1 //===- MipsConstantIslandPass.cpp - Emit Pc Relative loads ----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass is used to make Pc relative loads of constants.
11 // For now, only Mips16 will use this.
12 //
13 // Loading constants inline is expensive on Mips16 and it's in general better
14 // to place the constant nearby in code space and then it can be loaded with a
15 // simple 16 bit load instruction.
16 //
17 // The constants can be not just numbers but addresses of functions and labels.
18 // This can be particularly helpful in static relocation mode for embedded
19 // non-linux targets.
20 //
21 //===----------------------------------------------------------------------===//
22 
23 #include "Mips.h"
24 #include "Mips16InstrInfo.h"
25 #include "MipsMachineFunction.h"
26 #include "MipsSubtarget.h"
27 #include "llvm/ADT/STLExtras.h"
28 #include "llvm/ADT/SmallSet.h"
29 #include "llvm/ADT/SmallVector.h"
30 #include "llvm/ADT/Statistic.h"
31 #include "llvm/ADT/StringRef.h"
32 #include "llvm/CodeGen/MachineBasicBlock.h"
33 #include "llvm/CodeGen/MachineConstantPool.h"
34 #include "llvm/CodeGen/MachineFunction.h"
35 #include "llvm/CodeGen/MachineFunctionPass.h"
36 #include "llvm/CodeGen/MachineInstr.h"
37 #include "llvm/CodeGen/MachineInstrBuilder.h"
38 #include "llvm/CodeGen/MachineOperand.h"
39 #include "llvm/CodeGen/MachineRegisterInfo.h"
40 #include "llvm/Config/llvm-config.h"
41 #include "llvm/IR/Constants.h"
42 #include "llvm/IR/DataLayout.h"
43 #include "llvm/IR/DebugLoc.h"
44 #include "llvm/IR/Function.h"
45 #include "llvm/IR/Type.h"
46 #include "llvm/Support/CommandLine.h"
47 #include "llvm/Support/Compiler.h"
48 #include "llvm/Support/Debug.h"
49 #include "llvm/Support/ErrorHandling.h"
50 #include "llvm/Support/Format.h"
51 #include "llvm/Support/MathExtras.h"
52 #include "llvm/Support/raw_ostream.h"
53 #include <algorithm>
54 #include <cassert>
55 #include <cstdint>
56 #include <iterator>
57 #include <vector>
58 
59 using namespace llvm;
60 
61 #define DEBUG_TYPE "mips-constant-islands"
62 
63 STATISTIC(NumCPEs,       "Number of constpool entries");
64 STATISTIC(NumSplit,      "Number of uncond branches inserted");
65 STATISTIC(NumCBrFixed,   "Number of cond branches fixed");
66 STATISTIC(NumUBrFixed,   "Number of uncond branches fixed");
67 
68 // FIXME: This option should be removed once it has received sufficient testing.
69 static cl::opt<bool>
70 AlignConstantIslands("mips-align-constant-islands", cl::Hidden, cl::init(true),
71           cl::desc("Align constant islands in code"));
72 
73 // Rather than do make check tests with huge amounts of code, we force
74 // the test to use this amount.
75 static cl::opt<int> ConstantIslandsSmallOffset(
76   "mips-constant-islands-small-offset",
77   cl::init(0),
78   cl::desc("Make small offsets be this amount for testing purposes"),
79   cl::Hidden);
80 
81 // For testing purposes we tell it to not use relaxed load forms so that it
82 // will split blocks.
83 static cl::opt<bool> NoLoadRelaxation(
84   "mips-constant-islands-no-load-relaxation",
85   cl::init(false),
86   cl::desc("Don't relax loads to long loads - for testing purposes"),
87   cl::Hidden);
88 
branchTargetOperand(MachineInstr * MI)89 static unsigned int branchTargetOperand(MachineInstr *MI) {
90   switch (MI->getOpcode()) {
91   case Mips::Bimm16:
92   case Mips::BimmX16:
93   case Mips::Bteqz16:
94   case Mips::BteqzX16:
95   case Mips::Btnez16:
96   case Mips::BtnezX16:
97   case Mips::JalB16:
98     return 0;
99   case Mips::BeqzRxImm16:
100   case Mips::BeqzRxImmX16:
101   case Mips::BnezRxImm16:
102   case Mips::BnezRxImmX16:
103     return 1;
104   }
105   llvm_unreachable("Unknown branch type");
106 }
107 
longformBranchOpcode(unsigned int Opcode)108 static unsigned int longformBranchOpcode(unsigned int Opcode) {
109   switch (Opcode) {
110   case Mips::Bimm16:
111   case Mips::BimmX16:
112     return Mips::BimmX16;
113   case Mips::Bteqz16:
114   case Mips::BteqzX16:
115     return Mips::BteqzX16;
116   case Mips::Btnez16:
117   case Mips::BtnezX16:
118     return Mips::BtnezX16;
119   case Mips::JalB16:
120     return Mips::JalB16;
121   case Mips::BeqzRxImm16:
122   case Mips::BeqzRxImmX16:
123     return Mips::BeqzRxImmX16;
124   case Mips::BnezRxImm16:
125   case Mips::BnezRxImmX16:
126     return Mips::BnezRxImmX16;
127   }
128   llvm_unreachable("Unknown branch type");
129 }
130 
131 // FIXME: need to go through this whole constant islands port and check the math
132 // for branch ranges and clean this up and make some functions to calculate things
133 // that are done many times identically.
134 // Need to refactor some of the code to call this routine.
branchMaxOffsets(unsigned int Opcode)135 static unsigned int branchMaxOffsets(unsigned int Opcode) {
136   unsigned Bits, Scale;
137   switch (Opcode) {
138     case Mips::Bimm16:
139       Bits = 11;
140       Scale = 2;
141       break;
142     case Mips::BimmX16:
143       Bits = 16;
144       Scale = 2;
145       break;
146     case Mips::BeqzRxImm16:
147       Bits = 8;
148       Scale = 2;
149       break;
150     case Mips::BeqzRxImmX16:
151       Bits = 16;
152       Scale = 2;
153       break;
154     case Mips::BnezRxImm16:
155       Bits = 8;
156       Scale = 2;
157       break;
158     case Mips::BnezRxImmX16:
159       Bits = 16;
160       Scale = 2;
161       break;
162     case Mips::Bteqz16:
163       Bits = 8;
164       Scale = 2;
165       break;
166     case Mips::BteqzX16:
167       Bits = 16;
168       Scale = 2;
169       break;
170     case Mips::Btnez16:
171       Bits = 8;
172       Scale = 2;
173       break;
174     case Mips::BtnezX16:
175       Bits = 16;
176       Scale = 2;
177       break;
178     default:
179       llvm_unreachable("Unknown branch type");
180   }
181   unsigned MaxOffs = ((1 << (Bits-1))-1) * Scale;
182   return MaxOffs;
183 }
184 
185 namespace {
186 
187   using Iter = MachineBasicBlock::iterator;
188   using ReverseIter = MachineBasicBlock::reverse_iterator;
189 
190   /// MipsConstantIslands - Due to limited PC-relative displacements, Mips
191   /// requires constant pool entries to be scattered among the instructions
192   /// inside a function.  To do this, it completely ignores the normal LLVM
193   /// constant pool; instead, it places constants wherever it feels like with
194   /// special instructions.
195   ///
196   /// The terminology used in this pass includes:
197   ///   Islands - Clumps of constants placed in the function.
198   ///   Water   - Potential places where an island could be formed.
199   ///   CPE     - A constant pool entry that has been placed somewhere, which
200   ///             tracks a list of users.
201 
202   class MipsConstantIslands : public MachineFunctionPass {
203     /// BasicBlockInfo - Information about the offset and size of a single
204     /// basic block.
205     struct BasicBlockInfo {
206       /// Offset - Distance from the beginning of the function to the beginning
207       /// of this basic block.
208       ///
209       /// Offsets are computed assuming worst case padding before an aligned
210       /// block. This means that subtracting basic block offsets always gives a
211       /// conservative estimate of the real distance which may be smaller.
212       ///
213       /// Because worst case padding is used, the computed offset of an aligned
214       /// block may not actually be aligned.
215       unsigned Offset = 0;
216 
217       /// Size - Size of the basic block in bytes.  If the block contains
218       /// inline assembly, this is a worst case estimate.
219       ///
220       /// The size does not include any alignment padding whether from the
221       /// beginning of the block, or from an aligned jump table at the end.
222       unsigned Size = 0;
223 
224       BasicBlockInfo() = default;
225 
226       // FIXME: ignore LogAlign for this patch
227       //
postOffset__anonf0e3c8bd0111::MipsConstantIslands::BasicBlockInfo228       unsigned postOffset(unsigned LogAlign = 0) const {
229         unsigned PO = Offset + Size;
230         return PO;
231       }
232     };
233 
234     std::vector<BasicBlockInfo> BBInfo;
235 
236     /// WaterList - A sorted list of basic blocks where islands could be placed
237     /// (i.e. blocks that don't fall through to the following block, due
238     /// to a return, unreachable, or unconditional branch).
239     std::vector<MachineBasicBlock*> WaterList;
240 
241     /// NewWaterList - The subset of WaterList that was created since the
242     /// previous iteration by inserting unconditional branches.
243     SmallSet<MachineBasicBlock*, 4> NewWaterList;
244 
245     using water_iterator = std::vector<MachineBasicBlock *>::iterator;
246 
247     /// CPUser - One user of a constant pool, keeping the machine instruction
248     /// pointer, the constant pool being referenced, and the max displacement
249     /// allowed from the instruction to the CP.  The HighWaterMark records the
250     /// highest basic block where a new CPEntry can be placed.  To ensure this
251     /// pass terminates, the CP entries are initially placed at the end of the
252     /// function and then move monotonically to lower addresses.  The
253     /// exception to this rule is when the current CP entry for a particular
254     /// CPUser is out of range, but there is another CP entry for the same
255     /// constant value in range.  We want to use the existing in-range CP
256     /// entry, but if it later moves out of range, the search for new water
257     /// should resume where it left off.  The HighWaterMark is used to record
258     /// that point.
