1 //===- MipsSEISelLowering.cpp - MipsSE DAG Lowering Interface -------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Subclass of MipsTargetLowering specialized for mips32/64.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "MipsSEISelLowering.h"
15 #include "MipsMachineFunction.h"
16 #include "MipsRegisterInfo.h"
17 #include "MipsSubtarget.h"
18 #include "llvm/ADT/APInt.h"
19 #include "llvm/ADT/ArrayRef.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/ADT/Triple.h"
23 #include "llvm/CodeGen/CallingConvLower.h"
24 #include "llvm/CodeGen/ISDOpcodes.h"
25 #include "llvm/CodeGen/MachineBasicBlock.h"
26 #include "llvm/CodeGen/MachineFunction.h"
27 #include "llvm/CodeGen/MachineInstr.h"
28 #include "llvm/CodeGen/MachineInstrBuilder.h"
29 #include "llvm/CodeGen/MachineMemOperand.h"
30 #include "llvm/CodeGen/MachineRegisterInfo.h"
31 #include "llvm/CodeGen/SelectionDAG.h"
32 #include "llvm/CodeGen/SelectionDAGNodes.h"
33 #include "llvm/CodeGen/TargetInstrInfo.h"
34 #include "llvm/CodeGen/TargetSubtargetInfo.h"
35 #include "llvm/CodeGen/ValueTypes.h"
36 #include "llvm/IR/DebugLoc.h"
37 #include "llvm/IR/Intrinsics.h"
38 #include "llvm/Support/Casting.h"
39 #include "llvm/Support/CommandLine.h"
40 #include "llvm/Support/Debug.h"
41 #include "llvm/Support/ErrorHandling.h"
42 #include "llvm/Support/MachineValueType.h"
43 #include "llvm/Support/MathExtras.h"
44 #include "llvm/Support/raw_ostream.h"
45 #include <algorithm>
46 #include <cassert>
47 #include <cstdint>
48 #include <iterator>
49 #include <utility>
50
51 using namespace llvm;
52
53 #define DEBUG_TYPE "mips-isel"
54
55 static cl::opt<bool>
56 UseMipsTailCalls("mips-tail-calls", cl::Hidden,
57 cl::desc("MIPS: permit tail calls."), cl::init(false));
58
59 static cl::opt<bool> NoDPLoadStore("mno-ldc1-sdc1", cl::init(false),
60 cl::desc("Expand double precision loads and "
61 "stores to their single precision "
62 "counterparts"));
63
MipsSETargetLowering(const MipsTargetMachine & TM,const MipsSubtarget & STI)64 MipsSETargetLowering::MipsSETargetLowering(const MipsTargetMachine &TM,
65 const MipsSubtarget &STI)
66 : MipsTargetLowering(TM, STI) {
67 // Set up the register classes
68 addRegisterClass(MVT::i32, &Mips::GPR32RegClass);
69
70 if (Subtarget.isGP64bit())
71 addRegisterClass(MVT::i64, &Mips::GPR64RegClass);
72
73 if (Subtarget.hasDSP() || Subtarget.hasMSA()) {
74 // Expand all truncating stores and extending loads.
75 for (MVT VT0 : MVT::vector_valuetypes()) {
76 for (MVT VT1 : MVT::vector_valuetypes()) {
77 setTruncStoreAction(VT0, VT1, Expand);
78 setLoadExtAction(ISD::SEXTLOAD, VT0, VT1, Expand);
79 setLoadExtAction(ISD::ZEXTLOAD, VT0, VT1, Expand);
80 setLoadExtAction(ISD::EXTLOAD, VT0, VT1, Expand);
81 }
82 }
83 }
84
85 if (Subtarget.hasDSP()) {
86 MVT::SimpleValueType VecTys[2] = {MVT::v2i16, MVT::v4i8};
87
88 for (unsigned i = 0; i < array_lengthof(VecTys); ++i) {
89 addRegisterClass(VecTys[i], &Mips::DSPRRegClass);
90
91 // Expand all builtin opcodes.
92 for (unsigned Opc = 0; Opc < ISD::BUILTIN_OP_END; ++Opc)
93 setOperationAction(Opc, VecTys[i], Expand);
94
95 setOperationAction(ISD::ADD, VecTys[i], Legal);
96 setOperationAction(ISD::SUB, VecTys[i], Legal);
97 setOperationAction(ISD::LOAD, VecTys[i], Legal);
98 setOperationAction(ISD::STORE, VecTys[i], Legal);
99 setOperationAction(ISD::BITCAST, VecTys[i], Legal);
100 }
101
102 setTargetDAGCombine(ISD::SHL);
103 setTargetDAGCombine(ISD::SRA);
104 setTargetDAGCombine(ISD::SRL);
105 setTargetDAGCombine(ISD::SETCC);
106 setTargetDAGCombine(ISD::VSELECT);
107
108 if (Subtarget.hasMips32r2()) {
109 setOperationAction(ISD::ADDC, MVT::i32, Legal);
110 setOperationAction(ISD::ADDE, MVT::i32, Legal);
111 }
112 }
113
114 if (Subtarget.hasDSPR2())
115 setOperationAction(ISD::MUL, MVT::v2i16, Legal);
116
117 if (Subtarget.hasMSA()) {
118 addMSAIntType(MVT::v16i8, &Mips::MSA128BRegClass);
119 addMSAIntType(MVT::v8i16, &Mips::MSA128HRegClass);
120 addMSAIntType(MVT::v4i32, &Mips::MSA128WRegClass);
121 addMSAIntType(MVT::v2i64, &Mips::MSA128DRegClass);
122 addMSAFloatType(MVT::v8f16, &Mips::MSA128HRegClass);
123 addMSAFloatType(MVT::v4f32, &Mips::MSA128WRegClass);
124 addMSAFloatType(MVT::v2f64, &Mips::MSA128DRegClass);
125
126 // f16 is a storage-only type, always promote it to f32.
127 addRegisterClass(MVT::f16, &Mips::MSA128HRegClass);
128 setOperationAction(ISD::SETCC, MVT::f16, Promote);
129 setOperationAction(ISD::BR_CC, MVT::f16, Promote);
130 setOperationAction(ISD::SELECT_CC, MVT::f16, Promote);
131 setOperationAction(ISD::SELECT, MVT::f16, Promote);
132 setOperationAction(ISD::FADD, MVT::f16, Promote);
133 setOperationAction(ISD::FSUB, MVT::f16, Promote);
134 setOperationAction(ISD::FMUL, MVT::f16, Promote);
135 setOperationAction(ISD::FDIV, MVT::f16, Promote);
136 setOperationAction(ISD::FREM, MVT::f16, Promote);
137 setOperationAction(ISD::FMA, MVT::f16, Promote);
138 setOperationAction(ISD::FNEG, MVT::f16, Promote);
139 setOperationAction(ISD::FABS, MVT::f16, Promote);
140 setOperationAction(ISD::FCEIL, MVT::f16, Promote);
141 setOperationAction(ISD::FCOPYSIGN, MVT::f16, Promote);
142 setOperationAction(ISD::FCOS, MVT::f16, Promote);
143 setOperationAction(ISD::FP_EXTEND, MVT::f16, Promote);
144 setOperationAction(ISD::FFLOOR, MVT::f16, Promote);
145 setOperationAction(ISD::FNEARBYINT, MVT::f16, Promote);
146 setOperationAction(ISD::FPOW, MVT::f16, Promote);
147 setOperationAction(ISD::FPOWI, MVT::f16, Promote);
148 setOperationAction(ISD::FRINT, MVT::f16, Promote);
149 setOperationAction(ISD::FSIN, MVT::f16, Promote);
150 setOperationAction(ISD::FSINCOS, MVT::f16, Promote);
151 setOperationAction(ISD::FSQRT, MVT::f16, Promote);
152 setOperationAction(ISD::FEXP, MVT::f16, Promote);
153 setOperationAction(ISD::FEXP2, MVT::f16, Promote);
154 setOperationAction(ISD::FLOG, MVT::f16, Promote);
155 setOperationAction(ISD::FLOG2, MVT::f16, Promote);
156 setOperationAction(ISD::FLOG10, MVT::f16, Promote);
157 setOperationAction(ISD::FROUND, MVT::f16, Promote);
158 setOperationAction(ISD::FTRUNC, MVT::f16, Promote);
159 setOperationAction(ISD::FMINNUM, MVT::f16, Promote);
160 setOperationAction(ISD::FMAXNUM, MVT::f16, Promote);
161 setOperationAction(ISD::FMINNAN, MVT::f16, Promote);
162 setOperationAction(ISD::FMAXNAN, MVT::f16, Promote);
163
164 setTargetDAGCombine(ISD::AND);
165 setTargetDAGCombine(ISD::OR);
166 setTargetDAGCombine(ISD::SRA);
167 setTargetDAGCombine(ISD::VSELECT);
168 setTargetDAGCombine(ISD::XOR);
169 }
170
171 if (!Subtarget.useSoftFloat()) {
172 addRegisterClass(MVT::f32, &Mips::FGR32RegClass);
173
174 // When dealing with single precision only, use libcalls
175 if (!Subtarget.isSingleFloat()) {
176 if (Subtarget.isFP64bit())
177 addRegisterClass(MVT::f64, &Mips::FGR64RegClass);
178 else
179 addRegisterClass(MVT::f64, &Mips::AFGR64RegClass);
180 }
181 }
182
183 setOperationAction(ISD::SMUL_LOHI, MVT::i32, Custom);
184 setOperationAction(ISD::UMUL_LOHI, MVT::i32, Custom);
185 setOperationAction(ISD::MULHS, MVT::i32, Custom);
186 setOperationAction(ISD::MULHU, MVT::i32, Custom);
187
188 if (Subtarget.hasCnMips())
189 setOperationAction(ISD::MUL, MVT::i64, Legal);
190 else if (Subtarget.isGP64bit())
191 setOperationAction(ISD::MUL, MVT::i64, Custom);
192
193 if (Subtarget.isGP64bit()) {
194 setOperationAction(ISD::SMUL_LOHI, MVT::i64, Custom);
195 setOperationAction(ISD::UMUL_LOHI, MVT::i64, Custom);
196 setOperationAction(ISD::MULHS, MVT::i64, Custom);
197 setOperationAction(ISD::MULHU, MVT::i64, Custom);
198 setOperationAction(ISD::SDIVREM, MVT::i64, Custom);
199 setOperationAction(ISD::UDIVREM, MVT::i64, Custom);
200 }
201
202 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i64, Custom);
203 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i64, Custom);
204
205 setOperationAction(ISD::SDIVREM, MVT::i32, Custom);
206 setOperationAction(ISD::UDIVREM, MVT::i32, Custom);
207 setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Custom);
208 setOperationAction(ISD::LOAD, MVT::i32, Custom);
209 setOperationAction(ISD::STORE, MVT::i32, Custom);
210
211 setTargetDAGCombine(ISD::MUL);
212
213 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
214 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom);
215 setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom);
216
217 if (NoDPLoadStore) {
218 setOperationAction(ISD::LOAD, MVT::f64, Custom);
219 setOperationAction(ISD::STORE, MVT::f64, Custom);
220 }
221
222 if (Subtarget.hasMips32r6()) {
223 // MIPS32r6 replaces the accumulator-based multiplies with a three register
224 // instruction
225 setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
226 setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
227 setOperationAction(ISD::MUL, MVT::i32, Legal);
228 setOperationAction(ISD::MULHS, MVT::i32, Legal);
229 setOperationAction(ISD::MULHU, MVT::i32, Legal);
230
231 // MIPS32r6 replaces the accumulator-based division/remainder with separate
232 // three register division and remainder instructions.
233 setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
234 setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
235 setOperationAction(ISD::SDIV, MVT::i32, Legal);
236 setOperationAction(ISD::UDIV, MVT::i32, Legal);
237 setOperationAction(ISD::SREM, MVT::i32, Legal);
238 setOperationAction(ISD::UREM, MVT::i32, Legal);
239
240 // MIPS32r6 replaces conditional moves with an equivalent that removes the
241 // need for three GPR read ports.
242 setOperationAction(ISD::SETCC, MVT::i32, Legal);
243 setOperationAction(ISD::SELECT, MVT::i32, Legal);
244 setOperationAction(ISD::SELECT_CC, MVT::i32, Expand);
245
246 setOperationAction(ISD::SETCC, MVT::f32, Legal);
247 setOperationAction(ISD::SELECT, MVT::f32, Legal);
248 setOperationAction(ISD::SELECT_CC, MVT::f32, Expand);
249
250 assert(Subtarget.isFP64bit() && "FR=1 is required for MIPS32r6");
251 setOperationAction(ISD::SETCC, MVT::f64, Legal);
252 setOperationAction(ISD::SELECT, MVT::f64, Custom);
253 setOperationAction(ISD::SELECT_CC, MVT::f64, Expand);
254
255 setOperationAction(ISD::BRCOND, MVT::Other, Legal);
256
257 // Floating point > and >= are supported via < and <=
258 setCondCodeAction(ISD::SETOGE, MVT::f32, Expand);
259 setCondCodeAction(ISD::SETOGT, MVT::f32, Expand);
260 setCondCodeAction(ISD::SETUGE, MVT::f32, Expand);
261 setCondCodeAction(ISD::SETUGT, MVT::f32, Expand);
262
263 setCondCodeAction(ISD::SETOGE, MVT::f64, Expand);
264 setCondCodeAction(ISD::SETOGT, MVT::f64, Expand);
265 setCondCodeAction(ISD::SETUGE, MVT::f64, Expand);
266 setCondCodeAction(ISD::SETUGT, MVT::f64, Expand);
267 }
268
269 if (Subtarget.hasMips64r6()) {
270 // MIPS64r6 replaces the accumulator-based multiplies with a three register
271 // instruction
272 setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand);
273 setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand);
274 setOperationAction(ISD::MUL, MVT::i64, Legal);
275 setOperationAction(ISD::MULHS, MVT::i64, Legal);
276 setOperationAction(ISD::MULHU, MVT::i64, Legal);
277
278 // MIPS32r6 replaces the accumulator-based division/remainder with separate
279 // three register division and remainder instructions.
280 setOperationAction(ISD::SDIVREM, MVT::i64, Expand);
281 setOperationAction(ISD::UDIVREM, MVT::i64, Expand);
282 setOperationAction(ISD::SDIV, MVT::i64, Legal);
283 setOperationAction(ISD::UDIV, MVT::i64, Legal);
284 setOperationAction(ISD::SREM, MVT::i64, Legal);
285 setOperationAction(ISD::UREM, MVT::i64, Legal);
286
287 // MIPS64r6 replaces conditional moves with an equivalent that removes the
288 // need for three GPR read ports.
289 setOperationAction(ISD::SETCC, MVT::i64, Legal);
290 setOperationAction(ISD::SELECT, MVT::i64, Legal);
291 setOperationAction(ISD::SELECT_CC, MVT::i64, Expand);
292 }
293
294 computeRegisterProperties(Subtarget.getRegisterInfo());
295 }
296
297 const MipsTargetLowering *
createMipsSETargetLowering(const MipsTargetMachine & TM,const MipsSubtarget & STI)298 llvm::createMipsSETargetLowering(const MipsTargetMachine &TM,
299 const MipsSubtarget &STI) {
300 return new MipsSETargetLowering(TM, STI);
301 }
302
303 const TargetRegisterClass *
getRepRegClassFor(MVT VT) const304 MipsSETargetLowering::getRepRegClassFor(MVT VT) const {
305 if (VT == MVT::Untyped)
306 return Subtarget.hasDSP() ? &Mips::ACC64DSPRegClass : &Mips::ACC64RegClass;
307
308 return TargetLowering::getRepRegClassFor(VT);
309 }
310
311 // Enable MSA support for the given integer type and Register class.
312 void MipsSETargetLowering::
addMSAIntType(MVT::SimpleValueType Ty,const TargetRegisterClass * RC)313 addMSAIntType(MVT::SimpleValueType Ty, const TargetRegisterClass *RC) {
314 addRegisterClass(Ty, RC);
315
316 // Expand all builtin opcodes.
317 for (unsigned Opc = 0; Opc < ISD::BUILTIN_OP_END; ++Opc)
318 setOperationAction(Opc, Ty, Expand);
319
320 setOperationAction(ISD::BITCAST, Ty, Legal);
321 setOperationAction(ISD::LOAD, Ty, Legal);
322 setOperationAction(ISD::STORE, Ty, Legal);
323 setOperationAction(ISD::EXTRACT_VECTOR_ELT, Ty, Custom);
324 setOperationAction(ISD::INSERT_VECTOR_ELT, Ty, Legal);
325 setOperationAction(ISD::BUILD_VECTOR, Ty, Custom);
326
327 setOperationAction(ISD::ADD, Ty, Legal);
328 setOperationAction(ISD::AND, Ty, Legal);
329 setOperationAction(ISD::CTLZ, Ty, Legal);
330 setOperationAction(ISD::CTPOP, Ty, Legal);
331 setOperationAction(ISD::MUL, Ty, Legal);
332 setOperationAction(ISD::OR, Ty, Legal);
333 setOperationAction(ISD::SDIV, Ty, Legal);
334 setOperationAction(ISD::SREM, Ty, Legal);
335 setOperationAction(ISD::SHL, Ty, Legal);
336 setOperationAction(ISD::SRA, Ty, Legal);
337 setOperationAction(ISD::SRL, Ty, Legal);
338 setOperationAction(ISD::SUB, Ty, Legal);
339 setOperationAction(ISD::SMAX, Ty, Legal);
340 setOperationAction(ISD::SMIN, Ty, Legal);
341 setOperationAction(ISD::UDIV, Ty, Legal);
342 setOperationAction(ISD::UREM, Ty, Legal);
343 setOperationAction(ISD::UMAX, Ty, Legal);
344 setOperationAction(ISD::UMIN, Ty, Legal);
345 setOperationAction(ISD::VECTOR_SHUFFLE, Ty, Custom);
346 setOperationAction(ISD::VSELECT, Ty, Legal);
347 setOperationAction(ISD::XOR, Ty, Legal);
348
349 if (Ty == MVT::v4i32 || Ty == MVT::v2i64) {
350 setOperationAction(ISD::FP_TO_SINT, Ty, Legal);
351 setOperationAction(ISD::FP_TO_UINT, Ty, Legal);
352 setOperationAction(ISD::SINT_TO_FP, Ty, Legal);
353 setOperationAction(ISD::UINT_TO_FP, Ty, Legal);
354 }
355
356 setOperationAction(ISD::SETCC, Ty, Legal);
357 setCondCodeAction(ISD::SETNE, Ty, Expand);
358 setCondCodeAction(ISD::SETGE, Ty, Expand);
359 setCondCodeAction(ISD::SETGT, Ty, Expand);
360 setCondCodeAction(ISD::SETUGE, Ty, Expand);
361 setCondCodeAction(ISD::SETUGT, Ty, Expand);
362 }
363
364 // Enable MSA support for the given floating-point type and Register class.
