1//===- Mips16InstrInfo.td - Target Description for Mips16 -*- tablegen -*-=// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This file describes Mips16 instructions. 11// 12//===----------------------------------------------------------------------===// 13// 14// 15// Mips Address 16// 17def addr16 : ComplexPattern<iPTR, 2, "selectAddr16", [frameindex]>; 18def addr16sp : ComplexPattern<iPTR, 2, "selectAddr16SP", [frameindex]>; 19 20// 21// Address operand 22def mem16 : Operand<i32> { 23 let PrintMethod = "printMemOperand"; 24 let MIOperandInfo = (ops CPU16Regs, simm16); 25 let EncoderMethod = "getMemEncoding"; 26} 27 28def mem16sp : Operand<i32> { 29 let PrintMethod = "printMemOperand"; 30 // This should be CPUSPReg but the MIPS16 subtarget isn't good enough at 31 // keeping the sp-relative load and the other varieties separate at the 32 // moment. This lie fixes the problem sufficiently well to fix the errors 33 // emitted by -verify-machineinstrs and the output ends up correct as long 34 // as we use an external assembler (which is already a requirement for MIPS16 35 // for several other reasons). 36 let MIOperandInfo = (ops CPU16RegsPlusSP, simm16); 37 let EncoderMethod = "getMemEncoding"; 38} 39 40def mem16_ea : Operand<i32> { 41 let PrintMethod = "printMemOperandEA"; 42 let MIOperandInfo = (ops CPU16RegsPlusSP, simm16); 43 let EncoderMethod = "getMemEncoding"; 44} 45 46def pcrel16 : Operand<i32>; 47 48// 49// I-type instruction format 50// 51// this is only used by bimm. the actual assembly value is a 12 bit signed 52// number 53// 54class FI16_ins<bits<5> op, string asmstr, InstrItinClass itin>: 55 FI16<op, (outs), (ins brtarget:$imm16), 56 !strconcat(asmstr, "\t$imm16 # 16 bit inst"), [], itin>; 57 58// 59// 60// I8 instruction format 61// 62 63class FI816_ins_base<bits<3> _func, string asmstr, 64 string asmstr2, InstrItinClass itin>: 65 FI816<_func, (outs), (ins simm16:$imm), !strconcat(asmstr, asmstr2), 66 [], itin>; 67 68class FI816_ins<bits<3> _func, string asmstr, 69 InstrItinClass itin>: 70 FI816_ins_base<_func, asmstr, "\t$imm # 16 bit inst", itin>; 71 72class FI816_SP_ins<bits<3> _func, string asmstr, 73 InstrItinClass itin>: 74 FI816_ins_base<_func, asmstr, "\t$$sp, $imm # 16 bit inst", itin>; 75 76// 77// RI instruction format 78// 79 80 81class FRI16_ins_base<bits<5> op, string asmstr, string asmstr2, 82 InstrItinClass itin>: 83 FRI16<op, (outs CPU16Regs:$rx), (ins simm16:$imm), 84 !strconcat(asmstr, asmstr2), [], itin>; 85 86class FRI16_ins<bits<5> op, string asmstr, 87 InstrItinClass itin>: 88 FRI16_ins_base<op, asmstr, "\t$rx, $imm \t# 16 bit inst", itin>; 89 90class FRI16_TCP_ins<bits<5> _op, string asmstr, 91 InstrItinClass itin>: 92 FRI16<_op, (outs CPU16Regs:$rx), (ins pcrel16:$imm, i32imm:$size), 93 !strconcat(asmstr, "\t$rx, $imm\t# 16 bit inst"), [], itin>; 94 95class FRI16R_ins_base<bits<5> op, string asmstr, string asmstr2, 96 InstrItinClass itin>: 97 FRI16<op, (outs), (ins CPU16Regs:$rx, simm16:$imm), 98 !strconcat(asmstr, asmstr2), [], itin>; 99 100class FRI16R_ins<bits<5> op, string asmstr, 101 InstrItinClass itin>: 102 FRI16R_ins_base<op, asmstr, "\t$rx, $imm \t# 16 bit inst", itin>; 103 104class F2RI16_ins<bits<5> _op, string asmstr, 105 InstrItinClass itin>: 106 FRI16<_op, (outs CPU16Regs:$rx), (ins CPU16Regs:$rx_, simm16:$imm), 107 !strconcat(asmstr, "\t$rx, $imm\t# 16 bit inst"), [], itin> { 108 let Constraints = "$rx_ = $rx"; 109} 110 111class FRI16_B_ins<bits<5> _op, string asmstr, 112 InstrItinClass itin>: 113 FRI16<_op, (outs), (ins CPU16Regs:$rx, brtarget:$imm), 114 !strconcat(asmstr, "\t$rx, $imm # 16 bit inst"), [], itin>; 115// 116// Compare a register and immediate and place result in CC 117// Implicit use of T8 118// 119// EXT-CCRR Instruction format 120// 121class FEXT_CCRXI16_ins<string asmstr>: 122 MipsPseudo16<(outs CPU16Regs:$cc), (ins CPU16Regs:$rx, simm16:$imm), 123 !strconcat(asmstr, "\t$rx, $imm\n\tmove\t$cc, $$t8"), []> { 124 let isCodeGenOnly=1; 125 let usesCustomInserter = 1; 126} 127 128// JAL and JALX instruction format 129// 130class FJAL16_ins<bits<1> _X, string asmstr, 131 InstrItinClass itin>: 132 FJAL16<_X, (outs), (ins uimm26:$imm), 133 !strconcat(asmstr, "\t$imm\n\tnop"),[], 134 itin> { 135 let isCodeGenOnly=1; 136 let Size=6; 137} 138 139class FJALB16_ins<bits<1> _X, string asmstr, 140 InstrItinClass itin>: 141 FJAL16<_X, (outs), (ins uimm26:$imm), 142 !strconcat(asmstr, "\t$imm\t# branch\n\tnop"),[], 143 itin> { 144 let isCodeGenOnly=1; 145 let Size=6; 146} 147 148// 149// EXT-I instruction format 150// 151class FEXT_I16_ins<bits<5> eop, string asmstr, InstrItinClass itin> : 152 FEXT_I16<eop, (outs), (ins brtarget:$imm16), 153 !strconcat(asmstr, "\t$imm16"),[], itin>; 154 155// 156// EXT-I8 instruction format 157// 158 159class FEXT_I816_ins_base<bits<3> _func, string asmstr, 160 string asmstr2, InstrItinClass itin>: 161 FEXT_I816<_func, (outs), (ins simm16:$imm), !strconcat(asmstr, asmstr2), 162 [], itin>; 163 164class FEXT_I816_ins<bits<3> _func, string asmstr, 165 InstrItinClass itin>: 166 FEXT_I816_ins_base<_func, asmstr, "\t$imm", itin>; 167 168class FEXT_I816_SP_ins<bits<3> _func, string asmstr, 169 InstrItinClass itin>: 170 FEXT_I816_ins_base<_func, asmstr, "\t$$sp, $imm", itin>; 171 172// 173// Assembler formats in alphabetical order. 174// Natural and pseudos are mixed together. 175// 176// Compare two registers and place result in CC 177// Implicit use of T8 178// 179// CC-RR Instruction format 180// 181class FCCRR16_ins<string asmstr> : 182 MipsPseudo16<(outs CPU16Regs:$cc), (ins CPU16Regs:$rx, CPU16Regs:$ry), 183 !strconcat(asmstr, "\t$rx, $ry\n\tmove\t$cc, $$t8"), []> { 184 let isCodeGenOnly=1; 185 let usesCustomInserter = 1; 186} 187 188// 189// EXT-RI instruction format 190// 191 192class FEXT_RI16_ins_base<bits<5> _op, string asmstr, string asmstr2, 193 InstrItinClass itin>: 194 FEXT_RI16<_op, (outs CPU16Regs:$rx), (ins simm16:$imm), 195 !strconcat(asmstr, asmstr2), [], itin>; 196 197class FEXT_RI16_ins<bits<5> _op, string asmstr, 198 InstrItinClass itin>: 199 FEXT_RI16_ins_base<_op, asmstr, "\t$rx, $imm", itin>; 200 201class FEXT_RI16R_ins_base<bits<5> _op, string asmstr, string asmstr2, 202 InstrItinClass itin>: 203 FEXT_RI16<_op, (outs ), (ins CPU16Regs:$rx, simm16:$imm), 204 !strconcat(asmstr, asmstr2), [], itin>; 205 206class FEXT_RI16R_ins<bits<5> _op, string asmstr, 207 InstrItinClass itin>: 208 FEXT_RI16R_ins_base<_op, asmstr, "\t$rx, $imm", itin>; 209 210class FEXT_RI16_PC_ins<bits<5> _op, string asmstr, InstrItinClass itin>: 211 FEXT_RI16_ins_base<_op, asmstr, "\t$rx, $$pc, $imm", itin>; 212 213class FEXT_RI16_B_ins<bits<5> _op, string asmstr, 214 InstrItinClass itin>: 215 FEXT_RI16<_op, (outs), (ins CPU16Regs:$rx, brtarget:$imm), 216 !strconcat(asmstr, "\t$rx, $imm"), [], itin>; 217 218class FEXT_RI16_TCP_ins<bits<5> _op, string asmstr, 219 InstrItinClass itin>: 220 FEXT_RI16<_op, (outs CPU16Regs:$rx), (ins pcrel16:$imm, i32imm:$size), 221 !strconcat(asmstr, "\t$rx, $imm"), [], itin>; 222 223class FEXT_2RI16_ins<bits<5> _op, string asmstr, 224 InstrItinClass itin>: 225 FEXT_RI16<_op, (outs CPU16Regs:$rx), (ins CPU16Regs:$rx_, simm16:$imm), 226 !strconcat(asmstr, "\t$rx, $imm"), [], itin> { 227 let Constraints = "$rx_ = $rx"; 228} 229 230// 231// EXT-RRI instruction format 232// 233 234class FEXT_RRI16_mem_ins<bits<5> op, string asmstr, Operand MemOpnd, 235 InstrItinClass itin>: 236 FEXT_RRI16<op, (outs CPU16Regs:$ry), (ins MemOpnd:$addr), 237 !strconcat(asmstr, "\t$ry, $addr"), [], itin>; 238 239class FEXT_RRI16_mem2_ins<bits<5> op, string asmstr, Operand MemOpnd, 240 InstrItinClass itin>: 241 FEXT_RRI16<op, (outs ), (ins CPU16Regs:$ry, MemOpnd:$addr), 242 !strconcat(asmstr, "\t$ry, $addr"), [], itin>; 243 244// 245// 246// EXT-RRI-A instruction format 247// 248 249class FEXT_RRI_A16_mem_ins<bits<1> op, string asmstr, Operand MemOpnd, 250 InstrItinClass itin>: 251 FEXT_RRI_A16<op, (outs CPU16Regs:$ry), (ins MemOpnd:$addr), 252 !strconcat(asmstr, "\t$ry, $addr"), [], itin>; 253 254// 255// EXT-SHIFT instruction format 256// 257class FEXT_SHIFT16_ins<bits<2> _f, string asmstr, InstrItinClass itin>: 258 FEXT_SHIFT16<_f, (outs CPU16Regs:$rx), (ins CPU16Regs:$ry, uimm5:$sa), 259 !strconcat(asmstr, "\t$rx, $ry, $sa"), [], itin>; 260 261// 262// EXT-T8I8 263// 264class FEXT_T8I816_ins<string asmstr, string asmstr2>: 265 MipsPseudo16<(outs), 266 (ins CPU16Regs:$rx, CPU16Regs:$ry, brtarget:$imm), 267 !strconcat(asmstr2, !strconcat("\t$rx, $ry\n\t", 268 !strconcat(asmstr, "\t$imm"))),[]> { 269 let isCodeGenOnly=1; 270 let usesCustomInserter = 1; 271} 272 273// 274// EXT-T8I8I 275// 276class FEXT_T8I8I16_ins<string asmstr, string asmstr2>: 277 MipsPseudo16<(outs), 278 (ins CPU16Regs:$rx, simm16:$imm, brtarget:$targ), 279 !strconcat(asmstr2, !strconcat("\t$rx, $imm\n\t", 280 !strconcat(asmstr, "\t$targ"))), []> { 281 let isCodeGenOnly=1; 282 let usesCustomInserter = 1; 283} 284// 285 286 287// 288// I8_MOVR32 instruction format (used only by the MOVR32 instructio 289// 290class FI8_MOVR3216_ins<string asmstr, InstrItinClass itin>: 291 FI8_MOVR3216<(outs CPU16Regs:$rz), (ins GPR32:$r32), 292 !strconcat(asmstr, "\t$rz, $r32"), [], itin>; 293 294// 295// I8_MOV32R instruction format (used only by MOV32R instruction) 296// 297 298class FI8_MOV32R16_ins<string asmstr, InstrItinClass itin>: 299 FI8_MOV32R16<(outs GPR32:$r32), (ins CPU16Regs:$rz), 300 !strconcat(asmstr, "\t$r32, $rz"), [], itin>; 301 302// 303// This are pseudo formats for multiply 304// This first one can be changed to non-pseudo now. 305// 306// MULT 307// 308class FMULT16_ins<string asmstr, InstrItinClass itin> : 309 MipsPseudo16<(outs), (ins CPU16Regs:$rx, CPU16Regs:$ry), 310 !strconcat(asmstr, "\t$rx, $ry"), []>; 311 312// 313// MULT-LO 314// 315class FMULT16_LO_ins<string asmstr, InstrItinClass itin> : 316 MipsPseudo16<(outs CPU16Regs:$rz), (ins CPU16Regs:$rx, CPU16Regs:$ry), 317 !strconcat(asmstr, "\t$rx, $ry\n\tmflo\t$rz"), []> { 318 let isCodeGenOnly=1; 319} 320 321// 322// RR-type instruction format 323// 324 325class FRR16_ins<bits<5> f, string asmstr, InstrItinClass itin> : 326 FRR16<f, (outs CPU16Regs:$rx), (ins CPU16Regs:$ry), 327 !strconcat(asmstr, "\t$rx, $ry"), [], itin> { 328} 329 330class FRRBreakNull16_ins<string asmstr, InstrItinClass itin> : 331 FRRBreak16<(outs), (ins), asmstr, [], itin> { 332 let Code=0; 333} 334 335class FRR16R_ins<bits<5> f, string asmstr, InstrItinClass itin> : 336 FRR16<f, (outs), (ins CPU16Regs:$rx, CPU16Regs:$ry), 337 !strconcat(asmstr, "\t$rx, $ry"), [], itin> { 338} 339 340class FRRTR16_ins<string asmstr> : 341 MipsPseudo16<(outs CPU16Regs:$rz), (ins CPU16Regs:$rx, CPU16Regs:$ry), 342 !strconcat(asmstr, "\t$rx, $ry\n\tmove\t$rz, $$t8"), []> ; 343 344// 345// maybe refactor but need a $zero as a dummy first parameter 346// 347class FRR16_div_ins<bits<5> f, string asmstr, InstrItinClass itin> : 348 FRR16<f, (outs ), (ins CPU16Regs:$rx, CPU16Regs:$ry), 349 !strconcat(asmstr, "\t$$zero, $rx, $ry"), [], itin> ; 350 351class FUnaryRR16_ins<bits<5> f, string asmstr, InstrItinClass itin> : 352 FRR16<f, (outs CPU16Regs:$rx), (ins CPU16Regs:$ry), 353 !strconcat(asmstr, "\t$rx, $ry"), [], itin> ; 354 355 356class FRR16_M_ins<bits<5> f, string asmstr, 357 InstrItinClass itin> : 358 FRR16<f, (outs CPU16Regs:$rx), (ins), 359 !strconcat(asmstr, "\t$rx"), [], itin>; 360 361class FRxRxRy16_ins<bits<5> f, string asmstr, 362 InstrItinClass itin> : 363 FRR16<f, (outs CPU16Regs:$rz), (ins CPU16Regs:$rx, CPU16Regs:$ry), 364 !strconcat(asmstr, "\t$rz, $ry"), 365 [], itin> { 366 let Constraints = "$rx = $rz"; 367} 368 369let rx=0 in 370class FRR16_JALRC_RA_only_ins<bits<1> nd_, bits<1> l_, 371 string asmstr, InstrItinClass itin>: 372 FRR16_JALRC<nd_, l_, 1, (outs), (ins), !strconcat(asmstr, "\t$$ra"), 373 [], itin> ; 374 375 376class FRR16_JALRC_ins<bits<1> nd, bits<1> l, bits<1> ra, 377 string asmstr, InstrItinClass itin>: 378 FRR16_JALRC<nd, l, ra, (outs), (ins CPU16Regs:$rx), 379 !strconcat(asmstr, "\t$rx"), [], itin> ; 380 381class FRR_SF16_ins 382 <bits<5> _funct, bits<3> _subfunc, 383 string asmstr, InstrItinClass itin>: 384 FRR_SF16<_funct, _subfunc, (outs CPU16Regs:$rx), (ins CPU16Regs:$rx_), 385 !strconcat(asmstr, "\t $rx"), 386 [], itin> { 387 let Constraints = "$rx_ = $rx"; 388 } 389// 390// RRR-type instruction format 391// 392 393class FRRR16_ins<bits<2> _f, string asmstr, InstrItinClass itin> : 394 FRRR16<_f, (outs CPU16Regs:$rz), (ins CPU16Regs:$rx, CPU16Regs:$ry), 395 !strconcat(asmstr, "\t$rz, $rx, $ry"), [], itin>; 396 397// 398// These Sel patterns support the generation of conditional move 399// pseudo instructions. 400// 401// The nomenclature uses the components making up the pseudo and may 402// be a bit counter intuitive when compared with the end result we seek. 403// For example using a bqez in the example directly below results in the 404// conditional move being done if the tested register is not zero. 405// I considered in easier to check by keeping the pseudo consistent with 406// it's components but it could have been done differently. 407// 408// The simplest case is when can test and operand directly and do the 409// conditional move based on a simple mips16 conditional 410// branch instruction. 411// for example: 412// if $op == beqz or bnez: 413// 414// $op1 $rt, .+4 415// move $rd, $rs 416// 417// if $op == beqz, then if $rt != 0, then the conditional assignment 418// $rd = $rs is done. 419 420// if $op == bnez, then if $rt == 0, then the conditional assignment 421// $rd = $rs is done. 422// 423// So this pseudo class only has one operand, i.e. op 424// 425class Sel<string op>: 426 MipsPseudo16<(outs CPU16Regs:$rd_), (ins CPU16Regs:$rd, CPU16Regs:$rs, 427 CPU16Regs:$rt), 428 !strconcat(op, "\t$rt, .