259     struct CPUser {
260       MachineInstr *MI;
261       MachineInstr *CPEMI;
262       MachineBasicBlock *HighWaterMark;
263 
264     private:
265       unsigned MaxDisp;
266       unsigned LongFormMaxDisp; // mips16 has 16/32 bit instructions
267                                 // with different displacements
268       unsigned LongFormOpcode;
269 
270     public:
271       bool NegOk;
272 
CPUser__anonf0e3c8bd0111::MipsConstantIslands::CPUser273       CPUser(MachineInstr *mi, MachineInstr *cpemi, unsigned maxdisp,
274              bool neg,
275              unsigned longformmaxdisp, unsigned longformopcode)
276         : MI(mi), CPEMI(cpemi), MaxDisp(maxdisp),
277           LongFormMaxDisp(longformmaxdisp), LongFormOpcode(longformopcode),
278           NegOk(neg){
279         HighWaterMark = CPEMI->getParent();
280       }
281 
282       /// getMaxDisp - Returns the maximum displacement supported by MI.
getMaxDisp__anonf0e3c8bd0111::MipsConstantIslands::CPUser283       unsigned getMaxDisp() const {
284         unsigned xMaxDisp = ConstantIslandsSmallOffset?
285                             ConstantIslandsSmallOffset: MaxDisp;
286         return xMaxDisp;
287       }
288 
setMaxDisp__anonf0e3c8bd0111::MipsConstantIslands::CPUser289       void setMaxDisp(unsigned val) {
290         MaxDisp = val;
291       }
292 
getLongFormMaxDisp__anonf0e3c8bd0111::MipsConstantIslands::CPUser293       unsigned getLongFormMaxDisp() const {
294         return LongFormMaxDisp;
295       }
296 
getLongFormOpcode__anonf0e3c8bd0111::MipsConstantIslands::CPUser297       unsigned getLongFormOpcode() const {
298           return LongFormOpcode;
299       }
300     };
301 
302     /// CPUsers - Keep track of all of the machine instructions that use various
303     /// constant pools and their max displacement.
304     std::vector<CPUser> CPUsers;
305 
306   /// CPEntry - One per constant pool entry, keeping the machine instruction
307   /// pointer, the constpool index, and the number of CPUser's which
308   /// reference this entry.
309   struct CPEntry {
310     MachineInstr *CPEMI;
311     unsigned CPI;
312     unsigned RefCount;
313 
CPEntry__anonf0e3c8bd0111::MipsConstantIslands::CPEntry314     CPEntry(MachineInstr *cpemi, unsigned cpi, unsigned rc = 0)
315       : CPEMI(cpemi), CPI(cpi), RefCount(rc) {}
316   };
317 
318   /// CPEntries - Keep track of all of the constant pool entry machine
319   /// instructions. For each original constpool index (i.e. those that
320   /// existed upon entry to this pass), it keeps a vector of entries.
321   /// Original elements are cloned as we go along; the clones are
322   /// put in the vector of the original element, but have distinct CPIs.
323   std::vector<std::vector<CPEntry>> CPEntries;
324 
325   /// ImmBranch - One per immediate branch, keeping the machine instruction
326   /// pointer, conditional or unconditional, the max displacement,
327   /// and (if isCond is true) the corresponding unconditional branch
328   /// opcode.
329   struct ImmBranch {
330     MachineInstr *MI;
331     unsigned MaxDisp : 31;
332     bool isCond : 1;
333     int UncondBr;
334 
ImmBranch__anonf0e3c8bd0111::MipsConstantIslands::ImmBranch335     ImmBranch(MachineInstr *mi, unsigned maxdisp, bool cond, int ubr)
336       : MI(mi), MaxDisp(maxdisp), isCond(cond), UncondBr(ubr) {}
337   };
338 
339   /// ImmBranches - Keep track of all the immediate branch instructions.
340   ///
341   std::vector<ImmBranch> ImmBranches;
342 
343   /// HasFarJump - True if any far jump instruction has been emitted during
344   /// the branch fix up pass.
345   bool HasFarJump;
346 
347   const MipsSubtarget *STI = nullptr;
348   const Mips16InstrInfo *TII;
349   MipsFunctionInfo *MFI;
350   MachineFunction *MF = nullptr;
351   MachineConstantPool *MCP = nullptr;
352 
353   unsigned PICLabelUId;
354   bool PrescannedForConstants = false;
355 
initPICLabelUId(unsigned UId)356   void initPICLabelUId(unsigned UId) {
357     PICLabelUId = UId;
358   }
359 
createPICLabelUId()360   unsigned createPICLabelUId() {
361     return PICLabelUId++;
362   }
363 
364   public:
365     static char ID;
366 
MipsConstantIslands()367     MipsConstantIslands() : MachineFunctionPass(ID) {}
368 
getPassName() const369     StringRef getPassName() const override { return "Mips Constant Islands"; }
370 
371     bool runOnMachineFunction(MachineFunction &F) override;
372 
getRequiredProperties() const373     MachineFunctionProperties getRequiredProperties() const override {
374       return MachineFunctionProperties().set(
375           MachineFunctionProperties::Property::NoVRegs);
376     }
377 
378     void doInitialPlacement(std::vector<MachineInstr*> &CPEMIs);
379     CPEntry *findConstPoolEntry(unsigned CPI, const MachineInstr *CPEMI);
380     unsigned getCPELogAlign(const MachineInstr &CPEMI);
381     void initializeFunctionInfo(const std::vector<MachineInstr*> &CPEMIs);
382     unsigned getOffsetOf(MachineInstr *MI) const;
383     unsigned getUserOffset(CPUser&) const;
384     void dumpBBs();
385 
386     bool isOffsetInRange(unsigned UserOffset, unsigned TrialOffset,
387                          unsigned Disp, bool NegativeOK);
388     bool isOffsetInRange(unsigned UserOffset, unsigned TrialOffset,
389                          const CPUser &U);
390 
391     void computeBlockSize(MachineBasicBlock *MBB);
392     MachineBasicBlock *splitBlockBeforeInstr(MachineInstr &MI);
393     void updateForInsertedWaterBlock(MachineBasicBlock *NewBB);
394     void adjustBBOffsetsAfter(MachineBasicBlock *BB);
395     bool decrementCPEReferenceCount(unsigned CPI, MachineInstr* CPEMI);
396     int findInRangeCPEntry(CPUser& U, unsigned UserOffset);
397     int findLongFormInRangeCPEntry(CPUser& U, unsigned UserOffset);
398     bool findAvailableWater(CPUser&U, unsigned UserOffset,
399                             water_iterator &WaterIter);
400     void createNewWater(unsigned CPUserIndex, unsigned UserOffset,
401                         MachineBasicBlock *&NewMBB);
402     bool handleConstantPoolUser(unsigned CPUserIndex);
403     void removeDeadCPEMI(MachineInstr *CPEMI);
404     bool removeUnusedCPEntries();
405     bool isCPEntryInRange(MachineInstr *MI, unsigned UserOffset,
406                           MachineInstr *CPEMI, unsigned Disp, bool NegOk,
407                           bool DoDump = false);
408     bool isWaterInRange(unsigned UserOffset, MachineBasicBlock *Water,
409                         CPUser &U, unsigned &Growth);
410     bool isBBInRange(MachineInstr *MI, MachineBasicBlock *BB, unsigned Disp);
411     bool fixupImmediateBr(ImmBranch &Br);
412     bool fixupConditionalBr(ImmBranch &Br);
413     bool fixupUnconditionalBr(ImmBranch &Br);
414 
415     void prescanForConstants();
416   };
417 
418 } // end anonymous namespace
419 
420 char MipsConstantIslands::ID = 0;
421 
isOffsetInRange(unsigned UserOffset,unsigned TrialOffset,const CPUser & U)422 bool MipsConstantIslands::isOffsetInRange
423   (unsigned UserOffset, unsigned TrialOffset,
424    const CPUser &U) {
425   return isOffsetInRange(UserOffset, TrialOffset,
426                          U.getMaxDisp(), U.NegOk);
427 }
428 
429 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
430 /// print block size and offset information - debugging
dumpBBs()431 LLVM_DUMP_METHOD void MipsConstantIslands::dumpBBs() {
432   for (unsigned J = 0, E = BBInfo.size(); J !=E; ++J) {
433     const BasicBlockInfo &BBI = BBInfo[J];
434     dbgs() << format("%08x %bb.%u\t", BBI.Offset, J)
435            << format(" size=%#x\n", BBInfo[J].Size);
436   }
437 }
438 #endif
439 
runOnMachineFunction(MachineFunction & mf)440 bool MipsConstantIslands::runOnMachineFunction(MachineFunction &mf) {
441   // The intention is for this to be a mips16 only pass for now
442   // FIXME:
443   MF = &mf;
444   MCP = mf.getConstantPool();
445   STI = &static_cast<const MipsSubtarget &>(mf.getSubtarget());
446   LLVM_DEBUG(dbgs() << "constant island machine function "
447                     << "\n");
448   if (!STI->inMips16Mode() || !MipsSubtarget::useConstantIslands()) {
449     return false;
450   }
451   TII = (const Mips16InstrInfo *)STI->getInstrInfo();
452   MFI = MF->getInfo<MipsFunctionInfo>();
453   LLVM_DEBUG(dbgs() << "constant island processing "
454                     << "\n");
455   //
456   // will need to make predermination if there is any constants we need to
457   // put in constant islands. TBD.
458   //
459   if (!PrescannedForConstants) prescanForConstants();
460 
461   HasFarJump = false;
462   // This pass invalidates liveness information when it splits basic blocks.
463   MF->getRegInfo().invalidateLiveness();
464 
465   // Renumber all of the machine basic blocks in the function, guaranteeing that
466   // the numbers agree with the position of the block in the function.
467   MF->RenumberBlocks();
468 
469   bool MadeChange = false;
470 
471   // Perform the initial placement of the constant pool entries.  To start with,
472   // we put them all at the end of the function.