365 void MipsSETargetLowering::
addMSAFloatType(MVT::SimpleValueType Ty,const TargetRegisterClass * RC)366 addMSAFloatType(MVT::SimpleValueType Ty, const TargetRegisterClass *RC) {
367 addRegisterClass(Ty, RC);
368
369 // Expand all builtin opcodes.
370 for (unsigned Opc = 0; Opc < ISD::BUILTIN_OP_END; ++Opc)
371 setOperationAction(Opc, Ty, Expand);
372
373 setOperationAction(ISD::LOAD, Ty, Legal);
374 setOperationAction(ISD::STORE, Ty, Legal);
375 setOperationAction(ISD::BITCAST, Ty, Legal);
376 setOperationAction(ISD::EXTRACT_VECTOR_ELT, Ty, Legal);
377 setOperationAction(ISD::INSERT_VECTOR_ELT, Ty, Legal);
378 setOperationAction(ISD::BUILD_VECTOR, Ty, Custom);
379
380 if (Ty != MVT::v8f16) {
381 setOperationAction(ISD::FABS, Ty, Legal);
382 setOperationAction(ISD::FADD, Ty, Legal);
383 setOperationAction(ISD::FDIV, Ty, Legal);
384 setOperationAction(ISD::FEXP2, Ty, Legal);
385 setOperationAction(ISD::FLOG2, Ty, Legal);
386 setOperationAction(ISD::FMA, Ty, Legal);
387 setOperationAction(ISD::FMUL, Ty, Legal);
388 setOperationAction(ISD::FRINT, Ty, Legal);
389 setOperationAction(ISD::FSQRT, Ty, Legal);
390 setOperationAction(ISD::FSUB, Ty, Legal);
391 setOperationAction(ISD::VSELECT, Ty, Legal);
392
393 setOperationAction(ISD::SETCC, Ty, Legal);
394 setCondCodeAction(ISD::SETOGE, Ty, Expand);
395 setCondCodeAction(ISD::SETOGT, Ty, Expand);
396 setCondCodeAction(ISD::SETUGE, Ty, Expand);
397 setCondCodeAction(ISD::SETUGT, Ty, Expand);
398 setCondCodeAction(ISD::SETGE, Ty, Expand);
399 setCondCodeAction(ISD::SETGT, Ty, Expand);
400 }
401 }
402
lowerSELECT(SDValue Op,SelectionDAG & DAG) const403 SDValue MipsSETargetLowering::lowerSELECT(SDValue Op, SelectionDAG &DAG) const {
404 if(!Subtarget.hasMips32r6())
405 return MipsTargetLowering::LowerOperation(Op, DAG);
406
407 EVT ResTy = Op->getValueType(0);
408 SDLoc DL(Op);
409
410 // Although MTC1_D64 takes an i32 and writes an f64, the upper 32 bits of the
411 // floating point register are undefined. Not really an issue as sel.d, which
412 // is produced from an FSELECT node, only looks at bit 0.
413 SDValue Tmp = DAG.getNode(MipsISD::MTC1_D64, DL, MVT::f64, Op->getOperand(0));
414 return DAG.getNode(MipsISD::FSELECT, DL, ResTy, Tmp, Op->getOperand(1),
415 Op->getOperand(2));
416 }
417
418 bool
allowsMisalignedMemoryAccesses(EVT VT,unsigned,unsigned,bool * Fast) const419 MipsSETargetLowering::allowsMisalignedMemoryAccesses(EVT VT,
420 unsigned,
421 unsigned,
422 bool *Fast) const {
423 MVT::SimpleValueType SVT = VT.getSimpleVT().SimpleTy;
424
425 if (Subtarget.systemSupportsUnalignedAccess()) {
426 // MIPS32r6/MIPS64r6 is required to support unaligned access. It's
427 // implementation defined whether this is handled by hardware, software, or
428 // a hybrid of the two but it's expected that most implementations will
429 // handle the majority of cases in hardware.
430 if (Fast)
431 *Fast = true;
432 return true;
433 }
434
435 switch (SVT) {
436 case MVT::i64:
437 case MVT::i32:
438 if (Fast)
439 *Fast = true;
440 return true;
441 default:
442 return false;
443 }
444 }
445
LowerOperation(SDValue Op,SelectionDAG & DAG) const446 SDValue MipsSETargetLowering::LowerOperation(SDValue Op,
447 SelectionDAG &DAG) const {
448 switch(Op.getOpcode()) {
449 case ISD::LOAD: return lowerLOAD(Op, DAG);
450 case ISD::STORE: return lowerSTORE(Op, DAG);
451 case ISD::SMUL_LOHI: return lowerMulDiv(Op, MipsISD::Mult, true, true, DAG);
452 case ISD::UMUL_LOHI: return lowerMulDiv(Op, MipsISD::Multu, true, true, DAG);
453 case ISD::MULHS: return lowerMulDiv(Op, MipsISD::Mult, false, true, DAG);
454 case ISD::MULHU: return lowerMulDiv(Op, MipsISD::Multu, false, true, DAG);
455 case ISD::MUL: return lowerMulDiv(Op, MipsISD::Mult, true, false, DAG);
456 case ISD::SDIVREM: return lowerMulDiv(Op, MipsISD::DivRem, true, true, DAG);
457 case ISD::UDIVREM: return lowerMulDiv(Op, MipsISD::DivRemU, true, true,
458 DAG);
459 case ISD::INTRINSIC_WO_CHAIN: return lowerINTRINSIC_WO_CHAIN(Op, DAG);
460 case ISD::INTRINSIC_W_CHAIN: return lowerINTRINSIC_W_CHAIN(Op, DAG);
461 case ISD::INTRINSIC_VOID: return lowerINTRINSIC_VOID(Op, DAG);
462 case ISD::EXTRACT_VECTOR_ELT: return lowerEXTRACT_VECTOR_ELT(Op, DAG);
463 case ISD::BUILD_VECTOR: return lowerBUILD_VECTOR(Op, DAG);
464 case ISD::VECTOR_SHUFFLE: return lowerVECTOR_SHUFFLE(Op, DAG);
465 case ISD::SELECT: return lowerSELECT(Op, DAG);
466 }
467
468 return MipsTargetLowering::LowerOperation(Op, DAG);
469 }
470
471 // Fold zero extensions into MipsISD::VEXTRACT_[SZ]EXT_ELT
472 //
473 // Performs the following transformations:
474 // - Changes MipsISD::VEXTRACT_[SZ]EXT_ELT to zero extension if its
475 // sign/zero-extension is completely overwritten by the new one performed by
476 // the ISD::AND.
477 // - Removes redundant zero extensions performed by an ISD::AND.
performANDCombine(SDNode * N,SelectionDAG & DAG,TargetLowering::DAGCombinerInfo & DCI,const MipsSubtarget & Subtarget)478 static SDValue performANDCombine(SDNode *N, SelectionDAG &DAG,
479 TargetLowering::DAGCombinerInfo &DCI,
480 const MipsSubtarget &Subtarget) {
481 if (!Subtarget.hasMSA())
482 return SDValue();
483
484 SDValue Op0 = N->getOperand(0);
485 SDValue Op1 = N->getOperand(1);
486 unsigned Op0Opcode = Op0->getOpcode();
487
488 // (and (MipsVExtract[SZ]Ext $a, $b, $c), imm:$d)
489 // where $d + 1 == 2^n and n == 32
490 // or $d + 1 == 2^n and n <= 32 and ZExt
491 // -> (MipsVExtractZExt $a, $b, $c)
492 if (Op0Opcode == MipsISD::VEXTRACT_SEXT_ELT ||
493 Op0Opcode == MipsISD::VEXTRACT_ZEXT_ELT) {
494 ConstantSDNode *Mask = dyn_cast<ConstantSDNode>(Op1);
495
496 if (!Mask)
497 return SDValue();
498
499 int32_t Log2IfPositive = (Mask->getAPIntValue() + 1).exactLogBase2();
500
501 if (Log2IfPositive <= 0)
502 return SDValue(); // Mask+1 is not a power of 2
503
504 SDValue Op0Op2 = Op0->getOperand(2);
505 EVT ExtendTy = cast<VTSDNode>(Op0Op2)->getVT();
506 unsigned ExtendTySize = ExtendTy.getSizeInBits();
507 unsigned Log2 = Log2IfPositive;
508
509 if ((Op0Opcode == MipsISD::VEXTRACT_ZEXT_ELT && Log2 >= ExtendTySize) ||
510 Log2 == ExtendTySize) {
511 SDValue Ops[] = { Op0->getOperand(0), Op0->getOperand(1), Op0Op2 };
512 return DAG.getNode(MipsISD::VEXTRACT_ZEXT_ELT, SDLoc(Op0),
513 Op0->getVTList(),
514 makeArrayRef(Ops, Op0->getNumOperands()));
515 }
516 }
517
518 return SDValue();
519 }
520
521 // Determine if the specified node is a constant vector splat.
522 //
523 // Returns true and sets Imm if:
524 // * N is a ISD::BUILD_VECTOR representing a constant splat
525 //
526 // This function is quite similar to MipsSEDAGToDAGISel::selectVSplat. The
527 // differences are that it assumes the MSA has already been checked and the
528 // arbitrary requirement for a maximum of 32-bit integers isn't applied (and
529 // must not be in order for binsri.d to be selectable).
isVSplat(SDValue N,APInt & Imm,bool IsLittleEndian)530 static bool isVSplat(SDValue N, APInt &Imm, bool IsLittleEndian) {
531 BuildVectorSDNode *Node = dyn_cast<BuildVectorSDNode>(N.getNode());
532
533 if (!Node)
534 return false;
535
536 APInt SplatValue, SplatUndef;
537 unsigned SplatBitSize;
538 bool HasAnyUndefs;
539
540 if (!Node->isConstantSplat(SplatValue, SplatUndef, SplatBitSize, HasAnyUndefs,
541 8, !IsLittleEndian))
542 return false;
543
544 Imm = SplatValue;
545
546 return true;
547 }
548
549 // Test whether the given node is an all-ones build_vector.
isVectorAllOnes(SDValue N)550 static bool isVectorAllOnes(SDValue N) {
551 // Look through bitcasts. Endianness doesn't matter because we are looking
552 // for an all-ones value.
553 if (N->getOpcode() == ISD::BITCAST)
554 N = N->getOperand(0);
555
556 BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(N);
557
558 if (!BVN)
559 return false;
560
561 APInt SplatValue, SplatUndef;
562 unsigned SplatBitSize;
563 bool HasAnyUndefs;
564
565 // Endianness doesn't matter in this context because we are looking for
566 // an all-ones value.
567 if (BVN->isConstantSplat(SplatValue, SplatUndef, SplatBitSize, HasAnyUndefs))
568 return SplatValue.isAllOnesValue();
569
570 return false;
571 }
572
573 // Test whether N is the bitwise inverse of OfNode.
isBitwiseInverse(SDValue N,SDValue OfNode)574 static bool isBitwiseInverse(SDValue N, SDValue OfNode) {
575 if (N->getOpcode() != ISD::XOR)
576 return false;
577
578 if (isVectorAllOnes(N->getOperand(0)))
579 return N->getOperand(1) == OfNode;
580
581 if (isVectorAllOnes(N->getOperand(1)))
582 return N->getOperand(0) == OfNode;
583
584 return false;
585 }
586
587 // Perform combines where ISD::OR is the root node.
588 //
589 // Performs the following transformations:
590 // - (or (and $a, $mask), (and $b, $inv_mask)) => (vselect $mask, $a, $b)
591 // where $inv_mask is the bitwise inverse of $mask and the 'or' has a 128-bit
592 // vector type.
performORCombine(SDNode * N,SelectionDAG & DAG,TargetLowering::DAGCombinerInfo & DCI,const MipsSubtarget & Subtarget)593 static SDValue performORCombine(SDNode *N, SelectionDAG &DAG,
594 TargetLowering::DAGCombinerInfo &DCI,
595 const MipsSubtarget &Subtarget) {
596 if (!Subtarget.hasMSA())
597 return SDValue();
598
599 EVT Ty = N->getValueType(0);
600
601 if (!Ty.is128BitVector())
602 return SDValue();
603
604 SDValue Op0 = N->getOperand(0);
605 SDValue Op1 = N->getOperand(1);
606
607 if (Op0->getOpcode() == ISD::AND && Op1->getOpcode() == ISD::AND) {
608 SDValue Op0Op0 = Op0->getOperand(0);
609 SDValue Op0Op1 = Op0->getOperand(1);
610 SDValue Op1Op0 = Op1->getOperand(0);
611 SDValue Op1Op1 = Op1->getOperand(1);
612 bool IsLittleEndian = !Subtarget.isLittle();
613
614 SDValue IfSet, IfClr, Cond;
615 bool IsConstantMask = false;
616 APInt Mask, InvMask;
617
618 // If Op0Op0 is an appropriate mask, try to find it's inverse in either
619 // Op1Op0, or Op1Op1. Keep track of the Cond, IfSet, and IfClr nodes, while
620 // looking.
621 // IfClr will be set if we find a valid match.
622 if (isVSplat(Op0Op0, Mask, IsLittleEndian)) {
623 Cond = Op0Op0;
624 IfSet = Op0Op1;
625
626 if (isVSplat(Op1Op0, InvMask, IsLittleEndian) &&
627 Mask.getBitWidth() == InvMask.getBitWidth() && Mask == ~InvMask)
628 IfClr = Op1Op1;
629 else if (isVSplat(Op1Op1, InvMask, IsLittleEndian) &&
630 Mask.getBitWidth() == InvMask.getBitWidth() && Mask == ~InvMask)
631 IfClr = Op1Op0;
632
633 IsConstantMask = true;
634 }
635
636 // If IfClr is not yet set, and Op0Op1 is an appropriate mask, try the same
637 // thing again using this mask.
638 // IfClr will be set if we find a valid match.
639 if (!IfClr.getNode() && isVSplat(Op0Op1, Mask, IsLittleEndian)) {
640 Cond = Op0Op1;
641 IfSet = Op0Op0;
642
643 if (isVSplat(Op1Op0, InvMask, IsLittleEndian) &&
644 Mask.getBitWidth() == InvMask.getBitWidth() && Mask == ~InvMask)
645 IfClr = Op1Op1;
646 else if (isVSplat(Op1Op1, InvMask, IsLittleEndian) &&
647 Mask.getBitWidth() == InvMask.getBitWidth() && Mask == ~InvMask)
648 IfClr = Op1Op0;
649
650 IsConstantMask = true;
651 }
652
653 // If IfClr is not yet set, try looking for a non-constant match.
654 // IfClr will be set if we find a valid match amongst the eight
655 // possibilities.
656 if (!IfClr.getNode()) {
657 if (isBitwiseInverse(Op0Op0, Op1Op0)) {
658 Cond = Op1Op0;
659 IfSet = Op1Op1;
660 IfClr = Op0Op1;
661 } else if (isBitwiseInverse(Op0Op1, Op1Op0)) {
662 Cond = Op1Op0;
663 IfSet = Op1Op1;
664 IfClr = Op0Op0;
665 } else if (isBitwiseInverse(Op0Op0, Op1Op1)) {
666 Cond = Op1Op1;
667 IfSet = Op1Op0;
668 IfClr = Op0Op1;
669 } else if (isBitwiseInverse(Op0Op1, Op1Op1)) {
670 Cond = Op1Op1;
671 IfSet = Op1Op0;
672 IfClr = Op0Op0;
673 } else if (isBitwiseInverse(Op1Op0, Op0Op0)) {
674 Cond = Op0Op0;
675 IfSet = Op0Op1;
676 IfClr = Op1Op1;
677 } else if (isBitwiseInverse(Op1Op1, Op0Op0)) {
678 Cond = Op0Op0;
679 IfSet = Op0Op1;
680 IfClr = Op1Op0;
681 } else if (isBitwiseInverse(Op1Op0, Op0Op1)) {
682 Cond = Op0Op1;
683 IfSet = Op0Op0;
684 IfClr = Op1Op1;
685 } else if (isBitwiseInverse(Op1Op1, Op0Op1)) {
686 Cond = Op0Op1;
687 IfSet = Op0Op0;
688 IfClr = Op1Op0;
689 }
690 }
691
692 // At this point, IfClr will be set if we have a valid match.
693 if (!IfClr.getNode())
694 return SDValue();
695
696 assert(Cond.getNode() && IfSet.getNode());
697
698 // Fold degenerate cases.
699 if (IsConstantMask) {
700 if (Mask.isAllOnesValue())
701 return IfSet;
702 else if (Mask == 0)
703 return IfClr;
704 }
705
706 // Transform the DAG into an equivalent VSELECT.
707 return DAG.getNode(ISD::VSELECT, SDLoc(N), Ty, Cond, IfSet, IfClr);
708 }
709
710 return SDValue();
711 }
712
shouldTransformMulToShiftsAddsSubs(APInt C,EVT VT,SelectionDAG & DAG,const MipsSubtarget & Subtarget)713 static bool shouldTransformMulToShiftsAddsSubs(APInt C, EVT VT,
714 SelectionDAG &DAG,
715 const MipsSubtarget &Subtarget) {
716 // Estimate the number of operations the below transform will turn a
717 // constant multiply into. The number is approximately how many powers
718 // of two summed together that the constant can be broken down into.
