1 //===- MipsConstantIslandPass.cpp - Emit Pc Relative loads ----------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass is used to make Pc relative loads of constants.
11 // For now, only Mips16 will use this.
12 //
13 // Loading constants inline is expensive on Mips16 and it's in general better
14 // to place the constant nearby in code space and then it can be loaded with a
15 // simple 16 bit load instruction.
16 //
17 // The constants can be not just numbers but addresses of functions and labels.
18 // This can be particularly helpful in static relocation mode for embedded
19 // non-linux targets.
20 //
21 //===----------------------------------------------------------------------===//
22
23 #include "Mips.h"
24 #include "Mips16InstrInfo.h"
25 #include "MipsMachineFunction.h"
26 #include "MipsSubtarget.h"
27 #include "llvm/ADT/STLExtras.h"
28 #include "llvm/ADT/SmallSet.h"
29 #include "llvm/ADT/SmallVector.h"
30 #include "llvm/ADT/Statistic.h"
31 #include "llvm/ADT/StringRef.h"
32 #include "llvm/CodeGen/MachineBasicBlock.h"
33 #include "llvm/CodeGen/MachineConstantPool.h"
34 #include "llvm/CodeGen/MachineFunction.h"
35 #include "llvm/CodeGen/MachineFunctionPass.h"
36 #include "llvm/CodeGen/MachineInstr.h"
37 #include "llvm/CodeGen/MachineInstrBuilder.h"
38 #include "llvm/CodeGen/MachineOperand.h"
39 #include "llvm/CodeGen/MachineRegisterInfo.h"
40 #include "llvm/Config/llvm-config.h"
41 #include "llvm/IR/Constants.h"
42 #include "llvm/IR/DataLayout.h"
43 #include "llvm/IR/DebugLoc.h"
44 #include "llvm/IR/Function.h"
45 #include "llvm/IR/Type.h"
46 #include "llvm/Support/CommandLine.h"
47 #include "llvm/Support/Compiler.h"
48 #include "llvm/Support/Debug.h"
49 #include "llvm/Support/ErrorHandling.h"
50 #include "llvm/Support/Format.h"
51 #include "llvm/Support/MathExtras.h"
52 #include "llvm/Support/raw_ostream.h"
53 #include <algorithm>
54 #include <cassert>
55 #include <cstdint>
56 #include <iterator>
57 #include <vector>
58
59 using namespace llvm;
60
61 #define DEBUG_TYPE "mips-constant-islands"
62
63 STATISTIC(NumCPEs, "Number of constpool entries");
64 STATISTIC(NumSplit, "Number of uncond branches inserted");
65 STATISTIC(NumCBrFixed, "Number of cond branches fixed");
66 STATISTIC(NumUBrFixed, "Number of uncond branches fixed");
67
68 // FIXME: This option should be removed once it has received sufficient testing.
69 static cl::opt<bool>
70 AlignConstantIslands("mips-align-constant-islands", cl::Hidden, cl::init(true),
71 cl::desc("Align constant islands in code"));
72
73 // Rather than do make check tests with huge amounts of code, we force
74 // the test to use this amount.
75 static cl::opt<int> ConstantIslandsSmallOffset(
76 "mips-constant-islands-small-offset",
77 cl::init(0),
78 cl::desc("Make small offsets be this amount for testing purposes"),
79 cl::Hidden);
80
81 // For testing purposes we tell it to not use relaxed load forms so that it
82 // will split blocks.
83 static cl::opt<bool> NoLoadRelaxation(
84 "mips-constant-islands-no-load-relaxation",
85 cl::init(false),
86 cl::desc("Don't relax loads to long loads - for testing purposes"),
87 cl::Hidden);
88
branchTargetOperand(MachineInstr * MI)89 static unsigned int branchTargetOperand(MachineInstr *MI) {
90 switch (MI->getOpcode()) {
91 case Mips::Bimm16:
92 case Mips::BimmX16:
93 case Mips::Bteqz16:
94 case Mips::BteqzX16:
95 case Mips::Btnez16:
96 case Mips::BtnezX16:
97 case Mips::JalB16:
98 return 0;
99 case Mips::BeqzRxImm16:
100 case Mips::BeqzRxImmX16:
101 case Mips::BnezRxImm16:
102 case Mips::BnezRxImmX16:
103 return 1;
104 }
105 llvm_unreachable("Unknown branch type");
106 }
107
longformBranchOpcode(unsigned int Opcode)108 static unsigned int longformBranchOpcode(unsigned int Opcode) {
109 switch (Opcode) {
110 case Mips::Bimm16:
111 case Mips::BimmX16:
112 return Mips::BimmX16;
113 case Mips::Bteqz16:
114 case Mips::BteqzX16:
115 return Mips::BteqzX16;
116 case Mips::Btnez16:
117 case Mips::BtnezX16:
118 return Mips::BtnezX16;
119 case Mips::JalB16:
120 return Mips::JalB16;
121 case Mips::BeqzRxImm16:
122 case Mips::BeqzRxImmX16:
123 return Mips::BeqzRxImmX16;
124 case Mips::BnezRxImm16:
125 case Mips::BnezRxImmX16:
126 return Mips::BnezRxImmX16;
127 }
128 llvm_unreachable("Unknown branch type");
129 }
130
131 // FIXME: need to go through this whole constant islands port and check the math
132 // for branch ranges and clean this up and make some functions to calculate things
133 // that are done many times identically.
134 // Need to refactor some of the code to call this routine.
branchMaxOffsets(unsigned int Opcode)135 static unsigned int branchMaxOffsets(unsigned int Opcode) {
136 unsigned Bits, Scale;
137 switch (Opcode) {
138 case Mips::Bimm16:
139 Bits = 11;
140 Scale = 2;
141 break;
142 case Mips::BimmX16:
143 Bits = 16;
144 Scale = 2;
145 break;
146 case Mips::BeqzRxImm16:
147 Bits = 8;
148 Scale = 2;
149 break;
150 case Mips::BeqzRxImmX16:
151 Bits = 16;
152 Scale = 2;
153 break;
154 case Mips::BnezRxImm16:
155 Bits = 8;
156 Scale = 2;
157 break;
158 case Mips::BnezRxImmX16:
159 Bits = 16;
160 Scale = 2;
161 break;
162 case Mips::Bteqz16:
163 Bits = 8;
164 Scale = 2;
165 break;
166 case Mips::BteqzX16:
167 Bits = 16;
168 Scale = 2;
169 break;
170 case Mips::Btnez16:
171 Bits = 8;
172 Scale = 2;
173 break;
174 case Mips::BtnezX16:
175 Bits = 16;
176 Scale = 2;
177 break;
178 default:
179 llvm_unreachable("Unknown branch type");
180 }
181 unsigned MaxOffs = ((1 << (Bits-1))-1) * Scale;
182 return MaxOffs;
183 }
184
185 namespace {
186
187 using Iter = MachineBasicBlock::iterator;
188 using ReverseIter = MachineBasicBlock::reverse_iterator;
189
190 /// MipsConstantIslands - Due to limited PC-relative displacements, Mips
191 /// requires constant pool entries to be scattered among the instructions
192 /// inside a function. To do this, it completely ignores the normal LLVM
193 /// constant pool; instead, it places constants wherever it feels like with
194 /// special instructions.
195 ///
196 /// The terminology used in this pass includes:
197 /// Islands - Clumps of constants placed in the function.
198 /// Water - Potential places where an island could be formed.
199 /// CPE - A constant pool entry that has been placed somewhere, which
200 /// tracks a list of users.
201
202 class MipsConstantIslands : public MachineFunctionPass {
203 /// BasicBlockInfo - Information about the offset and size of a single
204 /// basic block.
205 struct BasicBlockInfo {
206 /// Offset - Distance from the beginning of the function to the beginning
207 /// of this basic block.
208 ///
209 /// Offsets are computed assuming worst case padding before an aligned
210 /// block. This means that subtracting basic block offsets always gives a
211 /// conservative estimate of the real distance which may be smaller.
212 ///
213 /// Because worst case padding is used, the computed offset of an aligned
214 /// block may not actually be aligned.
215 unsigned Offset = 0;
216
217 /// Size - Size of the basic block in bytes. If the block contains
218 /// inline assembly, this is a worst case estimate.
219 ///
220 /// The size does not include any alignment padding whether from the
221 /// beginning of the block, or from an aligned jump table at the end.
222 unsigned Size = 0;
223
224 BasicBlockInfo() = default;
225
226 // FIXME: ignore LogAlign for this patch
227 //
postOffset__anonf0e3c8bd0111::MipsConstantIslands::BasicBlockInfo228 unsigned postOffset(unsigned LogAlign = 0) const {
229 unsigned PO = Offset + Size;
230 return PO;
231 }
232 };
233
234 std::vector<BasicBlockInfo> BBInfo;
235
236 /// WaterList - A sorted list of basic blocks where islands could be placed
237 /// (i.e. blocks that don't fall through to the following block, due
238 /// to a return, unreachable, or unconditional branch).
239 std::vector<MachineBasicBlock*> WaterList;
240
241 /// NewWaterList - The subset of WaterList that was created since the
242 /// previous iteration by inserting unconditional branches.
243 SmallSet<MachineBasicBlock*, 4> NewWaterList;
244
245 using water_iterator = std::vector<MachineBasicBlock *>::iterator;
246
247 /// CPUser - One user of a constant pool, keeping the machine instruction
248 /// pointer, the constant pool being referenced, and the max displacement
249 /// allowed from the instruction to the CP. The HighWaterMark records the
250 /// highest basic block where a new CPEntry can be placed. To ensure this
251 /// pass terminates, the CP entries are initially placed at the end of the
252 /// function and then move monotonically to lower addresses. The
253 /// exception to this rule is when the current CP entry for a particular
254 /// CPUser is out of range, but there is another CP entry for the same
255 /// constant value in range. We want to use the existing in-range CP
256 /// entry, but if it later moves out of range, the search for new water
257 /// should resume where it left off. The HighWaterMark is used to record
258 /// that point.