473   std::vector<MachineInstr*> CPEMIs;
474   if (!MCP->isEmpty())
475     doInitialPlacement(CPEMIs);
476 
477   /// The next UID to take is the first unused one.
478   initPICLabelUId(CPEMIs.size());
479 
480   // Do the initial scan of the function, building up information about the
481   // sizes of each block, the location of all the water, and finding all of the
482   // constant pool users.
483   initializeFunctionInfo(CPEMIs);
484   CPEMIs.clear();
485   LLVM_DEBUG(dumpBBs());
486 
487   /// Remove dead constant pool entries.
488   MadeChange |= removeUnusedCPEntries();
489 
490   // Iteratively place constant pool entries and fix up branches until there
491   // is no change.
492   unsigned NoCPIters = 0, NoBRIters = 0;
493   (void)NoBRIters;
494   while (true) {
495     LLVM_DEBUG(dbgs() << "Beginning CP iteration #" << NoCPIters << '\n');
496     bool CPChange = false;
497     for (unsigned i = 0, e = CPUsers.size(); i != e; ++i)
498       CPChange |= handleConstantPoolUser(i);
499     if (CPChange && ++NoCPIters > 30)
500       report_fatal_error("Constant Island pass failed to converge!");
501     LLVM_DEBUG(dumpBBs());
502 
503     // Clear NewWaterList now.  If we split a block for branches, it should
504     // appear as "new water" for the next iteration of constant pool placement.
505     NewWaterList.clear();
506 
507     LLVM_DEBUG(dbgs() << "Beginning BR iteration #" << NoBRIters << '\n');
508     bool BRChange = false;
509     for (unsigned i = 0, e = ImmBranches.size(); i != e; ++i)
510       BRChange |= fixupImmediateBr(ImmBranches[i]);
511     if (BRChange && ++NoBRIters > 30)
512       report_fatal_error("Branch Fix Up pass failed to converge!");
513     LLVM_DEBUG(dumpBBs());
514     if (!CPChange && !BRChange)
515       break;
516     MadeChange = true;
517   }
518 
519   LLVM_DEBUG(dbgs() << '\n'; dumpBBs());
520 
521   BBInfo.clear();
522   WaterList.clear();
523   CPUsers.clear();
524   CPEntries.clear();
525   ImmBranches.clear();
526   return MadeChange;
527 }
528 
529 /// doInitialPlacement - Perform the initial placement of the constant pool
530 /// entries.  To start with, we put them all at the end of the function.
531 void
doInitialPlacement(std::vector<MachineInstr * > & CPEMIs)532 MipsConstantIslands::doInitialPlacement(std::vector<MachineInstr*> &CPEMIs) {
533   // Create the basic block to hold the CPE's.
534   MachineBasicBlock *BB = MF->CreateMachineBasicBlock();
535   MF->push_back(BB);
536 
537   // MachineConstantPool measures alignment in bytes. We measure in log2(bytes).
538   unsigned MaxAlign = Log2_32(MCP->getConstantPoolAlignment());
539 
540   // Mark the basic block as required by the const-pool.
541   // If AlignConstantIslands isn't set, use 4-byte alignment for everything.
542   BB->setAlignment(AlignConstantIslands ? MaxAlign : 2);
543 
544   // The function needs to be as aligned as the basic blocks. The linker may
545   // move functions around based on their alignment.
546   MF->ensureAlignment(BB->getAlignment());
547 
548   // Order the entries in BB by descending alignment.  That ensures correct
549   // alignment of all entries as long as BB is sufficiently aligned.  Keep
550   // track of the insertion point for each alignment.  We are going to bucket
551   // sort the entries as they are created.
552   SmallVector<MachineBasicBlock::iterator, 8> InsPoint(MaxAlign + 1, BB->end());
553 
554   // Add all of the constants from the constant pool to the end block, use an
555   // identity mapping of CPI's to CPE's.
556   const std::vector<MachineConstantPoolEntry> &CPs = MCP->getConstants();
557 
558   const DataLayout &TD = MF->getDataLayout();
559   for (unsigned i = 0, e = CPs.size(); i != e; ++i) {
560     unsigned Size = TD.getTypeAllocSize(CPs[i].getType());
561     assert(Size >= 4 && "Too small constant pool entry");
562     unsigned Align = CPs[i].getAlignment();
563     assert(isPowerOf2_32(Align) && "Invalid alignment");
564     // Verify that all constant pool entries are a multiple of their alignment.
565     // If not, we would have to pad them out so that instructions stay aligned.
566     assert((Size % Align) == 0 && "CP Entry not multiple of 4 bytes!");
567 
568     // Insert CONSTPOOL_ENTRY before entries with a smaller alignment.
569     unsigned LogAlign = Log2_32(Align);
570     MachineBasicBlock::iterator InsAt = InsPoint[LogAlign];
571 
572     MachineInstr *CPEMI =
573       BuildMI(*BB, InsAt, DebugLoc(), TII->get(Mips::CONSTPOOL_ENTRY))
574         .addImm(i).addConstantPoolIndex(i).addImm(Size);
575 
576     CPEMIs.push_back(CPEMI);
577 
578     // Ensure that future entries with higher alignment get inserted before
579     // CPEMI. This is bucket sort with iterators.
580     for (unsigned a = LogAlign + 1; a <= MaxAlign; ++a)
581       if (InsPoint[a] == InsAt)
582         InsPoint[a] = CPEMI;
583     // Add a new CPEntry, but no corresponding CPUser yet.
584     CPEntries.emplace_back(1, CPEntry(CPEMI, i));
585     ++NumCPEs;
586     LLVM_DEBUG(dbgs() << "Moved CPI#" << i << " to end of function, size = "
587                       << Size << ", align = " << Align << '\n');
588   }
589   LLVM_DEBUG(BB->dump());
590 }
591 
592 /// BBHasFallthrough - Return true if the specified basic block can fallthrough
593 /// into the block immediately after it.
BBHasFallthrough(MachineBasicBlock * MBB)594 static bool BBHasFallthrough(MachineBasicBlock *MBB) {
595   // Get the next machine basic block in the function.
596   MachineFunction::iterator MBBI = MBB->getIterator();
597   // Can't fall off end of function.
598   if (std::next(MBBI) == MBB->getParent()->end())
599     return false;
600 
601   MachineBasicBlock *NextBB = &*std::next(MBBI);
602   for (MachineBasicBlock::succ_iterator I = MBB->succ_begin(),
603        E = MBB->succ_end(); I != E; ++I)
604     if (*I == NextBB)
605       return true;
606 
607   return false;
608 }
609 
610 /// findConstPoolEntry - Given the constpool index and CONSTPOOL_ENTRY MI,
611 /// look up the corresponding CPEntry.
612 MipsConstantIslands::CPEntry
findConstPoolEntry(unsigned CPI,const MachineInstr * CPEMI)613 *MipsConstantIslands::findConstPoolEntry(unsigned CPI,
614                                         const MachineInstr *CPEMI) {
615   std::vector<CPEntry> &CPEs = CPEntries[CPI];
616   // Number of entries per constpool index should be small, just do a
617   // linear search.
618   for (unsigned i = 0, e = CPEs.size(); i != e; ++i) {
619     if (CPEs[i].CPEMI == CPEMI)
620       return &CPEs[i];
621   }
622   return nullptr;
623 }
624 
625 /// getCPELogAlign - Returns the required alignment of the constant pool entry
626 /// represented by CPEMI.  Alignment is measured in log2(bytes) units.
getCPELogAlign(const MachineInstr & CPEMI)627 unsigned MipsConstantIslands::getCPELogAlign(const MachineInstr &CPEMI) {
628   assert(CPEMI.getOpcode() == Mips::CONSTPOOL_ENTRY);
629 
630   // Everything is 4-byte aligned unless AlignConstantIslands is set.
631   if (!AlignConstantIslands)
632     return 2;
633 
634   unsigned CPI = CPEMI.getOperand(1).getIndex();
635   assert(CPI < MCP->getConstants().size() && "Invalid constant pool index.");
636   unsigned Align = MCP->getConstants()[CPI].getAlignment();
637   assert(isPowerOf2_32(Align) && "Invalid CPE alignment");
638   return Log2_32(Align);
639 }
640 
641 /// initializeFunctionInfo - Do the initial scan of the function, building up
642 /// information about the sizes of each block, the location of all the water,
643 /// and finding all of the constant pool users.
644 void MipsConstantIslands::
initializeFunctionInfo(const std::vector<MachineInstr * > & CPEMIs)645 initializeFunctionInfo(const std::vector<MachineInstr*> &CPEMIs) {
646   BBInfo.clear();
647   BBInfo.resize(MF->getNumBlockIDs());
648 
649   // First thing, compute the size of all basic blocks, and see if the function
650   // has any inline assembly in it. If so, we have to be conservative about
651   // alignment assumptions, as we don't know for sure the size of any
652   // instructions in the inline assembly.
653   for (MachineFunction::iterator I = MF->begin(), E = MF->end(); I != E; ++I)
654     computeBlockSize(&*I);
655 
656   // Compute block offsets.
657   adjustBBOffsetsAfter(&MF->front());
658 
659   // Now go back through the instructions and build up our data structures.
660   for (MachineBasicBlock &MBB : *MF) {
661     // If this block doesn't fall through into the next MBB, then this is
662     // 'water' that a constant pool island could be placed.