719
720 SmallVector<APInt, 16> WorkStack(1, C);
721 unsigned Steps = 0;
722 unsigned BitWidth = C.getBitWidth();
723
724 while (!WorkStack.empty()) {
725 APInt Val = WorkStack.pop_back_val();
726
727 if (Val == 0 || Val == 1)
728 continue;
729
730 if (Val.isPowerOf2()) {
731 ++Steps;
732 continue;
733 }
734
735 APInt Floor = APInt(BitWidth, 1) << Val.logBase2();
736 APInt Ceil = Val.isNegative() ? APInt(BitWidth, 0)
737 : APInt(BitWidth, 1) << C.ceilLogBase2();
738
739 if ((Val - Floor).ule(Ceil - Val)) {
740 WorkStack.push_back(Floor);
741 WorkStack.push_back(Val - Floor);
742 ++Steps;
743 continue;
744 }
745
746 WorkStack.push_back(Ceil);
747 WorkStack.push_back(Ceil - Val);
748 ++Steps;
749
750 // If we have taken more than 12[1] / 8[2] steps to attempt the
751 // optimization for a native sized value, it is more than likely that this
752 // optimization will make things worse.
753 //
754 // [1] MIPS64 requires 6 instructions at most to materialize any constant,
755 // multiplication requires at least 4 cycles, but another cycle (or two)
756 // to retrieve the result from the HI/LO registers.
757 //
758 // [2] For MIPS32, more than 8 steps is expensive as the constant could be
759 // materialized in 2 instructions, multiplication requires at least 4
760 // cycles, but another cycle (or two) to retrieve the result from the
761 // HI/LO registers.
762
763 if (Steps > 12 && (Subtarget.isABI_N32() || Subtarget.isABI_N64()))
764 return false;
765
766 if (Steps > 8 && Subtarget.isABI_O32())
767 return false;
768 }
769
770 // If the value being multiplied is not supported natively, we have to pay
771 // an additional legalization cost, conservatively assume an increase in the
772 // cost of 3 instructions per step. This values for this heuristic were
773 // determined experimentally.
774 unsigned RegisterSize = DAG.getTargetLoweringInfo()
775 .getRegisterType(*DAG.getContext(), VT)
776 .getSizeInBits();
777 Steps *= (VT.getSizeInBits() != RegisterSize) * 3;
778 if (Steps > 27)
779 return false;
780
781 return true;
782 }
783
genConstMult(SDValue X,APInt C,const SDLoc & DL,EVT VT,EVT ShiftTy,SelectionDAG & DAG)784 static SDValue genConstMult(SDValue X, APInt C, const SDLoc &DL, EVT VT,
785 EVT ShiftTy, SelectionDAG &DAG) {
786 // Return 0.
787 if (C == 0)
788 return DAG.getConstant(0, DL, VT);
789
790 // Return x.
791 if (C == 1)
792 return X;
793
794 // If c is power of 2, return (shl x, log2(c)).
795 if (C.isPowerOf2())
796 return DAG.getNode(ISD::SHL, DL, VT, X,
797 DAG.getConstant(C.logBase2(), DL, ShiftTy));
798
799 unsigned BitWidth = C.getBitWidth();
800 APInt Floor = APInt(BitWidth, 1) << C.logBase2();
801 APInt Ceil = C.isNegative() ? APInt(BitWidth, 0) :
802 APInt(BitWidth, 1) << C.ceilLogBase2();
803
804 // If |c - floor_c| <= |c - ceil_c|,
805 // where floor_c = pow(2, floor(log2(c))) and ceil_c = pow(2, ceil(log2(c))),
806 // return (add constMult(x, floor_c), constMult(x, c - floor_c)).
807 if ((C - Floor).ule(Ceil - C)) {
808 SDValue Op0 = genConstMult(X, Floor, DL, VT, ShiftTy, DAG);
809 SDValue Op1 = genConstMult(X, C - Floor, DL, VT, ShiftTy, DAG);
810 return DAG.getNode(ISD::ADD, DL, VT, Op0, Op1);
811 }
812
813 // If |c - floor_c| > |c - ceil_c|,
814 // return (sub constMult(x, ceil_c), constMult(x, ceil_c - c)).
815 SDValue Op0 = genConstMult(X, Ceil, DL, VT, ShiftTy, DAG);
816 SDValue Op1 = genConstMult(X, Ceil - C, DL, VT, ShiftTy, DAG);
817 return DAG.getNode(ISD::SUB, DL, VT, Op0, Op1);
818 }
819
performMULCombine(SDNode * N,SelectionDAG & DAG,const TargetLowering::DAGCombinerInfo & DCI,const MipsSETargetLowering * TL,const MipsSubtarget & Subtarget)820 static SDValue performMULCombine(SDNode *N, SelectionDAG &DAG,
821 const TargetLowering::DAGCombinerInfo &DCI,
822 const MipsSETargetLowering *TL,
823 const MipsSubtarget &Subtarget) {
824 EVT VT = N->getValueType(0);
825
826 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1)))
827 if (!VT.isVector() && shouldTransformMulToShiftsAddsSubs(
828 C->getAPIntValue(), VT, DAG, Subtarget))
829 return genConstMult(N->getOperand(0), C->getAPIntValue(), SDLoc(N), VT,
830 TL->getScalarShiftAmountTy(DAG.getDataLayout(), VT),
831 DAG);
832
833 return SDValue(N, 0);
834 }
835
performDSPShiftCombine(unsigned Opc,SDNode * N,EVT Ty,SelectionDAG & DAG,const MipsSubtarget & Subtarget)836 static SDValue performDSPShiftCombine(unsigned Opc, SDNode *N, EVT Ty,
837 SelectionDAG &DAG,
838 const MipsSubtarget &Subtarget) {
839 // See if this is a vector splat immediate node.
840 APInt SplatValue, SplatUndef;
841 unsigned SplatBitSize;
842 bool HasAnyUndefs;
843 unsigned EltSize = Ty.getScalarSizeInBits();
844 BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N->getOperand(1));
845
846 if (!Subtarget.hasDSP())
847 return SDValue();
848
849 if (!BV ||
850 !BV->isConstantSplat(SplatValue, SplatUndef, SplatBitSize, HasAnyUndefs,
851 EltSize, !Subtarget.isLittle()) ||
852 (SplatBitSize != EltSize) ||
853 (SplatValue.getZExtValue() >= EltSize))
854 return SDValue();
855
856 SDLoc DL(N);
857 return DAG.getNode(Opc, DL, Ty, N->getOperand(0),
858 DAG.getConstant(SplatValue.getZExtValue(), DL, MVT::i32));
859 }
860
performSHLCombine(SDNode * N,SelectionDAG & DAG,TargetLowering::DAGCombinerInfo & DCI,const MipsSubtarget & Subtarget)861 static SDValue performSHLCombine(SDNode *N, SelectionDAG &DAG,
862 TargetLowering::DAGCombinerInfo &DCI,
863 const MipsSubtarget &Subtarget) {
864 EVT Ty = N->getValueType(0);
865
866 if ((Ty != MVT::v2i16) && (Ty != MVT::v4i8))
867 return SDValue();
868
869 return performDSPShiftCombine(MipsISD::SHLL_DSP, N, Ty, DAG, Subtarget);
870 }
871
872 // Fold sign-extensions into MipsISD::VEXTRACT_[SZ]EXT_ELT for MSA and fold
873 // constant splats into MipsISD::SHRA_DSP for DSPr2.
874 //
875 // Performs the following transformations:
876 // - Changes MipsISD::VEXTRACT_[SZ]EXT_ELT to sign extension if its
877 // sign/zero-extension is completely overwritten by the new one performed by
878 // the ISD::SRA and ISD::SHL nodes.
879 // - Removes redundant sign extensions performed by an ISD::SRA and ISD::SHL
880 // sequence.
881 //
882 // See performDSPShiftCombine for more information about the transformation
883 // used for DSPr2.
performSRACombine(SDNode * N,SelectionDAG & DAG,TargetLowering::DAGCombinerInfo & DCI,const MipsSubtarget & Subtarget)884 static SDValue performSRACombine(SDNode *N, SelectionDAG &DAG,
885 TargetLowering::DAGCombinerInfo &DCI,
886 const MipsSubtarget &Subtarget) {
887 EVT Ty = N->getValueType(0);
888
889 if (Subtarget.hasMSA()) {
890 SDValue Op0 = N->getOperand(0);
891 SDValue Op1 = N->getOperand(1);
892
893 // (sra (shl (MipsVExtract[SZ]Ext $a, $b, $c), imm:$d), imm:$d)
894 // where $d + sizeof($c) == 32
895 // or $d + sizeof($c) <= 32 and SExt
896 // -> (MipsVExtractSExt $a, $b, $c)
897 if (Op0->getOpcode() == ISD::SHL && Op1 == Op0->getOperand(1)) {
898 SDValue Op0Op0 = Op0->getOperand(0);
899 ConstantSDNode *ShAmount = dyn_cast<ConstantSDNode>(Op1);
900
901 if (!ShAmount)
902 return SDValue();
903
904 if (Op0Op0->getOpcode() != MipsISD::VEXTRACT_SEXT_ELT &&
905 Op0Op0->getOpcode() != MipsISD::VEXTRACT_ZEXT_ELT)
906 return SDValue();
907
908 EVT ExtendTy = cast<VTSDNode>(Op0Op0->getOperand(2))->getVT();
909 unsigned TotalBits = ShAmount->getZExtValue() + ExtendTy.getSizeInBits();
910
911 if (TotalBits == 32 ||
912 (Op0Op0->getOpcode() == MipsISD::VEXTRACT_SEXT_ELT &&
913 TotalBits <= 32)) {
914 SDValue Ops[] = { Op0Op0->getOperand(0), Op0Op0->getOperand(1),
915 Op0Op0->getOperand(2) };
916 return DAG.getNode(MipsISD::VEXTRACT_SEXT_ELT, SDLoc(Op0Op0),
917 Op0Op0->getVTList(),
918 makeArrayRef(Ops, Op0Op0->getNumOperands()));
919 }
920 }
921 }
922
923 if ((Ty != MVT::v2i16) && ((Ty != MVT::v4i8) || !Subtarget.hasDSPR2()))
924 return SDValue();
925
926 return performDSPShiftCombine(MipsISD::SHRA_DSP, N, Ty, DAG, Subtarget);
927 }
928
929
performSRLCombine(SDNode * N,SelectionDAG & DAG,TargetLowering::DAGCombinerInfo & DCI,const MipsSubtarget & Subtarget)930 static SDValue performSRLCombine(SDNode *N, SelectionDAG &DAG,
931 TargetLowering::DAGCombinerInfo &DCI,
932 const MipsSubtarget &Subtarget) {
933 EVT Ty = N->getValueType(0);
934
935 if (((Ty != MVT::v2i16) || !Subtarget.hasDSPR2()) && (Ty != MVT::v4i8))
936 return SDValue();
937
938 return performDSPShiftCombine(MipsISD::SHRL_DSP, N, Ty, DAG, Subtarget);
939 }
940
isLegalDSPCondCode(EVT Ty,ISD::CondCode CC)941 static bool isLegalDSPCondCode(EVT Ty, ISD::CondCode CC) {
942 bool IsV216 = (Ty == MVT::v2i16);
943
944 switch (CC) {
945 case ISD::SETEQ:
946 case ISD::SETNE: return true;
947 case ISD::SETLT:
948 case ISD::SETLE:
949 case ISD::SETGT:
950 case ISD::SETGE: return IsV216;
951 case ISD::SETULT:
952 case ISD::SETULE:
953 case ISD::SETUGT:
954 case ISD::SETUGE: return !IsV216;
955 default: return false;
956 }
957 }
958
performSETCCCombine(SDNode * N,SelectionDAG & DAG)959 static SDValue performSETCCCombine(SDNode *N, SelectionDAG &DAG) {
960 EVT Ty = N->getValueType(0);
961
962 if ((Ty != MVT::v2i16) && (Ty != MVT::v4i8))
963 return SDValue();
964
965 if (!isLegalDSPCondCode(Ty, cast<CondCodeSDNode>(N->getOperand(2))->get()))
966 return SDValue();
967
968 return DAG.getNode(MipsISD::SETCC_DSP, SDLoc(N), Ty, N->getOperand(0),
969 N->getOperand(1), N->getOperand(2));
970 }
971
performVSELECTCombine(SDNode * N,SelectionDAG & DAG)972 static SDValue performVSELECTCombine(SDNode *N, SelectionDAG &DAG) {
973 EVT Ty = N->getValueType(0);
974
975 if (Ty == MVT::v2i16 || Ty == MVT::v4i8) {
976 SDValue SetCC = N->getOperand(0);
977
978 if (SetCC.getOpcode() != MipsISD::SETCC_DSP)
979 return SDValue();
980
981 return DAG.getNode(MipsISD::SELECT_CC_DSP, SDLoc(N), Ty,
982 SetCC.getOperand(0), SetCC.getOperand(1),
983 N->getOperand(1), N->getOperand(2), SetCC.getOperand(2));
984 }
985
986 return SDValue();
987 }
988
performXORCombine(SDNode * N,SelectionDAG & DAG,const MipsSubtarget & Subtarget)989 static SDValue performXORCombine(SDNode *N, SelectionDAG &DAG,
990 const MipsSubtarget &Subtarget) {
991 EVT Ty = N->getValueType(0);
992
993 if (Subtarget.hasMSA() && Ty.is128BitVector() && Ty.isInteger()) {
994 // Try the following combines:
995 // (xor (or $a, $b), (build_vector allones))
996 // (xor (or $a, $b), (bitcast (build_vector allones)))
997 SDValue Op0 = N->getOperand(0);
998 SDValue Op1 = N->getOperand(1);
999 SDValue NotOp;
1000
1001 if (ISD::isBuildVectorAllOnes(Op0.getNode()))
1002 NotOp = Op1;
1003 else if (ISD::isBuildVectorAllOnes(Op1.getNode()))
1004 NotOp = Op0;
1005 else
1006 return SDValue();
1007
1008 if (NotOp->getOpcode() == ISD::OR)
1009 return DAG.getNode(MipsISD::VNOR, SDLoc(N), Ty, NotOp->getOperand(0),
1010 NotOp->getOperand(1));
1011 }
1012
1013 return SDValue();
1014 }
1015
1016 SDValue
PerformDAGCombine(SDNode * N,DAGCombinerInfo & DCI) const1017 MipsSETargetLowering::PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const {
1018 SelectionDAG &DAG = DCI.DAG;
1019 SDValue Val;
1020
1021 switch (N->getOpcode()) {
1022 case ISD::AND:
1023 Val = performANDCombine(N, DAG, DCI, Subtarget);
1024 break;
1025 case ISD::OR:
1026 Val = performORCombine(N, DAG, DCI, Subtarget);
1027 break;
1028 case ISD::MUL:
1029 return performMULCombine(N, DAG, DCI, this, Subtarget);
1030 case ISD::SHL:
1031 Val = performSHLCombine(N, DAG, DCI, Subtarget);
1032 break;
1033 case ISD::SRA:
1034 return performSRACombine(N, DAG, DCI, Subtarget);
1035 case ISD::SRL:
1036 return performSRLCombine(N, DAG, DCI, Subtarget);
1037 case ISD::VSELECT:
1038 return performVSELECTCombine(N, DAG);
1039 case ISD::XOR:
1040 Val = performXORCombine(N, DAG, Subtarget);
1041 break;
1042 case ISD::SETCC:
1043 Val = performSETCCCombine(N, DAG);
1044 break;
1045 }
1046
1047 if (Val.getNode()) {
1048 LLVM_DEBUG(dbgs() << "\nMipsSE DAG Combine:\n";
1049 N->printrWithDepth(dbgs(), &DAG); dbgs() << "\n=> \n";
1050 Val.getNode()->printrWithDepth(dbgs(), &DAG); dbgs() << "\n");
1051 return Val;
1052 }
1053
1054 return MipsTargetLowering::PerformDAGCombine(N, DCI);
1055 }
1056
1057 MachineBasicBlock *
EmitInstrWithCustomInserter(MachineInstr & MI,MachineBasicBlock * BB) const1058 MipsSETargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
1059 MachineBasicBlock *BB) const {
1060 switch (MI.getOpcode()) {
1061 default:
1062 return MipsTargetLowering::EmitInstrWithCustomInserter(MI, BB);
1063 case Mips::BPOSGE32_PSEUDO:
1064 return emitBPOSGE32(MI, BB);
1065 case Mips::SNZ_B_PSEUDO:
1066 return emitMSACBranchPseudo(MI, BB, Mips::BNZ_B);
1067 case Mips::SNZ_H_PSEUDO:
1068 return emitMSACBranchPseudo(MI, BB, Mips::BNZ_H);
1069 case Mips::SNZ_W_PSEUDO:
1070 return emitMSACBranchPseudo(MI, BB, Mips::BNZ_W);
1071 case Mips::SNZ_D_PSEUDO:
1072 return emitMSACBranchPseudo(MI, BB, Mips::BNZ_D);
1073 case Mips::SNZ_V_PSEUDO:
1074 return emitMSACBranchPseudo(MI, BB, Mips::BNZ_V);
1075 case Mips::SZ_B_PSEUDO:
1076 return emitMSACBranchPseudo(MI, BB, Mips::BZ_B);
1077 case Mips::SZ_H_PSEUDO:
1078 return emitMSACBranchPseudo(MI, BB, Mips::BZ_H);
1079 case Mips::SZ_W_PSEUDO:
1080 return emitMSACBranchPseudo(MI, BB, Mips::BZ_W);
1081 case Mips::SZ_D_PSEUDO:
1082 return emitMSACBranchPseudo(MI, BB, Mips::BZ_D);
1083 case Mips::SZ_V_PSEUDO:
1084 return emitMSACBranchPseudo(MI, BB, Mips::BZ_V);
1085 case Mips::COPY_FW_PSEUDO:
1086 return emitCOPY_FW(MI, BB);
1087 case Mips::COPY_FD_PSEUDO:
1088 return emitCOPY_FD(MI, BB);
1089 case Mips::INSERT_FW_PSEUDO:
1090 return emitINSERT_FW(MI, BB);
1091 case Mips::INSERT_FD_PSEUDO:
1092 return emitINSERT_FD(MI, BB);
1093 case Mips::INSERT_B_VIDX_PSEUDO:
1094 case Mips::INSERT_B_VIDX64_PSEUDO:
1095 return emitINSERT_DF_VIDX(MI, BB, 1, false);
1096 case Mips::INSERT_H_VIDX_PSEUDO:
1097 case Mips::INSERT_H_VIDX64_PSEUDO:
1098 return emitINSERT_DF_VIDX(MI, BB, 2, false);
1099 case Mips::INSERT_W_VIDX_PSEUDO:
1100 case Mips::INSERT_W_VIDX64_PSEUDO:
1101 return emitINSERT_DF_VIDX(MI, BB, 4, false);
1102 case Mips::INSERT_D_VIDX_PSEUDO:
1103 case Mips::INSERT_D_VIDX64_PSEUDO:
1104 return emitINSERT_DF_VIDX(MI, BB, 8, false);
1105 case Mips::INSERT_FW_VIDX_PSEUDO:
1106 case Mips::INSERT_FW_VIDX64_PSEUDO:
1107 return emitINSERT_DF_VIDX(MI, BB, 4, true);
1108 case Mips::INSERT_FD_VIDX_PSEUDO:
1109 case Mips::INSERT_FD_VIDX64_PSEUDO:
1110 return emitINSERT_DF_VIDX(MI, BB, 8, true);
1111 case Mips::FILL_FW_PSEUDO:
1112 return emitFILL_FW(MI, BB);
1113 case Mips::FILL_FD_PSEUDO:
1114 return emitFILL_FD(MI, BB);
1115 case Mips::FEXP2_W_1_PSEUDO:
1116 return emitFEXP2_W_1(MI, BB);
1117 case Mips::FEXP2_D_1_PSEUDO:
1118 return emitFEXP2_D_1(MI, BB);
1119 case Mips::ST_F16:
1120 return emitST_F16_PSEUDO(MI, BB);
1121 case Mips::LD_F16:
1122 return emitLD_F16_PSEUDO(MI, BB);
1123 case Mips::MSA_FP_EXTEND_W_PSEUDO:
1124 return emitFPEXTEND_PSEUDO(MI, BB, false);
1125 case Mips::MSA_FP_ROUND_W_PSEUDO:
1126 return emitFPROUND_PSEUDO(MI, BB, false);
1127 case Mips::MSA_FP_EXTEND_D_PSEUDO:
1128 return emitFPEXTEND_PSEUDO(MI, BB, true);
1129 case Mips::MSA_FP_ROUND_D_PSEUDO:
1130 return emitFPROUND_PSEUDO(MI, BB, true);
1131 }
1132 }
1133
isEligibleForTailCallOptimization(const CCState & CCInfo,unsigned NextStackOffset,const MipsFunctionInfo & FI) const1134 bool MipsSETargetLowering::isEligibleForTailCallOptimization(
1135 const CCState &CCInfo, unsigned NextStackOffset,
1136 const MipsFunctionInfo &FI) const {
1137 if (!UseMipsTailCalls)
1138 return false;
1139
1140 // Exception has to be cleared with eret.