259 struct CPUser {
260 MachineInstr *MI;
261 MachineInstr *CPEMI;
262 MachineBasicBlock *HighWaterMark;
263
264 private:
265 unsigned MaxDisp;
266 unsigned LongFormMaxDisp; // mips16 has 16/32 bit instructions
267 // with different displacements
268 unsigned LongFormOpcode;
269
270 public:
271 bool NegOk;
272
CPUser__anonf0e3c8bd0111::MipsConstantIslands::CPUser273 CPUser(MachineInstr *mi, MachineInstr *cpemi, unsigned maxdisp,
274 bool neg,
275 unsigned longformmaxdisp, unsigned longformopcode)
276 : MI(mi), CPEMI(cpemi), MaxDisp(maxdisp),
277 LongFormMaxDisp(longformmaxdisp), LongFormOpcode(longformopcode),
278 NegOk(neg){
279 HighWaterMark = CPEMI->getParent();
280 }
281
282 /// getMaxDisp - Returns the maximum displacement supported by MI.
getMaxDisp__anonf0e3c8bd0111::MipsConstantIslands::CPUser283 unsigned getMaxDisp() const {
284 unsigned xMaxDisp = ConstantIslandsSmallOffset?
285 ConstantIslandsSmallOffset: MaxDisp;
286 return xMaxDisp;
287 }
288
setMaxDisp__anonf0e3c8bd0111::MipsConstantIslands::CPUser289 void setMaxDisp(unsigned val) {
290 MaxDisp = val;
291 }
292
getLongFormMaxDisp__anonf0e3c8bd0111::MipsConstantIslands::CPUser293 unsigned getLongFormMaxDisp() const {
294 return LongFormMaxDisp;
295 }
296
getLongFormOpcode__anonf0e3c8bd0111::MipsConstantIslands::CPUser297 unsigned getLongFormOpcode() const {
298 return LongFormOpcode;
299 }
300 };
301
302 /// CPUsers - Keep track of all of the machine instructions that use various
303 /// constant pools and their max displacement.
304 std::vector<CPUser> CPUsers;
305
306 /// CPEntry - One per constant pool entry, keeping the machine instruction
307 /// pointer, the constpool index, and the number of CPUser's which
308 /// reference this entry.
309 struct CPEntry {
310 MachineInstr *CPEMI;
311 unsigned CPI;
312 unsigned RefCount;
313
CPEntry__anonf0e3c8bd0111::MipsConstantIslands::CPEntry314 CPEntry(MachineInstr *cpemi, unsigned cpi, unsigned rc = 0)
315 : CPEMI(cpemi), CPI(cpi), RefCount(rc) {}
316 };
317
318 /// CPEntries - Keep track of all of the constant pool entry machine
319 /// instructions. For each original constpool index (i.e. those that
320 /// existed upon entry to this pass), it keeps a vector of entries.
321 /// Original elements are cloned as we go along; the clones are
322 /// put in the vector of the original element, but have distinct CPIs.
323 std::vector<std::vector<CPEntry>> CPEntries;
324
325 /// ImmBranch - One per immediate branch, keeping the machine instruction
326 /// pointer, conditional or unconditional, the max displacement,
327 /// and (if isCond is true) the corresponding unconditional branch
328 /// opcode.
329 struct ImmBranch {
330 MachineInstr *MI;
331 unsigned MaxDisp : 31;
332 bool isCond : 1;
333 int UncondBr;
334
ImmBranch__anonf0e3c8bd0111::MipsConstantIslands::ImmBranch335 ImmBranch(MachineInstr *mi, unsigned maxdisp, bool cond, int ubr)
336 : MI(mi), MaxDisp(maxdisp), isCond(cond), UncondBr(ubr) {}
337 };
338
339 /// ImmBranches - Keep track of all the immediate branch instructions.
340 ///
341 std::vector<ImmBranch> ImmBranches;
342
343 /// HasFarJump - True if any far jump instruction has been emitted during
344 /// the branch fix up pass.
345 bool HasFarJump;
346
347 const MipsSubtarget *STI = nullptr;
348 const Mips16InstrInfo *TII;
349 MipsFunctionInfo *MFI;
350 MachineFunction *MF = nullptr;
351 MachineConstantPool *MCP = nullptr;
352
353 unsigned PICLabelUId;
354 bool PrescannedForConstants = false;
355
initPICLabelUId(unsigned UId)356 void initPICLabelUId(unsigned UId) {
357 PICLabelUId = UId;
358 }
359
createPICLabelUId()360 unsigned createPICLabelUId() {
361 return PICLabelUId++;
362 }
363
364 public:
365 static char ID;
366
MipsConstantIslands()367 MipsConstantIslands() : MachineFunctionPass(ID) {}
368
getPassName() const369 StringRef getPassName() const override { return "Mips Constant Islands"; }
370
371 bool runOnMachineFunction(MachineFunction &F) override;
372
getRequiredProperties() const373 MachineFunctionProperties getRequiredProperties() const override {
374 return MachineFunctionProperties().set(
375 MachineFunctionProperties::Property::NoVRegs);
376 }
377
378 void doInitialPlacement(std::vector<MachineInstr*> &CPEMIs);
379 CPEntry *findConstPoolEntry(unsigned CPI, const MachineInstr *CPEMI);
380 unsigned getCPELogAlign(const MachineInstr &CPEMI);
381 void initializeFunctionInfo(const std::vector<MachineInstr*> &CPEMIs);
382 unsigned getOffsetOf(MachineInstr *MI) const;
383 unsigned getUserOffset(CPUser&) const;
384 void dumpBBs();
385
386 bool isOffsetInRange(unsigned UserOffset, unsigned TrialOffset,
387 unsigned Disp, bool NegativeOK);
388 bool isOffsetInRange(unsigned UserOffset, unsigned TrialOffset,
389 const CPUser &U);
390
391 void computeBlockSize(MachineBasicBlock *MBB);
392 MachineBasicBlock *splitBlockBeforeInstr(MachineInstr &MI);
393 void updateForInsertedWaterBlock(MachineBasicBlock *NewBB);
394 void adjustBBOffsetsAfter(MachineBasicBlock *BB);
395 bool decrementCPEReferenceCount(unsigned CPI, MachineInstr* CPEMI);
396 int findInRangeCPEntry(CPUser& U, unsigned UserOffset);
397 int findLongFormInRangeCPEntry(CPUser& U, unsigned UserOffset);
398 bool findAvailableWater(CPUser&U, unsigned UserOffset,
399 water_iterator &WaterIter);
400 void createNewWater(unsigned CPUserIndex, unsigned UserOffset,
401 MachineBasicBlock *&NewMBB);
402 bool handleConstantPoolUser(unsigned CPUserIndex);
403 void removeDeadCPEMI(MachineInstr *CPEMI);
404 bool removeUnusedCPEntries();
405 bool isCPEntryInRange(MachineInstr *MI, unsigned UserOffset,
406 MachineInstr *CPEMI, unsigned Disp, bool NegOk,
407 bool DoDump = false);
408 bool isWaterInRange(unsigned UserOffset, MachineBasicBlock *Water,
409 CPUser &U, unsigned &Growth);
410 bool isBBInRange(MachineInstr *MI, MachineBasicBlock *BB, unsigned Disp);
411 bool fixupImmediateBr(ImmBranch &Br);
412 bool fixupConditionalBr(ImmBranch &Br);
413 bool fixupUnconditionalBr(ImmBranch &Br);
414
415 void prescanForConstants();
416 };
417
418 } // end anonymous namespace
419
420 char MipsConstantIslands::ID = 0;
421
isOffsetInRange(unsigned UserOffset,unsigned TrialOffset,const CPUser & U)422 bool MipsConstantIslands::isOffsetInRange
423 (unsigned UserOffset, unsigned TrialOffset,
424 const CPUser &U) {
425 return isOffsetInRange(UserOffset, TrialOffset,
426 U.getMaxDisp(), U.NegOk);
427 }
428
429 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
430 /// print block size and offset information - debugging
dumpBBs()431 LLVM_DUMP_METHOD void MipsConstantIslands::dumpBBs() {
432 for (unsigned J = 0, E = BBInfo.size(); J !=E; ++J) {
433 const BasicBlockInfo &BBI = BBInfo[J];
434 dbgs() << format("%08x %bb.%u\t", BBI.Offset, J)
435 << format(" size=%#x\n", BBInfo[J].Size);
436 }
437 }
438 #endif
439
runOnMachineFunction(MachineFunction & mf)440 bool MipsConstantIslands::runOnMachineFunction(MachineFunction &mf) {
441 // The intention is for this to be a mips16 only pass for now
442 // FIXME:
443 MF = &mf;
444 MCP = mf.getConstantPool();
445 STI = &static_cast<const MipsSubtarget &>(mf.getSubtarget());
446 LLVM_DEBUG(dbgs() << "constant island machine function "
447 << "\n");
448 if (!STI->inMips16Mode() || !MipsSubtarget::useConstantIslands()) {
449 return false;
450 }
451 TII = (const Mips16InstrInfo *)STI->getInstrInfo();
452 MFI = MF->getInfo<MipsFunctionInfo>();
453 LLVM_DEBUG(dbgs() << "constant island processing "
454 << "\n");
455 //
456 // will need to make predermination if there is any constants we need to
457 // put in constant islands. TBD.
458 //
459 if (!PrescannedForConstants) prescanForConstants();
460
461 HasFarJump = false;
462 // This pass invalidates liveness information when it splits basic blocks.
463 MF->getRegInfo().invalidateLiveness();
464
465 // Renumber all of the machine basic blocks in the function, guaranteeing that
466 // the numbers agree with the position of the block in the function.
467 MF->RenumberBlocks();
468
469 bool MadeChange = false;
470
471 // Perform the initial placement of the constant pool entries. To start with,
472 // we put them all at the end of the function.