663     if (!BBHasFallthrough(&MBB))
664       WaterList.push_back(&MBB);
665     for (MachineInstr &MI : MBB) {
666       if (MI.isDebugInstr())
667         continue;
668 
669       int Opc = MI.getOpcode();
670       if (MI.isBranch()) {
671         bool isCond = false;
672         unsigned Bits = 0;
673         unsigned Scale = 1;
674         int UOpc = Opc;
675         switch (Opc) {
676         default:
677           continue;  // Ignore other branches for now
678         case Mips::Bimm16:
679           Bits = 11;
680           Scale = 2;
681           isCond = false;
682           break;
683         case Mips::BimmX16:
684           Bits = 16;
685           Scale = 2;
686           isCond = false;
687           break;
688         case Mips::BeqzRxImm16:
689           UOpc=Mips::Bimm16;
690           Bits = 8;
691           Scale = 2;
692           isCond = true;
693           break;
694         case Mips::BeqzRxImmX16:
695           UOpc=Mips::Bimm16;
696           Bits = 16;
697           Scale = 2;
698           isCond = true;
699           break;
700         case Mips::BnezRxImm16:
701           UOpc=Mips::Bimm16;
702           Bits = 8;
703           Scale = 2;
704           isCond = true;
705           break;
706         case Mips::BnezRxImmX16:
707           UOpc=Mips::Bimm16;
708           Bits = 16;
709           Scale = 2;
710           isCond = true;
711           break;
712         case Mips::Bteqz16:
713           UOpc=Mips::Bimm16;
714           Bits = 8;
715           Scale = 2;
716           isCond = true;
717           break;
718         case Mips::BteqzX16:
719           UOpc=Mips::Bimm16;
720           Bits = 16;
721           Scale = 2;
722           isCond = true;
723           break;
724         case Mips::Btnez16:
725           UOpc=Mips::Bimm16;
726           Bits = 8;
727           Scale = 2;
728           isCond = true;
729           break;
730         case Mips::BtnezX16:
731           UOpc=Mips::Bimm16;
732           Bits = 16;
733           Scale = 2;
734           isCond = true;
735           break;
736         }
737         // Record this immediate branch.
738         unsigned MaxOffs = ((1 << (Bits-1))-1) * Scale;
739         ImmBranches.push_back(ImmBranch(&MI, MaxOffs, isCond, UOpc));
740       }
741 
742       if (Opc == Mips::CONSTPOOL_ENTRY)
743         continue;
744 
745       // Scan the instructions for constant pool operands.
746       for (unsigned op = 0, e = MI.getNumOperands(); op != e; ++op)
747         if (MI.getOperand(op).isCPI()) {
748           // We found one.  The addressing mode tells us the max displacement
749           // from the PC that this instruction permits.
750 
751           // Basic size info comes from the TSFlags field.
752           unsigned Bits = 0;
753           unsigned Scale = 1;
754           bool NegOk = false;
755           unsigned LongFormBits = 0;
756           unsigned LongFormScale = 0;
757           unsigned LongFormOpcode = 0;
758           switch (Opc) {
759           default:
760             llvm_unreachable("Unknown addressing mode for CP reference!");
761           case Mips::LwRxPcTcp16:
762             Bits = 8;
763             Scale = 4;
764             LongFormOpcode = Mips::LwRxPcTcpX16;
765             LongFormBits = 14;
766             LongFormScale = 1;
767             break;
768           case Mips::LwRxPcTcpX16:
769             Bits = 14;
770             Scale = 1;
771             NegOk = true;
772             break;
773           }
774           // Remember that this is a user of a CP entry.
775           unsigned CPI = MI.getOperand(op).getIndex();
776           MachineInstr *CPEMI = CPEMIs[CPI];
777           unsigned MaxOffs = ((1 << Bits)-1) * Scale;
778           unsigned LongFormMaxOffs = ((1 << LongFormBits)-1) * LongFormScale;
779           CPUsers.push_back(CPUser(&MI, CPEMI, MaxOffs, NegOk, LongFormMaxOffs,
780                                    LongFormOpcode));
781 
782           // Increment corresponding CPEntry reference count.
783           CPEntry *CPE = findConstPoolEntry(CPI, CPEMI);
784           assert(CPE && "Cannot find a corresponding CPEntry!");
785           CPE->RefCount++;
786 
787           // Instructions can only use one CP entry, don't bother scanning the
788           // rest of the operands.
789           break;
790         }
791     }
792   }
793 }
794 
795 /// computeBlockSize - Compute the size and some alignment information for MBB.
796 /// This function updates BBInfo directly.
computeBlockSize(MachineBasicBlock * MBB)797 void MipsConstantIslands::computeBlockSize(MachineBasicBlock *MBB) {
798   BasicBlockInfo &BBI = BBInfo[MBB->getNumber()];
799   BBI.Size = 0;
800 
801   for (const MachineInstr &MI : *MBB)
802     BBI.Size += TII->getInstSizeInBytes(MI);
803 }
804 
805 /// getOffsetOf - Return the current offset of the specified machine instruction
806 /// from the start of the function.  This offset changes as stuff is moved
807 /// around inside the function.
getOffsetOf(MachineInstr * MI) const808 unsigned MipsConstantIslands::getOffsetOf(MachineInstr *MI) const {
809   MachineBasicBlock *MBB = MI->getParent();
810 
811   // The offset is composed of two things: the sum of the sizes of all MBB's
812   // before this instruction's block, and the offset from the start of the block
813   // it is in.
814   unsigned Offset = BBInfo[MBB->getNumber()].Offset;
815 
816   // Sum instructions before MI in MBB.
817   for (MachineBasicBlock::iterator I = MBB->begin(); &*I != MI; ++I) {
818     assert(I != MBB->end() && "Didn't find MI in its own basic block?");
819     Offset += TII->getInstSizeInBytes(*I);
820   }
821   return Offset;
822 }
823 
824 /// CompareMBBNumbers - Little predicate function to sort the WaterList by MBB
825 /// ID.
CompareMBBNumbers(const MachineBasicBlock * LHS,const MachineBasicBlock * RHS)826 static bool CompareMBBNumbers(const MachineBasicBlock *LHS,
827                               const MachineBasicBlock *RHS) {
828   return LHS->getNumber() < RHS->getNumber();
829 }
830 
831 /// updateForInsertedWaterBlock - When a block is newly inserted into the
832 /// machine function, it upsets all of the block numbers.  Renumber the blocks
833 /// and update the arrays that parallel this numbering.
updateForInsertedWaterBlock(MachineBasicBlock * NewBB)834 void MipsConstantIslands::updateForInsertedWaterBlock
835   (MachineBasicBlock *NewBB) {
836   // Renumber the MBB's to keep them consecutive.
837   NewBB->getParent()->RenumberBlocks(NewBB);
838 
839   // Insert an entry into BBInfo to align it properly with the (newly
840   // renumbered) block numbers.
841   BBInfo.insert(BBInfo.begin() + NewBB->getNumber(), BasicBlockInfo());
842 
843   // Next, update WaterList.  Specifically, we need to add NewMBB as having
844   // available water after it.
845   water_iterator IP =
846     std::lower_bound(WaterList.begin(), WaterList.end(), NewBB,
847                      CompareMBBNumbers);
848   WaterList.insert(IP, NewBB);
849 }
850 
getUserOffset(CPUser & U) const851 unsigned MipsConstantIslands::getUserOffset(CPUser &U) const {
852   return getOffsetOf(U.MI);
853 }
854 
855 /// Split the basic block containing MI into two blocks, which are joined by
856 /// an unconditional branch.  Update data structures and renumber blocks to
857 /// account for this change and returns the newly created block.
858 MachineBasicBlock *
splitBlockBeforeInstr(MachineInstr & MI)859 MipsConstantIslands::splitBlockBeforeInstr(MachineInstr &MI) {
860   MachineBasicBlock *OrigBB = MI.getParent();
861 
862   // Create a new MBB for the code after the OrigBB.
863   MachineBasicBlock *NewBB =
864     MF->CreateMachineBasicBlock(OrigBB->getBasicBlock());
865   MachineFunction::iterator MBBI = ++OrigBB->getIterator();
866   MF->insert(MBBI, NewBB);
867 
868   // Splice the instructions starting with MI over to NewBB.
869   NewBB->splice(NewBB->end(), OrigBB, MI, OrigBB->end());
870 
871   // Add an unconditional branch from OrigBB to NewBB.
872   // Note the new unconditional branch is not being recorded.
873   // There doesn't seem to be meaningful DebugInfo available; this doesn't
874   // correspond to anything in the source.
875   BuildMI(OrigBB, DebugLoc(), TII->get(Mips::Bimm16)).addMBB(NewBB);
876   ++NumSplit;
877 
878   // Update the CFG.  All succs of OrigBB are now succs of NewBB.
879   NewBB->transferSuccessors(OrigBB);
880 
881   // OrigBB branches to NewBB.
882   OrigBB->addSuccessor(NewBB);
883 
884   // Update internal data structures to account for the newly inserted MBB.
885   // This is almost the same as updateForInsertedWaterBlock, except that
886   // the Water goes after OrigBB, not NewBB.
887   MF->RenumberBlocks(NewBB);
888 
889   // Insert an entry into BBInfo to align it properly with the (newly
890   // renumbered) block numbers.
891   BBInfo.insert(BBInfo.begin() + NewBB->getNumber(), BasicBlockInfo());
892 
893   // Next, update WaterList.  Specifically, we need to add OrigMBB as having
894   // available water after it (but not if it's already there, which happens
895   // when splitting before a conditional branch that is followed by an
896   // unconditional branch - in that case we want to insert NewBB).
897   water_iterator IP =
898     std::lower_bound(WaterList.begin(), WaterList.end(), OrigBB,
899                      CompareMBBNumbers);
900   MachineBasicBlock* WaterBB = *IP;
901   if (WaterBB == OrigBB)
902     WaterList.insert(std::next(IP), NewBB);
903   else
904     WaterList.insert(IP, OrigBB);
905   NewWaterList.insert(OrigBB);
906 
907   // Figure out how large the OrigBB is.  As the first half of the original
908   // block, it cannot contain a tablejump.  The size includes
909   // the new jump we added.  (It should be possible to do this without
910   // recounting everything, but it's very confusing, and this is rarely
911   // executed.)
912   computeBlockSize(OrigBB);
913 
914   // Figure out how large the NewMBB is.  As the second half of the original
915   // block, it may contain a tablejump.
916   computeBlockSize(NewBB);
917 
918   // All BBOffsets following these blocks must be modified.