1141 if (FI.isISR())
1142 return false;
1143
1144 // Return false if either the callee or caller has a byval argument.
1145 if (CCInfo.getInRegsParamsCount() > 0 || FI.hasByvalArg())
1146 return false;
1147
1148 // Return true if the callee's argument area is no larger than the
1149 // caller's.
1150 return NextStackOffset <= FI.getIncomingArgSize();
1151 }
1152
1153 void MipsSETargetLowering::
getOpndList(SmallVectorImpl<SDValue> & Ops,std::deque<std::pair<unsigned,SDValue>> & RegsToPass,bool IsPICCall,bool GlobalOrExternal,bool InternalLinkage,bool IsCallReloc,CallLoweringInfo & CLI,SDValue Callee,SDValue Chain) const1154 getOpndList(SmallVectorImpl<SDValue> &Ops,
1155 std::deque<std::pair<unsigned, SDValue>> &RegsToPass,
1156 bool IsPICCall, bool GlobalOrExternal, bool InternalLinkage,
1157 bool IsCallReloc, CallLoweringInfo &CLI, SDValue Callee,
1158 SDValue Chain) const {
1159 Ops.push_back(Callee);
1160 MipsTargetLowering::getOpndList(Ops, RegsToPass, IsPICCall, GlobalOrExternal,
1161 InternalLinkage, IsCallReloc, CLI, Callee,
1162 Chain);
1163 }
1164
lowerLOAD(SDValue Op,SelectionDAG & DAG) const1165 SDValue MipsSETargetLowering::lowerLOAD(SDValue Op, SelectionDAG &DAG) const {
1166 LoadSDNode &Nd = *cast<LoadSDNode>(Op);
1167
1168 if (Nd.getMemoryVT() != MVT::f64 || !NoDPLoadStore)
1169 return MipsTargetLowering::lowerLOAD(Op, DAG);
1170
1171 // Replace a double precision load with two i32 loads and a buildpair64.
1172 SDLoc DL(Op);
1173 SDValue Ptr = Nd.getBasePtr(), Chain = Nd.getChain();
1174 EVT PtrVT = Ptr.getValueType();
1175
1176 // i32 load from lower address.
1177 SDValue Lo = DAG.getLoad(MVT::i32, DL, Chain, Ptr, MachinePointerInfo(),
1178 Nd.getAlignment(), Nd.getMemOperand()->getFlags());
1179
1180 // i32 load from higher address.
1181 Ptr = DAG.getNode(ISD::ADD, DL, PtrVT, Ptr, DAG.getConstant(4, DL, PtrVT));
1182 SDValue Hi = DAG.getLoad(
1183 MVT::i32, DL, Lo.getValue(1), Ptr, MachinePointerInfo(),
1184 std::min(Nd.getAlignment(), 4U), Nd.getMemOperand()->getFlags());
1185
1186 if (!Subtarget.isLittle())
1187 std::swap(Lo, Hi);
1188
1189 SDValue BP = DAG.getNode(MipsISD::BuildPairF64, DL, MVT::f64, Lo, Hi);
1190 SDValue Ops[2] = {BP, Hi.getValue(1)};
1191 return DAG.getMergeValues(Ops, DL);
1192 }
1193
lowerSTORE(SDValue Op,SelectionDAG & DAG) const1194 SDValue MipsSETargetLowering::lowerSTORE(SDValue Op, SelectionDAG &DAG) const {
1195 StoreSDNode &Nd = *cast<StoreSDNode>(Op);
1196
1197 if (Nd.getMemoryVT() != MVT::f64 || !NoDPLoadStore)
1198 return MipsTargetLowering::lowerSTORE(Op, DAG);
1199
1200 // Replace a double precision store with two extractelement64s and i32 stores.
1201 SDLoc DL(Op);
1202 SDValue Val = Nd.getValue(), Ptr = Nd.getBasePtr(), Chain = Nd.getChain();
1203 EVT PtrVT = Ptr.getValueType();
1204 SDValue Lo = DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32,
1205 Val, DAG.getConstant(0, DL, MVT::i32));
1206 SDValue Hi = DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32,
1207 Val, DAG.getConstant(1, DL, MVT::i32));
1208
1209 if (!Subtarget.isLittle())
1210 std::swap(Lo, Hi);
1211
1212 // i32 store to lower address.
1213 Chain =
1214 DAG.getStore(Chain, DL, Lo, Ptr, MachinePointerInfo(), Nd.getAlignment(),
1215 Nd.getMemOperand()->getFlags(), Nd.getAAInfo());
1216
1217 // i32 store to higher address.
1218 Ptr = DAG.getNode(ISD::ADD, DL, PtrVT, Ptr, DAG.getConstant(4, DL, PtrVT));
1219 return DAG.getStore(Chain, DL, Hi, Ptr, MachinePointerInfo(),
1220 std::min(Nd.getAlignment(), 4U),
1221 Nd.getMemOperand()->getFlags(), Nd.getAAInfo());
1222 }
1223
lowerMulDiv(SDValue Op,unsigned NewOpc,bool HasLo,bool HasHi,SelectionDAG & DAG) const1224 SDValue MipsSETargetLowering::lowerMulDiv(SDValue Op, unsigned NewOpc,
1225 bool HasLo, bool HasHi,
1226 SelectionDAG &DAG) const {
1227 // MIPS32r6/MIPS64r6 removed accumulator based multiplies.
1228 assert(!Subtarget.hasMips32r6());
1229
1230 EVT Ty = Op.getOperand(0).getValueType();
1231 SDLoc DL(Op);
1232 SDValue Mult = DAG.getNode(NewOpc, DL, MVT::Untyped,
1233 Op.getOperand(0), Op.getOperand(1));
1234 SDValue Lo, Hi;
1235
1236 if (HasLo)
1237 Lo = DAG.getNode(MipsISD::MFLO, DL, Ty, Mult);
1238 if (HasHi)
1239 Hi = DAG.getNode(MipsISD::MFHI, DL, Ty, Mult);
1240
1241 if (!HasLo || !HasHi)
1242 return HasLo ? Lo : Hi;
1243
1244 SDValue Vals[] = { Lo, Hi };
1245 return DAG.getMergeValues(Vals, DL);
1246 }
1247
initAccumulator(SDValue In,const SDLoc & DL,SelectionDAG & DAG)1248 static SDValue initAccumulator(SDValue In, const SDLoc &DL, SelectionDAG &DAG) {
1249 SDValue InLo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, In,
1250 DAG.getConstant(0, DL, MVT::i32));
1251 SDValue InHi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, In,
1252 DAG.getConstant(1, DL, MVT::i32));
1253 return DAG.getNode(MipsISD::MTLOHI, DL, MVT::Untyped, InLo, InHi);
1254 }
1255
extractLOHI(SDValue Op,const SDLoc & DL,SelectionDAG & DAG)1256 static SDValue extractLOHI(SDValue Op, const SDLoc &DL, SelectionDAG &DAG) {
1257 SDValue Lo = DAG.getNode(MipsISD::MFLO, DL, MVT::i32, Op);
1258 SDValue Hi = DAG.getNode(MipsISD::MFHI, DL, MVT::i32, Op);
1259 return DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, Lo, Hi);
1260 }
1261
1262 // This function expands mips intrinsic nodes which have 64-bit input operands
1263 // or output values.
1264 //
1265 // out64 = intrinsic-node in64
1266 // =>
1267 // lo = copy (extract-element (in64, 0))
1268 // hi = copy (extract-element (in64, 1))
1269 // mips-specific-node
1270 // v0 = copy lo
1271 // v1 = copy hi
1272 // out64 = merge-values (v0, v1)
1273 //
lowerDSPIntr(SDValue Op,SelectionDAG & DAG,unsigned Opc)1274 static SDValue lowerDSPIntr(SDValue Op, SelectionDAG &DAG, unsigned Opc) {
1275 SDLoc DL(Op);
1276 bool HasChainIn = Op->getOperand(0).getValueType() == MVT::Other;
1277 SmallVector<SDValue, 3> Ops;
1278 unsigned OpNo = 0;
1279
1280 // See if Op has a chain input.
1281 if (HasChainIn)
1282 Ops.push_back(Op->getOperand(OpNo++));
1283
1284 // The next operand is the intrinsic opcode.
1285 assert(Op->getOperand(OpNo).getOpcode() == ISD::TargetConstant);
1286
1287 // See if the next operand has type i64.
1288 SDValue Opnd = Op->getOperand(++OpNo), In64;
1289
1290 if (Opnd.getValueType() == MVT::i64)
1291 In64 = initAccumulator(Opnd, DL, DAG);
1292 else
1293 Ops.push_back(Opnd);
1294
1295 // Push the remaining operands.
1296 for (++OpNo ; OpNo < Op->getNumOperands(); ++OpNo)
1297 Ops.push_back(Op->getOperand(OpNo));
1298
1299 // Add In64 to the end of the list.
1300 if (In64.getNode())
1301 Ops.push_back(In64);
1302
1303 // Scan output.
1304 SmallVector<EVT, 2> ResTys;
1305
1306 for (SDNode::value_iterator I = Op->value_begin(), E = Op->value_end();
1307 I != E; ++I)
1308 ResTys.push_back((*I == MVT::i64) ? MVT::Untyped : *I);
1309
1310 // Create node.
1311 SDValue Val = DAG.getNode(Opc, DL, ResTys, Ops);
1312 SDValue Out = (ResTys[0] == MVT::Untyped) ? extractLOHI(Val, DL, DAG) : Val;
1313
1314 if (!HasChainIn)
1315 return Out;
1316
1317 assert(Val->getValueType(1) == MVT::Other);
1318 SDValue Vals[] = { Out, SDValue(Val.getNode(), 1) };
1319 return DAG.getMergeValues(Vals, DL);
1320 }
1321
1322 // Lower an MSA copy intrinsic into the specified SelectionDAG node
lowerMSACopyIntr(SDValue Op,SelectionDAG & DAG,unsigned Opc)1323 static SDValue lowerMSACopyIntr(SDValue Op, SelectionDAG &DAG, unsigned Opc) {
1324 SDLoc DL(Op);
1325 SDValue Vec = Op->getOperand(1);
1326 SDValue Idx = Op->getOperand(2);
1327 EVT ResTy = Op->getValueType(0);
1328 EVT EltTy = Vec->getValueType(0).getVectorElementType();
1329
1330 SDValue Result = DAG.getNode(Opc, DL, ResTy, Vec, Idx,
1331 DAG.getValueType(EltTy));
1332
1333 return Result;
1334 }
1335
lowerMSASplatZExt(SDValue Op,unsigned OpNr,SelectionDAG & DAG)1336 static SDValue lowerMSASplatZExt(SDValue Op, unsigned OpNr, SelectionDAG &DAG) {
1337 EVT ResVecTy = Op->getValueType(0);
1338 EVT ViaVecTy = ResVecTy;
1339 bool BigEndian = !DAG.getSubtarget().getTargetTriple().isLittleEndian();
1340 SDLoc DL(Op);
1341
1342 // When ResVecTy == MVT::v2i64, LaneA is the upper 32 bits of the lane and
1343 // LaneB is the lower 32-bits. Otherwise LaneA and LaneB are alternating
1344 // lanes.
1345 SDValue LaneA = Op->getOperand(OpNr);
1346 SDValue LaneB;
1347
1348 if (ResVecTy == MVT::v2i64) {
1349 // In case of the index being passed as an immediate value, set the upper
1350 // lane to 0 so that the splati.d instruction can be matched.
1351 if (isa<ConstantSDNode>(LaneA))
1352 LaneB = DAG.getConstant(0, DL, MVT::i32);
1353 // Having the index passed in a register, set the upper lane to the same
1354 // value as the lower - this results in the BUILD_VECTOR node not being
1355 // expanded through stack. This way we are able to pattern match the set of
1356 // nodes created here to splat.d.
1357 else
1358 LaneB = LaneA;
1359 ViaVecTy = MVT::v4i32;
1360 if(BigEndian)
1361 std::swap(LaneA, LaneB);
1362 } else
1363 LaneB = LaneA;
1364
1365 SDValue Ops[16] = { LaneA, LaneB, LaneA, LaneB, LaneA, LaneB, LaneA, LaneB,
1366 LaneA, LaneB, LaneA, LaneB, LaneA, LaneB, LaneA, LaneB };
1367
1368 SDValue Result = DAG.getBuildVector(
1369 ViaVecTy, DL, makeArrayRef(Ops, ViaVecTy.getVectorNumElements()));
1370
1371 if (ViaVecTy != ResVecTy) {
1372 SDValue One = DAG.getConstant(1, DL, ViaVecTy);
1373 Result = DAG.getNode(ISD::BITCAST, DL, ResVecTy,
1374 DAG.getNode(ISD::AND, DL, ViaVecTy, Result, One));
1375 }
1376
1377 return Result;
1378 }
1379
lowerMSASplatImm(SDValue Op,unsigned ImmOp,SelectionDAG & DAG,bool IsSigned=false)1380 static SDValue lowerMSASplatImm(SDValue Op, unsigned ImmOp, SelectionDAG &DAG,
1381 bool IsSigned = false) {
1382 return DAG.getConstant(
1383 APInt(Op->getValueType(0).getScalarType().getSizeInBits(),
1384 Op->getConstantOperandVal(ImmOp), IsSigned),
1385 SDLoc(Op), Op->getValueType(0));
1386 }
1387
getBuildVectorSplat(EVT VecTy,SDValue SplatValue,bool BigEndian,SelectionDAG & DAG)1388 static SDValue getBuildVectorSplat(EVT VecTy, SDValue SplatValue,
1389 bool BigEndian, SelectionDAG &DAG) {
1390 EVT ViaVecTy = VecTy;
1391 SDValue SplatValueA = SplatValue;
1392 SDValue SplatValueB = SplatValue;
1393 SDLoc DL(SplatValue);
1394
1395 if (VecTy == MVT::v2i64) {
1396 // v2i64 BUILD_VECTOR must be performed via v4i32 so split into i32's.
1397 ViaVecTy = MVT::v4i32;
1398
1399 SplatValueA = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, SplatValue);
1400 SplatValueB = DAG.getNode(ISD::SRL, DL, MVT::i64, SplatValue,
1401 DAG.getConstant(32, DL, MVT::i32));
1402 SplatValueB = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, SplatValueB);
1403 }
1404
1405 // We currently hold the parts in little endian order. Swap them if
1406 // necessary.
1407 if (BigEndian)
1408 std::swap(SplatValueA, SplatValueB);
1409
1410 SDValue Ops[16] = { SplatValueA, SplatValueB, SplatValueA, SplatValueB,
1411 SplatValueA, SplatValueB, SplatValueA, SplatValueB,
1412 SplatValueA, SplatValueB, SplatValueA, SplatValueB,
1413 SplatValueA, SplatValueB, SplatValueA, SplatValueB };
1414
1415 SDValue Result = DAG.getBuildVector(
1416 ViaVecTy, DL, makeArrayRef(Ops, ViaVecTy.getVectorNumElements()));
1417
1418 if (VecTy != ViaVecTy)
1419 Result = DAG.getNode(ISD::BITCAST, DL, VecTy, Result);
1420
1421 return Result;
1422 }
1423
lowerMSABinaryBitImmIntr(SDValue Op,SelectionDAG & DAG,unsigned Opc,SDValue Imm,bool BigEndian)1424 static SDValue lowerMSABinaryBitImmIntr(SDValue Op, SelectionDAG &DAG,
1425 unsigned Opc, SDValue Imm,
1426 bool BigEndian) {
1427 EVT VecTy = Op->getValueType(0);
1428 SDValue Exp2Imm;
1429 SDLoc DL(Op);
1430
1431 // The DAG Combiner can't constant fold bitcasted vectors yet so we must do it
1432 // here for now.