473 std::vector<MachineInstr*> CPEMIs;
474 if (!MCP->isEmpty())
475 doInitialPlacement(CPEMIs);
476
477 /// The next UID to take is the first unused one.
478 initPICLabelUId(CPEMIs.size());
479
480 // Do the initial scan of the function, building up information about the
481 // sizes of each block, the location of all the water, and finding all of the
482 // constant pool users.
483 initializeFunctionInfo(CPEMIs);
484 CPEMIs.clear();
485 LLVM_DEBUG(dumpBBs());
486
487 /// Remove dead constant pool entries.
488 MadeChange |= removeUnusedCPEntries();
489
490 // Iteratively place constant pool entries and fix up branches until there
491 // is no change.
492 unsigned NoCPIters = 0, NoBRIters = 0;
493 (void)NoBRIters;
494 while (true) {
495 LLVM_DEBUG(dbgs() << "Beginning CP iteration #" << NoCPIters << '\n');
496 bool CPChange = false;
497 for (unsigned i = 0, e = CPUsers.size(); i != e; ++i)
498 CPChange |= handleConstantPoolUser(i);
499 if (CPChange && ++NoCPIters > 30)
500 report_fatal_error("Constant Island pass failed to converge!");
501 LLVM_DEBUG(dumpBBs());
502
503 // Clear NewWaterList now. If we split a block for branches, it should
504 // appear as "new water" for the next iteration of constant pool placement.
505 NewWaterList.clear();
506
507 LLVM_DEBUG(dbgs() << "Beginning BR iteration #" << NoBRIters << '\n');
508 bool BRChange = false;
509 for (unsigned i = 0, e = ImmBranches.size(); i != e; ++i)
510 BRChange |= fixupImmediateBr(ImmBranches[i]);
511 if (BRChange && ++NoBRIters > 30)
512 report_fatal_error("Branch Fix Up pass failed to converge!");
513 LLVM_DEBUG(dumpBBs());
514 if (!CPChange && !BRChange)
515 break;
516 MadeChange = true;
517 }
518
519 LLVM_DEBUG(dbgs() << '\n'; dumpBBs());
520
521 BBInfo.clear();
522 WaterList.clear();
523 CPUsers.clear();
524 CPEntries.clear();
525 ImmBranches.clear();
526 return MadeChange;
527 }
528
529 /// doInitialPlacement - Perform the initial placement of the constant pool
530 /// entries. To start with, we put them all at the end of the function.
531 void
doInitialPlacement(std::vector<MachineInstr * > & CPEMIs)532 MipsConstantIslands::doInitialPlacement(std::vector<MachineInstr*> &CPEMIs) {
533 // Create the basic block to hold the CPE's.
534 MachineBasicBlock *BB = MF->CreateMachineBasicBlock();
535 MF->push_back(BB);
536
537 // MachineConstantPool measures alignment in bytes. We measure in log2(bytes).
538 unsigned MaxAlign = Log2_32(MCP->getConstantPoolAlignment());
539
540 // Mark the basic block as required by the const-pool.
541 // If AlignConstantIslands isn't set, use 4-byte alignment for everything.
542 BB->setAlignment(AlignConstantIslands ? MaxAlign : 2);
543
544 // The function needs to be as aligned as the basic blocks. The linker may
545 // move functions around based on their alignment.
546 MF->ensureAlignment(BB->getAlignment());
547
548 // Order the entries in BB by descending alignment. That ensures correct
549 // alignment of all entries as long as BB is sufficiently aligned. Keep
550 // track of the insertion point for each alignment. We are going to bucket
551 // sort the entries as they are created.
552 SmallVector<MachineBasicBlock::iterator, 8> InsPoint(MaxAlign + 1, BB->end());
553
554 // Add all of the constants from the constant pool to the end block, use an
555 // identity mapping of CPI's to CPE's.
556 const std::vector<MachineConstantPoolEntry> &CPs = MCP->getConstants();
557
558 const DataLayout &TD = MF->getDataLayout();
559 for (unsigned i = 0, e = CPs.size(); i != e; ++i) {
560 unsigned Size = TD.getTypeAllocSize(CPs[i].getType());
561 assert(Size >= 4 && "Too small constant pool entry");
562 unsigned Align = CPs[i].getAlignment();
563 assert(isPowerOf2_32(Align) && "Invalid alignment");
564 // Verify that all constant pool entries are a multiple of their alignment.
565 // If not, we would have to pad them out so that instructions stay aligned.
566 assert((Size % Align) == 0 && "CP Entry not multiple of 4 bytes!");
567
568 // Insert CONSTPOOL_ENTRY before entries with a smaller alignment.
569 unsigned LogAlign = Log2_32(Align);
570 MachineBasicBlock::iterator InsAt = InsPoint[LogAlign];
571
572 MachineInstr *CPEMI =
573 BuildMI(*BB, InsAt, DebugLoc(), TII->get(Mips::CONSTPOOL_ENTRY))
574 .addImm(i).addConstantPoolIndex(i).addImm(Size);
575
576 CPEMIs.push_back(CPEMI);
577
578 // Ensure that future entries with higher alignment get inserted before
579 // CPEMI. This is bucket sort with iterators.
580 for (unsigned a = LogAlign + 1; a <= MaxAlign; ++a)
581 if (InsPoint[a] == InsAt)
582 InsPoint[a] = CPEMI;
583 // Add a new CPEntry, but no corresponding CPUser yet.
584 CPEntries.emplace_back(1, CPEntry(CPEMI, i));
585 ++NumCPEs;
586 LLVM_DEBUG(dbgs() << "Moved CPI#" << i << " to end of function, size = "
587 << Size << ", align = " << Align << '\n');
588 }
589 LLVM_DEBUG(BB->dump());
590 }
591
592 /// BBHasFallthrough - Return true if the specified basic block can fallthrough
593 /// into the block immediately after it.
BBHasFallthrough(MachineBasicBlock * MBB)594 static bool BBHasFallthrough(MachineBasicBlock *MBB) {
595 // Get the next machine basic block in the function.
596 MachineFunction::iterator MBBI = MBB->getIterator();
597 // Can't fall off end of function.
598 if (std::next(MBBI) == MBB->getParent()->end())
599 return false;
600
601 MachineBasicBlock *NextBB = &*std::next(MBBI);
602 for (MachineBasicBlock::succ_iterator I = MBB->succ_begin(),
603 E = MBB->succ_end(); I != E; ++I)
604 if (*I == NextBB)
605 return true;
606
607 return false;
608 }
609
610 /// findConstPoolEntry - Given the constpool index and CONSTPOOL_ENTRY MI,
611 /// look up the corresponding CPEntry.
612 MipsConstantIslands::CPEntry
findConstPoolEntry(unsigned CPI,const MachineInstr * CPEMI)613 *MipsConstantIslands::findConstPoolEntry(unsigned CPI,
614 const MachineInstr *CPEMI) {
615 std::vector<CPEntry> &CPEs = CPEntries[CPI];
616 // Number of entries per constpool index should be small, just do a
617 // linear search.
618 for (unsigned i = 0, e = CPEs.size(); i != e; ++i) {
619 if (CPEs[i].CPEMI == CPEMI)
620 return &CPEs[i];
621 }
622 return nullptr;
623 }
624
625 /// getCPELogAlign - Returns the required alignment of the constant pool entry
626 /// represented by CPEMI. Alignment is measured in log2(bytes) units.
getCPELogAlign(const MachineInstr & CPEMI)627 unsigned MipsConstantIslands::getCPELogAlign(const MachineInstr &CPEMI) {
628 assert(CPEMI.getOpcode() == Mips::CONSTPOOL_ENTRY);
629
630 // Everything is 4-byte aligned unless AlignConstantIslands is set.
631 if (!AlignConstantIslands)
632 return 2;
633
634 unsigned CPI = CPEMI.getOperand(1).getIndex();
635 assert(CPI < MCP->getConstants().size() && "Invalid constant pool index.");
636 unsigned Align = MCP->getConstants()[CPI].getAlignment();
637 assert(isPowerOf2_32(Align) && "Invalid CPE alignment");
638 return Log2_32(Align);
639 }
640
641 /// initializeFunctionInfo - Do the initial scan of the function, building up
642 /// information about the sizes of each block, the location of all the water,
643 /// and finding all of the constant pool users.
644 void MipsConstantIslands::
initializeFunctionInfo(const std::vector<MachineInstr * > & CPEMIs)645 initializeFunctionInfo(const std::vector<MachineInstr*> &CPEMIs) {
646 BBInfo.clear();
647 BBInfo.resize(MF->getNumBlockIDs());
648
649 // First thing, compute the size of all basic blocks, and see if the function
650 // has any inline assembly in it. If so, we have to be conservative about
651 // alignment assumptions, as we don't know for sure the size of any
652 // instructions in the inline assembly.
653 for (MachineFunction::iterator I = MF->begin(), E = MF->end(); I != E; ++I)
654 computeBlockSize(&*I);
655
656 // Compute block offsets.
657 adjustBBOffsetsAfter(&MF->front());
658
659 // Now go back through the instructions and build up our data structures.
660 for (MachineBasicBlock &MBB : *MF) {
661 // If this block doesn't fall through into the next MBB, then this is
662 // 'water' that a constant pool island could be placed.