+4\n\t\n\tmove $rd, $rs"), []> { 429 //let isCodeGenOnly=1; 430 let Constraints = "$rd = $rd_"; 431 let usesCustomInserter = 1; 432} 433 434// 435// The next two instruction classes allow for an operand which tests 436// two operands and returns a value in register T8 and 437//then does a conditional branch based on the value of T8 438// 439 440// op2 can be cmpi or slti/sltiu 441// op1 can bteqz or btnez 442// the operands for op2 are a register and a signed constant 443// 444// $op2 $t, $imm ;test register t and branch conditionally 445// $op1 .+4 ;op1 is a conditional branch 446// move $rd, $rs 447// 448// 449class SeliT<string op1, string op2>: 450 MipsPseudo16<(outs CPU16Regs:$rd_), (ins CPU16Regs:$rd, CPU16Regs:$rs, 451 CPU16Regs:$rl, simm16:$imm), 452 !strconcat(op2, 453 !strconcat("\t$rl, $imm\n\t", 454 !strconcat(op1, "\t.+4\n\tmove $rd, $rs"))), []> { 455 let isCodeGenOnly=1; 456 let Constraints = "$rd = $rd_"; 457 let usesCustomInserter = 1; 458} 459 460// 461// op2 can be cmp or slt/sltu 462// op1 can be bteqz or btnez 463// the operands for op2 are two registers 464// op1 is a conditional branch 465// 466// 467// $op2 $rl, $rr ;test registers rl,rr 468// $op1 .+4 ;op2 is a conditional branch 469// move $rd, $rs 470// 471// 472class SelT<string op1, string op2>: 473 MipsPseudo16<(outs CPU16Regs:$rd_), 474 (ins CPU16Regs:$rd, CPU16Regs:$rs, 475 CPU16Regs:$rl, CPU16Regs:$rr), 476 !strconcat(op2, 477 !strconcat("\t$rl, $rr\n\t", 478 !strconcat(op1, "\t.+4\n\tmove $rd, $rs"))), []> { 479 let isCodeGenOnly=1; 480 let Constraints = "$rd = $rd_"; 481 let usesCustomInserter = 1; 482} 483 484// 485// 32 bit constant 486// 487def Constant32: 488 MipsPseudo16<(outs), (ins simm32:$imm), "\t.word $imm", []>; 489 490def LwConstant32: 491 MipsPseudo16<(outs CPU16Regs:$rx), (ins simm32:$imm, simm32:$constid), 492 "lw\t$rx, 1f\n\tb\t2f\n\t.align\t2\n1: \t.word\t$imm\n2:", []>; 493 494 495// 496// Some general instruction class info 497// 498// 499 500class ArithLogic16Defs<bit isCom=0> { 501 bits<5> shamt = 0; 502 bit isCommutable = isCom; 503 bit isReMaterializable = 1; 504 bit hasSideEffects = 0; 505} 506 507class branch16 { 508 bit isBranch = 1; 509 bit isTerminator = 1; 510 bit isBarrier = 1; 511} 512 513class cbranch16 { 514 bit isBranch = 1; 515 bit isTerminator = 1; 516} 517 518class MayLoad { 519 bit mayLoad = 1; 520} 521 522class MayStore { 523 bit mayStore = 1; 524} 525// 526 527 528// Format: ADDIU rx, immediate MIPS16e 529// Purpose: Add Immediate Unsigned Word (2-Operand, Extended) 530// To add a constant to a 32-bit integer. 531// 532def AddiuRxImmX16: FEXT_RI16_ins<0b01001, "addiu", IIM16Alu>; 533 534def AddiuRxRxImm16: F2RI16_ins<0b01001, "addiu", IIM16Alu>, 535 ArithLogic16Defs<0> { 536 let AddedComplexity = 5; 537} 538def AddiuRxRxImmX16: FEXT_2RI16_ins<0b01001, "addiu", IIM16Alu>, 539 ArithLogic16Defs<0> { 540 let isCodeGenOnly = 1; 541} 542 543def AddiuRxRyOffMemX16: 544 FEXT_RRI_A16_mem_ins<0, "addiu", mem16_ea, IIM16Alu>; 545 546// 547 548// Format: ADDIU rx, pc, immediate MIPS16e 549// Purpose: Add Immediate Unsigned Word (3-Operand, PC-Relative, Extended) 550// To add a constant to the program counter. 551// 552def AddiuRxPcImmX16: FEXT_RI16_PC_ins<0b00001, "addiu", IIM16Alu>; 553 554// 555// Format: ADDIU sp, immediate MIPS16e 556// Purpose: Add Immediate Unsigned Word (2-Operand, SP-Relative, Extended) 557// To add a constant to the stack pointer. 558// 559def AddiuSpImm16 560 : FI816_SP_ins<0b011, "addiu", IIM16Alu> { 561 let Defs = [SP]; 562 let Uses = [SP]; 563 let AddedComplexity = 5; 564} 565 566def AddiuSpImmX16 567 : FEXT_I816_SP_ins<0b011, "addiu", IIM16Alu> { 568 let Defs = [SP]; 569 let Uses = [SP]; 570} 571 572// 573// Format: ADDU rz, rx, ry MIPS16e 574// Purpose: Add Unsigned Word (3-Operand) 575// To add 32-bit integers. 576// 577 578def AdduRxRyRz16: FRRR16_ins<01, "addu", IIM16Alu>, ArithLogic16Defs<1>; 579 580// 581// Format: AND rx, ry MIPS16e 582// Purpose: AND 583// To do a bitwise logical AND. 584 585def AndRxRxRy16: FRxRxRy16_ins<0b01100, "and", IIM16Alu>, ArithLogic16Defs<1>; 586 587 588// 589// Format: BEQZ rx, offset MIPS16e 590// Purpose: Branch on Equal to Zero 591// To test a GPR then do a PC-relative conditional branch. 592// 593def BeqzRxImm16: FRI16_B_ins<0b00100, "beqz", IIM16Alu>, cbranch16; 594 595 596// 597// Format: BEQZ rx, offset MIPS16e 598// Purpose: Branch on Equal to Zero (Extended) 599// To test a GPR then do a PC-relative conditional branch. 600// 601def BeqzRxImmX16: FEXT_RI16_B_ins<0b00100, "beqz", IIM16Alu>, cbranch16; 602 603// 604// Format: B offset MIPS16e 605// Purpose: Unconditional Branch (Extended) 606// To do an unconditional PC-relative branch. 607// 608 609def Bimm16: FI16_ins<0b00010, "b", IIM16Alu>, branch16; 610 611// Format: B offset MIPS16e 612// Purpose: Unconditional Branch 613// To do an unconditional PC-relative branch. 614// 615def BimmX16: FEXT_I16_ins<0b00010, "b", IIM16Alu>, branch16; 616 617// 618// Format: BNEZ rx, offset MIPS16e 619// Purpose: Branch on Not Equal to Zero 620// To test a GPR then do a PC-relative conditional branch. 621// 622def BnezRxImm16: FRI16_B_ins<0b00101, "bnez", IIM16Alu>, cbranch16; 623 624// 625// Format: BNEZ rx, offset MIPS16e 626// Purpose: Branch on Not Equal to Zero (Extended) 627// To test a GPR then do a PC-relative conditional branch. 628// 629def BnezRxImmX16: FEXT_RI16_B_ins<0b00101, "bnez", IIM16Alu>, cbranch16; 630 631 632// 633//Format: BREAK immediate 634// Purpose: Breakpoint 635// To cause a Breakpoint exception. 636 637def Break16: FRRBreakNull16_ins<"break 0", IIM16Alu>; 638// 639// Format: BTEQZ offset MIPS16e 640// Purpose: Branch on T Equal to Zero (Extended) 641// To test special register T then do a PC-relative conditional branch. 642// 643def Bteqz16: FI816_ins<0b000, "bteqz", IIM16Alu>, cbranch16 { 644 let Uses = [T8]; 645} 646 647def BteqzX16: FEXT_I816_ins<0b000, "bteqz", IIM16Alu>, cbranch16 { 648 let Uses = [T8]; 649} 650 651def BteqzT8CmpX16: FEXT_T8I816_ins<"bteqz", "cmp">, cbranch16; 652 653def BteqzT8CmpiX16: FEXT_T8I8I16_ins<"bteqz", "cmpi">, 654 cbranch16; 655 656def BteqzT8SltX16: FEXT_T8I816_ins<"bteqz", "slt">, cbranch16; 657 658def BteqzT8SltuX16: FEXT_T8I816_ins<"bteqz", "sltu">, cbranch16; 659 660def BteqzT8SltiX16: FEXT_T8I8I16_ins<"bteqz", "slti">, cbranch16; 661 662def BteqzT8SltiuX16: FEXT_T8I8I16_ins<"bteqz", "sltiu">, 663 cbranch16; 664 665// 666// Format: BTNEZ offset MIPS16e 667// Purpose: Branch on T Not Equal to Zero (Extended) 668// To test special register T then do a PC-relative conditional branch. 