919   adjustBBOffsetsAfter(OrigBB);
920 
921   return NewBB;
922 }
923 
924 /// isOffsetInRange - Checks whether UserOffset (the location of a constant pool
925 /// reference) is within MaxDisp of TrialOffset (a proposed location of a
926 /// constant pool entry).
isOffsetInRange(unsigned UserOffset,unsigned TrialOffset,unsigned MaxDisp,bool NegativeOK)927 bool MipsConstantIslands::isOffsetInRange(unsigned UserOffset,
928                                          unsigned TrialOffset, unsigned MaxDisp,
929                                          bool NegativeOK) {
930   if (UserOffset <= TrialOffset) {
931     // User before the Trial.
932     if (TrialOffset - UserOffset <= MaxDisp)
933       return true;
934   } else if (NegativeOK) {
935     if (UserOffset - TrialOffset <= MaxDisp)
936       return true;
937   }
938   return false;
939 }
940 
941 /// isWaterInRange - Returns true if a CPE placed after the specified
942 /// Water (a basic block) will be in range for the specific MI.
943 ///
944 /// Compute how much the function will grow by inserting a CPE after Water.
isWaterInRange(unsigned UserOffset,MachineBasicBlock * Water,CPUser & U,unsigned & Growth)945 bool MipsConstantIslands::isWaterInRange(unsigned UserOffset,
946                                         MachineBasicBlock* Water, CPUser &U,
947                                         unsigned &Growth) {
948   unsigned CPELogAlign = getCPELogAlign(*U.CPEMI);
949   unsigned CPEOffset = BBInfo[Water->getNumber()].postOffset(CPELogAlign);
950   unsigned NextBlockOffset, NextBlockAlignment;
951   MachineFunction::const_iterator NextBlock = ++Water->getIterator();
952   if (NextBlock == MF->end()) {
953     NextBlockOffset = BBInfo[Water->getNumber()].postOffset();
954     NextBlockAlignment = 0;
955   } else {
956     NextBlockOffset = BBInfo[NextBlock->getNumber()].Offset;
957     NextBlockAlignment = NextBlock->getAlignment();
958   }
959   unsigned Size = U.CPEMI->getOperand(2).getImm();
960   unsigned CPEEnd = CPEOffset + Size;
961 
962   // The CPE may be able to hide in the alignment padding before the next
963   // block. It may also cause more padding to be required if it is more aligned
964   // that the next block.
965   if (CPEEnd > NextBlockOffset) {
966     Growth = CPEEnd - NextBlockOffset;
967     // Compute the padding that would go at the end of the CPE to align the next
968     // block.
969     Growth += OffsetToAlignment(CPEEnd, 1ULL << NextBlockAlignment);
970 
971     // If the CPE is to be inserted before the instruction, that will raise
972     // the offset of the instruction. Also account for unknown alignment padding
973     // in blocks between CPE and the user.
974     if (CPEOffset < UserOffset)
975       UserOffset += Growth;
976   } else
977     // CPE fits in existing padding.
978     Growth = 0;
979 
980   return isOffsetInRange(UserOffset, CPEOffset, U);
981 }
982 
983 /// isCPEntryInRange - Returns true if the distance between specific MI and
984 /// specific ConstPool entry instruction can fit in MI's displacement field.
isCPEntryInRange(MachineInstr * MI,unsigned UserOffset,MachineInstr * CPEMI,unsigned MaxDisp,bool NegOk,bool DoDump)985 bool MipsConstantIslands::isCPEntryInRange
986   (MachineInstr *MI, unsigned UserOffset,
987    MachineInstr *CPEMI, unsigned MaxDisp,
988    bool NegOk, bool DoDump) {
989   unsigned CPEOffset  = getOffsetOf(CPEMI);
990 
991   if (DoDump) {
992     LLVM_DEBUG({
993       unsigned Block = MI->getParent()->getNumber();
994       const BasicBlockInfo &BBI = BBInfo[Block];
995       dbgs() << "User of CPE#" << CPEMI->getOperand(0).getImm()
996              << " max delta=" << MaxDisp
997              << format(" insn address=%#x", UserOffset) << " in "
998              << printMBBReference(*MI->getParent()) << ": "
999              << format("%#x-%x\t", BBI.Offset, BBI.postOffset()) << *MI
1000              << format("CPE address=%#x offset=%+d: ", CPEOffset,
1001                        int(CPEOffset - UserOffset));
1002     });
1003   }
1004 
1005   return isOffsetInRange(UserOffset, CPEOffset, MaxDisp, NegOk);
1006 }
1007 
1008 #ifndef NDEBUG
1009 /// BBIsJumpedOver - Return true of the specified basic block's only predecessor
1010 /// unconditionally branches to its only successor.
BBIsJumpedOver(MachineBasicBlock * MBB)1011 static bool BBIsJumpedOver(MachineBasicBlock *MBB) {
1012   if (MBB->pred_size() != 1 || MBB->succ_size() != 1)
1013     return false;
1014   MachineBasicBlock *Succ = *MBB->succ_begin();
1015   MachineBasicBlock *Pred = *MBB->pred_begin();
1016   MachineInstr *PredMI = &Pred->back();
1017   if (PredMI->getOpcode() == Mips::Bimm16)
1018     return PredMI->getOperand(0).getMBB() == Succ;
1019   return false;
1020 }
1021 #endif
1022 
adjustBBOffsetsAfter(MachineBasicBlock * BB)1023 void MipsConstantIslands::adjustBBOffsetsAfter(MachineBasicBlock *BB) {
1024   unsigned BBNum = BB->getNumber();
1025   for(unsigned i = BBNum + 1, e = MF->getNumBlockIDs(); i < e; ++i) {
1026     // Get the offset and known bits at the end of the layout predecessor.
1027     // Include the alignment of the current block.
1028     unsigned Offset = BBInfo[i - 1].Offset + BBInfo[i - 1].Size;
1029     BBInfo[i].Offset = Offset;
1030   }
1031 }
1032 
1033 /// decrementCPEReferenceCount - find the constant pool entry with index CPI
1034 /// and instruction CPEMI, and decrement its refcount.  If the refcount
1035 /// becomes 0 remove the entry and instruction.  Returns true if we removed
1036 /// the entry, false if we didn't.
decrementCPEReferenceCount(unsigned CPI,MachineInstr * CPEMI)1037 bool MipsConstantIslands::decrementCPEReferenceCount(unsigned CPI,
1038                                                     MachineInstr *CPEMI) {
1039   // Find the old entry. Eliminate it if it is no longer used.
1040   CPEntry *CPE = findConstPoolEntry(CPI, CPEMI);
1041   assert(CPE && "Unexpected!");
1042   if (--CPE->RefCount == 0) {
1043     removeDeadCPEMI(CPEMI);
1044     CPE->CPEMI = nullptr;
1045     --NumCPEs;
1046     return true;
1047   }
1048   return false;
1049 }
1050 
1051 /// LookForCPEntryInRange - see if the currently referenced CPE is in range;
1052 /// if not, see if an in-range clone of the CPE is in range, and if so,
1053 /// change the data structures so the user references the clone.  Returns:
1054 /// 0 = no existing entry found
1055 /// 1 = entry found, and there were no code insertions or deletions
1056 /// 2 = entry found, and there were code insertions or deletions
findInRangeCPEntry(CPUser & U,unsigned UserOffset)1057 int MipsConstantIslands::findInRangeCPEntry(CPUser& U, unsigned UserOffset)
1058 {
1059   MachineInstr *UserMI = U.MI;
1060   MachineInstr *CPEMI  = U.CPEMI;
1061 
1062   // Check to see if the CPE is already in-range.
1063   if (isCPEntryInRange(UserMI, UserOffset, CPEMI, U.getMaxDisp(), U.NegOk,
1064                        true)) {
1065     LLVM_DEBUG(dbgs() << "In range\n");
1066     return 1;
1067   }
1068 
1069   // No.  Look for previously created clones of the CPE that are in range.
1070   unsigned CPI = CPEMI->getOperand(1).getIndex();
1071   std::vector<CPEntry> &CPEs = CPEntries[CPI];
1072   for (unsigned i = 0, e = CPEs.size(); i != e; ++i) {
1073     // We already tried this one
1074     if (CPEs[i].CPEMI == CPEMI)
1075       continue;
1076     // Removing CPEs can leave empty entries, skip
1077     if (CPEs[i].CPEMI == nullptr)
1078       continue;
1079     if (isCPEntryInRange(UserMI, UserOffset, CPEs[i].CPEMI, U.getMaxDisp(),
1080                      U.NegOk)) {
1081       LLVM_DEBUG(dbgs() << "Replacing CPE#" << CPI << " with CPE#"
1082                         << CPEs[i].CPI << "\n");
1083       // Point the CPUser node to the replacement
1084       U.CPEMI = CPEs[i].CPEMI;
1085       // Change the CPI in the instruction operand to refer to the clone.
1086       for (unsigned j = 0, e = UserMI->getNumOperands(); j != e; ++j)
1087         if (UserMI->getOperand(j).isCPI()) {
1088           UserMI->getOperand(j).setIndex(CPEs[i].CPI);
1089           break;
1090         }
1091       // Adjust the refcount of the clone...
1092       CPEs[i].RefCount++;
1093       // ...and the original.  If we didn't remove the old entry, none of the
1094       // addresses changed, so we don't need another pass.
1095       return decrementCPEReferenceCount(CPI, CPEMI) ? 2 : 1;
1096     }
1097   }
1098   return 0;
1099 }
1100 
1101 /// LookForCPEntryInRange - see if the currently referenced CPE is in range;
1102 /// This version checks if the longer form of the instruction can be used to
1103 /// to satisfy things.
1104 /// if not, see if an in-range clone of the CPE is in range, and if so,
1105 /// change the data structures so the user references the clone.  Returns:
1106 /// 0 = no existing entry found
1107 /// 1 = entry found, and there were no code insertions or deletions
1108 /// 2 = entry found, and there were code insertions or deletions
findLongFormInRangeCPEntry(CPUser & U,unsigned UserOffset)1109 int MipsConstantIslands::findLongFormInRangeCPEntry
1110   (CPUser& U, unsigned UserOffset)
1111 {
1112   MachineInstr *UserMI = U.MI;
1113   MachineInstr *CPEMI  = U.CPEMI;
1114 
1115   // Check to see if the CPE is already in-range.