663 if (!BBHasFallthrough(&MBB))
664 WaterList.push_back(&MBB);
665 for (MachineInstr &MI : MBB) {
666 if (MI.isDebugInstr())
667 continue;
668
669 int Opc = MI.getOpcode();
670 if (MI.isBranch()) {
671 bool isCond = false;
672 unsigned Bits = 0;
673 unsigned Scale = 1;
674 int UOpc = Opc;
675 switch (Opc) {
676 default:
677 continue; // Ignore other branches for now
678 case Mips::Bimm16:
679 Bits = 11;
680 Scale = 2;
681 isCond = false;
682 break;
683 case Mips::BimmX16:
684 Bits = 16;
685 Scale = 2;
686 isCond = false;
687 break;
688 case Mips::BeqzRxImm16:
689 UOpc=Mips::Bimm16;
690 Bits = 8;
691 Scale = 2;
692 isCond = true;
693 break;
694 case Mips::BeqzRxImmX16:
695 UOpc=Mips::Bimm16;
696 Bits = 16;
697 Scale = 2;
698 isCond = true;
699 break;
700 case Mips::BnezRxImm16:
701 UOpc=Mips::Bimm16;
702 Bits = 8;
703 Scale = 2;
704 isCond = true;
705 break;
706 case Mips::BnezRxImmX16:
707 UOpc=Mips::Bimm16;
708 Bits = 16;
709 Scale = 2;
710 isCond = true;
711 break;
712 case Mips::Bteqz16:
713 UOpc=Mips::Bimm16;
714 Bits = 8;
715 Scale = 2;
716 isCond = true;
717 break;
718 case Mips::BteqzX16:
719 UOpc=Mips::Bimm16;
720 Bits = 16;
721 Scale = 2;
722 isCond = true;
723 break;
724 case Mips::Btnez16:
725 UOpc=Mips::Bimm16;
726 Bits = 8;
727 Scale = 2;
728 isCond = true;
729 break;
730 case Mips::BtnezX16:
731 UOpc=Mips::Bimm16;
732 Bits = 16;
733 Scale = 2;
734 isCond = true;
735 break;
736 }
737 // Record this immediate branch.
738 unsigned MaxOffs = ((1 << (Bits-1))-1) * Scale;
739 ImmBranches.push_back(ImmBranch(&MI, MaxOffs, isCond, UOpc));
740 }
741
742 if (Opc == Mips::CONSTPOOL_ENTRY)
743 continue;
744
745 // Scan the instructions for constant pool operands.
746 for (unsigned op = 0, e = MI.getNumOperands(); op != e; ++op)
747 if (MI.getOperand(op).isCPI()) {
748 // We found one. The addressing mode tells us the max displacement
749 // from the PC that this instruction permits.
750
751 // Basic size info comes from the TSFlags field.
752 unsigned Bits = 0;
753 unsigned Scale = 1;
754 bool NegOk = false;
755 unsigned LongFormBits = 0;
756 unsigned LongFormScale = 0;
757 unsigned LongFormOpcode = 0;
758 switch (Opc) {
759 default:
760 llvm_unreachable("Unknown addressing mode for CP reference!");
761 case Mips::LwRxPcTcp16:
762 Bits = 8;
763 Scale = 4;
764 LongFormOpcode = Mips::LwRxPcTcpX16;
765 LongFormBits = 14;
766 LongFormScale = 1;
767 break;
768 case Mips::LwRxPcTcpX16:
769 Bits = 14;
770 Scale = 1;
771 NegOk = true;
772 break;
773 }
774 // Remember that this is a user of a CP entry.
775 unsigned CPI = MI.getOperand(op).getIndex();
776 MachineInstr *CPEMI = CPEMIs[CPI];
777 unsigned MaxOffs = ((1 << Bits)-1) * Scale;
778 unsigned LongFormMaxOffs = ((1 << LongFormBits)-1) * LongFormScale;
779 CPUsers.push_back(CPUser(&MI, CPEMI, MaxOffs, NegOk, LongFormMaxOffs,
780 LongFormOpcode));
781
782 // Increment corresponding CPEntry reference count.
783 CPEntry *CPE = findConstPoolEntry(CPI, CPEMI);
784 assert(CPE && "Cannot find a corresponding CPEntry!");
785 CPE->RefCount++;
786
787 // Instructions can only use one CP entry, don't bother scanning the
788 // rest of the operands.
789 break;
790 }
791 }
792 }
793 }
794
795 /// computeBlockSize - Compute the size and some alignment information for MBB.
796 /// This function updates BBInfo directly.
computeBlockSize(MachineBasicBlock * MBB)797 void MipsConstantIslands::computeBlockSize(MachineBasicBlock *MBB) {
798 BasicBlockInfo &BBI = BBInfo[MBB->getNumber()];
799 BBI.Size = 0;
800
801 for (const MachineInstr &MI : *MBB)
802 BBI.Size += TII->getInstSizeInBytes(MI);
803 }
804
805 /// getOffsetOf - Return the current offset of the specified machine instruction
806 /// from the start of the function. This offset changes as stuff is moved
807 /// around inside the function.
getOffsetOf(MachineInstr * MI) const808 unsigned MipsConstantIslands::getOffsetOf(MachineInstr *MI) const {
809 MachineBasicBlock *MBB = MI->getParent();
810
811 // The offset is composed of two things: the sum of the sizes of all MBB's
812 // before this instruction's block, and the offset from the start of the block
813 // it is in.
814 unsigned Offset = BBInfo[MBB->getNumber()].Offset;
815
816 // Sum instructions before MI in MBB.
817 for (MachineBasicBlock::iterator I = MBB->begin(); &*I != MI; ++I) {
818 assert(I != MBB->end() && "Didn't find MI in its own basic block?");
819 Offset += TII->getInstSizeInBytes(*I);
820 }
821 return Offset;
822 }
823
824 /// CompareMBBNumbers - Little predicate function to sort the WaterList by MBB
825 /// ID.
CompareMBBNumbers(const MachineBasicBlock * LHS,const MachineBasicBlock * RHS)826 static bool CompareMBBNumbers(const MachineBasicBlock *LHS,
827 const MachineBasicBlock *RHS) {
828 return LHS->getNumber() < RHS->getNumber();
829 }
830
831 /// updateForInsertedWaterBlock - When a block is newly inserted into the
832 /// machine function, it upsets all of the block numbers. Renumber the blocks
833 /// and update the arrays that parallel this numbering.
updateForInsertedWaterBlock(MachineBasicBlock * NewBB)834 void MipsConstantIslands::updateForInsertedWaterBlock
835 (MachineBasicBlock *NewBB) {
836 // Renumber the MBB's to keep them consecutive.
837 NewBB->getParent()->RenumberBlocks(NewBB);
838
839 // Insert an entry into BBInfo to align it properly with the (newly
840 // renumbered) block numbers.
841 BBInfo.insert(BBInfo.begin() + NewBB->getNumber(), BasicBlockInfo());
842
843 // Next, update WaterList. Specifically, we need to add NewMBB as having
844 // available water after it.
845 water_iterator IP =
846 std::lower_bound(WaterList.begin(), WaterList.end(), NewBB,
847 CompareMBBNumbers);
848 WaterList.insert(IP, NewBB);
849 }
850
getUserOffset(CPUser & U) const851 unsigned MipsConstantIslands::getUserOffset(CPUser &U) const {
852 return getOffsetOf(U.MI);
853 }
854
855 /// Split the basic block containing MI into two blocks, which are joined by
856 /// an unconditional branch. Update data structures and renumber blocks to
857 /// account for this change and returns the newly created block.
858 MachineBasicBlock *
splitBlockBeforeInstr(MachineInstr & MI)859 MipsConstantIslands::splitBlockBeforeInstr(MachineInstr &MI) {
860 MachineBasicBlock *OrigBB = MI.getParent();
861
862 // Create a new MBB for the code after the OrigBB.
863 MachineBasicBlock *NewBB =
864 MF->CreateMachineBasicBlock(OrigBB->getBasicBlock());
865 MachineFunction::iterator MBBI = ++OrigBB->getIterator();
866 MF->insert(MBBI, NewBB);
867
868 // Splice the instructions starting with MI over to NewBB.
869 NewBB->splice(NewBB->end(), OrigBB, MI, OrigBB->end());
870
871 // Add an unconditional branch from OrigBB to NewBB.
872 // Note the new unconditional branch is not being recorded.
873 // There doesn't seem to be meaningful DebugInfo available; this doesn't
874 // correspond to anything in the source.
875 BuildMI(OrigBB, DebugLoc(), TII->get(Mips::Bimm16)).addMBB(NewBB);
876 ++NumSplit;
877
878 // Update the CFG. All succs of OrigBB are now succs of NewBB.
879 NewBB->transferSuccessors(OrigBB);
880
881 // OrigBB branches to NewBB.
882 OrigBB->addSuccessor(NewBB);
883
884 // Update internal data structures to account for the newly inserted MBB.
885 // This is almost the same as updateForInsertedWaterBlock, except that
886 // the Water goes after OrigBB, not NewBB.
887 MF->RenumberBlocks(NewBB);
888
889 // Insert an entry into BBInfo to align it properly with the (newly
890 // renumbered) block numbers.
891 BBInfo.insert(BBInfo.begin() + NewBB->getNumber(), BasicBlockInfo());
892
893 // Next, update WaterList. Specifically, we need to add OrigMBB as having
894 // available water after it (but not if it's already there, which happens
895 // when splitting before a conditional branch that is followed by an
896 // unconditional branch - in that case we want to insert NewBB).
897 water_iterator IP =
898 std::lower_bound(WaterList.begin(), WaterList.end(), OrigBB,
899 CompareMBBNumbers);
900 MachineBasicBlock* WaterBB = *IP;
901 if (WaterBB == OrigBB)
902 WaterList.insert(std::next(IP), NewBB);
903 else
904 WaterList.insert(IP, OrigBB);
905 NewWaterList.insert(OrigBB);
906
907 // Figure out how large the OrigBB is. As the first half of the original
908 // block, it cannot contain a tablejump. The size includes
909 // the new jump we added. (It should be possible to do this without
910 // recounting everything, but it's very confusing, and this is rarely
911 // executed.)
912 computeBlockSize(OrigBB);
913
914 // Figure out how large the NewMBB is. As the second half of the original
915 // block, it may contain a tablejump.
916 computeBlockSize(NewBB);
917
918 // All BBOffsets following these blocks must be modified.