1433 if (VecTy == MVT::v2i64) {
1434 if (ConstantSDNode *CImm = dyn_cast<ConstantSDNode>(Imm)) {
1435 APInt BitImm = APInt(64, 1) << CImm->getAPIntValue();
1436
1437 SDValue BitImmHiOp = DAG.getConstant(BitImm.lshr(32).trunc(32), DL,
1438 MVT::i32);
1439 SDValue BitImmLoOp = DAG.getConstant(BitImm.trunc(32), DL, MVT::i32);
1440
1441 if (BigEndian)
1442 std::swap(BitImmLoOp, BitImmHiOp);
1443
1444 Exp2Imm = DAG.getNode(
1445 ISD::BITCAST, DL, MVT::v2i64,
1446 DAG.getBuildVector(MVT::v4i32, DL,
1447 {BitImmLoOp, BitImmHiOp, BitImmLoOp, BitImmHiOp}));
1448 }
1449 }
1450
1451 if (!Exp2Imm.getNode()) {
1452 // We couldnt constant fold, do a vector shift instead
1453
1454 // Extend i32 to i64 if necessary. Sign or zero extend doesn't matter since
1455 // only values 0-63 are valid.
1456 if (VecTy == MVT::v2i64)
1457 Imm = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, Imm);
1458
1459 Exp2Imm = getBuildVectorSplat(VecTy, Imm, BigEndian, DAG);
1460
1461 Exp2Imm = DAG.getNode(ISD::SHL, DL, VecTy, DAG.getConstant(1, DL, VecTy),
1462 Exp2Imm);
1463 }
1464
1465 return DAG.getNode(Opc, DL, VecTy, Op->getOperand(1), Exp2Imm);
1466 }
1467
truncateVecElts(SDValue Op,SelectionDAG & DAG)1468 static SDValue truncateVecElts(SDValue Op, SelectionDAG &DAG) {
1469 SDLoc DL(Op);
1470 EVT ResTy = Op->getValueType(0);
1471 SDValue Vec = Op->getOperand(2);
1472 bool BigEndian = !DAG.getSubtarget().getTargetTriple().isLittleEndian();
1473 MVT ResEltTy = ResTy == MVT::v2i64 ? MVT::i64 : MVT::i32;
1474 SDValue ConstValue = DAG.getConstant(Vec.getScalarValueSizeInBits() - 1,
1475 DL, ResEltTy);
1476 SDValue SplatVec = getBuildVectorSplat(ResTy, ConstValue, BigEndian, DAG);
1477
1478 return DAG.getNode(ISD::AND, DL, ResTy, Vec, SplatVec);
1479 }
1480
lowerMSABitClear(SDValue Op,SelectionDAG & DAG)1481 static SDValue lowerMSABitClear(SDValue Op, SelectionDAG &DAG) {
1482 EVT ResTy = Op->getValueType(0);
1483 SDLoc DL(Op);
1484 SDValue One = DAG.getConstant(1, DL, ResTy);
1485 SDValue Bit = DAG.getNode(ISD::SHL, DL, ResTy, One, truncateVecElts(Op, DAG));
1486
1487 return DAG.getNode(ISD::AND, DL, ResTy, Op->getOperand(1),
1488 DAG.getNOT(DL, Bit, ResTy));
1489 }
1490
lowerMSABitClearImm(SDValue Op,SelectionDAG & DAG)1491 static SDValue lowerMSABitClearImm(SDValue Op, SelectionDAG &DAG) {
1492 SDLoc DL(Op);
1493 EVT ResTy = Op->getValueType(0);
1494 APInt BitImm = APInt(ResTy.getScalarSizeInBits(), 1)
1495 << cast<ConstantSDNode>(Op->getOperand(2))->getAPIntValue();
1496 SDValue BitMask = DAG.getConstant(~BitImm, DL, ResTy);
1497
1498 return DAG.getNode(ISD::AND, DL, ResTy, Op->getOperand(1), BitMask);
1499 }
1500
lowerINTRINSIC_WO_CHAIN(SDValue Op,SelectionDAG & DAG) const1501 SDValue MipsSETargetLowering::lowerINTRINSIC_WO_CHAIN(SDValue Op,
1502 SelectionDAG &DAG) const {
1503 SDLoc DL(Op);
1504 unsigned Intrinsic = cast<ConstantSDNode>(Op->getOperand(0))->getZExtValue();
1505 switch (Intrinsic) {
1506 default:
1507 return SDValue();
1508 case Intrinsic::mips_shilo:
1509 return lowerDSPIntr(Op, DAG, MipsISD::SHILO);
1510 case Intrinsic::mips_dpau_h_qbl:
1511 return lowerDSPIntr(Op, DAG, MipsISD::DPAU_H_QBL);
1512 case Intrinsic::mips_dpau_h_qbr:
1513 return lowerDSPIntr(Op, DAG, MipsISD::DPAU_H_QBR);
1514 case Intrinsic::mips_dpsu_h_qbl:
1515 return lowerDSPIntr(Op, DAG, MipsISD::DPSU_H_QBL);
1516 case Intrinsic::mips_dpsu_h_qbr:
1517 return lowerDSPIntr(Op, DAG, MipsISD::DPSU_H_QBR);
1518 case Intrinsic::mips_dpa_w_ph:
1519 return lowerDSPIntr(Op, DAG, MipsISD::DPA_W_PH);
1520 case Intrinsic::mips_dps_w_ph:
1521 return lowerDSPIntr(Op, DAG, MipsISD::DPS_W_PH);
1522 case Intrinsic::mips_dpax_w_ph:
1523 return lowerDSPIntr(Op, DAG, MipsISD::DPAX_W_PH);
1524 case Intrinsic::mips_dpsx_w_ph:
1525 return lowerDSPIntr(Op, DAG, MipsISD::DPSX_W_PH);
1526 case Intrinsic::mips_mulsa_w_ph:
1527 return lowerDSPIntr(Op, DAG, MipsISD::MULSA_W_PH);
1528 case Intrinsic::mips_mult:
1529 return lowerDSPIntr(Op, DAG, MipsISD::Mult);
1530 case Intrinsic::mips_multu:
1531 return lowerDSPIntr(Op, DAG, MipsISD::Multu);
1532 case Intrinsic::mips_madd:
1533 return lowerDSPIntr(Op, DAG, MipsISD::MAdd);
1534 case Intrinsic::mips_maddu:
1535 return lowerDSPIntr(Op, DAG, MipsISD::MAddu);
1536 case Intrinsic::mips_msub:
1537 return lowerDSPIntr(Op, DAG, MipsISD::MSub);
1538 case Intrinsic::mips_msubu:
1539 return lowerDSPIntr(Op, DAG, MipsISD::MSubu);
1540 case Intrinsic::mips_addv_b:
1541 case Intrinsic::mips_addv_h:
1542 case Intrinsic::mips_addv_w:
1543 case Intrinsic::mips_addv_d:
1544 return DAG.getNode(ISD::ADD, DL, Op->getValueType(0), Op->getOperand(1),
1545 Op->getOperand(2));
1546 case Intrinsic::mips_addvi_b:
1547 case Intrinsic::mips_addvi_h:
1548 case Intrinsic::mips_addvi_w:
1549 case Intrinsic::mips_addvi_d:
1550 return DAG.getNode(ISD::ADD, DL, Op->getValueType(0), Op->getOperand(1),
1551 lowerMSASplatImm(Op, 2, DAG));
1552 case Intrinsic::mips_and_v:
1553 return DAG.getNode(ISD::AND, DL, Op->getValueType(0), Op->getOperand(1),
1554 Op->getOperand(2));
1555 case Intrinsic::mips_andi_b:
1556 return DAG.getNode(ISD::AND, DL, Op->getValueType(0), Op->getOperand(1),
1557 lowerMSASplatImm(Op, 2, DAG));
1558 case Intrinsic::mips_bclr_b:
1559 case Intrinsic::mips_bclr_h:
1560 case Intrinsic::mips_bclr_w:
1561 case Intrinsic::mips_bclr_d:
1562 return lowerMSABitClear(Op, DAG);
1563 case Intrinsic::mips_bclri_b:
1564 case Intrinsic::mips_bclri_h:
1565 case Intrinsic::mips_bclri_w:
1566 case Intrinsic::mips_bclri_d:
1567 return lowerMSABitClearImm(Op, DAG);
1568 case Intrinsic::mips_binsli_b:
1569 case Intrinsic::mips_binsli_h:
1570 case Intrinsic::mips_binsli_w:
1571 case Intrinsic::mips_binsli_d: {
1572 // binsli_x(IfClear, IfSet, nbits) -> (vselect LBitsMask, IfSet, IfClear)
1573 EVT VecTy = Op->getValueType(0);
1574 EVT EltTy = VecTy.getVectorElementType();
1575 if (Op->getConstantOperandVal(3) >= EltTy.getSizeInBits())
1576 report_fatal_error("Immediate out of range");
1577 APInt Mask = APInt::getHighBitsSet(EltTy.getSizeInBits(),
1578 Op->getConstantOperandVal(3) + 1);
1579 return DAG.getNode(ISD::VSELECT, DL, VecTy,
1580 DAG.getConstant(Mask, DL, VecTy, true),
1581 Op->getOperand(2), Op->getOperand(1));
1582 }
1583 case Intrinsic::mips_binsri_b:
1584 case Intrinsic::mips_binsri_h:
1585 case Intrinsic::mips_binsri_w:
1586 case Intrinsic::mips_binsri_d: {
1587 // binsri_x(IfClear, IfSet, nbits) -> (vselect RBitsMask, IfSet, IfClear)
1588 EVT VecTy = Op->getValueType(0);
1589 EVT EltTy = VecTy.getVectorElementType();
1590 if (Op->getConstantOperandVal(3) >= EltTy.getSizeInBits())
1591 report_fatal_error("Immediate out of range");
1592 APInt Mask = APInt::getLowBitsSet(EltTy.getSizeInBits(),
1593 Op->getConstantOperandVal(3) + 1);
1594 return DAG.getNode(ISD::VSELECT, DL, VecTy,
1595 DAG.getConstant(Mask, DL, VecTy, true),
1596 Op->getOperand(2), Op->getOperand(1));
1597 }
1598 case Intrinsic::mips_bmnz_v:
1599 return DAG.getNode(ISD::VSELECT, DL, Op->getValueType(0), Op->getOperand(3),
1600 Op->getOperand(2), Op->getOperand(1));
1601 case Intrinsic::mips_bmnzi_b:
1602 return DAG.getNode(ISD::VSELECT, DL, Op->getValueType(0),
1603 lowerMSASplatImm(Op, 3, DAG), Op->getOperand(2),
1604 Op->getOperand(1));
1605 case Intrinsic::mips_bmz_v:
1606 return DAG.getNode(ISD::VSELECT, DL, Op->getValueType(0), Op->getOperand(3),
1607 Op->getOperand(1), Op->getOperand(2));
1608 case Intrinsic::mips_bmzi_b:
1609 return DAG.getNode(ISD::VSELECT, DL, Op->getValueType(0),
1610 lowerMSASplatImm(Op, 3, DAG), Op->getOperand(1),
1611 Op->getOperand(2));
1612 case Intrinsic::mips_bneg_b:
1613 case Intrinsic::mips_bneg_h:
1614 case Intrinsic::mips_bneg_w:
1615 case Intrinsic::mips_bneg_d: {
1616 EVT VecTy = Op->getValueType(0);
1617 SDValue One = DAG.getConstant(1, DL, VecTy);
1618
1619 return DAG.getNode(ISD::XOR, DL, VecTy, Op->getOperand(1),
1620 DAG.getNode(ISD::SHL, DL, VecTy, One,
1621 truncateVecElts(Op, DAG)));
1622 }
1623 case Intrinsic::mips_bnegi_b:
1624 case Intrinsic::mips_bnegi_h:
1625 case Intrinsic::mips_bnegi_w:
1626 case Intrinsic::mips_bnegi_d:
1627 return lowerMSABinaryBitImmIntr(Op, DAG, ISD::XOR, Op->getOperand(2),
1628 !Subtarget.isLittle());
1629 case Intrinsic::mips_bnz_b:
1630 case Intrinsic::mips_bnz_h:
1631 case Intrinsic::mips_bnz_w:
1632 case Intrinsic::mips_bnz_d:
1633 return DAG.getNode(MipsISD::VALL_NONZERO, DL, Op->getValueType(0),
1634 Op->getOperand(1));
1635 case Intrinsic::mips_bnz_v:
1636 return DAG.getNode(MipsISD::VANY_NONZERO, DL, Op->getValueType(0),
1637 Op->getOperand(1));
1638 case Intrinsic::mips_bsel_v:
1639 // bsel_v(Mask, IfClear, IfSet) -> (vselect Mask, IfSet, IfClear)
1640 return DAG.getNode(ISD::VSELECT, DL, Op->getValueType(0),
1641 Op->getOperand(1), Op->getOperand(3),
1642 Op->getOperand(2));
1643 case Intrinsic::mips_bseli_b:
1644 // bseli_v(Mask, IfClear, IfSet) -> (vselect Mask, IfSet, IfClear)
1645 return DAG.getNode(ISD::VSELECT, DL, Op->getValueType(0),
1646 Op->getOperand(1), lowerMSASplatImm(Op, 3, DAG),
1647 Op->getOperand(2));
1648 case Intrinsic::mips_bset_b:
1649 case Intrinsic::mips_bset_h:
1650 case Intrinsic::mips_bset_w:
1651 case Intrinsic::mips_bset_d: {
1652 EVT VecTy = Op->getValueType(0);
1653 SDValue One = DAG.getConstant(1, DL, VecTy);
1654
1655 return DAG.getNode(ISD::OR, DL, VecTy, Op->getOperand(1),
1656 DAG.getNode(ISD::SHL, DL, VecTy, One,
1657 truncateVecElts(Op, DAG)));
1658 }
1659 case Intrinsic::mips_bseti_b:
1660 case Intrinsic::mips_bseti_h:
1661 case Intrinsic::mips_bseti_w:
1662 case Intrinsic::mips_bseti_d:
1663 return lowerMSABinaryBitImmIntr(Op, DAG, ISD::OR, Op->getOperand(2),
1664 !Subtarget.isLittle());
1665 case Intrinsic::mips_bz_b:
1666 case Intrinsic::mips_bz_h:
1667 case Intrinsic::mips_bz_w:
1668 case Intrinsic::mips_bz_d:
1669 return DAG.getNode(MipsISD::VALL_ZERO, DL, Op->getValueType(0),
1670 Op->getOperand(1));
1671 case Intrinsic::mips_bz_v:
1672 return DAG.getNode(MipsISD::VANY_ZERO, DL, Op->getValueType(0),
1673 Op->getOperand(1));
1674 case Intrinsic::mips_ceq_b:
1675 case Intrinsic::mips_ceq_h:
1676 case Intrinsic::mips_ceq_w:
1677 case Intrinsic::mips_ceq_d:
1678 return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1679 Op->getOperand(2), ISD::SETEQ);
1680 case Intrinsic::mips_ceqi_b:
1681 case Intrinsic::mips_ceqi_h:
1682 case Intrinsic::mips_ceqi_w:
1683 case Intrinsic::mips_ceqi_d:
1684 return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1685 lowerMSASplatImm(Op, 2, DAG, true), ISD::SETEQ);
1686 case Intrinsic::mips_cle_s_b:
1687 case Intrinsic::mips_cle_s_h:
1688 case Intrinsic::mips_cle_s_w:
1689 case Intrinsic::mips_cle_s_d:
1690 return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1691 Op->getOperand(2), ISD::SETLE);
1692 case Intrinsic::mips_clei_s_b:
1693 case Intrinsic::mips_clei_s_h:
1694 case Intrinsic::mips_clei_s_w:
1695 case Intrinsic::mips_clei_s_d:
1696 return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1697 lowerMSASplatImm(Op, 2, DAG, true), ISD::SETLE);
1698 case Intrinsic::mips_cle_u_b:
1699 case Intrinsic::mips_cle_u_h:
1700 case Intrinsic::mips_cle_u_w:
1701 case Intrinsic::mips_cle_u_d:
1702 return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1703 Op->getOperand(2), ISD::SETULE);
1704 case Intrinsic::mips_clei_u_b:
1705 case Intrinsic::mips_clei_u_h:
1706 case Intrinsic::mips_clei_u_w:
1707 case Intrinsic::mips_clei_u_d:
1708 return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1709 lowerMSASplatImm(Op, 2, DAG), ISD::SETULE);
1710 case Intrinsic::mips_clt_s_b:
1711 case Intrinsic::mips_clt_s_h:
1712 case Intrinsic::mips_clt_s_w:
1713 case Intrinsic::mips_clt_s_d:
1714 return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1715 Op->getOperand(2), ISD::SETLT);
1716 case Intrinsic::mips_clti_s_b:
1717 case Intrinsic::mips_clti_s_h:
1718 case Intrinsic::mips_clti_s_w:
1719 case Intrinsic::mips_clti_s_d:
1720 return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1721 lowerMSASplatImm(Op, 2, DAG, true), ISD::SETLT);
1722 case Intrinsic::mips_clt_u_b:
1723 case Intrinsic::mips_clt_u_h:
1724 case Intrinsic::mips_clt_u_w:
1725 case Intrinsic::mips_clt_u_d:
1726 return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1727 Op->getOperand(2), ISD::SETULT);
1728 case Intrinsic::mips_clti_u_b:
1729 case Intrinsic::mips_clti_u_h:
1730 case Intrinsic::mips_clti_u_w:
1731 case Intrinsic::mips_clti_u_d:
1732 return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1733 lowerMSASplatImm(Op, 2, DAG), ISD::SETULT);
1734 case Intrinsic::mips_copy_s_b:
1735 case Intrinsic::mips_copy_s_h:
1736 case Intrinsic::mips_copy_s_w:
1737 return lowerMSACopyIntr(Op, DAG, MipsISD::VEXTRACT_SEXT_ELT);
1738 case Intrinsic::mips_copy_s_d:
1739 if (Subtarget.hasMips64())
1740 // Lower directly into VEXTRACT_SEXT_ELT since i64 is legal on Mips64.
1741 return lowerMSACopyIntr(Op, DAG, MipsISD::VEXTRACT_SEXT_ELT);
1742 else {
1743 // Lower into the generic EXTRACT_VECTOR_ELT node and let the type
1744 // legalizer and EXTRACT_VECTOR_ELT lowering sort it out.