1116   if (isCPEntryInRange(UserMI, UserOffset, CPEMI,
1117                        U.getLongFormMaxDisp(), U.NegOk,
1118                        true)) {
1119     LLVM_DEBUG(dbgs() << "In range\n");
1120     UserMI->setDesc(TII->get(U.getLongFormOpcode()));
1121     U.setMaxDisp(U.getLongFormMaxDisp());
1122     return 2;  // instruction is longer length now
1123   }
1124 
1125   // No.  Look for previously created clones of the CPE that are in range.
1126   unsigned CPI = CPEMI->getOperand(1).getIndex();
1127   std::vector<CPEntry> &CPEs = CPEntries[CPI];
1128   for (unsigned i = 0, e = CPEs.size(); i != e; ++i) {
1129     // We already tried this one
1130     if (CPEs[i].CPEMI == CPEMI)
1131       continue;
1132     // Removing CPEs can leave empty entries, skip
1133     if (CPEs[i].CPEMI == nullptr)
1134       continue;
1135     if (isCPEntryInRange(UserMI, UserOffset, CPEs[i].CPEMI,
1136                          U.getLongFormMaxDisp(), U.NegOk)) {
1137       LLVM_DEBUG(dbgs() << "Replacing CPE#" << CPI << " with CPE#"
1138                         << CPEs[i].CPI << "\n");
1139       // Point the CPUser node to the replacement
1140       U.CPEMI = CPEs[i].CPEMI;
1141       // Change the CPI in the instruction operand to refer to the clone.
1142       for (unsigned j = 0, e = UserMI->getNumOperands(); j != e; ++j)
1143         if (UserMI->getOperand(j).isCPI()) {
1144           UserMI->getOperand(j).setIndex(CPEs[i].CPI);
1145           break;
1146         }
1147       // Adjust the refcount of the clone...
1148       CPEs[i].RefCount++;
1149       // ...and the original.  If we didn't remove the old entry, none of the
1150       // addresses changed, so we don't need another pass.
1151       return decrementCPEReferenceCount(CPI, CPEMI) ? 2 : 1;
1152     }
1153   }
1154   return 0;
1155 }
1156 
1157 /// getUnconditionalBrDisp - Returns the maximum displacement that can fit in
1158 /// the specific unconditional branch instruction.
getUnconditionalBrDisp(int Opc)1159 static inline unsigned getUnconditionalBrDisp(int Opc) {
1160   switch (Opc) {
1161   case Mips::Bimm16:
1162     return ((1<<10)-1)*2;
1163   case Mips::BimmX16:
1164     return ((1<<16)-1)*2;
1165   default:
1166     break;
1167   }
1168   return ((1<<16)-1)*2;
1169 }
1170 
1171 /// findAvailableWater - Look for an existing entry in the WaterList in which
1172 /// we can place the CPE referenced from U so it's within range of U's MI.
1173 /// Returns true if found, false if not.  If it returns true, WaterIter
1174 /// is set to the WaterList entry.
1175 /// To ensure that this pass
1176 /// terminates, the CPE location for a particular CPUser is only allowed to
1177 /// move to a lower address, so search backward from the end of the list and
1178 /// prefer the first water that is in range.
findAvailableWater(CPUser & U,unsigned UserOffset,water_iterator & WaterIter)1179 bool MipsConstantIslands::findAvailableWater(CPUser &U, unsigned UserOffset,
1180                                       water_iterator &WaterIter) {
1181   if (WaterList.empty())
1182     return false;
1183 
1184   unsigned BestGrowth = ~0u;
1185   for (water_iterator IP = std::prev(WaterList.end()), B = WaterList.begin();;
1186        --IP) {
1187     MachineBasicBlock* WaterBB = *IP;
1188     // Check if water is in range and is either at a lower address than the
1189     // current "high water mark" or a new water block that was created since
1190     // the previous iteration by inserting an unconditional branch.  In the
1191     // latter case, we want to allow resetting the high water mark back to
1192     // this new water since we haven't seen it before.  Inserting branches
1193     // should be relatively uncommon and when it does happen, we want to be
1194     // sure to take advantage of it for all the CPEs near that block, so that
1195     // we don't insert more branches than necessary.
1196     unsigned Growth;
1197     if (isWaterInRange(UserOffset, WaterBB, U, Growth) &&
1198         (WaterBB->getNumber() < U.HighWaterMark->getNumber() ||
1199          NewWaterList.count(WaterBB)) && Growth < BestGrowth) {
1200       // This is the least amount of required padding seen so far.
1201       BestGrowth = Growth;
1202       WaterIter = IP;
1203       LLVM_DEBUG(dbgs() << "Found water after " << printMBBReference(*WaterBB)
1204                         << " Growth=" << Growth << '\n');
1205 
1206       // Keep looking unless it is perfect.
1207       if (BestGrowth == 0)
1208         return true;
1209     }
1210     if (IP == B)
1211       break;
1212   }
1213   return BestGrowth != ~0u;
1214 }
1215 
1216 /// createNewWater - No existing WaterList entry will work for
1217 /// CPUsers[CPUserIndex], so create a place to put the CPE.  The end of the
1218 /// block is used if in range, and the conditional branch munged so control
1219 /// flow is correct.  Otherwise the block is split to create a hole with an
1220 /// unconditional branch around it.  In either case NewMBB is set to a
1221 /// block following which the new island can be inserted (the WaterList
1222 /// is not adjusted).
createNewWater(unsigned CPUserIndex,unsigned UserOffset,MachineBasicBlock * & NewMBB)1223 void MipsConstantIslands::createNewWater(unsigned CPUserIndex,
1224                                         unsigned UserOffset,
1225                                         MachineBasicBlock *&NewMBB) {
1226   CPUser &U = CPUsers[CPUserIndex];
1227   MachineInstr *UserMI = U.MI;
1228   MachineInstr *CPEMI  = U.CPEMI;
1229   unsigned CPELogAlign = getCPELogAlign(*CPEMI);
1230   MachineBasicBlock *UserMBB = UserMI->getParent();
1231   const BasicBlockInfo &UserBBI = BBInfo[UserMBB->getNumber()];
1232 
1233   // If the block does not end in an unconditional branch already, and if the
1234   // end of the block is within range, make new water there.
1235   if (BBHasFallthrough(UserMBB)) {
1236     // Size of branch to insert.
1237     unsigned Delta = 2;
1238     // Compute the offset where the CPE will begin.
1239     unsigned CPEOffset = UserBBI.postOffset(CPELogAlign) + Delta;
1240 
1241     if (isOffsetInRange(UserOffset, CPEOffset, U)) {
1242       LLVM_DEBUG(dbgs() << "Split at end of " << printMBBReference(*UserMBB)
1243                         << format(", expected CPE offset %#x\n", CPEOffset));
1244       NewMBB = &*++UserMBB->getIterator();
1245       // Add an unconditional branch from UserMBB to fallthrough block.  Record
1246       // it for branch lengthening; this new branch will not get out of range,
1247       // but if the preceding conditional branch is out of range, the targets
1248       // will be exchanged, and the altered branch may be out of range, so the
1249       // machinery has to know about it.
1250       int UncondBr = Mips::Bimm16;
1251       BuildMI(UserMBB, DebugLoc(), TII->get(UncondBr)).addMBB(NewMBB);
1252       unsigned MaxDisp = getUnconditionalBrDisp(UncondBr);
1253       ImmBranches.push_back(ImmBranch(&UserMBB->back(),
1254                                       MaxDisp, false, UncondBr));
1255       BBInfo[UserMBB->getNumber()].Size += Delta;
1256       adjustBBOffsetsAfter(UserMBB);
1257       return;
1258     }
1259   }
1260 
1261   // What a big block.  Find a place within the block to split it.
1262 
1263   // Try to split the block so it's fully aligned.  Compute the latest split
1264   // point where we can add a 4-byte branch instruction, and then align to
1265   // LogAlign which is the largest possible alignment in the function.
1266   unsigned LogAlign = MF->getAlignment();
1267   assert(LogAlign >= CPELogAlign && "Over-aligned constant pool entry");
1268   unsigned BaseInsertOffset = UserOffset + U.getMaxDisp();
1269   LLVM_DEBUG(dbgs() << format("Split in middle of big block before %#x",
1270                               BaseInsertOffset));
1271 
1272   // The 4 in the following is for the unconditional branch we'll be inserting
1273   // Alignment of the island is handled
1274   // inside isOffsetInRange.
1275   BaseInsertOffset -= 4;
1276 
1277   LLVM_DEBUG(dbgs() << format(", adjusted to %#x", BaseInsertOffset)
1278                     << " la=" << LogAlign << '\n');
1279 
1280   // This could point off the end of the block if we've already got constant
1281   // pool entries following this block; only the last one is in the water list.
1282   // Back past any possible branches (allow for a conditional and a maximally
1283   // long unconditional).
1284   if (BaseInsertOffset + 8 >= UserBBI.postOffset()) {
1285     BaseInsertOffset = UserBBI.postOffset() - 8;
1286     LLVM_DEBUG(dbgs() << format("Move inside block: %#x\n", BaseInsertOffset));
1287   }
1288   unsigned EndInsertOffset = BaseInsertOffset + 4 +
1289     CPEMI->getOperand(2).getImm();
1290   MachineBasicBlock::iterator MI = UserMI;
1291   ++MI;
1292   unsigned CPUIndex = CPUserIndex+1;
1293   unsigned NumCPUsers = CPUsers.size();
1294   //MachineInstr *LastIT = 0;
1295   for (unsigned Offset = UserOffset + TII->getInstSizeInBytes(*UserMI);
1296        Offset < BaseInsertOffset;
1297        Offset += TII->getInstSizeInBytes(*MI), MI = std::next(MI)) {
1298     assert(MI != UserMBB->end() && "Fell off end of block");
1299     if (CPUIndex < NumCPUsers && CPUsers[CPUIndex].MI == MI) {
1300       CPUser &U = CPUsers[CPUIndex];
1301       if (!isOffsetInRange(Offset, EndInsertOffset, U)) {
1302         // Shift intertion point by one unit of alignment so it is within reach.