919 adjustBBOffsetsAfter(OrigBB);
920
921 return NewBB;
922 }
923
924 /// isOffsetInRange - Checks whether UserOffset (the location of a constant pool
925 /// reference) is within MaxDisp of TrialOffset (a proposed location of a
926 /// constant pool entry).
isOffsetInRange(unsigned UserOffset,unsigned TrialOffset,unsigned MaxDisp,bool NegativeOK)927 bool MipsConstantIslands::isOffsetInRange(unsigned UserOffset,
928 unsigned TrialOffset, unsigned MaxDisp,
929 bool NegativeOK) {
930 if (UserOffset <= TrialOffset) {
931 // User before the Trial.
932 if (TrialOffset - UserOffset <= MaxDisp)
933 return true;
934 } else if (NegativeOK) {
935 if (UserOffset - TrialOffset <= MaxDisp)
936 return true;
937 }
938 return false;
939 }
940
941 /// isWaterInRange - Returns true if a CPE placed after the specified
942 /// Water (a basic block) will be in range for the specific MI.
943 ///
944 /// Compute how much the function will grow by inserting a CPE after Water.
isWaterInRange(unsigned UserOffset,MachineBasicBlock * Water,CPUser & U,unsigned & Growth)945 bool MipsConstantIslands::isWaterInRange(unsigned UserOffset,
946 MachineBasicBlock* Water, CPUser &U,
947 unsigned &Growth) {
948 unsigned CPELogAlign = getCPELogAlign(*U.CPEMI);
949 unsigned CPEOffset = BBInfo[Water->getNumber()].postOffset(CPELogAlign);
950 unsigned NextBlockOffset, NextBlockAlignment;
951 MachineFunction::const_iterator NextBlock = ++Water->getIterator();
952 if (NextBlock == MF->end()) {
953 NextBlockOffset = BBInfo[Water->getNumber()].postOffset();
954 NextBlockAlignment = 0;
955 } else {
956 NextBlockOffset = BBInfo[NextBlock->getNumber()].Offset;
957 NextBlockAlignment = NextBlock->getAlignment();
958 }
959 unsigned Size = U.CPEMI->getOperand(2).getImm();
960 unsigned CPEEnd = CPEOffset + Size;
961
962 // The CPE may be able to hide in the alignment padding before the next
963 // block. It may also cause more padding to be required if it is more aligned
964 // that the next block.
965 if (CPEEnd > NextBlockOffset) {
966 Growth = CPEEnd - NextBlockOffset;
967 // Compute the padding that would go at the end of the CPE to align the next
968 // block.
969 Growth += OffsetToAlignment(CPEEnd, 1ULL << NextBlockAlignment);
970
971 // If the CPE is to be inserted before the instruction, that will raise
972 // the offset of the instruction. Also account for unknown alignment padding
973 // in blocks between CPE and the user.
974 if (CPEOffset < UserOffset)
975 UserOffset += Growth;
976 } else
977 // CPE fits in existing padding.
978 Growth = 0;
979
980 return isOffsetInRange(UserOffset, CPEOffset, U);
981 }
982
983 /// isCPEntryInRange - Returns true if the distance between specific MI and
984 /// specific ConstPool entry instruction can fit in MI's displacement field.
isCPEntryInRange(MachineInstr * MI,unsigned UserOffset,MachineInstr * CPEMI,unsigned MaxDisp,bool NegOk,bool DoDump)985 bool MipsConstantIslands::isCPEntryInRange
986 (MachineInstr *MI, unsigned UserOffset,
987 MachineInstr *CPEMI, unsigned MaxDisp,
988 bool NegOk, bool DoDump) {
989 unsigned CPEOffset = getOffsetOf(CPEMI);
990
991 if (DoDump) {
992 LLVM_DEBUG({
993 unsigned Block = MI->getParent()->getNumber();
994 const BasicBlockInfo &BBI = BBInfo[Block];
995 dbgs() << "User of CPE#" << CPEMI->getOperand(0).getImm()
996 << " max delta=" << MaxDisp
997 << format(" insn address=%#x", UserOffset) << " in "
998 << printMBBReference(*MI->getParent()) << ": "
999 << format("%#x-%x\t", BBI.Offset, BBI.postOffset()) << *MI
1000 << format("CPE address=%#x offset=%+d: ", CPEOffset,
1001 int(CPEOffset - UserOffset));
1002 });
1003 }
1004
1005 return isOffsetInRange(UserOffset, CPEOffset, MaxDisp, NegOk);
1006 }
1007
1008 #ifndef NDEBUG
1009 /// BBIsJumpedOver - Return true of the specified basic block's only predecessor
1010 /// unconditionally branches to its only successor.
BBIsJumpedOver(MachineBasicBlock * MBB)1011 static bool BBIsJumpedOver(MachineBasicBlock *MBB) {
1012 if (MBB->pred_size() != 1 || MBB->succ_size() != 1)
1013 return false;
1014 MachineBasicBlock *Succ = *MBB->succ_begin();
1015 MachineBasicBlock *Pred = *MBB->pred_begin();
1016 MachineInstr *PredMI = &Pred->back();
1017 if (PredMI->getOpcode() == Mips::Bimm16)
1018 return PredMI->getOperand(0).getMBB() == Succ;
1019 return false;
1020 }
1021 #endif
1022
adjustBBOffsetsAfter(MachineBasicBlock * BB)1023 void MipsConstantIslands::adjustBBOffsetsAfter(MachineBasicBlock *BB) {
1024 unsigned BBNum = BB->getNumber();
1025 for(unsigned i = BBNum + 1, e = MF->getNumBlockIDs(); i < e; ++i) {
1026 // Get the offset and known bits at the end of the layout predecessor.
1027 // Include the alignment of the current block.
1028 unsigned Offset = BBInfo[i - 1].Offset + BBInfo[i - 1].Size;
1029 BBInfo[i].Offset = Offset;
1030 }
1031 }
1032
1033 /// decrementCPEReferenceCount - find the constant pool entry with index CPI
1034 /// and instruction CPEMI, and decrement its refcount. If the refcount
1035 /// becomes 0 remove the entry and instruction. Returns true if we removed
1036 /// the entry, false if we didn't.
decrementCPEReferenceCount(unsigned CPI,MachineInstr * CPEMI)1037 bool MipsConstantIslands::decrementCPEReferenceCount(unsigned CPI,
1038 MachineInstr *CPEMI) {
1039 // Find the old entry. Eliminate it if it is no longer used.
1040 CPEntry *CPE = findConstPoolEntry(CPI, CPEMI);
1041 assert(CPE && "Unexpected!");
1042 if (--CPE->RefCount == 0) {
1043 removeDeadCPEMI(CPEMI);
1044 CPE->CPEMI = nullptr;
1045 --NumCPEs;
1046 return true;
1047 }
1048 return false;
1049 }
1050
1051 /// LookForCPEntryInRange - see if the currently referenced CPE is in range;
1052 /// if not, see if an in-range clone of the CPE is in range, and if so,
1053 /// change the data structures so the user references the clone. Returns:
1054 /// 0 = no existing entry found
1055 /// 1 = entry found, and there were no code insertions or deletions
1056 /// 2 = entry found, and there were code insertions or deletions
findInRangeCPEntry(CPUser & U,unsigned UserOffset)1057 int MipsConstantIslands::findInRangeCPEntry(CPUser& U, unsigned UserOffset)
1058 {
1059 MachineInstr *UserMI = U.MI;
1060 MachineInstr *CPEMI = U.CPEMI;
1061
1062 // Check to see if the CPE is already in-range.
1063 if (isCPEntryInRange(UserMI, UserOffset, CPEMI, U.getMaxDisp(), U.NegOk,
1064 true)) {
1065 LLVM_DEBUG(dbgs() << "In range\n");
1066 return 1;
1067 }
1068
1069 // No. Look for previously created clones of the CPE that are in range.
1070 unsigned CPI = CPEMI->getOperand(1).getIndex();
1071 std::vector<CPEntry> &CPEs = CPEntries[CPI];
1072 for (unsigned i = 0, e = CPEs.size(); i != e; ++i) {
1073 // We already tried this one
1074 if (CPEs[i].CPEMI == CPEMI)
1075 continue;
1076 // Removing CPEs can leave empty entries, skip
1077 if (CPEs[i].CPEMI == nullptr)
1078 continue;
1079 if (isCPEntryInRange(UserMI, UserOffset, CPEs[i].CPEMI, U.getMaxDisp(),
1080 U.NegOk)) {
1081 LLVM_DEBUG(dbgs() << "Replacing CPE#" << CPI << " with CPE#"
1082 << CPEs[i].CPI << "\n");
1083 // Point the CPUser node to the replacement
1084 U.CPEMI = CPEs[i].CPEMI;
1085 // Change the CPI in the instruction operand to refer to the clone.
1086 for (unsigned j = 0, e = UserMI->getNumOperands(); j != e; ++j)
1087 if (UserMI->getOperand(j).isCPI()) {
1088 UserMI->getOperand(j).setIndex(CPEs[i].CPI);
1089 break;
1090 }
1091 // Adjust the refcount of the clone...
1092 CPEs[i].RefCount++;
1093 // ...and the original. If we didn't remove the old entry, none of the
1094 // addresses changed, so we don't need another pass.
1095 return decrementCPEReferenceCount(CPI, CPEMI) ? 2 : 1;
1096 }
1097 }
1098 return 0;
1099 }
1100
1101 /// LookForCPEntryInRange - see if the currently referenced CPE is in range;
1102 /// This version checks if the longer form of the instruction can be used to
1103 /// to satisfy things.
1104 /// if not, see if an in-range clone of the CPE is in range, and if so,
1105 /// change the data structures so the user references the clone. Returns:
1106 /// 0 = no existing entry found
1107 /// 1 = entry found, and there were no code insertions or deletions
1108 /// 2 = entry found, and there were code insertions or deletions
findLongFormInRangeCPEntry(CPUser & U,unsigned UserOffset)1109 int MipsConstantIslands::findLongFormInRangeCPEntry
1110 (CPUser& U, unsigned UserOffset)
1111 {
1112 MachineInstr *UserMI = U.MI;
1113 MachineInstr *CPEMI = U.CPEMI;
1114
1115 // Check to see if the CPE is already in-range.