669// 670 671def Btnez16: FI816_ins<0b001, "btnez", IIM16Alu>, cbranch16 { 672 let Uses = [T8]; 673} 674 675def BtnezX16: FEXT_I816_ins<0b001, "btnez", IIM16Alu> ,cbranch16 { 676 let Uses = [T8]; 677} 678 679def BtnezT8CmpX16: FEXT_T8I816_ins<"btnez", "cmp">, cbranch16; 680 681def BtnezT8CmpiX16: FEXT_T8I8I16_ins<"btnez", "cmpi">, cbranch16; 682 683def BtnezT8SltX16: FEXT_T8I816_ins<"btnez", "slt">, cbranch16; 684 685def BtnezT8SltuX16: FEXT_T8I816_ins<"btnez", "sltu">, cbranch16; 686 687def BtnezT8SltiX16: FEXT_T8I8I16_ins<"btnez", "slti">, cbranch16; 688 689def BtnezT8SltiuX16: FEXT_T8I8I16_ins<"btnez", "sltiu">, 690 cbranch16; 691 692// 693// Format: CMP rx, ry MIPS16e 694// Purpose: Compare 695// To compare the contents of two GPRs. 696// 697def CmpRxRy16: FRR16R_ins<0b01010, "cmp", IIM16Alu> { 698 let Defs = [T8]; 699} 700 701// 702// Format: CMPI rx, immediate MIPS16e 703// Purpose: Compare Immediate 704// To compare a constant with the contents of a GPR. 705// 706def CmpiRxImm16: FRI16R_ins<0b01110, "cmpi", IIM16Alu> { 707 let Defs = [T8]; 708} 709 710// 711// Format: CMPI rx, immediate MIPS16e 712// Purpose: Compare Immediate (Extended) 713// To compare a constant with the contents of a GPR. 714// 715def CmpiRxImmX16: FEXT_RI16R_ins<0b01110, "cmpi", IIM16Alu> { 716 let Defs = [T8]; 717} 718 719 720// 721// Format: DIV rx, ry MIPS16e 722// Purpose: Divide Word 723// To divide 32-bit signed integers. 724// 725def DivRxRy16: FRR16_div_ins<0b11010, "div", IIM16Alu> { 726 let Defs = [HI0, LO0]; 727} 728 729// 730// Format: DIVU rx, ry MIPS16e 731// Purpose: Divide Unsigned Word 732// To divide 32-bit unsigned integers. 733// 734def DivuRxRy16: FRR16_div_ins<0b11011, "divu", IIM16Alu> { 735 let Defs = [HI0, LO0]; 736} 737// 738// Format: JAL target MIPS16e 739// Purpose: Jump and Link 740// To execute a procedure call within the current 256 MB-aligned 741// region and preserve the current ISA. 742// 743 744def Jal16 : FJAL16_ins<0b0, "jal", IIM16Alu> { 745 let hasDelaySlot = 0; // not true, but we add the nop for now 746 let isCall=1; 747 let Defs = [RA]; 748} 749 750def JalB16 : FJALB16_ins<0b0, "jal", IIM16Alu>, branch16 { 751 let hasDelaySlot = 0; // not true, but we add the nop for now 752 let isBranch=1; 753 let Defs = [RA]; 754} 755 756// 757// Format: JR ra MIPS16e 758// Purpose: Jump Register Through Register ra 759// To execute a branch to the instruction address in the return 760// address register. 761// 762 763def JrRa16: FRR16_JALRC_RA_only_ins<0, 0, "jr", IIM16Alu> { 764 let isBranch = 1; 765 let isIndirectBranch = 1; 766 let hasDelaySlot = 1; 767 let isTerminator=1; 768 let isBarrier=1; 769 let isReturn=1; 770} 771 772def JrcRa16: FRR16_JALRC_RA_only_ins<1, 1, "jrc", IIM16Alu> { 773 let isBranch = 1; 774 let isIndirectBranch = 1; 775 let isTerminator=1; 776 let isBarrier=1; 777 let isReturn=1; 778} 779 780def JrcRx16: FRR16_JALRC_ins<1, 1, 0, "jrc", IIM16Alu> { 781 let isBranch = 1; 782 let isIndirectBranch = 1; 783 let isTerminator=1; 784 let isBarrier=1; 785} 786// 787// Format: LB ry, offset(rx) MIPS16e 788// Purpose: Load Byte (Extended) 789// To load a byte from memory as a signed value. 790// 791def LbRxRyOffMemX16: FEXT_RRI16_mem_ins<0b10011, "lb", mem16, II_LB>, MayLoad{ 792 let isCodeGenOnly = 1; 793} 794 795// 796// Format: LBU ry, offset(rx) MIPS16e 797// Purpose: Load Byte Unsigned (Extended) 798// To load a byte from memory as a unsigned value. 799// 800def LbuRxRyOffMemX16: 801 FEXT_RRI16_mem_ins<0b10100, "lbu", mem16, II_LBU>, MayLoad { 802 let isCodeGenOnly = 1; 803} 804 805// 806// Format: LH ry, offset(rx) MIPS16e 807// Purpose: Load Halfword signed (Extended) 808// To load a halfword from memory as a signed value. 809// 810def LhRxRyOffMemX16: FEXT_RRI16_mem_ins<0b10100, "lh", mem16, II_LH>, MayLoad{ 811 let isCodeGenOnly = 1; 812} 813 814// 815// Format: LHU ry, offset(rx) MIPS16e 816// Purpose: Load Halfword unsigned (Extended) 817// To load a halfword from memory as an unsigned value. 818// 819def LhuRxRyOffMemX16: 820 FEXT_RRI16_mem_ins<0b10100, "lhu", mem16, II_LHU>, MayLoad { 821 let isCodeGenOnly = 1; 822} 823 824// 825// Format: LI rx, immediate MIPS16e 826// Purpose: Load Immediate 827// To load a constant into a GPR. 828// 829def LiRxImm16: FRI16_ins<0b01101, "li", IIM16Alu>; 830 831// 832// Format: LI rx, immediate MIPS16e 833// Purpose: Load Immediate (Extended) 834// To load a constant into a GPR. 835// 836def LiRxImmX16: FEXT_RI16_ins<0b01101, "li", IIM16Alu>; 837 838def LiRxImmAlignX16: FEXT_RI16_ins<0b01101, ".align 2\n\tli", IIM16Alu> { 839 let isCodeGenOnly = 1; 840} 841 842// 843// Format: LW ry, offset(rx) MIPS16e 844// Purpose: Load Word (Extended) 845// To load a word from memory as a signed value. 846// 847def LwRxRyOffMemX16: FEXT_RRI16_mem_ins<0b10011, "lw", mem16, II_LW>, MayLoad{ 848 let isCodeGenOnly = 1; 849} 850 851// Format: LW rx, offset(sp) MIPS16e 852// Purpose: Load Word (SP-Relative, Extended) 853// To load an SP-relative word from memory as a signed value. 854// 855def LwRxSpImmX16: FEXT_RRI16_mem_ins<0b10010, "lw", mem16sp, II_LW>, MayLoad; 856 857def LwRxPcTcp16: FRI16_TCP_ins<0b10110, "lw", II_LW>, MayLoad; 858 859def LwRxPcTcpX16: FEXT_RI16_TCP_ins<0b10110, "lw", II_LW>, MayLoad; 860// 861// Format: MOVE r32, rz MIPS16e 862// Purpose: Move 863// To move the contents of a GPR to a GPR. 864// 865def Move32R16: FI8_MOV32R16_ins<"move", IIM16Alu>; 866 867// 868// Format: MOVE ry, r32 MIPS16e 869//Purpose: Move 870// To move the contents of a GPR to a GPR. 871// 872def MoveR3216: FI8_MOVR3216_ins<"move", IIM16Alu> { 873 let isMoveReg = 1; 874} 875 876// 877// Format: MFHI rx MIPS16e 878// Purpose: Move From HI Register 879// To copy the special purpose HI register to a GPR. 880// 881def Mfhi16: FRR16_M_ins<0b10000, "mfhi", IIM16Alu> { 882 let Uses = [HI0]; 883 let hasSideEffects = 0; 884 let isMoveReg = 1; 885} 886 887// 888// Format: MFLO rx MIPS16e 889// Purpose: Move From LO Register 890// To copy the special purpose LO register to a GPR. 891// 892def Mflo16: FRR16_M_ins<0b10010, "mflo", IIM16Alu> { 893 let Uses = [LO0]; 894 let hasSideEffects = 0; 895 let isMoveReg = 0; 896} 897 898// 899// Pseudo Instruction for mult 900// 901def MultRxRy16: FMULT16_ins<"mult", IIM16Alu> { 902 let isCommutable = 1; 903 let hasSideEffects = 0; 904 let Defs = [HI0, LO0]; 905} 906 907def MultuRxRy16: FMULT16_ins<"multu", IIM16Alu> { 908 let isCommutable = 1; 909 let hasSideEffects = 0; 910 let Defs = [HI0, LO0]; 911} 912 913// 914// Format: MULT rx, ry MIPS16e 915// Purpose: Multiply Word 916// To multiply 32-bit signed integers. 917// 918def MultRxRyRz16: FMULT16_LO_ins<"mult", IIM16Alu> { 919 let isCommutable = 1; 920 let hasSideEffects = 0; 921 let Defs = [HI0, LO0]; 922} 923 924// 925// Format: MULTU rx, ry MIPS16e 926// Purpose: Multiply Unsigned Word 927// To multiply 32-bit unsigned integers. 928// 929def MultuRxRyRz16: FMULT16_LO_ins<"multu", IIM16Alu> { 930 let isCommutable = 1; 931 let hasSideEffects = 0; 932 let Defs = [HI0, LO0]; 933} 934 935// 936// Format: NEG rx, ry MIPS16e 937// Purpose: Negate 938// To negate an integer value. 