1303         BaseInsertOffset -= 1u << LogAlign;
1304         EndInsertOffset  -= 1u << LogAlign;
1305       }
1306       // This is overly conservative, as we don't account for CPEMIs being
1307       // reused within the block, but it doesn't matter much.  Also assume CPEs
1308       // are added in order with alignment padding.  We may eventually be able
1309       // to pack the aligned CPEs better.
1310       EndInsertOffset += U.CPEMI->getOperand(2).getImm();
1311       CPUIndex++;
1312     }
1313   }
1314 
1315   NewMBB = splitBlockBeforeInstr(*--MI);
1316 }
1317 
1318 /// handleConstantPoolUser - Analyze the specified user, checking to see if it
1319 /// is out-of-range.  If so, pick up the constant pool value and move it some
1320 /// place in-range.  Return true if we changed any addresses (thus must run
1321 /// another pass of branch lengthening), false otherwise.
handleConstantPoolUser(unsigned CPUserIndex)1322 bool MipsConstantIslands::handleConstantPoolUser(unsigned CPUserIndex) {
1323   CPUser &U = CPUsers[CPUserIndex];
1324   MachineInstr *UserMI = U.MI;
1325   MachineInstr *CPEMI  = U.CPEMI;
1326   unsigned CPI = CPEMI->getOperand(1).getIndex();
1327   unsigned Size = CPEMI->getOperand(2).getImm();
1328   // Compute this only once, it's expensive.
1329   unsigned UserOffset = getUserOffset(U);
1330 
1331   // See if the current entry is within range, or there is a clone of it
1332   // in range.
1333   int result = findInRangeCPEntry(U, UserOffset);
1334   if (result==1) return false;
1335   else if (result==2) return true;
1336 
1337   // Look for water where we can place this CPE.
1338   MachineBasicBlock *NewIsland = MF->CreateMachineBasicBlock();
1339   MachineBasicBlock *NewMBB;
1340   water_iterator IP;
1341   if (findAvailableWater(U, UserOffset, IP)) {
1342     LLVM_DEBUG(dbgs() << "Found water in range\n");
1343     MachineBasicBlock *WaterBB = *IP;
1344 
1345     // If the original WaterList entry was "new water" on this iteration,
1346     // propagate that to the new island.  This is just keeping NewWaterList
1347     // updated to match the WaterList, which will be updated below.
1348     if (NewWaterList.erase(WaterBB))
1349       NewWaterList.insert(NewIsland);
1350 
1351     // The new CPE goes before the following block (NewMBB).
1352     NewMBB = &*++WaterBB->getIterator();
1353   } else {
1354     // No water found.
1355     // we first see if a longer form of the instrucion could have reached
1356     // the constant. in that case we won't bother to split
1357     if (!NoLoadRelaxation) {
1358       result = findLongFormInRangeCPEntry(U, UserOffset);
1359       if (result != 0) return true;
1360     }
1361     LLVM_DEBUG(dbgs() << "No water found\n");
1362     createNewWater(CPUserIndex, UserOffset, NewMBB);
1363 
1364     // splitBlockBeforeInstr adds to WaterList, which is important when it is
1365     // called while handling branches so that the water will be seen on the
1366     // next iteration for constant pools, but in this context, we don't want
1367     // it.  Check for this so it will be removed from the WaterList.
1368     // Also remove any entry from NewWaterList.
1369     MachineBasicBlock *WaterBB = &*--NewMBB->getIterator();
1370     IP = llvm::find(WaterList, WaterBB);
1371     if (IP != WaterList.end())
1372       NewWaterList.erase(WaterBB);
1373 
1374     // We are adding new water.  Update NewWaterList.
1375     NewWaterList.insert(NewIsland);
1376   }
1377 
1378   // Remove the original WaterList entry; we want subsequent insertions in
1379   // this vicinity to go after the one we're about to insert.  This
1380   // considerably reduces the number of times we have to move the same CPE
1381   // more than once and is also important to ensure the algorithm terminates.
1382   if (IP != WaterList.end())
1383     WaterList.erase(IP);
1384 
1385   // Okay, we know we can put an island before NewMBB now, do it!
1386   MF->insert(NewMBB->getIterator(), NewIsland);
1387 
1388   // Update internal data structures to account for the newly inserted MBB.
1389   updateForInsertedWaterBlock(NewIsland);
1390 
1391   // Decrement the old entry, and remove it if refcount becomes 0.
1392   decrementCPEReferenceCount(CPI, CPEMI);
1393 
1394   // No existing clone of this CPE is within range.
1395   // We will be generating a new clone.  Get a UID for it.
1396   unsigned ID = createPICLabelUId();
1397 
1398   // Now that we have an island to add the CPE to, clone the original CPE and
1399   // add it to the island.
1400   U.HighWaterMark = NewIsland;
1401   U.CPEMI = BuildMI(NewIsland, DebugLoc(), TII->get(Mips::CONSTPOOL_ENTRY))
1402                 .addImm(ID).addConstantPoolIndex(CPI).addImm(Size);
1403   CPEntries[CPI].push_back(CPEntry(U.CPEMI, ID, 1));
1404   ++NumCPEs;
1405 
1406   // Mark the basic block as aligned as required by the const-pool entry.
1407   NewIsland->setAlignment(getCPELogAlign(*U.CPEMI));
1408 
1409   // Increase the size of the island block to account for the new entry.
1410   BBInfo[NewIsland->getNumber()].Size += Size;
1411   adjustBBOffsetsAfter(&*--NewIsland->getIterator());
1412 
1413   // Finally, change the CPI in the instruction operand to be ID.
1414   for (unsigned i = 0, e = UserMI->getNumOperands(); i != e; ++i)
1415     if (UserMI->getOperand(i).isCPI()) {
1416       UserMI->getOperand(i).setIndex(ID);
1417       break;
1418     }
1419 
1420   LLVM_DEBUG(
1421       dbgs() << "  Moved CPE to #" << ID << " CPI=" << CPI
1422              << format(" offset=%#x\n", BBInfo[NewIsland->getNumber()].Offset));
1423 
1424   return true;
1425 }
1426 
1427 /// removeDeadCPEMI - Remove a dead constant pool entry instruction. Update
1428 /// sizes and offsets of impacted basic blocks.
removeDeadCPEMI(MachineInstr * CPEMI)1429 void MipsConstantIslands::removeDeadCPEMI(MachineInstr *CPEMI) {
1430   MachineBasicBlock *CPEBB = CPEMI->getParent();
1431   unsigned Size = CPEMI->getOperand(2).getImm();
1432   CPEMI->eraseFromParent();
1433   BBInfo[CPEBB->getNumber()].Size -= Size;
1434   // All succeeding offsets have the current size value added in, fix this.
1435   if (CPEBB->empty()) {
1436     BBInfo[CPEBB->getNumber()].Size = 0;
1437 
1438     // This block no longer needs to be aligned.
1439     CPEBB->setAlignment(0);
1440   } else
1441     // Entries are sorted by descending alignment, so realign from the front.
1442     CPEBB->setAlignment(getCPELogAlign(*CPEBB->begin()));
1443 
1444   adjustBBOffsetsAfter(CPEBB);
1445   // An island has only one predecessor BB and one successor BB. Check if
1446   // this BB's predecessor jumps directly to this BB's successor. This
1447   // shouldn't happen currently.
1448   assert(!BBIsJumpedOver(CPEBB) && "How did this happen?");
1449   // FIXME: remove the empty blocks after all the work is done?
1450 }
1451 
1452 /// removeUnusedCPEntries - Remove constant pool entries whose refcounts
1453 /// are zero.
removeUnusedCPEntries()1454 bool MipsConstantIslands::removeUnusedCPEntries() {
1455   unsigned MadeChange = false;
1456   for (unsigned i = 0, e = CPEntries.size(); i != e; ++i) {
1457       std::vector<CPEntry> &CPEs = CPEntries[i];
1458       for (unsigned j = 0, ee = CPEs.size(); j != ee; ++j) {
1459         if (CPEs[j].RefCount == 0 && CPEs[j].CPEMI) {
1460           removeDeadCPEMI(CPEs[j].CPEMI);
1461           CPEs[j].CPEMI = nullptr;
1462           MadeChange = true;
1463         }
1464       }
1465   }
1466   return MadeChange;
1467 }
1468 
1469 /// isBBInRange - Returns true if the distance between specific MI and
1470 /// specific BB can fit in MI's displacement field.
isBBInRange(MachineInstr * MI,MachineBasicBlock * DestBB,unsigned MaxDisp)1471 bool MipsConstantIslands::isBBInRange
1472   (MachineInstr *MI,MachineBasicBlock *DestBB, unsigned MaxDisp) {
1473   unsigned PCAdj = 4;
1474   unsigned BrOffset   = getOffsetOf(MI) + PCAdj;
1475   unsigned DestOffset = BBInfo[DestBB->getNumber()].Offset;
1476 
1477   LLVM_DEBUG(dbgs() << "Branch of destination " << printMBBReference(*DestBB)
1478                     << " from " << printMBBReference(*MI->getParent())
1479                     << " max delta=" << MaxDisp << " from " << getOffsetOf(MI)
1480                     << " to " << DestOffset << " offset "
1481                     << int(DestOffset - BrOffset) << "\t" << *MI);
1482 
1483   if (BrOffset <= DestOffset) {
1484     // Branch before the Dest.