1116 if (isCPEntryInRange(UserMI, UserOffset, CPEMI,
1117 U.getLongFormMaxDisp(), U.NegOk,
1118 true)) {
1119 LLVM_DEBUG(dbgs() << "In range\n");
1120 UserMI->setDesc(TII->get(U.getLongFormOpcode()));
1121 U.setMaxDisp(U.getLongFormMaxDisp());
1122 return 2; // instruction is longer length now
1123 }
1124
1125 // No. Look for previously created clones of the CPE that are in range.
1126 unsigned CPI = CPEMI->getOperand(1).getIndex();
1127 std::vector<CPEntry> &CPEs = CPEntries[CPI];
1128 for (unsigned i = 0, e = CPEs.size(); i != e; ++i) {
1129 // We already tried this one
1130 if (CPEs[i].CPEMI == CPEMI)
1131 continue;
1132 // Removing CPEs can leave empty entries, skip
1133 if (CPEs[i].CPEMI == nullptr)
1134 continue;
1135 if (isCPEntryInRange(UserMI, UserOffset, CPEs[i].CPEMI,
1136 U.getLongFormMaxDisp(), U.NegOk)) {
1137 LLVM_DEBUG(dbgs() << "Replacing CPE#" << CPI << " with CPE#"
1138 << CPEs[i].CPI << "\n");
1139 // Point the CPUser node to the replacement
1140 U.CPEMI = CPEs[i].CPEMI;
1141 // Change the CPI in the instruction operand to refer to the clone.
1142 for (unsigned j = 0, e = UserMI->getNumOperands(); j != e; ++j)
1143 if (UserMI->getOperand(j).isCPI()) {
1144 UserMI->getOperand(j).setIndex(CPEs[i].CPI);
1145 break;
1146 }
1147 // Adjust the refcount of the clone...
1148 CPEs[i].RefCount++;
1149 // ...and the original. If we didn't remove the old entry, none of the
1150 // addresses changed, so we don't need another pass.
1151 return decrementCPEReferenceCount(CPI, CPEMI) ? 2 : 1;
1152 }
1153 }
1154 return 0;
1155 }
1156
1157 /// getUnconditionalBrDisp - Returns the maximum displacement that can fit in
1158 /// the specific unconditional branch instruction.
getUnconditionalBrDisp(int Opc)1159 static inline unsigned getUnconditionalBrDisp(int Opc) {
1160 switch (Opc) {
1161 case Mips::Bimm16:
1162 return ((1<<10)-1)*2;
1163 case Mips::BimmX16:
1164 return ((1<<16)-1)*2;
1165 default:
1166 break;
1167 }
1168 return ((1<<16)-1)*2;
1169 }
1170
1171 /// findAvailableWater - Look for an existing entry in the WaterList in which
1172 /// we can place the CPE referenced from U so it's within range of U's MI.
1173 /// Returns true if found, false if not. If it returns true, WaterIter
1174 /// is set to the WaterList entry.
1175 /// To ensure that this pass
1176 /// terminates, the CPE location for a particular CPUser is only allowed to
1177 /// move to a lower address, so search backward from the end of the list and
1178 /// prefer the first water that is in range.
findAvailableWater(CPUser & U,unsigned UserOffset,water_iterator & WaterIter)1179 bool MipsConstantIslands::findAvailableWater(CPUser &U, unsigned UserOffset,
1180 water_iterator &WaterIter) {
1181 if (WaterList.empty())
1182 return false;
1183
1184 unsigned BestGrowth = ~0u;
1185 for (water_iterator IP = std::prev(WaterList.end()), B = WaterList.begin();;
1186 --IP) {
1187 MachineBasicBlock* WaterBB = *IP;
1188 // Check if water is in range and is either at a lower address than the
1189 // current "high water mark" or a new water block that was created since
1190 // the previous iteration by inserting an unconditional branch. In the
1191 // latter case, we want to allow resetting the high water mark back to
1192 // this new water since we haven't seen it before. Inserting branches
1193 // should be relatively uncommon and when it does happen, we want to be
1194 // sure to take advantage of it for all the CPEs near that block, so that
1195 // we don't insert more branches than necessary.
1196 unsigned Growth;
1197 if (isWaterInRange(UserOffset, WaterBB, U, Growth) &&
1198 (WaterBB->getNumber() < U.HighWaterMark->getNumber() ||
1199 NewWaterList.count(WaterBB)) && Growth < BestGrowth) {
1200 // This is the least amount of required padding seen so far.
1201 BestGrowth = Growth;
1202 WaterIter = IP;
1203 LLVM_DEBUG(dbgs() << "Found water after " << printMBBReference(*WaterBB)
1204 << " Growth=" << Growth << '\n');
1205
1206 // Keep looking unless it is perfect.
1207 if (BestGrowth == 0)
1208 return true;
1209 }
1210 if (IP == B)
1211 break;
1212 }
1213 return BestGrowth != ~0u;
1214 }
1215
1216 /// createNewWater - No existing WaterList entry will work for
1217 /// CPUsers[CPUserIndex], so create a place to put the CPE. The end of the
1218 /// block is used if in range, and the conditional branch munged so control
1219 /// flow is correct. Otherwise the block is split to create a hole with an
1220 /// unconditional branch around it. In either case NewMBB is set to a
1221 /// block following which the new island can be inserted (the WaterList
1222 /// is not adjusted).
createNewWater(unsigned CPUserIndex,unsigned UserOffset,MachineBasicBlock * & NewMBB)1223 void MipsConstantIslands::createNewWater(unsigned CPUserIndex,
1224 unsigned UserOffset,
1225 MachineBasicBlock *&NewMBB) {
1226 CPUser &U = CPUsers[CPUserIndex];
1227 MachineInstr *UserMI = U.MI;
1228 MachineInstr *CPEMI = U.CPEMI;
1229 unsigned CPELogAlign = getCPELogAlign(*CPEMI);
1230 MachineBasicBlock *UserMBB = UserMI->getParent();
1231 const BasicBlockInfo &UserBBI = BBInfo[UserMBB->getNumber()];
1232
1233 // If the block does not end in an unconditional branch already, and if the
1234 // end of the block is within range, make new water there.
1235 if (BBHasFallthrough(UserMBB)) {
1236 // Size of branch to insert.
1237 unsigned Delta = 2;
1238 // Compute the offset where the CPE will begin.
1239 unsigned CPEOffset = UserBBI.postOffset(CPELogAlign) + Delta;
1240
1241 if (isOffsetInRange(UserOffset, CPEOffset, U)) {
1242 LLVM_DEBUG(dbgs() << "Split at end of " << printMBBReference(*UserMBB)
1243 << format(", expected CPE offset %#x\n", CPEOffset));
1244 NewMBB = &*++UserMBB->getIterator();
1245 // Add an unconditional branch from UserMBB to fallthrough block. Record
1246 // it for branch lengthening; this new branch will not get out of range,
1247 // but if the preceding conditional branch is out of range, the targets
1248 // will be exchanged, and the altered branch may be out of range, so the
1249 // machinery has to know about it.
1250 int UncondBr = Mips::Bimm16;
1251 BuildMI(UserMBB, DebugLoc(), TII->get(UncondBr)).addMBB(NewMBB);
1252 unsigned MaxDisp = getUnconditionalBrDisp(UncondBr);
1253 ImmBranches.push_back(ImmBranch(&UserMBB->back(),
1254 MaxDisp, false, UncondBr));
1255 BBInfo[UserMBB->getNumber()].Size += Delta;
1256 adjustBBOffsetsAfter(UserMBB);
1257 return;
1258 }
1259 }
1260
1261 // What a big block. Find a place within the block to split it.
1262
1263 // Try to split the block so it's fully aligned. Compute the latest split
1264 // point where we can add a 4-byte branch instruction, and then align to
1265 // LogAlign which is the largest possible alignment in the function.
1266 unsigned LogAlign = MF->getAlignment();
1267 assert(LogAlign >= CPELogAlign && "Over-aligned constant pool entry");
1268 unsigned BaseInsertOffset = UserOffset + U.getMaxDisp();
1269 LLVM_DEBUG(dbgs() << format("Split in middle of big block before %#x",
1270 BaseInsertOffset));
1271
1272 // The 4 in the following is for the unconditional branch we'll be inserting
1273 // Alignment of the island is handled
1274 // inside isOffsetInRange.
1275 BaseInsertOffset -= 4;
1276
1277 LLVM_DEBUG(dbgs() << format(", adjusted to %#x", BaseInsertOffset)
1278 << " la=" << LogAlign << '\n');
1279
1280 // This could point off the end of the block if we've already got constant
1281 // pool entries following this block; only the last one is in the water list.
1282 // Back past any possible branches (allow for a conditional and a maximally
1283 // long unconditional).
1284 if (BaseInsertOffset + 8 >= UserBBI.postOffset()) {
1285 BaseInsertOffset = UserBBI.postOffset() - 8;
1286 LLVM_DEBUG(dbgs() << format("Move inside block: %#x\n", BaseInsertOffset));
1287 }
1288 unsigned EndInsertOffset = BaseInsertOffset + 4 +
1289 CPEMI->getOperand(2).getImm();
1290 MachineBasicBlock::iterator MI = UserMI;
1291 ++MI;
1292 unsigned CPUIndex = CPUserIndex+1;
1293 unsigned NumCPUsers = CPUsers.size();
1294 //MachineInstr *LastIT = 0;
1295 for (unsigned Offset = UserOffset + TII->getInstSizeInBytes(*UserMI);
1296 Offset < BaseInsertOffset;
1297 Offset += TII->getInstSizeInBytes(*MI), MI = std::next(MI)) {
1298 assert(MI != UserMBB->end() && "Fell off end of block");
1299 if (CPUIndex < NumCPUsers && CPUsers[CPUIndex].MI == MI) {
1300 CPUser &U = CPUsers[CPUIndex];
1301 if (!isOffsetInRange(Offset, EndInsertOffset, U)) {
1302 // Shift intertion point by one unit of alignment so it is within reach.