1745 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(Op),
1746 Op->getValueType(0), Op->getOperand(1),
1747 Op->getOperand(2));
1748 }
1749 case Intrinsic::mips_copy_u_b:
1750 case Intrinsic::mips_copy_u_h:
1751 case Intrinsic::mips_copy_u_w:
1752 return lowerMSACopyIntr(Op, DAG, MipsISD::VEXTRACT_ZEXT_ELT);
1753 case Intrinsic::mips_copy_u_d:
1754 if (Subtarget.hasMips64())
1755 // Lower directly into VEXTRACT_ZEXT_ELT since i64 is legal on Mips64.
1756 return lowerMSACopyIntr(Op, DAG, MipsISD::VEXTRACT_ZEXT_ELT);
1757 else {
1758 // Lower into the generic EXTRACT_VECTOR_ELT node and let the type
1759 // legalizer and EXTRACT_VECTOR_ELT lowering sort it out.
1760 // Note: When i64 is illegal, this results in copy_s.w instructions
1761 // instead of copy_u.w instructions. This makes no difference to the
1762 // behaviour since i64 is only illegal when the register file is 32-bit.
1763 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(Op),
1764 Op->getValueType(0), Op->getOperand(1),
1765 Op->getOperand(2));
1766 }
1767 case Intrinsic::mips_div_s_b:
1768 case Intrinsic::mips_div_s_h:
1769 case Intrinsic::mips_div_s_w:
1770 case Intrinsic::mips_div_s_d:
1771 return DAG.getNode(ISD::SDIV, DL, Op->getValueType(0), Op->getOperand(1),
1772 Op->getOperand(2));
1773 case Intrinsic::mips_div_u_b:
1774 case Intrinsic::mips_div_u_h:
1775 case Intrinsic::mips_div_u_w:
1776 case Intrinsic::mips_div_u_d:
1777 return DAG.getNode(ISD::UDIV, DL, Op->getValueType(0), Op->getOperand(1),
1778 Op->getOperand(2));
1779 case Intrinsic::mips_fadd_w:
1780 case Intrinsic::mips_fadd_d:
1781 // TODO: If intrinsics have fast-math-flags, propagate them.
1782 return DAG.getNode(ISD::FADD, DL, Op->getValueType(0), Op->getOperand(1),
1783 Op->getOperand(2));
1784 // Don't lower mips_fcaf_[wd] since LLVM folds SETFALSE condcodes away
1785 case Intrinsic::mips_fceq_w:
1786 case Intrinsic::mips_fceq_d:
1787 return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1788 Op->getOperand(2), ISD::SETOEQ);
1789 case Intrinsic::mips_fcle_w:
1790 case Intrinsic::mips_fcle_d:
1791 return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1792 Op->getOperand(2), ISD::SETOLE);
1793 case Intrinsic::mips_fclt_w:
1794 case Intrinsic::mips_fclt_d:
1795 return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1796 Op->getOperand(2), ISD::SETOLT);
1797 case Intrinsic::mips_fcne_w:
1798 case Intrinsic::mips_fcne_d:
1799 return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1800 Op->getOperand(2), ISD::SETONE);
1801 case Intrinsic::mips_fcor_w:
1802 case Intrinsic::mips_fcor_d:
1803 return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1804 Op->getOperand(2), ISD::SETO);
1805 case Intrinsic::mips_fcueq_w:
1806 case Intrinsic::mips_fcueq_d:
1807 return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1808 Op->getOperand(2), ISD::SETUEQ);
1809 case Intrinsic::mips_fcule_w:
1810 case Intrinsic::mips_fcule_d:
1811 return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1812 Op->getOperand(2), ISD::SETULE);
1813 case Intrinsic::mips_fcult_w:
1814 case Intrinsic::mips_fcult_d:
1815 return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1816 Op->getOperand(2), ISD::SETULT);
1817 case Intrinsic::mips_fcun_w:
1818 case Intrinsic::mips_fcun_d:
1819 return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1820 Op->getOperand(2), ISD::SETUO);
1821 case Intrinsic::mips_fcune_w:
1822 case Intrinsic::mips_fcune_d:
1823 return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1824 Op->getOperand(2), ISD::SETUNE);
1825 case Intrinsic::mips_fdiv_w:
1826 case Intrinsic::mips_fdiv_d:
1827 // TODO: If intrinsics have fast-math-flags, propagate them.
1828 return DAG.getNode(ISD::FDIV, DL, Op->getValueType(0), Op->getOperand(1),
1829 Op->getOperand(2));
1830 case Intrinsic::mips_ffint_u_w:
1831 case Intrinsic::mips_ffint_u_d:
1832 return DAG.getNode(ISD::UINT_TO_FP, DL, Op->getValueType(0),
1833 Op->getOperand(1));
1834 case Intrinsic::mips_ffint_s_w:
1835 case Intrinsic::mips_ffint_s_d:
1836 return DAG.getNode(ISD::SINT_TO_FP, DL, Op->getValueType(0),
1837 Op->getOperand(1));
1838 case Intrinsic::mips_fill_b:
1839 case Intrinsic::mips_fill_h:
1840 case Intrinsic::mips_fill_w:
1841 case Intrinsic::mips_fill_d: {
1842 EVT ResTy = Op->getValueType(0);
1843 SmallVector<SDValue, 16> Ops(ResTy.getVectorNumElements(),
1844 Op->getOperand(1));
1845
1846 // If ResTy is v2i64 then the type legalizer will break this node down into
1847 // an equivalent v4i32.
1848 return DAG.getBuildVector(ResTy, DL, Ops);
1849 }
1850 case Intrinsic::mips_fexp2_w:
1851 case Intrinsic::mips_fexp2_d: {
1852 // TODO: If intrinsics have fast-math-flags, propagate them.
1853 EVT ResTy = Op->getValueType(0);
1854 return DAG.getNode(
1855 ISD::FMUL, SDLoc(Op), ResTy, Op->getOperand(1),
1856 DAG.getNode(ISD::FEXP2, SDLoc(Op), ResTy, Op->getOperand(2)));
1857 }
1858 case Intrinsic::mips_flog2_w:
1859 case Intrinsic::mips_flog2_d:
1860 return DAG.getNode(ISD::FLOG2, DL, Op->getValueType(0), Op->getOperand(1));
1861 case Intrinsic::mips_fmadd_w:
1862 case Intrinsic::mips_fmadd_d:
1863 return DAG.getNode(ISD::FMA, SDLoc(Op), Op->getValueType(0),
1864 Op->getOperand(1), Op->getOperand(2), Op->getOperand(3));
1865 case Intrinsic::mips_fmul_w:
1866 case Intrinsic::mips_fmul_d:
1867 // TODO: If intrinsics have fast-math-flags, propagate them.
1868 return DAG.getNode(ISD::FMUL, DL, Op->getValueType(0), Op->getOperand(1),
1869 Op->getOperand(2));
1870 case Intrinsic::mips_fmsub_w:
1871 case Intrinsic::mips_fmsub_d: {
1872 // TODO: If intrinsics have fast-math-flags, propagate them.
1873 return DAG.getNode(MipsISD::FMS, SDLoc(Op), Op->getValueType(0),
1874 Op->getOperand(1), Op->getOperand(2), Op->getOperand(3));
1875 }
1876 case Intrinsic::mips_frint_w:
1877 case Intrinsic::mips_frint_d:
1878 return DAG.getNode(ISD::FRINT, DL, Op->getValueType(0), Op->getOperand(1));
1879 case Intrinsic::mips_fsqrt_w:
1880 case Intrinsic::mips_fsqrt_d:
1881 return DAG.getNode(ISD::FSQRT, DL, Op->getValueType(0), Op->getOperand(1));
1882 case Intrinsic::mips_fsub_w:
1883 case Intrinsic::mips_fsub_d:
1884 // TODO: If intrinsics have fast-math-flags, propagate them.
1885 return DAG.getNode(ISD::FSUB, DL, Op->getValueType(0), Op->getOperand(1),
1886 Op->getOperand(2));
1887 case Intrinsic::mips_ftrunc_u_w:
1888 case Intrinsic::mips_ftrunc_u_d:
1889 return DAG.getNode(ISD::FP_TO_UINT, DL, Op->getValueType(0),
1890 Op->getOperand(1));
1891 case Intrinsic::mips_ftrunc_s_w:
1892 case Intrinsic::mips_ftrunc_s_d:
1893 return DAG.getNode(ISD::FP_TO_SINT, DL, Op->getValueType(0),
1894 Op->getOperand(1));
1895 case Intrinsic::mips_ilvev_b:
1896 case Intrinsic::mips_ilvev_h:
1897 case Intrinsic::mips_ilvev_w:
1898 case Intrinsic::mips_ilvev_d:
1899 return DAG.getNode(MipsISD::ILVEV, DL, Op->getValueType(0),
1900 Op->getOperand(1), Op->getOperand(2));
1901 case Intrinsic::mips_ilvl_b:
1902 case Intrinsic::mips_ilvl_h:
1903 case Intrinsic::mips_ilvl_w:
1904 case Intrinsic::mips_ilvl_d:
1905 return DAG.getNode(MipsISD::ILVL, DL, Op->getValueType(0),
1906 Op->getOperand(1), Op->getOperand(2));
1907 case Intrinsic::mips_ilvod_b:
1908 case Intrinsic::mips_ilvod_h:
1909 case Intrinsic::mips_ilvod_w:
1910 case Intrinsic::mips_ilvod_d:
1911 return DAG.getNode(MipsISD::ILVOD, DL, Op->getValueType(0),
1912 Op->getOperand(1), Op->getOperand(2));
1913 case Intrinsic::mips_ilvr_b:
1914 case Intrinsic::mips_ilvr_h:
1915 case Intrinsic::mips_ilvr_w:
1916 case Intrinsic::mips_ilvr_d:
1917 return DAG.getNode(MipsISD::ILVR, DL, Op->getValueType(0),
1918 Op->getOperand(1), Op->getOperand(2));
1919 case Intrinsic::mips_insert_b:
1920 case Intrinsic::mips_insert_h:
1921 case Intrinsic::mips_insert_w:
1922 case Intrinsic::mips_insert_d:
1923 return DAG.getNode(ISD::INSERT_VECTOR_ELT, SDLoc(Op), Op->getValueType(0),
1924 Op->getOperand(1), Op->getOperand(3), Op->getOperand(2));
1925 case Intrinsic::mips_insve_b:
1926 case Intrinsic::mips_insve_h:
1927 case Intrinsic::mips_insve_w:
1928 case Intrinsic::mips_insve_d: {
1929 // Report an error for out of range values.
1930 int64_t Max;
1931 switch (Intrinsic) {
1932 case Intrinsic::mips_insve_b: Max = 15; break;
1933 case Intrinsic::mips_insve_h: Max = 7; break;
1934 case Intrinsic::mips_insve_w: Max = 3; break;
1935 case Intrinsic::mips_insve_d: Max = 1; break;
1936 default: llvm_unreachable("Unmatched intrinsic");
1937 }
1938 int64_t Value = cast<ConstantSDNode>(Op->getOperand(2))->getSExtValue();
1939 if (Value < 0 || Value > Max)
1940 report_fatal_error("Immediate out of range");
1941 return DAG.getNode(MipsISD::INSVE, DL, Op->getValueType(0),
1942 Op->getOperand(1), Op->getOperand(2), Op->getOperand(3),
1943 DAG.getConstant(0, DL, MVT::i32));
1944 }
1945 case Intrinsic::mips_ldi_b:
1946 case Intrinsic::mips_ldi_h:
1947 case Intrinsic::mips_ldi_w:
1948 case Intrinsic::mips_ldi_d:
1949 return lowerMSASplatImm(Op, 1, DAG, true);
1950 case Intrinsic::mips_lsa:
1951 case Intrinsic::mips_dlsa: {
1952 EVT ResTy = Op->getValueType(0);
1953 return DAG.getNode(ISD::ADD, SDLoc(Op), ResTy, Op->getOperand(1),
1954 DAG.getNode(ISD::SHL, SDLoc(Op), ResTy,
1955 Op->getOperand(2), Op->getOperand(3)));
1956 }
1957 case Intrinsic::mips_maddv_b:
1958 case Intrinsic::mips_maddv_h:
1959 case Intrinsic::mips_maddv_w:
1960 case Intrinsic::mips_maddv_d: {
1961 EVT ResTy = Op->getValueType(0);
1962 return DAG.getNode(ISD::ADD, SDLoc(Op), ResTy, Op->getOperand(1),
1963 DAG.getNode(ISD::MUL, SDLoc(Op), ResTy,
1964 Op->getOperand(2), Op->getOperand(3)));
1965 }
1966 case Intrinsic::mips_max_s_b:
1967 case Intrinsic::mips_max_s_h:
1968 case Intrinsic::mips_max_s_w:
1969 case Intrinsic::mips_max_s_d:
1970 return DAG.getNode(ISD::SMAX, DL, Op->getValueType(0),
1971 Op->getOperand(1), Op->getOperand(2));
1972 case Intrinsic::mips_max_u_b:
1973 case Intrinsic::mips_max_u_h:
1974 case Intrinsic::mips_max_u_w:
1975 case Intrinsic::mips_max_u_d:
1976 return DAG.getNode(ISD::UMAX, DL, Op->getValueType(0),
1977 Op->getOperand(1), Op->getOperand(2));
1978 case Intrinsic::mips_maxi_s_b:
1979 case Intrinsic::mips_maxi_s_h:
1980 case Intrinsic::mips_maxi_s_w:
1981 case Intrinsic::mips_maxi_s_d:
1982 return DAG.getNode(ISD::SMAX, DL, Op->getValueType(0),
1983 Op->getOperand(1), lowerMSASplatImm(Op, 2, DAG, true));
1984 case Intrinsic::mips_maxi_u_b:
1985 case Intrinsic::mips_maxi_u_h:
1986 case Intrinsic::mips_maxi_u_w:
1987 case Intrinsic::mips_maxi_u_d:
1988 return DAG.getNode(ISD::UMAX, DL, Op->getValueType(0),
1989 Op->getOperand(1), lowerMSASplatImm(Op, 2, DAG));
1990 case Intrinsic::mips_min_s_b:
1991 case Intrinsic::mips_min_s_h:
1992 case Intrinsic::mips_min_s_w:
1993 case Intrinsic::mips_min_s_d:
1994 return DAG.getNode(ISD::SMIN, DL, Op->getValueType(0),
1995 Op->getOperand(1), Op->getOperand(2));
1996 case Intrinsic::mips_min_u_b:
1997 case Intrinsic::mips_min_u_h:
1998 case Intrinsic::mips_min_u_w:
1999 case Intrinsic::mips_min_u_d:
2000 return DAG.getNode(ISD::UMIN, DL, Op->getValueType(0),
2001 Op->getOperand(1), Op->getOperand(2));
2002 case Intrinsic::mips_mini_s_b:
2003 case Intrinsic::mips_mini_s_h:
2004 case Intrinsic::mips_mini_s_w:
2005 case Intrinsic::mips_mini_s_d:
2006 return DAG.getNode(ISD::SMIN, DL, Op->getValueType(0),
2007 Op->getOperand(1), lowerMSASplatImm(Op, 2, DAG, true));
2008 case Intrinsic::mips_mini_u_b:
2009 case Intrinsic::mips_mini_u_h:
2010 case Intrinsic::mips_mini_u_w:
2011 case Intrinsic::mips_mini_u_d:
2012 return DAG.getNode(ISD::UMIN, DL, Op->getValueType(0),
2013 Op->getOperand(1), lowerMSASplatImm(Op, 2, DAG));
2014 case Intrinsic::mips_mod_s_b:
2015 case Intrinsic::mips_mod_s_h:
2016 case Intrinsic::mips_mod_s_w:
2017 case Intrinsic::mips_mod_s_d:
2018 return DAG.getNode(ISD::SREM, DL, Op->getValueType(0), Op->getOperand(1),
2019 Op->getOperand(2));
2020 case Intrinsic::mips_mod_u_b:
2021 case Intrinsic::mips_mod_u_h:
2022 case Intrinsic::mips_mod_u_w:
2023 case Intrinsic::mips_mod_u_d:
2024 return DAG.getNode(ISD::UREM, DL, Op->getValueType(0), Op->getOperand(1),
2025 Op->getOperand(2));
2026 case Intrinsic::mips_mulv_b:
2027 case Intrinsic::mips_mulv_h:
2028 case Intrinsic::mips_mulv_w:
2029 case Intrinsic::mips_mulv_d:
2030 return DAG.getNode(ISD::MUL, DL, Op->getValueType(0), Op->getOperand(1),
2031 Op->getOperand(2));
2032 case Intrinsic::mips_msubv_b:
2033 case Intrinsic::mips_msubv_h:
2034 case Intrinsic::mips_msubv_w:
2035 case Intrinsic::mips_msubv_d: {
2036 EVT ResTy = Op->getValueType(0);
2037 return DAG.getNode(ISD::SUB, SDLoc(Op), ResTy, Op->getOperand(1),
2038 DAG.getNode(ISD::MUL, SDLoc(Op), ResTy,
2039 Op->getOperand(2), Op->getOperand(3)));
2040 }
2041 case Intrinsic::mips_nlzc_b:
2042 case Intrinsic::mips_nlzc_h:
2043 case Intrinsic::mips_nlzc_w:
2044 case Intrinsic::mips_nlzc_d:
2045 return DAG.getNode(ISD::CTLZ, DL, Op->getValueType(0), Op->getOperand(1));
2046 case Intrinsic::mips_nor_v: {
2047 SDValue Res = DAG.getNode(ISD::OR, DL, Op->getValueType(0),
2048 Op->getOperand(1), Op->getOperand(2));
2049 return DAG.getNOT(DL, Res, Res->getValueType(0));
2050 }
2051 case Intrinsic::mips_nori_b: {
2052 SDValue Res = DAG.getNode(ISD::OR, DL, Op->getValueType(0),
2053 Op->getOperand(1),
2054 lowerMSASplatImm(Op, 2, DAG));
2055 return DAG.getNOT(DL, Res, Res->getValueType(0));
2056 }
2057 case Intrinsic::mips_or_v:
2058 return DAG.getNode(ISD::OR, DL, Op->getValueType(0), Op->getOperand(1),
2059 Op->getOperand(2));
2060 case Intrinsic::mips_ori_b:
2061 return DAG.getNode(ISD::OR, DL, Op->getValueType(0),
2062 Op->getOperand(1), lowerMSASplatImm(Op, 2, DAG));
2063 case Intrinsic::mips_pckev_b:
2064 case Intrinsic::mips_pckev_h:
2065 case Intrinsic::mips_pckev_w:
2066 case Intrinsic::mips_pckev_d:
2067 return DAG.getNode(MipsISD::PCKEV, DL, Op->getValueType(0),
2068 Op->getOperand(1), Op->getOperand(2));
2069 case Intrinsic::mips_pckod_b:
2070 case Intrinsic::mips_pckod_h:
2071 case Intrinsic::mips_pckod_w:
2072 case Intrinsic::mips_pckod_d:
2073 return DAG.getNode(MipsISD::PCKOD, DL, Op->getValueType(0),
2074 Op->getOperand(1), Op->getOperand(2));
2075 case Intrinsic::mips_pcnt_b:
2076 case Intrinsic::mips_pcnt_h:
2077 case Intrinsic::mips_pcnt_w:
2078 case Intrinsic::mips_pcnt_d:
2079 return DAG.getNode(ISD::CTPOP, DL, Op->getValueType(0), Op->getOperand(1));
2080 case Intrinsic::mips_sat_s_b:
2081 case Intrinsic::mips_sat_s_h:
2082 case Intrinsic::mips_sat_s_w:
2083 case Intrinsic::mips_sat_s_d:
2084 case Intrinsic::mips_sat_u_b:
2085 case Intrinsic::mips_sat_u_h:
2086 case Intrinsic::mips_sat_u_w:
2087 case Intrinsic::mips_sat_u_d: {
2088 // Report an error for out of range values.