1485     if (DestOffset-BrOffset <= MaxDisp)
1486       return true;
1487   } else {
1488     if (BrOffset-DestOffset <= MaxDisp)
1489       return true;
1490   }
1491   return false;
1492 }
1493 
1494 /// fixupImmediateBr - Fix up an immediate branch whose destination is too far
1495 /// away to fit in its displacement field.
fixupImmediateBr(ImmBranch & Br)1496 bool MipsConstantIslands::fixupImmediateBr(ImmBranch &Br) {
1497   MachineInstr *MI = Br.MI;
1498   unsigned TargetOperand = branchTargetOperand(MI);
1499   MachineBasicBlock *DestBB = MI->getOperand(TargetOperand).getMBB();
1500 
1501   // Check to see if the DestBB is already in-range.
1502   if (isBBInRange(MI, DestBB, Br.MaxDisp))
1503     return false;
1504 
1505   if (!Br.isCond)
1506     return fixupUnconditionalBr(Br);
1507   return fixupConditionalBr(Br);
1508 }
1509 
1510 /// fixupUnconditionalBr - Fix up an unconditional branch whose destination is
1511 /// too far away to fit in its displacement field. If the LR register has been
1512 /// spilled in the epilogue, then we can use BL to implement a far jump.
1513 /// Otherwise, add an intermediate branch instruction to a branch.
1514 bool
fixupUnconditionalBr(ImmBranch & Br)1515 MipsConstantIslands::fixupUnconditionalBr(ImmBranch &Br) {
1516   MachineInstr *MI = Br.MI;
1517   MachineBasicBlock *MBB = MI->getParent();
1518   MachineBasicBlock *DestBB = MI->getOperand(0).getMBB();
1519   // Use BL to implement far jump.
1520   unsigned BimmX16MaxDisp = ((1 << 16)-1) * 2;
1521   if (isBBInRange(MI, DestBB, BimmX16MaxDisp)) {
1522     Br.MaxDisp = BimmX16MaxDisp;
1523     MI->setDesc(TII->get(Mips::BimmX16));
1524   }
1525   else {
1526     // need to give the math a more careful look here
1527     // this is really a segment address and not
1528     // a PC relative address. FIXME. But I think that
1529     // just reducing the bits by 1 as I've done is correct.
1530     // The basic block we are branching too much be longword aligned.
1531     // we know that RA is saved because we always save it right now.
1532     // this requirement will be relaxed later but we also have an alternate
1533     // way to implement this that I will implement that does not need jal.
1534     // We should have a way to back out this alignment restriction if we "can" later.
1535     // but it is not harmful.
1536     //
1537     DestBB->setAlignment(2);
1538     Br.MaxDisp = ((1<<24)-1) * 2;
1539     MI->setDesc(TII->get(Mips::JalB16));
1540   }
1541   BBInfo[MBB->getNumber()].Size += 2;
1542   adjustBBOffsetsAfter(MBB);
1543   HasFarJump = true;
1544   ++NumUBrFixed;
1545 
1546   LLVM_DEBUG(dbgs() << "  Changed B to long jump " << *MI);
1547 
1548   return true;
1549 }
1550 
1551 /// fixupConditionalBr - Fix up a conditional branch whose destination is too
1552 /// far away to fit in its displacement field. It is converted to an inverse
1553 /// conditional branch + an unconditional branch to the destination.
1554 bool
fixupConditionalBr(ImmBranch & Br)1555 MipsConstantIslands::fixupConditionalBr(ImmBranch &Br) {
1556   MachineInstr *MI = Br.MI;
1557   unsigned TargetOperand = branchTargetOperand(MI);
1558   MachineBasicBlock *DestBB = MI->getOperand(TargetOperand).getMBB();
1559   unsigned Opcode = MI->getOpcode();
1560   unsigned LongFormOpcode = longformBranchOpcode(Opcode);
1561   unsigned LongFormMaxOff = branchMaxOffsets(LongFormOpcode);
1562 
1563   // Check to see if the DestBB is already in-range.
1564   if (isBBInRange(MI, DestBB, LongFormMaxOff)) {
1565     Br.MaxDisp = LongFormMaxOff;
1566     MI->setDesc(TII->get(LongFormOpcode));
1567     return true;
1568   }
1569 
1570   // Add an unconditional branch to the destination and invert the branch
1571   // condition to jump over it:
1572   // bteqz L1
1573   // =>
1574   // bnez L2
1575   // b   L1
1576   // L2:
1577 
1578   // If the branch is at the end of its MBB and that has a fall-through block,
1579   // direct the updated conditional branch to the fall-through block. Otherwise,
1580   // split the MBB before the next instruction.
1581   MachineBasicBlock *MBB = MI->getParent();
1582   MachineInstr *BMI = &MBB->back();
1583   bool NeedSplit = (BMI != MI) || !BBHasFallthrough(MBB);
1584   unsigned OppositeBranchOpcode = TII->getOppositeBranchOpc(Opcode);
1585 
1586   ++NumCBrFixed;
1587   if (BMI != MI) {
1588     if (std::next(MachineBasicBlock::iterator(MI)) == std::prev(MBB->end()) &&
1589         BMI->isUnconditionalBranch()) {
1590       // Last MI in the BB is an unconditional branch. Can we simply invert the
1591       // condition and swap destinations:
1592       // beqz L1
1593       // b   L2
1594       // =>
1595       // bnez L2
1596       // b   L1
1597       unsigned BMITargetOperand = branchTargetOperand(BMI);
1598       MachineBasicBlock *NewDest =
1599         BMI->getOperand(BMITargetOperand).getMBB();
1600       if (isBBInRange(MI, NewDest, Br.MaxDisp)) {
1601         LLVM_DEBUG(
1602             dbgs() << "  Invert Bcc condition and swap its destination with "
1603                    << *BMI);
1604         MI->setDesc(TII->get(OppositeBranchOpcode));
1605         BMI->getOperand(BMITargetOperand).setMBB(DestBB);
1606         MI->getOperand(TargetOperand).setMBB(NewDest);
1607         return true;
1608       }
1609     }
1610   }
1611 
1612   if (NeedSplit) {
1613     splitBlockBeforeInstr(*MI);
1614     // No need for the branch to the next block. We're adding an unconditional
1615     // branch to the destination.
1616     int delta = TII->getInstSizeInBytes(MBB->back());
1617     BBInfo[MBB->getNumber()].Size -= delta;
1618     MBB->back().eraseFromParent();
1619     // BBInfo[SplitBB].Offset is wrong temporarily, fixed below
1620   }
1621   MachineBasicBlock *NextBB = &*++MBB->getIterator();
1622 
1623   LLVM_DEBUG(dbgs() << "  Insert B to " << printMBBReference(*DestBB)
1624                     << " also invert condition and change dest. to "
1625                     << printMBBReference(*NextBB) << "\n");
1626 
1627   // Insert a new conditional branch and a new unconditional branch.
1628   // Also update the ImmBranch as well as adding a new entry for the new branch.
1629   if (MI->getNumExplicitOperands() == 2) {
1630     BuildMI(MBB, DebugLoc(), TII->get(OppositeBranchOpcode))
1631            .addReg(MI->getOperand(0).getReg())
1632            .addMBB(NextBB);
1633   } else {
1634     BuildMI(MBB, DebugLoc(), TII->get(OppositeBranchOpcode))
1635            .addMBB(NextBB);
1636   }
1637   Br.MI = &MBB->back();
1638   BBInfo[MBB->getNumber()].Size += TII->getInstSizeInBytes(MBB->back());
1639   BuildMI(MBB, DebugLoc(), TII->get(Br.UncondBr)).addMBB(DestBB);
1640   BBInfo[MBB->getNumber()].Size += TII->getInstSizeInBytes(MBB->back());
1641   unsigned MaxDisp = getUnconditionalBrDisp(Br.UncondBr);
1642   ImmBranches.push_back(ImmBranch(&MBB->back(), MaxDisp, false, Br.UncondBr));
1643 
1644   // Remove the old conditional branch.  It may or may not still be in MBB.
1645   BBInfo[MI->getParent()->getNumber()].Size -= TII->getInstSizeInBytes(*MI);
1646   MI->eraseFromParent();
1647   adjustBBOffsetsAfter(MBB);
1648   return true;
1649 }
1650 
prescanForConstants()1651 void MipsConstantIslands::prescanForConstants() {
1652   unsigned J = 0;
1653   (void)J;
1654   for (MachineFunction::iterator B =
1655          MF->begin(), E = MF->end(); B != E; ++B) {
1656     for (MachineBasicBlock::instr_iterator I =
1657         B->instr_begin(), EB = B->instr_end(); I != EB; ++I) {
1658       switch(I->getDesc().getOpcode()) {
1659         case Mips::LwConstant32: {
1660           PrescannedForConstants = true;
1661           LLVM_DEBUG(dbgs() << "constant island constant " << *I << "\n");
1662           J = I->getNumOperands();
1663           LLVM_DEBUG(dbgs() << "num operands " << J << "\n");
1664           MachineOperand& Literal = I->getOperand(1);
1665           if (Literal.isImm()) {
1666             int64_t V = Literal.getImm();
1667             LLVM_DEBUG(dbgs() << "literal " << V << "\n");
1668             Type *Int32Ty =
1669               Type::getInt32Ty(MF->getFunction().getContext());
1670             const Constant *C = ConstantInt::get(Int32Ty, V);
1671             unsigned index = MCP->getConstantPoolIndex(C, 4);
1672             I->getOperand(2).ChangeToImmediate(index);
1673             LLVM_DEBUG(dbgs() << "constant island constant " << *I << "\n");
1674             I->setDesc(TII->get(Mips::LwRxPcTcp16));
1675             I->RemoveOperand(1);
1676             I->RemoveOperand(1);
1677             I->addOperand(MachineOperand::CreateCPI(index, 0));
1678             I->addOperand(MachineOperand::CreateImm(4));
1679           }
1680           break;
1681         }
1682         default:
1683           break;
1684       }
1685     }
1686   }
1687 }
1688 
1689 /// Returns a pass that converts branches to long branches.
createMipsConstantIslandPass()1690 FunctionPass *llvm::createMipsConstantIslandPass() {
1691   return new MipsConstantIslands();
1692 }
1693