1303 BaseInsertOffset -= 1u << LogAlign;
1304 EndInsertOffset -= 1u << LogAlign;
1305 }
1306 // This is overly conservative, as we don't account for CPEMIs being
1307 // reused within the block, but it doesn't matter much. Also assume CPEs
1308 // are added in order with alignment padding. We may eventually be able
1309 // to pack the aligned CPEs better.
1310 EndInsertOffset += U.CPEMI->getOperand(2).getImm();
1311 CPUIndex++;
1312 }
1313 }
1314
1315 NewMBB = splitBlockBeforeInstr(*--MI);
1316 }
1317
1318 /// handleConstantPoolUser - Analyze the specified user, checking to see if it
1319 /// is out-of-range. If so, pick up the constant pool value and move it some
1320 /// place in-range. Return true if we changed any addresses (thus must run
1321 /// another pass of branch lengthening), false otherwise.
handleConstantPoolUser(unsigned CPUserIndex)1322 bool MipsConstantIslands::handleConstantPoolUser(unsigned CPUserIndex) {
1323 CPUser &U = CPUsers[CPUserIndex];
1324 MachineInstr *UserMI = U.MI;
1325 MachineInstr *CPEMI = U.CPEMI;
1326 unsigned CPI = CPEMI->getOperand(1).getIndex();
1327 unsigned Size = CPEMI->getOperand(2).getImm();
1328 // Compute this only once, it's expensive.
1329 unsigned UserOffset = getUserOffset(U);
1330
1331 // See if the current entry is within range, or there is a clone of it
1332 // in range.
1333 int result = findInRangeCPEntry(U, UserOffset);
1334 if (result==1) return false;
1335 else if (result==2) return true;
1336
1337 // Look for water where we can place this CPE.
1338 MachineBasicBlock *NewIsland = MF->CreateMachineBasicBlock();
1339 MachineBasicBlock *NewMBB;
1340 water_iterator IP;
1341 if (findAvailableWater(U, UserOffset, IP)) {
1342 LLVM_DEBUG(dbgs() << "Found water in range\n");
1343 MachineBasicBlock *WaterBB = *IP;
1344
1345 // If the original WaterList entry was "new water" on this iteration,
1346 // propagate that to the new island. This is just keeping NewWaterList
1347 // updated to match the WaterList, which will be updated below.
1348 if (NewWaterList.erase(WaterBB))
1349 NewWaterList.insert(NewIsland);
1350
1351 // The new CPE goes before the following block (NewMBB).
1352 NewMBB = &*++WaterBB->getIterator();
1353 } else {
1354 // No water found.
1355 // we first see if a longer form of the instrucion could have reached
1356 // the constant. in that case we won't bother to split
1357 if (!NoLoadRelaxation) {
1358 result = findLongFormInRangeCPEntry(U, UserOffset);
1359 if (result != 0) return true;
1360 }
1361 LLVM_DEBUG(dbgs() << "No water found\n");
1362 createNewWater(CPUserIndex, UserOffset, NewMBB);
1363
1364 // splitBlockBeforeInstr adds to WaterList, which is important when it is
1365 // called while handling branches so that the water will be seen on the
1366 // next iteration for constant pools, but in this context, we don't want
1367 // it. Check for this so it will be removed from the WaterList.
1368 // Also remove any entry from NewWaterList.
1369 MachineBasicBlock *WaterBB = &*--NewMBB->getIterator();
1370 IP = llvm::find(WaterList, WaterBB);
1371 if (IP != WaterList.end())
1372 NewWaterList.erase(WaterBB);
1373
1374 // We are adding new water. Update NewWaterList.
1375 NewWaterList.insert(NewIsland);
1376 }
1377
1378 // Remove the original WaterList entry; we want subsequent insertions in
1379 // this vicinity to go after the one we're about to insert. This
1380 // considerably reduces the number of times we have to move the same CPE
1381 // more than once and is also important to ensure the algorithm terminates.
1382 if (IP != WaterList.end())
1383 WaterList.erase(IP);
1384
1385 // Okay, we know we can put an island before NewMBB now, do it!
1386 MF->insert(NewMBB->getIterator(), NewIsland);
1387
1388 // Update internal data structures to account for the newly inserted MBB.
1389 updateForInsertedWaterBlock(NewIsland);
1390
1391 // Decrement the old entry, and remove it if refcount becomes 0.
1392 decrementCPEReferenceCount(CPI, CPEMI);
1393
1394 // No existing clone of this CPE is within range.
1395 // We will be generating a new clone. Get a UID for it.
1396 unsigned ID = createPICLabelUId();
1397
1398 // Now that we have an island to add the CPE to, clone the original CPE and
1399 // add it to the island.
1400 U.HighWaterMark = NewIsland;
1401 U.CPEMI = BuildMI(NewIsland, DebugLoc(), TII->get(Mips::CONSTPOOL_ENTRY))
1402 .addImm(ID).addConstantPoolIndex(CPI).addImm(Size);
1403 CPEntries[CPI].push_back(CPEntry(U.CPEMI, ID, 1));
1404 ++NumCPEs;
1405
1406 // Mark the basic block as aligned as required by the const-pool entry.
1407 NewIsland->setAlignment(getCPELogAlign(*U.CPEMI));
1408
1409 // Increase the size of the island block to account for the new entry.
1410 BBInfo[NewIsland->getNumber()].Size += Size;
1411 adjustBBOffsetsAfter(&*--NewIsland->getIterator());
1412
1413 // Finally, change the CPI in the instruction operand to be ID.
1414 for (unsigned i = 0, e = UserMI->getNumOperands(); i != e; ++i)
1415 if (UserMI->getOperand(i).isCPI()) {
1416 UserMI->getOperand(i).setIndex(ID);
1417 break;
1418 }
1419
1420 LLVM_DEBUG(
1421 dbgs() << " Moved CPE to #" << ID << " CPI=" << CPI
1422 << format(" offset=%#x\n", BBInfo[NewIsland->getNumber()].Offset));
1423
1424 return true;
1425 }
1426
1427 /// removeDeadCPEMI - Remove a dead constant pool entry instruction. Update
1428 /// sizes and offsets of impacted basic blocks.
removeDeadCPEMI(MachineInstr * CPEMI)1429 void MipsConstantIslands::removeDeadCPEMI(MachineInstr *CPEMI) {
1430 MachineBasicBlock *CPEBB = CPEMI->getParent();
1431 unsigned Size = CPEMI->getOperand(2).getImm();
1432 CPEMI->eraseFromParent();
1433 BBInfo[CPEBB->getNumber()].Size -= Size;
1434 // All succeeding offsets have the current size value added in, fix this.
1435 if (CPEBB->empty()) {
1436 BBInfo[CPEBB->getNumber()].Size = 0;
1437
1438 // This block no longer needs to be aligned.
1439 CPEBB->setAlignment(0);
1440 } else
1441 // Entries are sorted by descending alignment, so realign from the front.
1442 CPEBB->setAlignment(getCPELogAlign(*CPEBB->begin()));
1443
1444 adjustBBOffsetsAfter(CPEBB);
1445 // An island has only one predecessor BB and one successor BB. Check if
1446 // this BB's predecessor jumps directly to this BB's successor. This
1447 // shouldn't happen currently.
1448 assert(!BBIsJumpedOver(CPEBB) && "How did this happen?");
1449 // FIXME: remove the empty blocks after all the work is done?
1450 }
1451
1452 /// removeUnusedCPEntries - Remove constant pool entries whose refcounts
1453 /// are zero.
removeUnusedCPEntries()1454 bool MipsConstantIslands::removeUnusedCPEntries() {
1455 unsigned MadeChange = false;
1456 for (unsigned i = 0, e = CPEntries.size(); i != e; ++i) {
1457 std::vector<CPEntry> &CPEs = CPEntries[i];
1458 for (unsigned j = 0, ee = CPEs.size(); j != ee; ++j) {
1459 if (CPEs[j].RefCount == 0 && CPEs[j].CPEMI) {
1460 removeDeadCPEMI(CPEs[j].CPEMI);
1461 CPEs[j].CPEMI = nullptr;
1462 MadeChange = true;
1463 }
1464 }
1465 }
1466 return MadeChange;
1467 }
1468
1469 /// isBBInRange - Returns true if the distance between specific MI and
1470 /// specific BB can fit in MI's displacement field.
isBBInRange(MachineInstr * MI,MachineBasicBlock * DestBB,unsigned MaxDisp)1471 bool MipsConstantIslands::isBBInRange
1472 (MachineInstr *MI,MachineBasicBlock *DestBB, unsigned MaxDisp) {
1473 unsigned PCAdj = 4;
1474 unsigned BrOffset = getOffsetOf(MI) + PCAdj;
1475 unsigned DestOffset = BBInfo[DestBB->getNumber()].Offset;
1476
1477 LLVM_DEBUG(dbgs() << "Branch of destination " << printMBBReference(*DestBB)
1478 << " from " << printMBBReference(*MI->getParent())
1479 << " max delta=" << MaxDisp << " from " << getOffsetOf(MI)
1480 << " to " << DestOffset << " offset "
1481 << int(DestOffset - BrOffset) << "\t" << *MI);
1482
1483 if (BrOffset <= DestOffset) {
1484 // Branch before the Dest.