2089 int64_t Max;
2090 switch (Intrinsic) {
2091 case Intrinsic::mips_sat_s_b:
2092 case Intrinsic::mips_sat_u_b: Max = 7; break;
2093 case Intrinsic::mips_sat_s_h:
2094 case Intrinsic::mips_sat_u_h: Max = 15; break;
2095 case Intrinsic::mips_sat_s_w:
2096 case Intrinsic::mips_sat_u_w: Max = 31; break;
2097 case Intrinsic::mips_sat_s_d:
2098 case Intrinsic::mips_sat_u_d: Max = 63; break;
2099 default: llvm_unreachable("Unmatched intrinsic");
2100 }
2101 int64_t Value = cast<ConstantSDNode>(Op->getOperand(2))->getSExtValue();
2102 if (Value < 0 || Value > Max)
2103 report_fatal_error("Immediate out of range");
2104 return SDValue();
2105 }
2106 case Intrinsic::mips_shf_b:
2107 case Intrinsic::mips_shf_h:
2108 case Intrinsic::mips_shf_w: {
2109 int64_t Value = cast<ConstantSDNode>(Op->getOperand(2))->getSExtValue();
2110 if (Value < 0 || Value > 255)
2111 report_fatal_error("Immediate out of range");
2112 return DAG.getNode(MipsISD::SHF, DL, Op->getValueType(0),
2113 Op->getOperand(2), Op->getOperand(1));
2114 }
2115 case Intrinsic::mips_sldi_b:
2116 case Intrinsic::mips_sldi_h:
2117 case Intrinsic::mips_sldi_w:
2118 case Intrinsic::mips_sldi_d: {
2119 // Report an error for out of range values.
2120 int64_t Max;
2121 switch (Intrinsic) {
2122 case Intrinsic::mips_sldi_b: Max = 15; break;
2123 case Intrinsic::mips_sldi_h: Max = 7; break;
2124 case Intrinsic::mips_sldi_w: Max = 3; break;
2125 case Intrinsic::mips_sldi_d: Max = 1; break;
2126 default: llvm_unreachable("Unmatched intrinsic");
2127 }
2128 int64_t Value = cast<ConstantSDNode>(Op->getOperand(3))->getSExtValue();
2129 if (Value < 0 || Value > Max)
2130 report_fatal_error("Immediate out of range");
2131 return SDValue();
2132 }
2133 case Intrinsic::mips_sll_b:
2134 case Intrinsic::mips_sll_h:
2135 case Intrinsic::mips_sll_w:
2136 case Intrinsic::mips_sll_d:
2137 return DAG.getNode(ISD::SHL, DL, Op->getValueType(0), Op->getOperand(1),
2138 truncateVecElts(Op, DAG));
2139 case Intrinsic::mips_slli_b:
2140 case Intrinsic::mips_slli_h:
2141 case Intrinsic::mips_slli_w:
2142 case Intrinsic::mips_slli_d:
2143 return DAG.getNode(ISD::SHL, DL, Op->getValueType(0),
2144 Op->getOperand(1), lowerMSASplatImm(Op, 2, DAG));
2145 case Intrinsic::mips_splat_b:
2146 case Intrinsic::mips_splat_h:
2147 case Intrinsic::mips_splat_w:
2148 case Intrinsic::mips_splat_d:
2149 // We can't lower via VECTOR_SHUFFLE because it requires constant shuffle
2150 // masks, nor can we lower via BUILD_VECTOR & EXTRACT_VECTOR_ELT because
2151 // EXTRACT_VECTOR_ELT can't extract i64's on MIPS32.
2152 // Instead we lower to MipsISD::VSHF and match from there.
2153 return DAG.getNode(MipsISD::VSHF, DL, Op->getValueType(0),
2154 lowerMSASplatZExt(Op, 2, DAG), Op->getOperand(1),
2155 Op->getOperand(1));
2156 case Intrinsic::mips_splati_b:
2157 case Intrinsic::mips_splati_h:
2158 case Intrinsic::mips_splati_w:
2159 case Intrinsic::mips_splati_d:
2160 return DAG.getNode(MipsISD::VSHF, DL, Op->getValueType(0),
2161 lowerMSASplatImm(Op, 2, DAG), Op->getOperand(1),
2162 Op->getOperand(1));
2163 case Intrinsic::mips_sra_b:
2164 case Intrinsic::mips_sra_h:
2165 case Intrinsic::mips_sra_w:
2166 case Intrinsic::mips_sra_d:
2167 return DAG.getNode(ISD::SRA, DL, Op->getValueType(0), Op->getOperand(1),
2168 truncateVecElts(Op, DAG));
2169 case Intrinsic::mips_srai_b:
2170 case Intrinsic::mips_srai_h:
2171 case Intrinsic::mips_srai_w:
2172 case Intrinsic::mips_srai_d:
2173 return DAG.getNode(ISD::SRA, DL, Op->getValueType(0),
2174 Op->getOperand(1), lowerMSASplatImm(Op, 2, DAG));
2175 case Intrinsic::mips_srari_b:
2176 case Intrinsic::mips_srari_h:
2177 case Intrinsic::mips_srari_w:
2178 case Intrinsic::mips_srari_d: {
2179 // Report an error for out of range values.
2180 int64_t Max;
2181 switch (Intrinsic) {
2182 case Intrinsic::mips_srari_b: Max = 7; break;
2183 case Intrinsic::mips_srari_h: Max = 15; break;
2184 case Intrinsic::mips_srari_w: Max = 31; break;
2185 case Intrinsic::mips_srari_d: Max = 63; break;
2186 default: llvm_unreachable("Unmatched intrinsic");
2187 }
2188 int64_t Value = cast<ConstantSDNode>(Op->getOperand(2))->getSExtValue();
2189 if (Value < 0 || Value > Max)
2190 report_fatal_error("Immediate out of range");
2191 return SDValue();
2192 }
2193 case Intrinsic::mips_srl_b:
2194 case Intrinsic::mips_srl_h:
2195 case Intrinsic::mips_srl_w:
2196 case Intrinsic::mips_srl_d:
2197 return DAG.getNode(ISD::SRL, DL, Op->getValueType(0), Op->getOperand(1),
2198 truncateVecElts(Op, DAG));
2199 case Intrinsic::mips_srli_b:
2200 case Intrinsic::mips_srli_h:
2201 case Intrinsic::mips_srli_w:
2202 case Intrinsic::mips_srli_d:
2203 return DAG.getNode(ISD::SRL, DL, Op->getValueType(0),
2204 Op->getOperand(1), lowerMSASplatImm(Op, 2, DAG));
2205 case Intrinsic::mips_srlri_b:
2206 case Intrinsic::mips_srlri_h:
2207 case Intrinsic::mips_srlri_w:
2208 case Intrinsic::mips_srlri_d: {
2209 // Report an error for out of range values.
2210 int64_t Max;
2211 switch (Intrinsic) {
2212 case Intrinsic::mips_srlri_b: Max = 7; break;
2213 case Intrinsic::mips_srlri_h: Max = 15; break;
2214 case Intrinsic::mips_srlri_w: Max = 31; break;
2215 case Intrinsic::mips_srlri_d: Max = 63; break;
2216 default: llvm_unreachable("Unmatched intrinsic");
2217 }
2218 int64_t Value = cast<ConstantSDNode>(Op->getOperand(2))->getSExtValue();
2219 if (Value < 0 || Value > Max)
2220 report_fatal_error("Immediate out of range");
2221 return SDValue();
2222 }
2223 case Intrinsic::mips_subv_b:
2224 case Intrinsic::mips_subv_h:
2225 case Intrinsic::mips_subv_w:
2226 case Intrinsic::mips_subv_d:
2227 return DAG.getNode(ISD::SUB, DL, Op->getValueType(0), Op->getOperand(1),
2228 Op->getOperand(2));
2229 case Intrinsic::mips_subvi_b:
2230 case Intrinsic::mips_subvi_h:
2231 case Intrinsic::mips_subvi_w:
2232 case Intrinsic::mips_subvi_d:
2233 return DAG.getNode(ISD::SUB, DL, Op->getValueType(0),
2234 Op->getOperand(1), lowerMSASplatImm(Op, 2, DAG));
2235 case Intrinsic::mips_vshf_b:
2236 case Intrinsic::mips_vshf_h:
2237 case Intrinsic::mips_vshf_w:
2238 case Intrinsic::mips_vshf_d:
2239 return DAG.getNode(MipsISD::VSHF, DL, Op->getValueType(0),
2240 Op->getOperand(1), Op->getOperand(2), Op->getOperand(3));
2241 case Intrinsic::mips_xor_v:
2242 return DAG.getNode(ISD::XOR, DL, Op->getValueType(0), Op->getOperand(1),
2243 Op->getOperand(2));
2244 case Intrinsic::mips_xori_b:
2245 return DAG.getNode(ISD::XOR, DL, Op->getValueType(0),
2246 Op->getOperand(1), lowerMSASplatImm(Op, 2, DAG));
2247 case Intrinsic::thread_pointer: {
2248 EVT PtrVT = getPointerTy(DAG.getDataLayout());
2249 return DAG.getNode(MipsISD::ThreadPointer, DL, PtrVT);
2250 }
2251 }
2252 }
2253
lowerMSALoadIntr(SDValue Op,SelectionDAG & DAG,unsigned Intr,const MipsSubtarget & Subtarget)2254 static SDValue lowerMSALoadIntr(SDValue Op, SelectionDAG &DAG, unsigned Intr,
2255 const MipsSubtarget &Subtarget) {
2256 SDLoc DL(Op);
2257 SDValue ChainIn = Op->getOperand(0);
2258 SDValue Address = Op->getOperand(2);
2259 SDValue Offset = Op->getOperand(3);
2260 EVT ResTy = Op->getValueType(0);
2261 EVT PtrTy = Address->getValueType(0);
2262
2263 // For N64 addresses have the underlying type MVT::i64. This intrinsic
2264 // however takes an i32 signed constant offset. The actual type of the
2265 // intrinsic is a scaled signed i10.
2266 if (Subtarget.isABI_N64())
2267 Offset = DAG.getNode(ISD::SIGN_EXTEND, DL, PtrTy, Offset);
2268
2269 Address = DAG.getNode(ISD::ADD, DL, PtrTy, Address, Offset);
2270 return DAG.getLoad(ResTy, DL, ChainIn, Address, MachinePointerInfo(),
2271 /* Alignment = */ 16);
2272 }
2273
lowerINTRINSIC_W_CHAIN(SDValue Op,SelectionDAG & DAG) const2274 SDValue MipsSETargetLowering::lowerINTRINSIC_W_CHAIN(SDValue Op,
2275 SelectionDAG &DAG) const {
2276 unsigned Intr = cast<ConstantSDNode>(Op->getOperand(1))->getZExtValue();
2277 switch (Intr) {
2278 default:
2279 return SDValue();
2280 case Intrinsic::mips_extp:
2281 return lowerDSPIntr(Op, DAG, MipsISD::EXTP);
2282 case Intrinsic::mips_extpdp:
2283 return lowerDSPIntr(Op, DAG, MipsISD::EXTPDP);
2284 case Intrinsic::mips_extr_w:
2285 return lowerDSPIntr(Op, DAG, MipsISD::EXTR_W);
2286 case Intrinsic::mips_extr_r_w:
2287 return lowerDSPIntr(Op, DAG, MipsISD::EXTR_R_W);
2288 case Intrinsic::mips_extr_rs_w:
2289 return lowerDSPIntr(Op, DAG, MipsISD::EXTR_RS_W);
2290 case Intrinsic::mips_extr_s_h:
2291 return lowerDSPIntr(Op, DAG, MipsISD::EXTR_S_H);
2292 case Intrinsic::mips_mthlip:
2293 return lowerDSPIntr(Op, DAG, MipsISD::MTHLIP);
2294 case Intrinsic::mips_mulsaq_s_w_ph:
2295 return lowerDSPIntr(Op, DAG, MipsISD::MULSAQ_S_W_PH);
2296 case Intrinsic::mips_maq_s_w_phl:
2297 return lowerDSPIntr(Op, DAG, MipsISD::MAQ_S_W_PHL);
2298 case Intrinsic::mips_maq_s_w_phr:
2299 return lowerDSPIntr(Op, DAG, MipsISD::MAQ_S_W_PHR);
2300 case Intrinsic::mips_maq_sa_w_phl:
2301 return lowerDSPIntr(Op, DAG, MipsISD::MAQ_SA_W_PHL);
2302 case Intrinsic::mips_maq_sa_w_phr:
2303 return lowerDSPIntr(Op, DAG, MipsISD::MAQ_SA_W_PHR);
2304 case Intrinsic::mips_dpaq_s_w_ph:
2305 return lowerDSPIntr(Op, DAG, MipsISD::DPAQ_S_W_PH);
2306 case Intrinsic::mips_dpsq_s_w_ph:
2307 return lowerDSPIntr(Op, DAG, MipsISD::DPSQ_S_W_PH);
2308 case Intrinsic::mips_dpaq_sa_l_w:
2309 return lowerDSPIntr(Op, DAG, MipsISD::DPAQ_SA_L_W);
2310 case Intrinsic::mips_dpsq_sa_l_w:
2311 return lowerDSPIntr(Op, DAG, MipsISD::DPSQ_SA_L_W);
2312 case Intrinsic::mips_dpaqx_s_w_ph:
2313 return lowerDSPIntr(Op, DAG, MipsISD::DPAQX_S_W_PH);
2314 case Intrinsic::mips_dpaqx_sa_w_ph:
2315 return lowerDSPIntr(Op, DAG, MipsISD::DPAQX_SA_W_PH);
2316 case Intrinsic::mips_dpsqx_s_w_ph:
2317 return lowerDSPIntr(Op, DAG, MipsISD::DPSQX_S_W_PH);
2318 case Intrinsic::mips_dpsqx_sa_w_ph:
2319 return lowerDSPIntr(Op, DAG, MipsISD::DPSQX_SA_W_PH);
2320 case Intrinsic::mips_ld_b:
2321 case Intrinsic::mips_ld_h:
2322 case Intrinsic::mips_ld_w:
2323 case Intrinsic::mips_ld_d:
2324 return lowerMSALoadIntr(Op, DAG, Intr, Subtarget);
2325 }
2326 }
2327
lowerMSAStoreIntr(SDValue Op,SelectionDAG & DAG,unsigned Intr,const MipsSubtarget & Subtarget)2328 static SDValue lowerMSAStoreIntr(SDValue Op, SelectionDAG &DAG, unsigned Intr,
2329 const MipsSubtarget &Subtarget) {
2330 SDLoc DL(Op);
2331 SDValue ChainIn = Op->getOperand(0);
2332 SDValue Value = Op->getOperand(2);
2333 SDValue Address = Op->getOperand(3);
2334 SDValue Offset = Op->getOperand(4);
2335 EVT PtrTy = Address->getValueType(0);
2336
2337 // For N64 addresses have the underlying type MVT::i64. This intrinsic
2338 // however takes an i32 signed constant offset. The actual type of the
2339 // intrinsic is a scaled signed i10.
2340 if (Subtarget.isABI_N64())
2341 Offset = DAG.getNode(ISD::SIGN_EXTEND, DL, PtrTy, Offset);
2342
2343 Address = DAG.getNode(ISD::ADD, DL, PtrTy, Address, Offset);
2344
2345 return DAG.getStore(ChainIn, DL, Value, Address, MachinePointerInfo(),
2346 /* Alignment = */ 16);
2347 }
2348
lowerINTRINSIC_VOID(SDValue Op,SelectionDAG & DAG) const2349 SDValue MipsSETargetLowering::lowerINTRINSIC_VOID(SDValue Op,
2350 SelectionDAG &DAG) const {
2351 unsigned Intr = cast<ConstantSDNode>(Op->getOperand(1))->getZExtValue();
2352 switch (Intr) {
2353 default:
2354 return SDValue();
2355 case Intrinsic::mips_st_b:
2356 case Intrinsic::mips_st_h:
2357 case Intrinsic::mips_st_w:
2358 case Intrinsic::mips_st_d:
2359 return lowerMSAStoreIntr(Op, DAG, Intr, Subtarget);
2360 }
2361 }
2362
2363 /// Check if the given BuildVectorSDNode is a splat.
2364 /// This method currently relies on DAG nodes being reused when equivalent,
2365 /// so it's possible for this to return false even when isConstantSplat returns
2366 /// true.
isSplatVector(const BuildVectorSDNode * N)2367 static bool isSplatVector(const BuildVectorSDNode *N) {
2368 unsigned int nOps = N->getNumOperands();
2369 assert(nOps > 1 && "isSplatVector has 0 or 1 sized build vector");
2370
2371 SDValue Operand0 = N->getOperand(0);
2372
2373 for (unsigned int i = 1; i < nOps; ++i) {
2374 if (N->getOperand(i) != Operand0)
2375 return false;
2376 }
2377
2378 return true;
2379 }
2380
2381 // Lower ISD::EXTRACT_VECTOR_ELT into MipsISD::VEXTRACT_SEXT_ELT.