939// 940def NegRxRy16: FUnaryRR16_ins<0b11101, "neg", IIM16Alu>; 941 942// 943// Format: NOT rx, ry MIPS16e 944// Purpose: Not 945// To complement an integer value 946// 947def NotRxRy16: FUnaryRR16_ins<0b01111, "not", IIM16Alu>; 948 949// 950// Format: OR rx, ry MIPS16e 951// Purpose: Or 952// To do a bitwise logical OR. 953// 954def OrRxRxRy16: FRxRxRy16_ins<0b01101, "or", IIM16Alu>, ArithLogic16Defs<1>; 955 956// 957// Format: RESTORE {ra,}{s0/s1/s0-1,}{framesize} 958// (All args are optional) MIPS16e 959// Purpose: Restore Registers and Deallocate Stack Frame 960// To deallocate a stack frame before exit from a subroutine, 961// restoring return address and static registers, and adjusting 962// stack 963// 964 965def Restore16: 966 FI8_SVRS16<0b1, (outs), (ins variable_ops), 967 "", [], II_RESTORE >, MayLoad { 968 let isCodeGenOnly = 1; 969 let Defs = [SP]; 970 let Uses = [SP]; 971} 972 973 974def RestoreX16: 975 FI8_SVRS16<0b1, (outs), (ins variable_ops), 976 "", [], II_RESTORE >, MayLoad { 977 let isCodeGenOnly = 1; 978 let Defs = [SP]; 979 let Uses = [SP]; 980} 981 982// 983// Format: SAVE {ra,}{s0/s1/s0-1,}{framesize} (All arguments are optional) 984// MIPS16e 985// Purpose: Save Registers and Set Up Stack Frame 986// To set up a stack frame on entry to a subroutine, 987// saving return address and static registers, and adjusting stack 988// 989def Save16: 990 FI8_SVRS16<0b1, (outs), (ins variable_ops), 991 "", [], II_SAVE >, MayStore { 992 let isCodeGenOnly = 1; 993 let Uses = [SP]; 994 let Defs = [SP]; 995} 996 997def SaveX16: 998 FI8_SVRS16<0b1, (outs), (ins variable_ops), 999 "", [], II_SAVE >, MayStore { 1000 let isCodeGenOnly = 1; 1001 let Uses = [SP]; 1002 let Defs = [SP]; 1003} 1004// 1005// Format: SB ry, offset(rx) MIPS16e 1006// Purpose: Store Byte (Extended) 1007// To store a byte to memory. 1008// 1009def SbRxRyOffMemX16: 1010 FEXT_RRI16_mem2_ins<0b11000, "sb", mem16, II_SB>, MayStore; 1011 1012// 1013// Format: SEB rx MIPS16e 1014// Purpose: Sign-Extend Byte 1015// Sign-extend least significant byte in register rx. 1016// 1017def SebRx16 1018 : FRR_SF16_ins<0b10001, 0b100, "seb", IIM16Alu>; 1019 1020// 1021// Format: SEH rx MIPS16e 1022// Purpose: Sign-Extend Halfword 1023// Sign-extend least significant word in register rx. 1024// 1025def SehRx16 1026 : FRR_SF16_ins<0b10001, 0b101, "seh", IIM16Alu>; 1027 1028// 1029// The Sel(T) instructions are pseudos 1030// T means that they use T8 implicitly. 1031// 1032// 1033// Format: SelBeqZ rd, rs, rt 1034// Purpose: if rt==0, do nothing 1035// else rs = rt 1036// 1037def SelBeqZ: Sel<"beqz">; 1038 1039// 1040// Format: SelTBteqZCmp rd, rs, rl, rr 1041// Purpose: b = Cmp rl, rr. 1042// If b==0 then do nothing. 1043// if b!=0 then rd = rs 1044// 1045def SelTBteqZCmp: SelT<"bteqz", "cmp">; 1046 1047// 1048// Format: SelTBteqZCmpi rd, rs, rl, rr 1049// Purpose: b = Cmpi rl, imm. 1050// If b==0 then do nothing. 1051// if b!=0 then rd = rs 1052// 1053def SelTBteqZCmpi: SeliT<"bteqz", "cmpi">; 1054 1055// 1056// Format: SelTBteqZSlt rd, rs, rl, rr 1057// Purpose: b = Slt rl, rr. 1058// If b==0 then do nothing. 1059// if b!=0 then rd = rs 1060// 1061def SelTBteqZSlt: SelT<"bteqz", "slt">; 1062 1063// 1064// Format: SelTBteqZSlti rd, rs, rl, rr 1065// Purpose: b = Slti rl, imm. 1066// If b==0 then do nothing. 1067// if b!=0 then rd = rs 1068// 1069def SelTBteqZSlti: SeliT<"bteqz", "slti">; 1070 1071// 1072// Format: SelTBteqZSltu rd, rs, rl, rr 1073// Purpose: b = Sltu rl, rr. 1074// If b==0 then do nothing. 1075// if b!=0 then rd = rs 1076// 1077def SelTBteqZSltu: SelT<"bteqz", "sltu">; 1078 1079// 1080// Format: SelTBteqZSltiu rd, rs, rl, rr 1081// Purpose: b = Sltiu rl, imm. 1082// If b==0 then do nothing. 1083// if b!=0 then rd = rs 1084// 1085def SelTBteqZSltiu: SeliT<"bteqz", "sltiu">; 1086 1087// 1088// Format: SelBnez rd, rs, rt 1089// Purpose: if rt!=0, do nothing 1090// else rs = rt 1091// 1092def SelBneZ: Sel<"bnez">; 1093 1094// 1095// Format: SelTBtneZCmp rd, rs, rl, rr 1096// Purpose: b = Cmp rl, rr. 1097// If b!=0 then do nothing. 1098// if b0=0 then rd = rs 1099// 1100def SelTBtneZCmp: SelT<"btnez", "cmp">; 1101 1102// 1103// Format: SelTBtnezCmpi rd, rs, rl, rr 1104// Purpose: b = Cmpi rl, imm. 1105// If b!=0 then do nothing. 1106// if b==0 then rd = rs 1107// 1108def SelTBtneZCmpi: SeliT<"btnez", "cmpi">; 1109 1110// 1111// Format: SelTBtneZSlt rd, rs, rl, rr 1112// Purpose: b = Slt rl, rr. 1113// If b!=0 then do nothing. 1114// if b==0 then rd = rs 1115// 1116def SelTBtneZSlt: SelT<"btnez", "slt">; 1117 1118// 1119// Format: SelTBtneZSlti rd, rs, rl, rr 1120// Purpose: b = Slti rl, imm. 1121// If b!=0 then do nothing. 1122// if b==0 then rd = rs 1123// 1124def SelTBtneZSlti: SeliT<"btnez", "slti">; 1125 1126// 1127// Format: SelTBtneZSltu rd, rs, rl, rr 1128// Purpose: b = Sltu rl, rr. 1129// If b!=0 then do nothing. 1130// if b==0 then rd = rs 1131// 1132def SelTBtneZSltu: SelT<"btnez", "sltu">; 1133 1134// 1135// Format: SelTBtneZSltiu rd, rs, rl, rr 1136// Purpose: b = Slti rl, imm. 1137// If b!=0 then do nothing. 1138// if b==0 then rd = rs 1139// 1140def SelTBtneZSltiu: SeliT<"btnez", "sltiu">; 1141// 1142// 1143// Format: SH ry, offset(rx) MIPS16e 1144// Purpose: Store Halfword (Extended) 1145// To store a halfword to memory. 1146// 1147def ShRxRyOffMemX16: 1148 FEXT_RRI16_mem2_ins<0b11001, "sh", mem16, II_SH>, MayStore; 1149 1150// 1151// Format: SLL rx, ry, sa MIPS16e 1152// Purpose: Shift Word Left Logical (Extended) 1153// To execute a left-shift of a word by a fixed number of bits-0 to 31 bits. 1154// 1155def SllX16: FEXT_SHIFT16_ins<0b00, "sll", IIM16Alu>; 1156 1157// 1158// Format: SLLV ry, rx MIPS16e 1159// Purpose: Shift Word Left Logical Variable 1160// To execute a left-shift of a word by a variable number of bits. 1161// 1162def SllvRxRy16 : FRxRxRy16_ins<0b00100, "sllv", IIM16Alu>; 1163 1164// Format: SLTI rx, immediate MIPS16e 1165// Purpose: Set on Less Than Immediate 1166// To record the result of a less-than comparison with a constant. 1167// 1168// 1169def SltiRxImm16: FRI16R_ins<0b01010, "slti", IIM16Alu> { 1170 let Defs = [T8]; 1171} 1172 1173// 1174// Format: SLTI rx, immediate MIPS16e 1175// Purpose: Set on Less Than Immediate (Extended) 1176// To record the result of a less-than comparison with a constant. 1177// 1178// 1179def SltiRxImmX16: FEXT_RI16R_ins<0b01010, "slti", IIM16Alu> { 1180 let Defs = [T8]; 1181} 1182 1183def SltiCCRxImmX16: FEXT_CCRXI16_ins<"slti">; 1184 1185// Format: SLTIU rx, immediate MIPS16e 1186// Purpose: Set on Less Than Immediate Unsigned 1187// To record the result of a less-than comparison with a constant. 1188// 1189// 1190def SltiuRxImm16: FRI16R_ins<0b01011, "sltiu", IIM16Alu> { 1191 let Defs = [T8]; 1192} 1193 1194// 1195// Format: SLTI rx, immediate MIPS16e 1196// Purpose: Set on Less Than Immediate Unsigned (Extended) 1197// To record the result of a less-than comparison with a constant. 1198// 1199// 1200def SltiuRxImmX16: FEXT_RI16R_ins<0b01011, "sltiu", IIM16Alu> { 1201 let Defs = [T8]; 1202} 1203// 1204// Format: SLTIU rx, immediate MIPS16e 1205// Purpose: Set on Less Than Immediate Unsigned (Extended) 1206// To record the result of a less-than comparison with a constant. 1207// 1208def SltiuCCRxImmX16: FEXT_CCRXI16_ins<"sltiu">; 1209 1210// 1211// Format: SLT rx, ry MIPS16e 1212// Purpose: Set on Less Than 1213// To record the result of a less-than comparison. 