCCRxRy16 CPU16Regs:$lhs, CPU16Regs:$rhs),
1761   (LiRxImmX16 1))>;
1762
1763//
1764// For constants, llvm transforms this to:
1765// x > (k - 1) and then reverses the operands to use setlt. So this pattern
1766// is not used now by the compiler. (Presumably checking that k-1 does not
1767// overflow). The compiler never uses this at the current time, due to
1768// other optimizations.
1769//
1770//def: Mips16Pat
1771//  <(setge CPU16Regs:$lhs, immSExt16:$rhs),
1772//   (XorRxRxRy16 (SltiCCRxImmX16 CPU16Regs:$lhs, immSExt16:$rhs),
1773//   (LiRxImmX16 1))>;
1774
1775// This catches the x >= -32768 case by transforming it to  x > -32769
1776//
1777def: Mips16Pat
1778  <(setgt CPU16Regs:$lhs, -32769),
1779   (XorRxRxRy16 (SltiCCRxImmX16 CPU16Regs:$lhs, -32768),
1780   (LiRxImmX16 1))>;
1781
1782//
1783// setgt
1784//
1785//
1786
1787def: Mips16Pat
1788  <(setgt CPU16Regs:$lhs, CPU16Regs:$rhs),
1789   (SltCCRxRy16 CPU16Regs:$rhs, CPU16Regs:$lhs)>;
1790
1791//
1792// setle
1793//
1794def: Mips16Pat
1795  <(setle CPU16Regs:$lhs, CPU16Regs:$rhs),
1796   (XorRxRxRy16 (SltCCRxRy16 CPU16Regs:$rhs, CPU16Regs:$lhs), (LiRxImm16 1))>;
1797
1798//
1799// setlt
1800//
1801def: SetCC_R16<setlt, SltCCRxRy16>;
1802
1803def: SetCC_I16<setlt, immSExt16, SltiCCRxImmX16>;
1804
1805//
1806// setne
1807//
1808def : Mips16Pat
1809  <(setne CPU16Regs:$lhs,CPU16Regs:$rhs),
1810   (SltuCCRxRy16 (LiRxImmX16 0),
1811   (XorRxRxRy16 CPU16Regs:$lhs, CPU16Regs:$rhs))>;
1812
1813
1814//
1815// setuge
1816//
1817def: Mips16Pat
1818  <(setuge CPU16Regs:$lhs, CPU16Regs:$rhs),
1819   (XorRxRxRy16 (SltuCCRxRy16 CPU16Regs:$lhs, CPU16Regs:$rhs),
1820   (LiRxImmX16 1))>;
1821
1822// this pattern will never be used because the compiler will transform
1823// x >= k to x > (k - 1) and then use SLT
1824//
1825//def: Mips16Pat
1826//  <(setuge CPU16Regs:$lhs, immZExt16:$rhs),
1827//   (XorRxRxRy16 (SltiuCCRxImmX16 CPU16Regs:$lhs, immZExt16:$rhs),
1828//   (LiRxImmX16 1))>;
1829
1830//
1831// setugt
1832//
1833def: Mips16Pat
1834  <(setugt CPU16Regs:$lhs, CPU16Regs:$rhs),
1835   (SltuCCRxRy16 CPU16Regs:$rhs, CPU16Regs:$lhs)>;
1836
1837//
1838// setule
1839//
1840def: Mips16Pat
1841  <(setule CPU16Regs:$lhs, CPU16Regs:$rhs),
1842   (XorRxRxRy16 (SltuCCRxRy16 CPU16Regs:$rhs, CPU16Regs:$lhs), (LiRxImmX16 1))>;
1843
1844//
1845// setult
1846//
1847def: SetCC_R16<setult, SltuCCRxRy16>;
1848
1849def: SetCC_I16<setult, immSExt16, SltiuCCRxImmX16>;
1850
1851def: Mips16Pat<(add CPU16Regs:$hi, (MipsLo tglobaladdr:$lo)),
1852               (AddiuRxRxImmX16 CPU16Regs:$hi, tglobaladdr:$lo)>;
1853
1854// hi/lo relocs
1855def : Mips16Pat<(MipsHi tblockaddress:$in),
1856                (SllX16 (LiRxImmX16 tblockaddress:$in), 16)>;
1857def : Mips16Pat<(MipsHi tglobaladdr:$in),
1858                (SllX16 (LiRxImmX16 tglobaladdr:$in), 16)>;
1859def : Mips16Pat<(MipsHi tjumptable:$in),
1860                (SllX16 (LiRxImmX16 tjumptable:$in), 16)>;
1861
1862def : Mips16Pat<(MipsLo tblockaddress:$in), (LiRxImmX16 tblockaddress:$in)>;
1863
1864def : Mips16Pat<(MipsTlsHi tglobaltlsaddr:$in),
1865                (SllX16 (LiRxImmX16 tglobaltlsaddr:$in), 16)>;
1866
1867// wrapper_pic
1868class Wrapper16Pat<SDNode node, Instruction ADDiuOp, RegisterClass RC>:
1869  Mips16Pat<(MipsWrapper RC:$gp, node:$in),
1870            (ADDiuOp RC:$gp, node:$in)>;
1871
1872
1873def : Wrapper16Pat<tglobaladdr, AddiuRxRxImmX16, CPU16Regs>;
1874def : Wrapper16Pat<tglobaltlsaddr, AddiuRxRxImmX16, CPU16Regs>;
1875
1876def : Mips16Pat<(i32 (extloadi8   addr16:$src)),
1877                (LbuRxRyOffMemX16  addr16:$src)>;
1878def : Mips16Pat<(i32 (extloadi16  addr16:$src)),
1879                (LhuRxRyOffMemX16  addr16:$src)>;
1880
1881def: Mips16Pat<(trap), (Break16)>;
1882
1883def : Mips16Pat<(sext_inreg CPU16Regs:$val, i8),
1884                (SebRx16 CPU16Regs:$val)>;
1885
1886def : Mips16Pat<(sext_inreg CPU16Regs:$val, i16),
1887                (SehRx16 CPU16Regs:$val)>;
1888
1889def GotPrologue16:
1890  MipsPseudo16<
1891    (outs CPU16Regs:$rh, CPU16Regs:$rl),
1892    (ins simm16:$immHi, simm16:$immLo),
1893    "li\t$rh, $immHi\n\taddiu\t$rl, $$pc, $immLo\n ",[]> ;
1894
1895// An operand for the CONSTPOOL_ENTRY pseudo-instruction.
1896def cpinst_operand : Operand<i32> {
1897  // let PrintMethod = "printCPInstOperand";
1898}
1899
1900// CONSTPOOL_ENTRY - This instruction represents a floating constant pool in
1901// the function.  The first operand is the ID# for this instruction, the second
1902// is the index into the MachineConstantPool that this is, the third is the
1903// size in bytes of this constant pool entry.
1904//
1905let hasSideEffects = 0, isNotDuplicable = 1 in
1906def CONSTPOOL_ENTRY :
1907MipsPseudo16<(outs), (ins cpinst_operand:$instid, cpinst_operand:$cpidx,
1908                      i32imm:$size), "foo", []>;
1909
1910// Instruction Aliases
1911
1912let EncodingPredicates = [InMips16Mode] in
1913def : MipsInstAlias<"nop", (Move32R16 ZERO, S0)>;
1914