1485 if (DestOffset-BrOffset <= MaxDisp)
1486 return true;
1487 } else {
1488 if (BrOffset-DestOffset <= MaxDisp)
1489 return true;
1490 }
1491 return false;
1492 }
1493
1494 /// fixupImmediateBr - Fix up an immediate branch whose destination is too far
1495 /// away to fit in its displacement field.
fixupImmediateBr(ImmBranch & Br)1496 bool MipsConstantIslands::fixupImmediateBr(ImmBranch &Br) {
1497 MachineInstr *MI = Br.MI;
1498 unsigned TargetOperand = branchTargetOperand(MI);
1499 MachineBasicBlock *DestBB = MI->getOperand(TargetOperand).getMBB();
1500
1501 // Check to see if the DestBB is already in-range.
1502 if (isBBInRange(MI, DestBB, Br.MaxDisp))
1503 return false;
1504
1505 if (!Br.isCond)
1506 return fixupUnconditionalBr(Br);
1507 return fixupConditionalBr(Br);
1508 }
1509
1510 /// fixupUnconditionalBr - Fix up an unconditional branch whose destination is
1511 /// too far away to fit in its displacement field. If the LR register has been
1512 /// spilled in the epilogue, then we can use BL to implement a far jump.
1513 /// Otherwise, add an intermediate branch instruction to a branch.
1514 bool
fixupUnconditionalBr(ImmBranch & Br)1515 MipsConstantIslands::fixupUnconditionalBr(ImmBranch &Br) {
1516 MachineInstr *MI = Br.MI;
1517 MachineBasicBlock *MBB = MI->getParent();
1518 MachineBasicBlock *DestBB = MI->getOperand(0).getMBB();
1519 // Use BL to implement far jump.
1520 unsigned BimmX16MaxDisp = ((1 << 16)-1) * 2;
1521 if (isBBInRange(MI, DestBB, BimmX16MaxDisp)) {
1522 Br.MaxDisp = BimmX16MaxDisp;
1523 MI->setDesc(TII->get(Mips::BimmX16));
1524 }
1525 else {
1526 // need to give the math a more careful look here
1527 // this is really a segment address and not
1528 // a PC relative address. FIXME. But I think that
1529 // just reducing the bits by 1 as I've done is correct.
1530 // The basic block we are branching too much be longword aligned.
1531 // we know that RA is saved because we always save it right now.
1532 // this requirement will be relaxed later but we also have an alternate
1533 // way to implement this that I will implement that does not need jal.
1534 // We should have a way to back out this alignment restriction if we "can" later.
1535 // but it is not harmful.
1536 //
1537 DestBB->setAlignment(2);
1538 Br.MaxDisp = ((1<<24)-1) * 2;
1539 MI->setDesc(TII->get(Mips::JalB16));
1540 }
1541 BBInfo[MBB->getNumber()].Size += 2;
1542 adjustBBOffsetsAfter(MBB);
1543 HasFarJump = true;
1544 ++NumUBrFixed;
1545
1546 LLVM_DEBUG(dbgs() << " Changed B to long jump " << *MI);
1547
1548 return true;
1549 }
1550
1551 /// fixupConditionalBr - Fix up a conditional branch whose destination is too
1552 /// far away to fit in its displacement field. It is converted to an inverse
1553 /// conditional branch + an unconditional branch to the destination.
1554 bool
fixupConditionalBr(ImmBranch & Br)1555 MipsConstantIslands::fixupConditionalBr(ImmBranch &Br) {
1556 MachineInstr *MI = Br.MI;
1557 unsigned TargetOperand = branchTargetOperand(MI);
1558 MachineBasicBlock *DestBB = MI->getOperand(TargetOperand).getMBB();
1559 unsigned Opcode = MI->getOpcode();
1560 unsigned LongFormOpcode = longformBranchOpcode(Opcode);
1561 unsigned LongFormMaxOff = branchMaxOffsets(LongFormOpcode);
1562
1563 // Check to see if the DestBB is already in-range.
1564 if (isBBInRange(MI, DestBB, LongFormMaxOff)) {
1565 Br.MaxDisp = LongFormMaxOff;
1566 MI->setDesc(TII->get(LongFormOpcode));
1567 return true;
1568 }
1569
1570 // Add an unconditional branch to the destination and invert the branch
1571 // condition to jump over it:
1572 // bteqz L1
1573 // =>
1574 // bnez L2
1575 // b L1
1576 // L2:
1577
1578 // If the branch is at the end of its MBB and that has a fall-through block,
1579 // direct the updated conditional branch to the fall-through block. Otherwise,
1580 // split the MBB before the next instruction.
1581 MachineBasicBlock *MBB = MI->getParent();
1582 MachineInstr *BMI = &MBB->back();
1583 bool NeedSplit = (BMI != MI) || !BBHasFallthrough(MBB);
1584 unsigned OppositeBranchOpcode = TII->getOppositeBranchOpc(Opcode);
1585
1586 ++NumCBrFixed;
1587 if (BMI != MI) {
1588 if (std::next(MachineBasicBlock::iterator(MI)) == std::prev(MBB->end()) &&
1589 BMI->isUnconditionalBranch()) {
1590 // Last MI in the BB is an unconditional branch. Can we simply invert the
1591 // condition and swap destinations:
1592 // beqz L1
1593 // b L2
1594 // =>
1595 // bnez L2
1596 // b L1
1597 unsigned BMITargetOperand = branchTargetOperand(BMI);
1598 MachineBasicBlock *NewDest =
1599 BMI->getOperand(BMITargetOperand).getMBB();
1600 if (isBBInRange(MI, NewDest, Br.MaxDisp)) {
1601 LLVM_DEBUG(
1602 dbgs() << " Invert Bcc condition and swap its destination with "
1603 << *BMI);
1604 MI->setDesc(TII->get(OppositeBranchOpcode));
1605 BMI->getOperand(BMITargetOperand).setMBB(DestBB);
1606 MI->getOperand(TargetOperand).setMBB(NewDest);
1607 return true;
1608 }
1609 }
1610 }
1611
1612 if (NeedSplit) {
1613 splitBlockBeforeInstr(*MI);
1614 // No need for the branch to the next block. We're adding an unconditional
1615 // branch to the destination.
1616 int delta = TII->getInstSizeInBytes(MBB->back());
1617 BBInfo[MBB->getNumber()].Size -= delta;
1618 MBB->back().eraseFromParent();
1619 // BBInfo[SplitBB].Offset is wrong temporarily, fixed below
1620 }
1621 MachineBasicBlock *NextBB = &*++MBB->getIterator();
1622
1623 LLVM_DEBUG(dbgs() << " Insert B to " << printMBBReference(*DestBB)
1624 << " also invert condition and change dest. to "
1625 << printMBBReference(*NextBB) << "\n");
1626
1627 // Insert a new conditional branch and a new unconditional branch.
1628 // Also update the ImmBranch as well as adding a new entry for the new branch.
1629 if (MI->getNumExplicitOperands() == 2) {
1630 BuildMI(MBB, DebugLoc(), TII->get(OppositeBranchOpcode))
1631 .addReg(MI->getOperand(0).getReg())
1632 .addMBB(NextBB);
1633 } else {
1634 BuildMI(MBB, DebugLoc(), TII->get(OppositeBranchOpcode))
1635 .addMBB(NextBB);
1636 }
1637 Br.MI = &MBB->back();
1638 BBInfo[MBB->getNumber()].Size += TII->getInstSizeInBytes(MBB->back());
1639 BuildMI(MBB, DebugLoc(), TII->get(Br.UncondBr)).addMBB(DestBB);
1640 BBInfo[MBB->getNumber()].Size += TII->getInstSizeInBytes(MBB->back());
1641 unsigned MaxDisp = getUnconditionalBrDisp(Br.UncondBr);
1642 ImmBranches.push_back(ImmBranch(&MBB->back(), MaxDisp, false, Br.UncondBr));
1643
1644 // Remove the old conditional branch. It may or may not still be in MBB.
1645 BBInfo[MI->getParent()->getNumber()].Size -= TII->getInstSizeInBytes(*MI);
1646 MI->eraseFromParent();
1647 adjustBBOffsetsAfter(MBB);
1648 return true;
1649 }
1650
prescanForConstants()1651 void MipsConstantIslands::prescanForConstants() {
1652 unsigned J = 0;
1653 (void)J;
1654 for (MachineFunction::iterator B =
1655 MF->begin(), E = MF->end(); B != E; ++B) {
1656 for (MachineBasicBlock::instr_iterator I =
1657 B->instr_begin(), EB = B->instr_end(); I != EB; ++I) {
1658 switch(I->getDesc().getOpcode()) {
1659 case Mips::LwConstant32: {
1660 PrescannedForConstants = true;
1661 LLVM_DEBUG(dbgs() << "constant island constant " << *I << "\n");
1662 J = I->getNumOperands();
1663 LLVM_DEBUG(dbgs() << "num operands " << J << "\n");
1664 MachineOperand& Literal = I->getOperand(1);
1665 if (Literal.isImm()) {
1666 int64_t V = Literal.getImm();
1667 LLVM_DEBUG(dbgs() << "literal " << V << "\n");
1668 Type *Int32Ty =
1669 Type::getInt32Ty(MF->getFunction().getContext());
1670 const Constant *C = ConstantInt::get(Int32Ty, V);
1671 unsigned index = MCP->getConstantPoolIndex(C, 4);
1672 I->getOperand(2).ChangeToImmediate(index);
1673 LLVM_DEBUG(dbgs() << "constant island constant " << *I << "\n");
1674 I->setDesc(TII->get(Mips::LwRxPcTcp16));
1675 I->RemoveOperand(1);
1676 I->RemoveOperand(1);
1677 I->addOperand(MachineOperand::CreateCPI(index, 0));
1678 I->addOperand(MachineOperand::CreateImm(4));
1679 }
1680 break;
1681 }
1682 default:
1683 break;
1684 }
1685 }
1686 }
1687 }
1688
1689 /// Returns a pass that converts branches to long branches.
createMipsConstantIslandPass()1690 FunctionPass *llvm::createMipsConstantIslandPass() {
1691 return new MipsConstantIslands();
1692 }
1693