1214// 1215def SltRxRy16: FRR16R_ins<0b00010, "slt", IIM16Alu>{ 1216 let Defs = [T8]; 1217} 1218 1219def SltCCRxRy16: FCCRR16_ins<"slt">; 1220 1221// Format: SLTU rx, ry MIPS16e 1222// Purpose: Set on Less Than Unsigned 1223// To record the result of an unsigned less-than comparison. 1224// 1225def SltuRxRy16: FRR16R_ins<0b00011, "sltu", IIM16Alu>{ 1226 let Defs = [T8]; 1227} 1228 1229def SltuRxRyRz16: FRRTR16_ins<"sltu"> { 1230 let isCodeGenOnly=1; 1231 let Defs = [T8]; 1232} 1233 1234 1235def SltuCCRxRy16: FCCRR16_ins<"sltu">; 1236// 1237// Format: SRAV ry, rx MIPS16e 1238// Purpose: Shift Word Right Arithmetic Variable 1239// To execute an arithmetic right-shift of a word by a variable 1240// number of bits. 1241// 1242def SravRxRy16: FRxRxRy16_ins<0b00111, "srav", IIM16Alu>; 1243 1244 1245// 1246// Format: SRA rx, ry, sa MIPS16e 1247// Purpose: Shift Word Right Arithmetic (Extended) 1248// To execute an arithmetic right-shift of a word by a fixed 1249// number of bits-1 to 8 bits. 1250// 1251def SraX16: FEXT_SHIFT16_ins<0b11, "sra", IIM16Alu>; 1252 1253 1254// 1255// Format: SRLV ry, rx MIPS16e 1256// Purpose: Shift Word Right Logical Variable 1257// To execute a logical right-shift of a word by a variable 1258// number of bits. 1259// 1260def SrlvRxRy16: FRxRxRy16_ins<0b00110, "srlv", IIM16Alu>; 1261 1262 1263// 1264// Format: SRL rx, ry, sa MIPS16e 1265// Purpose: Shift Word Right Logical (Extended) 1266// To execute a logical right-shift of a word by a fixed 1267// number of bits-1 to 31 bits. 1268// 1269def SrlX16: FEXT_SHIFT16_ins<0b10, "srl", IIM16Alu>; 1270 1271// 1272// Format: SUBU rz, rx, ry MIPS16e 1273// Purpose: Subtract Unsigned Word 1274// To subtract 32-bit integers 1275// 1276def SubuRxRyRz16: FRRR16_ins<0b11, "subu", IIM16Alu>, ArithLogic16Defs<0>; 1277 1278// 1279// Format: SW ry, offset(rx) MIPS16e 1280// Purpose: Store Word (Extended) 1281// To store a word to memory. 1282// 1283def SwRxRyOffMemX16: FEXT_RRI16_mem2_ins<0b11011, "sw", mem16, II_SW>, MayStore; 1284 1285// 1286// Format: SW rx, offset(sp) MIPS16e 1287// Purpose: Store Word rx (SP-Relative) 1288// To store an SP-relative word to memory. 1289// 1290def SwRxSpImmX16: FEXT_RRI16_mem2_ins<0b11010, "sw", mem16sp, II_SW>, MayStore; 1291 1292// 1293// 1294// Format: XOR rx, ry MIPS16e 1295// Purpose: Xor 1296// To do a bitwise logical XOR. 1297// 1298def XorRxRxRy16: FRxRxRy16_ins<0b01110, "xor", IIM16Alu>, ArithLogic16Defs<1>; 1299 1300class Mips16Pat<dag pattern, dag result> : Pat<pattern, result> { 1301 let Predicates = [InMips16Mode]; 1302} 1303 1304// Unary Arith/Logic 1305// 1306class ArithLogicU_pat<PatFrag OpNode, Instruction I> : 1307 Mips16Pat<(OpNode CPU16Regs:$r), 1308 (I CPU16Regs:$r)>; 1309 1310def: ArithLogicU_pat<not, NotRxRy16>; 1311def: ArithLogicU_pat<ineg, NegRxRy16>; 1312 1313class ArithLogic16_pat<SDNode OpNode, Instruction I> : 1314 Mips16Pat<(OpNode CPU16Regs:$l, CPU16Regs:$r), 1315 (I CPU16Regs:$l, CPU16Regs:$r)>; 1316 1317def: ArithLogic16_pat<add, AdduRxRyRz16>; 1318def: ArithLogic16_pat<and, AndRxRxRy16>; 1319def: ArithLogic16_pat<mul, MultRxRyRz16>; 1320def: ArithLogic16_pat<or, OrRxRxRy16>; 1321def: ArithLogic16_pat<sub, SubuRxRyRz16>; 1322def: ArithLogic16_pat<xor, XorRxRxRy16>; 1323 1324// Arithmetic and logical instructions with 2 register operands. 1325 1326class ArithLogicI16_pat<SDNode OpNode, PatFrag imm_type, Instruction I> : 1327 Mips16Pat<(OpNode CPU16Regs:$in, imm_type:$imm), 1328 (I CPU16Regs:$in, imm_type:$imm)>; 1329 1330def: ArithLogicI16_pat<add, immSExt8, AddiuRxRxImm16>; 1331def: ArithLogicI16_pat<add, immSExt16, AddiuRxRxImmX16>; 1332def: ArithLogicI16_pat<shl, immZExt5, SllX16>; 1333def: ArithLogicI16_pat<srl, immZExt5, SrlX16>; 1334def: ArithLogicI16_pat<sra, immZExt5, SraX16>; 1335 1336class shift_rotate_reg16_pat<SDNode OpNode, Instruction I> : 1337 Mips16Pat<(OpNode CPU16Regs:$r, CPU16Regs:$ra), 1338 (I CPU16Regs:$r, CPU16Regs:$ra)>; 1339 1340def: shift_rotate_reg16_pat<shl, SllvRxRy16>; 1341def: shift_rotate_reg16_pat<sra, SravRxRy16>; 1342def: shift_rotate_reg16_pat<srl, SrlvRxRy16>; 1343 1344class LoadM16_pat<PatFrag OpNode, Instruction I, ComplexPattern Addr> : 1345 Mips16Pat<(OpNode Addr:$addr), (I Addr:$addr)>; 1346 1347def: LoadM16_pat<sextloadi8, LbRxRyOffMemX16, addr16>; 1348def: LoadM16_pat<zextloadi8, LbuRxRyOffMemX16, addr16>; 1349def: LoadM16_pat<sextloadi16, LhRxRyOffMemX16, addr16>; 1350def: LoadM16_pat<zextloadi16, LhuRxRyOffMemX16, addr16>; 1351def: LoadM16_pat<load, LwRxSpImmX16, addr16sp>; 1352 1353class StoreM16_pat<PatFrag OpNode, Instruction I, ComplexPattern Addr> : 1354 Mips16Pat<(OpNode CPU16Regs:$r, Addr:$addr), (I CPU16Regs:$r, Addr:$addr)>; 1355 1356def: StoreM16_pat<truncstorei8, SbRxRyOffMemX16, addr16>; 1357def: StoreM16_pat<truncstorei16, ShRxRyOffMemX16, addr16>; 1358def: StoreM16_pat<store, SwRxSpImmX16, addr16sp>; 1359 1360// Unconditional branch 1361class UncondBranch16_pat<SDNode OpNode, Instruction I>: 1362 Mips16Pat<(OpNode bb:$imm16), (I bb:$imm16)> { 1363 let Predicates = [InMips16Mode]; 1364 } 1365 1366def : Mips16Pat<(MipsJmpLink (i32 tglobaladdr:$dst)), 1367 (Jal16 tglobaladdr:$dst)>; 1368 1369def : Mips16Pat<(MipsJmpLink (i32 texternalsym:$dst)), 1370 (Jal16 texternalsym:$dst)>; 1371 1372// Indirect branch 1373def: Mips16Pat<(brind CPU16Regs:$rs), (JrcRx16 CPU16Regs:$rs)> { 1374 // Ensure that the addition of MIPS32r6/MIPS64r6 support does not change 1375 // MIPS16's behaviour. 1376 let AddedComplexity = 1; 1377} 1378 1379// Jump and Link (Call) 1380let isCall=1, hasDelaySlot=0 in 1381def JumpLinkReg16: 1382 FRR16_JALRC<0, 0, 0, (outs), (ins CPU16Regs:$rs), 1383 "jalrc\t$rs", [(MipsJmpLink CPU16Regs:$rs)], II_JALRC> { 1384 let Defs = [RA]; 1385} 1386 1387// Mips16 pseudos 1388let isReturn=1, isTerminator=1, hasDelaySlot=1, isBarrier=1, hasCtrlDep=1, 1389 hasExtraSrcRegAllocReq = 1 in 1390def RetRA16 : MipsPseudo16<(outs), (ins), "", [(MipsRet)]>; 1391 1392 1393// setcc patterns 1394 1395class SetCC_R16<PatFrag cond_op, Instruction I>: 1396 Mips16Pat<(cond_op CPU16Regs:$rx, CPU16Regs:$ry), 1397 (I CPU16Regs:$rx, CPU16Regs:$ry)>; 1398 1399class SetCC_I16<PatFrag cond_op, PatLeaf imm_type, Instruction I>: 1400 Mips16Pat<(cond_op CPU16Regs:$rx, imm_type:$imm16), 1401 (I CPU16Regs:$rx, imm_type:$imm16)>; 1402 1403 1404def: Mips16Pat<(i32 addr16sp:$addr), (AddiuRxRyOffMemX16 addr16sp:$addr)>; 1405 1406 1407// Large (>16 bit) immediate loads 1408def : Mips16Pat<(i32 imm:$imm), (LwConstant32 imm:$imm, -1)>; 1409 1410// 1411// Some branch conditional patterns are not generated by llvm at this time. 1412// Some are for seemingly arbitrary reasons not used: i.e. with signed number 1413// comparison they are used and for unsigned a different pattern is used. 1414// I am pushing upstream from the full mips16 port and it seemed that I needed 1415// these earlier and the mips32 port has these but now I cannot create test 1416// cases that use these patterns. While I sort this all out I will leave these 1417// extra patterns commented out and if I can be sure they are really not used, 1418// I will delete the code. I don't want to check the code in uncommented without 1419// a valid test case. In some cases, the compiler is generating patterns with 1420// setcc instead and earlier I had implemented setcc first so may have masked 1421// the problem. The setcc variants are suboptimal for mips16 so I may wantto 1422// figure out how to enable the brcond patterns or else possibly new 1423// combinations of brcond and setcc. 1424// 1425// 1426// bcond-seteq 1427// 1428def: Mips16Pat 1429 <(brcond (i32 (seteq CPU16Regs:$rx, CPU16Regs:$ry)), bb:$imm16), 1430 (BteqzT8CmpX16 CPU16Regs:$rx, CPU16Regs:$ry, bb:$imm16) 1431 >; 1432 1433 1434def: Mips16Pat 1435 <(brcond (i32 (seteq CPU16Regs:$rx, immZExt16:$imm)), bb:$targ16), 1436 (BteqzT8CmpiX16 CPU16Regs:$rx, immSExt16:$imm, bb:$targ16) 1437 >; 1438 1439def: Mips16Pat 1440 <(brcond (i32 (seteq CPU16Regs:$rx, 0)), bb:$targ16), 1441 (BeqzRxImm16 CPU16Regs:$rx, bb:$targ16) 1442 >; 1443 1444// 1445// bcond-setgt (do we need to have this pair of setlt, setgt??) 1446// 1447def: Mips16Pat 1448 <(brcond (i32 (setgt CPU16Regs:$rx, CPU16Regs:$ry)), bb:$imm16), 1449 (BtnezT8SltX16 CPU16Regs:$ry, CPU16Regs:$rx, bb:$imm16) 1450 >; 1451 1452// 1453// bcond-setge 1454// 1455def: Mips16Pat 1456 <(brcond (i32 (setge CPU16Regs:$rx, CPU16Regs:$ry)), bb:$imm16), 1457 (BteqzT8SltX16 CPU16Regs:$rx, CPU16Regs:$ry, bb:$imm16) 1458 >; 1459 1460// 1461// never called because compiler transforms a >= k to a > (k-1) 1462def: Mips16Pat 1463 <(brcond (i32 (setge CPU16Regs:$rx, immSExt16:$imm)), bb:$imm16), 1464 (BteqzT8SltiX16 CPU16Regs:$rx, immSExt16:$imm, bb:$imm16) 1465 >; 1466 1467// 1468// bcond-setlt 1469// 1470def: Mips16Pat 1471 <(brcond (i32 (setlt CPU16Regs:$rx, CPU16Regs:$ry)), bb:$imm16), 1472 (BtnezT8SltX16 CPU16Regs:$rx, CPU16Regs:$ry, bb:$imm16) 1473 >; 1474 1475def: Mips16Pat 1476 <(brcond (i32 (setlt CPU16Regs:$rx, immSExt16:$imm)), bb:$imm16), 1477 (BtnezT8SltiX16 CPU16Regs:$rx, immSExt16:$imm, bb:$imm16) 1478 >; 1479 1480// 1481// bcond-setle 1482// 1483def: Mips16Pat 1484 <(brcond (i32 (setle CPU16Regs:$rx, CPU16Regs:$ry)), bb:$imm16), 1485 (BteqzT8SltX16 CPU16Regs:$ry, CPU16Regs:$rx, bb:$imm16) 1486 >; 1487 1488// 1489// bcond-setne 1490// 1491def: Mips16Pat 1492 <(brcond (i32 (setne CPU16Regs:$rx, CPU16Regs:$ry)), bb:$imm16), 1493 (BtnezT8CmpX16 CPU16Regs:$rx, CPU16Regs:$ry, bb:$imm16) 1494 >; 1495 1496def: Mips16Pat 1497 <(brcond (i32 (setne CPU16Regs:$rx, immZExt16:$imm)), bb:$targ16), 1498 (BtnezT8CmpiX16 CPU16Regs:$rx, immSExt16:$imm, bb:$targ16) 1499 >; 1500 1501def: Mips16Pat 1502 <(brcond (i32 (setne CPU16Regs:$rx, 0)), bb:$targ16), 1503 (BnezRxImm16 CPU16Regs:$rx, bb:$targ16) 1504 >; 1505 1506// 1507// This needs to be there but I forget which code will generate it 1508// 1509def: Mips16Pat 1510 <(brcond CPU16Regs:$rx, bb:$targ16), 1511 (BnezRxImm16 CPU16Regs:$rx, bb:$targ16) 1512 >; 1513 1514// 1515 1516// 1517// bcond-setugt 1518// 1519//def: Mips16Pat 1520// <(brcond (i32 (setugt CPU16Regs:$rx, CPU16Regs:$ry)), bb:$imm16), 1521// (BtnezT8SltuX16 CPU16Regs:$ry, CPU16Regs:$rx, bb:$imm16) 1522// >; 1523 1524// 1525// bcond-setuge 1526// 1527//def: Mips16Pat 1528// <(brcond (i32 (setuge CPU16Regs:$rx, CPU16Regs:$ry)), bb:$imm16), 1529// (BteqzT8SltuX16 CPU16Regs:$rx, CPU16Regs:$ry, bb:$imm16) 1530// >; 1531 1532 1533// 1534// bcond-setult 1535// 1536//def: Mips16Pat 1537// <(brcond (i32 (setult CPU16Regs:$rx, CPU16Regs:$ry)), bb:$imm16), 1538// (BtnezT8SltuX16 CPU16Regs:$rx, CPU16Regs:$ry, bb:$imm16) 1539// >; 1540 1541def: UncondBranch16_pat<br, Bimm16>; 1542 1543// Small immediates 1544def: Mips16Pat<(i32 immSExt16:$in), 1545 (AddiuRxRxImmX16 (MoveR3216 ZERO), immSExt16:$in)>; 1546 1547def: Mips16Pat<(i32 immZExt16:$in), (LiRxImmX16 immZExt16:$in)>; 1548 1549// 1550// MipsDivRem 1551// 1552def: Mips16Pat 1553 <(MipsDivRem16 CPU16Regs:$rx, CPU16Regs:$ry), 1554 (DivRxRy16 CPU16Regs:$rx, CPU16Regs:$ry)>; 1555 1556// 1557// MipsDivRemU 1558// 1559def: Mips16Pat 1560 <(MipsDivRemU16 CPU16Regs:$rx, CPU16Regs:$ry), 1561 (DivuRxRy16 CPU16Regs:$rx, CPU16Regs:$ry)>; 1562 1563// signed a,b 1564// x = (a>=b)?x:y 1565// 1566// if !(a < b) x = y 1567// 1568def : Mips16Pat<(select (i32 (setge CPU16Regs:$a, CPU16Regs:$b)), 1569 CPU16Regs:$x, CPU16Regs:$y), 1570 (SelTBteqZSlt CPU16Regs:$x, CPU16Regs:$y, 1571 CPU16Regs:$a, CPU16Regs:$b)>; 1572 1573// signed a,b 1574// x = (a>b)?x:y 1575// 1576// if (b < a) x = y 1577// 1578def : Mips16Pat<(select (i32 (setgt CPU16Regs:$a, CPU16Regs:$b)), 1579 CPU16Regs:$x, CPU16Regs:$y), 1580 (SelTBtneZSlt CPU16Regs:$x, CPU16Regs:$y, 1581 CPU16Regs:$b, CPU16Regs:$a)>; 1582 1583// unsigned a,b 1584// x = (a>=b)?x:y 1585// 1586// if !(a < b) x = y; 1587// 1588def : Mips16Pat< 1589 (select (i32 (setuge CPU16Regs:$a, CPU16Regs:$b)), 1590 CPU16Regs:$x, CPU16Regs:$y), 1591 (SelTBteqZSltu CPU16Regs:$x, CPU16Regs:$y, 1592 CPU16Regs:$a, CPU16Regs:$b)>; 1593 1594// unsigned a,b 1595// x = (a>b)?x:y 1596// 1597// if (b < a) x = y 1598// 1599def : Mips16Pat<(select (i32 (setugt CPU16Regs:$a, CPU16Regs:$b)), 1600 CPU16Regs:$x, CPU16Regs:$y), 1601 (SelTBtneZSltu CPU16Regs:$x, CPU16Regs:$y, 1602 CPU16Regs:$b, CPU16Regs:$a)>; 1603 1604// signed 1605// x = (a >= k)?x:y 1606// due to an llvm optimization, i don't think that this will ever 1607// be used. This is transformed into x = (a > k-1)?x:y 1608// 1609// 1610 1611//def : Mips16Pat< 1612// (select (i32 (setge CPU16Regs:$lhs, immSExt16:$rhs)), 1613// CPU16Regs:$T, CPU16Regs:$F), 1614// (SelTBteqZSlti CPU16Regs:$T, CPU16Regs:$F, 1615// CPU16Regs:$lhs, immSExt16:$rhs)>; 1616 1617//def : Mips16Pat< 1618// (select (i32 (setuge CPU16Regs:$lhs, immSExt16:$rhs)), 1619// CPU16Regs:$T, CPU16Regs:$F), 1620// (SelTBteqZSltiu CPU16Regs:$T, CPU16Regs:$F, 1621// CPU16Regs:$lhs, immSExt16:$rhs)>; 1622 1623// signed 1624// x = (a < k)?x:y 1625// 1626// if !(a < k) x = y; 1627// 1628def : Mips16Pat< 1629 (select (i32 (setlt CPU16Regs:$a, immSExt16:$b)), 1630 CPU16Regs:$x, CPU16Regs:$y), 1631 (SelTBtneZSlti CPU16Regs:$x, CPU16Regs:$y, 1632 CPU16Regs:$a, immSExt16:$b)>; 1633 1634 1635// 1636// 1637// signed 1638// x = (a <= b)? x : y 1639// 1640// if (b < a) x = y 1641// 1642def : Mips16Pat<(select (i32 (setle CPU16Regs:$a, CPU16Regs:$b)), 1643 CPU16Regs:$x, CPU16Regs:$y), 1644 (SelTBteqZSlt CPU16Regs:$x, CPU16Regs:$y, 1645 CPU16Regs:$b, CPU16Regs:$a)>; 1646 1647// 1648// unnsigned 1649// x = (a <= b)? x : y 1650// 1651// if (b < a) x = y 1652// 1653def : Mips16Pat<(select (i32 (setule CPU16Regs:$a, CPU16Regs:$b)), 1654 CPU16Regs:$x, CPU16Regs:$y), 1655 (SelTBteqZSltu CPU16Regs:$x, CPU16Regs:$y, 1656 CPU16Regs:$b, CPU16Regs:$a)>; 1657 1658// 1659// signed/unsigned 1660// x = (a == b)? x : y 1661// 1662// if (a != b) x = y 1663// 1664def : Mips16Pat<(select (i32 (seteq CPU16Regs:$a, CPU16Regs:$b)), 1665 CPU16Regs:$x, CPU16Regs:$y), 1666 (SelTBteqZCmp CPU16Regs:$x, CPU16Regs:$y, 1667 CPU16Regs:$b, CPU16Regs:$a)>; 1668 1669// 1670// signed/unsigned 1671// x = (a == 0)? x : y 1672// 1673// if (a != 0) x = y 1674// 1675def : Mips16Pat<(select (i32 (seteq CPU16Regs:$a, 0)), 1676 CPU16Regs:$x, CPU16Regs:$y), 1677 (SelBeqZ CPU16Regs:$x, CPU16Regs:$y, 1678 CPU16Regs:$a)>; 1679 1680 1681// 1682// signed/unsigned 1683// x = (a == k)? x : y 1684// 1685// if (a != k) x = y 1686// 1687def : Mips16Pat<(select (i32 (seteq CPU16Regs:$a, immZExt16:$k)), 1688 CPU16Regs:$x, CPU16Regs:$y), 1689 (SelTBteqZCmpi CPU16Regs:$x, CPU16Regs:$y, 1690 CPU16Regs:$a, immZExt16:$k)>; 1691 1692 1693// 1694// signed/unsigned 1695// x = (a != b)? x : y 1696// 1697// if (a == b) x = y 1698// 1699// 1700def : Mips16Pat<(select (i32 (setne CPU16Regs:$a, CPU16Regs:$b)), 1701 CPU16Regs:$x, CPU16Regs:$y), 1702 (SelTBtneZCmp CPU16Regs:$x, CPU16Regs:$y, 1703 CPU16Regs:$b, CPU16Regs:$a)>; 1704 1705// 1706// signed/unsigned 1707// x = (a != 0)? x : y 1708// 1709// if (a == 0) x = y 1710// 1711def : Mips16Pat<(select (i32 (setne CPU16Regs:$a, 0)), 1712 CPU16Regs:$x, CPU16Regs:$y), 1713 (SelBneZ CPU16Regs:$x, CPU16Regs:$y, 1714 CPU16Regs:$a)>; 1715 1716// signed/unsigned 1717// x = (a)? x : y 1718// 1719// if (!a) x = y 1720// 1721def : Mips16Pat<(select CPU16Regs:$a, 1722 CPU16Regs:$x, CPU16Regs:$y), 1723 (SelBneZ CPU16Regs:$x, CPU16Regs:$y, 1724 CPU16Regs:$a)>; 1725 1726 1727// 1728// signed/unsigned 1729// x = (a != k)? x : y 1730// 1731// if (a == k) x = y 1732// 1733def : Mips16Pat<(select (i32 (setne CPU16Regs:$a, immZExt16:$k)), 1734 CPU16Regs:$x, CPU16Regs:$y), 1735 (SelTBtneZCmpi CPU16Regs:$x, CPU16Regs:$y, 1736 CPU16Regs:$a, immZExt16:$k)>; 1737 1738// 1739// When writing C code to test setxx these patterns, 1740// some will be transformed into 1741// other things. So we test using C code but using -O3 and -O0 1742// 1743// seteq 1744// 1745def : Mips16Pat 1746 <(seteq CPU16Regs:$lhs,CPU16Regs:$rhs), 1747 (SltiuCCRxImmX16 (XorRxRxRy16 CPU16Regs:$lhs, CPU16Regs:$rhs), 1)>; 1748 1749def : Mips16Pat 1750 <(seteq CPU16Regs:$lhs, 0), 1751 (SltiuCCRxImmX16 CPU16Regs:$lhs, 1)>; 1752 1753 1754// 1755// setge 1756// 1757 1758def: Mips16Pat 1759 <(setge CPU16Regs:$lhs, CPU16Regs:$rhs), 1760 (XorRxRxRy16 (SltCCRxRy16 CPU16Regs:$lhs, CPU16Regs:$rhs), 1761 (LiRxImmX16 1))>; 1762 1763// 1764// For constants, llvm transforms this to: 1765// x > (k - 1) and then reverses the operands to use setlt. So this pattern 1766// is not used now by the compiler. (Presumably checking that k-1 does not 1767// overflow). The compiler never uses this at the current time, due to 1768// other optimizations. 1769// 1770//def: Mips16Pat 1771// <(setge CPU16Regs:$lhs, immSExt16:$rhs), 1772// (XorRxRxRy16 (SltiCCRxImmX16 CPU16Regs:$lhs, immSExt16:$rhs), 1773// (LiRxImmX16 1))>; 1774 1775// This catches the x >= -32768 case by transforming it to x > -32769 1776// 1777def: Mips16Pat 1778 <(setgt CPU16Regs:$lhs, -32769), 1779 (XorRxRxRy16 (SltiCCRxImmX16 CPU16Regs:$lhs, -32768), 1780 (LiRxImmX16 1))>; 1781 1782// 1783// setgt 1784// 1785// 1786 1787def: Mips16Pat 1788 <(setgt CPU16Regs:$lhs, CPU16Regs:$rhs), 1789 (SltCCRxRy16 CPU16Regs:$rhs, CPU16Regs:$lhs)>; 1790 1791// 1792// setle 1793// 1794def: Mips16Pat 1795 <(setle CPU16Regs:$lhs, CPU16Regs:$rhs), 1796 (XorRxRxRy16 (SltCCRxRy16 CPU16Regs:$rhs, CPU16Regs:$lhs), (LiRxImm16 1))>; 1797 1798// 1799// setlt 1800// 1801def: SetCC_R16<setlt, SltCCRxRy16>; 1802 1803def: SetCC_I16<setlt, immSExt16, SltiCCRxImmX16>; 1804 1805// 1806// setne 1807// 1808def : Mips16Pat 1809 <(setne CPU16Regs:$lhs,CPU16Regs:$rhs), 1810 (SltuCCRxRy16 (LiRxImmX16 0), 1811 (XorRxRxRy16 CPU16Regs:$lhs, CPU16Regs:$rhs))>; 1812 1813 1814// 1815// setuge 1816// 1817def: Mips16Pat 1818 <(setuge CPU16Regs:$lhs, CPU16Regs:$rhs), 1819 (XorRxRxRy16 (SltuCCRxRy16 CPU16Regs:$lhs, CPU16Regs:$rhs), 1820 (LiRxImmX16 1))>; 1821 1822// this pattern will never be used because the compiler will transform 1823// x >= k to x > (k - 1) and then use SLT 1824// 1825//def: Mips16Pat 1826// <(setuge CPU16Regs:$lhs, immZExt16:$rhs), 1827// (XorRxRxRy16 (SltiuCCRxImmX16 CPU16Regs:$lhs, immZExt16:$rhs), 1828// (LiRxImmX16 1))>; 1829 1830// 1831// setugt 1832// 1833def: Mips16Pat 1834 <(setugt CPU16Regs:$lhs, CPU16Regs:$rhs), 1835 (SltuCCRxRy16 CPU16Regs:$rhs, CPU16Regs:$lhs)>; 1836 1837// 1838// setule 1839// 1840def: Mips16Pat 1841 <(setule CPU16Regs:$lhs, CPU16Regs:$rhs), 1842 (XorRxRxRy16 (SltuCCRxRy16 CPU16Regs:$rhs, CPU16Regs:$lhs), (LiRxImmX16 1))>; 1843 1844// 1845// setult 1846// 1847def: SetCC_R16<setult, SltuCCRxRy16>; 1848 1849def: SetCC_I16<setult, immSExt16, SltiuCCRxImmX16>; 1850 1851def: Mips16Pat<(add CPU16Regs:$hi, (MipsLo tglobaladdr:$lo)), 1852 (AddiuRxRxImmX16 CPU16Regs:$hi, tglobaladdr:$lo)>; 1853 1854// hi/lo relocs 1855def : Mips16Pat<(MipsHi tblockaddress:$in), 1856 (SllX16 (LiRxImmX16 tblockaddress:$in), 16)>; 1857def : Mips16Pat<(MipsHi tglobaladdr:$in), 1858 (SllX16 (LiRxImmX16 tglobaladdr:$in), 16)>; 1859def : Mips16Pat<(MipsHi tjumptable:$in), 1860 (SllX16 (LiRxImmX16 tjumptable:$in), 16)>; 1861 1862def : Mips16Pat<(MipsLo tblockaddress:$in), (LiRxImmX16 tblockaddress:$in)>; 1863 1864def : Mips16Pat<(MipsTlsHi tglobaltlsaddr:$in), 1865 (SllX16 (LiRxImmX16 tglobaltlsaddr:$in), 16)>; 1866 1867// wrapper_pic 1868class Wrapper16Pat<SDNode node, Instruction ADDiuOp, RegisterClass RC>: 1869 Mips16Pat<(MipsWrapper RC:$gp, node:$in), 1870 (ADDiuOp RC:$gp, node:$in)>; 1871 1872 1873def : Wrapper16Pat<tglobaladdr, AddiuRxRxImmX16, CPU16Regs>; 1874def : Wrapper16Pat<tglobaltlsaddr, AddiuRxRxImmX16, CPU16Regs>; 1875 1876def : Mips16Pat<(i32 (extloadi8 addr16:$src)), 1877 (LbuRxRyOffMemX16 addr16:$src)>; 1878def : Mips16Pat<(i32 (extloadi16 addr16:$src)), 1879 (LhuRxRyOffMemX16 addr16:$src)>; 1880 1881def: Mips16Pat<(trap), (Break16)>; 1882 1883def : Mips16Pat<(sext_inreg CPU16Regs:$val, i8), 1884 (SebRx16 CPU16Regs:$val)>; 1885 1886def : Mips16Pat<(sext_inreg CPU16Regs:$val, i16), 1887 (SehRx16 CPU16Regs:$val)>; 1888 1889def GotPrologue16: 1890 MipsPseudo16< 1891 (outs CPU16Regs:$rh, CPU16Regs:$rl), 1892 (ins simm16:$immHi, simm16:$immLo), 1893 "li\t$rh, $immHi\n\taddiu\t$rl, $$pc, $immLo\n ",[]> ; 1894 1895// An operand for the CONSTPOOL_ENTRY pseudo-instruction. 1896def cpinst_operand : Operand<i32> { 1897 // let PrintMethod = "printCPInstOperand"; 1898} 1899 1900// CONSTPOOL_ENTRY - This instruction represents a floating constant pool in 1901// the function. The first operand is the ID# for this instruction, the second 1902// is the index into the MachineConstantPool that this is, the third is the 1903// size in bytes of this constant pool entry. 1904// 1905let hasSideEffects = 0, isNotDuplicable = 1 in 1906def CONSTPOOL_ENTRY : 1907MipsPseudo16<(outs), (ins cpinst_operand:$instid, cpinst_operand:$cpidx, 1908 i32imm:$size), "foo", []>; 1909 1910// Instruction Aliases 1911 1912let EncodingPredicates = [InMips16Mode] in 1913def : MipsInstAlias<"nop", (Move32R16 ZERO, S0)>; 1914