2382 //
2383 // The non-value bits resulting from ISD::EXTRACT_VECTOR_ELT are undefined. We
2384 // choose to sign-extend but we could have equally chosen zero-extend. The
2385 // DAGCombiner will fold any sign/zero extension of the ISD::EXTRACT_VECTOR_ELT
2386 // result into this node later (possibly changing it to a zero-extend in the
2387 // process).
2388 SDValue MipsSETargetLowering::
lowerEXTRACT_VECTOR_ELT(SDValue Op,SelectionDAG & DAG) const2389 lowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const {
2390 SDLoc DL(Op);
2391 EVT ResTy = Op->getValueType(0);
2392 SDValue Op0 = Op->getOperand(0);
2393 EVT VecTy = Op0->getValueType(0);
2394
2395 if (!VecTy.is128BitVector())
2396 return SDValue();
2397
2398 if (ResTy.isInteger()) {
2399 SDValue Op1 = Op->getOperand(1);
2400 EVT EltTy = VecTy.getVectorElementType();
2401 return DAG.getNode(MipsISD::VEXTRACT_SEXT_ELT, DL, ResTy, Op0, Op1,
2402 DAG.getValueType(EltTy));
2403 }
2404
2405 return Op;
2406 }
2407
isConstantOrUndef(const SDValue Op)2408 static bool isConstantOrUndef(const SDValue Op) {
2409 if (Op->isUndef())
2410 return true;
2411 if (isa<ConstantSDNode>(Op))
2412 return true;
2413 if (isa<ConstantFPSDNode>(Op))
2414 return true;
2415 return false;
2416 }
2417
isConstantOrUndefBUILD_VECTOR(const BuildVectorSDNode * Op)2418 static bool isConstantOrUndefBUILD_VECTOR(const BuildVectorSDNode *Op) {
2419 for (unsigned i = 0; i < Op->getNumOperands(); ++i)
2420 if (isConstantOrUndef(Op->getOperand(i)))
2421 return true;
2422 return false;
2423 }
2424
2425 // Lowers ISD::BUILD_VECTOR into appropriate SelectionDAG nodes for the
2426 // backend.
2427 //
2428 // Lowers according to the following rules:
2429 // - Constant splats are legal as-is as long as the SplatBitSize is a power of
2430 // 2 less than or equal to 64 and the value fits into a signed 10-bit
2431 // immediate
2432 // - Constant splats are lowered to bitconverted BUILD_VECTORs if SplatBitSize
2433 // is a power of 2 less than or equal to 64 and the value does not fit into a
2434 // signed 10-bit immediate
2435 // - Non-constant splats are legal as-is.
2436 // - Non-constant non-splats are lowered to sequences of INSERT_VECTOR_ELT.
2437 // - All others are illegal and must be expanded.
lowerBUILD_VECTOR(SDValue Op,SelectionDAG & DAG) const2438 SDValue MipsSETargetLowering::lowerBUILD_VECTOR(SDValue Op,
2439 SelectionDAG &DAG) const {
2440 BuildVectorSDNode *Node = cast<BuildVectorSDNode>(Op);
2441 EVT ResTy = Op->getValueType(0);
2442 SDLoc DL(Op);
2443 APInt SplatValue, SplatUndef;
2444 unsigned SplatBitSize;
2445 bool HasAnyUndefs;
2446
2447 if (!Subtarget.hasMSA() || !ResTy.is128BitVector())
2448 return SDValue();
2449
2450 if (Node->isConstantSplat(SplatValue, SplatUndef, SplatBitSize,
2451 HasAnyUndefs, 8,
2452 !Subtarget.isLittle()) && SplatBitSize <= 64) {
2453 // We can only cope with 8, 16, 32, or 64-bit elements
2454 if (SplatBitSize != 8 && SplatBitSize != 16 && SplatBitSize != 32 &&
2455 SplatBitSize != 64)
2456 return SDValue();
2457
2458 // If the value isn't an integer type we will have to bitcast
2459 // from an integer type first. Also, if there are any undefs, we must
2460 // lower them to defined values first.
2461 if (ResTy.isInteger() && !HasAnyUndefs)
2462 return Op;
2463
2464 EVT ViaVecTy;
2465
2466 switch (SplatBitSize) {
2467 default:
2468 return SDValue();
2469 case 8:
2470 ViaVecTy = MVT::v16i8;
2471 break;
2472 case 16:
2473 ViaVecTy = MVT::v8i16;
2474 break;
2475 case 32:
2476 ViaVecTy = MVT::v4i32;
2477 break;
2478 case 64:
2479 // There's no fill.d to fall back on for 64-bit values
2480 return SDValue();
2481 }
2482
2483 // SelectionDAG::getConstant will promote SplatValue appropriately.
2484 SDValue Result = DAG.getConstant(SplatValue, DL, ViaVecTy);
2485
2486 // Bitcast to the type we originally wanted
2487 if (ViaVecTy != ResTy)
2488 Result = DAG.getNode(ISD::BITCAST, SDLoc(Node), ResTy, Result);
2489
2490 return Result;
2491 } else if (isSplatVector(Node))
2492 return Op;
2493 else if (!isConstantOrUndefBUILD_VECTOR(Node)) {
2494 // Use INSERT_VECTOR_ELT operations rather than expand to stores.
2495 // The resulting code is the same length as the expansion, but it doesn't
2496 // use memory operations
2497 EVT ResTy = Node->getValueType(0);
2498
2499 assert(ResTy.isVector());
2500
2501 unsigned NumElts = ResTy.getVectorNumElements();
2502 SDValue Vector = DAG.getUNDEF(ResTy);
2503 for (unsigned i = 0; i < NumElts; ++i) {
2504 Vector = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, ResTy, Vector,
2505 Node->getOperand(i),
2506 DAG.getConstant(i, DL, MVT::i32));
2507 }
2508 return Vector;
2509 }
2510
2511 return SDValue();
2512 }
2513
2514 // Lower VECTOR_SHUFFLE into SHF (if possible).
2515 //
2516 // SHF splits the vector into blocks of four elements, then shuffles these
2517 // elements according to a <4 x i2> constant (encoded as an integer immediate).
2518 //
2519 // It is therefore possible to lower into SHF when the mask takes the form:
2520 // <a, b, c, d, a+4, b+4, c+4, d+4, a+8, b+8, c+8, d+8, ...>
2521 // When undef's appear they are treated as if they were whatever value is
2522 // necessary in order to fit the above forms.
2523 //
2524 // For example:
2525 // %2 = shufflevector <8 x i16> %0, <8 x i16> undef,
2526 // <8 x i32> <i32 3, i32 2, i32 1, i32 0,
2527 // i32 7, i32 6, i32 5, i32 4>
2528 // is lowered to:
2529 // (SHF_H $w0, $w1, 27)
2530 // where the 27 comes from:
2531 // 3 + (2 << 2) + (1 << 4) + (0 << 6)
lowerVECTOR_SHUFFLE_SHF(SDValue Op,EVT ResTy,SmallVector<int,16> Indices,SelectionDAG & DAG)2532 static SDValue lowerVECTOR_SHUFFLE_SHF(SDValue Op, EVT ResTy,
2533 SmallVector<int, 16> Indices,
2534 SelectionDAG &DAG) {
2535 int SHFIndices[4] = { -1, -1, -1, -1 };
2536
2537 if (Indices.size() < 4)
2538 return SDValue();
2539
2540 for (unsigned i = 0; i < 4; ++i) {
2541 for (unsigned j = i; j < Indices.size(); j += 4) {
2542 int Idx = Indices[j];
2543
2544 // Convert from vector index to 4-element subvector index
2545 // If an index refers to an element outside of the subvector then give up
2546 if (Idx != -1) {
2547 Idx -= 4 * (j / 4);
2548 if (Idx < 0 || Idx >= 4)
2549 return SDValue();
2550 }
2551
2552 // If the mask has an undef, replace it with the current index.
2553 // Note that it might still be undef if the current index is also undef
2554 if (SHFIndices[i] == -1)
2555 SHFIndices[i] = Idx;
2556
2557 // Check that non-undef values are the same as in the mask. If they
2558 // aren't then give up
2559 if (!(Idx == -1 || Idx == SHFIndices[i]))
2560 return SDValue();
2561 }
2562 }
2563
2564 // Calculate the immediate. Replace any remaining undefs with zero
2565 APInt Imm(32, 0);
2566 for (int i = 3; i >= 0; --i) {
2567 int Idx = SHFIndices[i];
2568
2569 if (Idx == -1)
2570 Idx = 0;
2571
2572 Imm <<= 2;
2573 Imm |= Idx & 0x3;
2574 }
2575
2576 SDLoc DL(Op);
2577 return DAG.getNode(MipsISD::SHF, DL, ResTy,
2578 DAG.getConstant(Imm, DL, MVT::i32), Op->getOperand(0));
2579 }
2580
2581 /// Determine whether a range fits a regular pattern of values.
2582 /// This function accounts for the possibility of jumping over the End iterator.
2583 template <typename ValType>
2584 static bool
fitsRegularPattern(typename SmallVectorImpl<ValType>::const_iterator Begin,unsigned CheckStride,typename SmallVectorImpl<ValType>::const_iterator End,ValType ExpectedIndex,unsigned ExpectedIndexStride)2585 fitsRegularPattern(typename SmallVectorImpl<ValType>::const_iterator Begin,
2586 unsigned CheckStride,
2587 typename SmallVectorImpl<ValType>::const_iterator End,
2588 ValType ExpectedIndex, unsigned ExpectedIndexStride) {
2589 auto &I = Begin;
2590
2591 while (I != End) {
2592 if (*I != -1 && *I != ExpectedIndex)
2593 return false;
2594 ExpectedIndex += ExpectedIndexStride;
2595
2596 // Incrementing past End is undefined behaviour so we must increment one
2597 // step at a time and check for End at each step.
2598 for (unsigned n = 0; n < CheckStride && I != End; ++n, ++I)
2599 ; // Empty loop body.
2600 }
2601 return true;
2602 }
2603
2604 // Determine whether VECTOR_SHUFFLE is a SPLATI.
2605 //
2606 // It is a SPLATI when the mask is:
2607 // <x, x, x, ...>
2608 // where x is any valid index.
2609 //
2610 // When undef's appear in the mask they are treated as if they were whatever
2611 // value is necessary in order to fit the above form.
isVECTOR_SHUFFLE_SPLATI(SDValue Op,EVT ResTy,SmallVector<int,16> Indices,SelectionDAG & DAG)2612 static bool isVECTOR_SHUFFLE_SPLATI(SDValue Op, EVT ResTy,
2613 SmallVector<int, 16> Indices,
2614 SelectionDAG &DAG) {
2615 assert((Indices.size() % 2) == 0);
2616
2617 int SplatIndex = -1;
2618 for (const auto &V : Indices) {
2619 if (V != -1) {
2620 SplatIndex = V;
2621 break;
2622 }
2623 }
2624
2625 return fitsRegularPattern<int>(Indices.begin(), 1, Indices.end(), SplatIndex,
2626 0);
2627 }
2628
2629 // Lower VECTOR_SHUFFLE into ILVEV (if possible).
2630 //
2631 // ILVEV interleaves the even elements from each vector.
2632 //
2633 // It is possible to lower into ILVEV when the mask consists of two of the
2634 // following forms interleaved:
2635 // <0, 2, 4, ...>
2636 // <n, n+2, n+4, ...>
2637 // where n is the number of elements in the vector.
2638 // For example:
2639 // <0, 0, 2, 2, 4, 4, ...>
2640 // <0, n, 2, n+2, 4, n+4, ...>
2641 //
2642 // When undef's appear in the mask they are treated as if they were whatever
2643 // value is necessary in order to fit the above forms.
lowerVECTOR_SHUFFLE_ILVEV(SDValue Op,EVT ResTy,SmallVector<int,16> Indices,SelectionDAG & DAG)2644 static SDValue lowerVECTOR_SHUFFLE_ILVEV(SDValue Op, EVT ResTy,
2645 SmallVector<int, 16> Indices,
2646 SelectionDAG &DAG) {
2647 assert((Indices.size() % 2) == 0);
2648
2649 SDValue Wt;
2650 SDValue Ws;
2651 const auto &Begin = Indices.begin();
2652 const auto &End = Indices.end();
2653
2654 // Check even elements are taken from the even elements of one half or the
2655 // other and pick an operand accordingly.
2656 if (fitsRegularPattern<int>(Begin, 2, End, 0, 2))
2657 Wt = Op->getOperand(0);
2658 else if (fitsRegularPattern<int>(Begin, 2, End, Indices.size(), 2))
2659 Wt = Op->getOperand(1);
2660 else
2661 return SDValue();
2662
2663 // Check odd elements are taken from the even elements of one half or the
2664 // other and pick an operand accordingly.
2665 if (fitsRegularPattern<int>(Begin + 1, 2, End, 0, 2))
2666 Ws = Op->getOperand(0);
2667 else if (fitsRegularPattern<int>(Begin + 1, 2, End, Indices.size(), 2))
2668 Ws = Op->getOperand(1);
2669 else
2670 return SDValue();
2671
2672 return DAG.getNode(MipsISD::ILVEV, SDLoc(Op), ResTy, Ws, Wt);
2673 }
2674
2675 // Lower VECTOR_SHUFFLE into ILVOD (if possible).
2676 //
2677 // ILVOD interleaves the odd elements from each vector.
2678 //
2679 // It is possible to lower into ILVOD when the mask consists of two of the
2680 // following forms interleaved:
2681 // <1, 3, 5, ...>
2682 // <n+1, n+3, n+5, ...>
2683 // where n is the number of elements in the vector.
2684 // For example:
2685 // <1, 1, 3, 3, 5, 5, ...>
2686 // <1, n+1, 3, n+3, 5, n+5, ...>
2687 //
2688 // When undef's appear in the mask they are treated as if they were whatever
2689 // value is necessary in order to fit the above forms.
lowerVECTOR_SHUFFLE_ILVOD(SDValue Op,EVT ResTy,SmallVector<int,16> Indices,SelectionDAG & DAG)2690 static SDValue lowerVECTOR_SHUFFLE_ILVOD(SDValue Op, EVT ResTy,
2691 SmallVector<int, 16> Indices,
2692 SelectionDAG &DAG) {
2693 assert((Indices.size() % 2) == 0);
2694
2695 SDValue Wt;
2696 SDValue Ws;
2697 const auto &Begin = Indices.begin();
2698 const auto &End = Indices.end();
2699
2700 // Check even elements are taken from the odd elements of one half or the
2701 // other and pick an operand accordingly.
2702 if (fitsRegularPattern<int>(Begin, 2, End, 1, 2))
2703 Wt = Op->getOperand(0);
2704 else if (fitsRegularPattern<int>(Begin, 2, End, Indices.size() + 1, 2))
2705 Wt = Op->getOperand(1);
2706 else
2707 return SDValue();
2708
2709 // Check odd elements are taken from the odd elements of one half or the
2710 // other and pick an operand accordingly.
2711 if (fitsRegularPattern<int>(Begin + 1, 2, End, 1, 2))
2712 Ws = Op->getOperand(0);
2713 else if (fitsRegularPattern<int>(Begin + 1, 2, End, Indices.size() + 1, 2))
2714 Ws = Op->getOperand(1);
2715 else
2716 return SDValue();
2717
2718 return DAG.getNode(MipsISD::ILVOD, SDLoc(Op), ResTy, Wt, Ws);
2719 }
2720
2721 // Lower VECTOR_SHUFFLE into ILVR (if possible).
2722 //
2723 // ILVR interleaves consecutive elements from the right (lowest-indexed) half of
2724 // each vector.
2725 //
2726 // It is possible to lower into ILVR when the mask consists of two of the
2727 // following forms interleaved:
2728 // <0, 1, 2, ...>
2729 // <n, n+1, n+2, ...>
2730 // where n is the number of elements in the vector.
2731 // For example:
2732 // <0, 0, 1, 1, 2, 2, ...>
2733 // <0, n, 1, n+1, 2, n+2, ...>
2734 //
2735 // When undef's appear in the mask they are treated as if they were whatever
2736 // value is necessary in order to fit the above forms.
lowerVECTOR_SHUFFLE_ILVR(SDValue Op,EVT ResTy,SmallVector<int,16> Indices,SelectionDAG & DAG)2737 static SDValue lowerVECTOR_SHUFFLE_ILVR(SDValue Op, EVT ResTy,
2738 SmallVector<int, 16> Indices,
2739 SelectionDAG &DAG) {
2740 assert((Indices.size() % 2) == 0);
2741
2742 SDValue Wt;
2743 SDValue Ws;
2744 const auto &Begin = Indices.begin();
2745 const auto &End = Indices.end();
2746
2747 // Check even elements are taken from the right (lowest-indexed) elements of
2748 // one half or the other and pick an operand accordingly.
2749 if (fitsRegularPattern<int>(Begin, 2, End, 0, 1))
2750 Wt = Op->getOperand(0);
2751 else if (fitsRegularPattern<int>(Begin, 2, End, Indices.size(), 1))
2752 Wt = Op->getOperand(1);
2753 else
2754 return SDValue();
2755
2756 // Check odd elements are taken from the right (lowest-indexed) elements of
2757 // one half or the other and pick an operand accordingly.
2758 if (fitsRegularPattern<int>(Begin + 1, 2, End, 0, 1))
2759 Ws = Op->getOperand(0);
2760 else if (fitsRegularPattern<int>(Begin + 1, 2, End, Indices.size(), 1))
2761 Ws = Op->getOperand(1);
2762 else
2763 return SDValue();
2764
2765 return DAG.getNode(MipsISD::ILVR, SDLoc(Op), ResTy, Ws, Wt);
2766 }
2767
2768 // Lower VECTOR_SHUFFLE into ILVL (if possible).
2769 //
2770 // ILVL interleaves consecutive elements from the left (highest-indexed) half
2771 // of each vector.
2772 //
2773 // It is possible to lower into ILVL when the mask consists of two of the
2774 // following forms interleaved:
2775 // <x, x+1, x+2, ...>
2776 // <n+x, n+x+1, n+x+2, ...>
2777 // where n is the number of elements in the vector and x is half n.
2778 // For example:
2779 // <x, x, x+1, x+1, x+2, x+2, ...>
2780 // <x, n+x, x+1, n+x+1, x+2, n+x+2, ...>
2781 //
2782 // When undef's appear in the mask they are treated as if they were whatever
2783 // value is necessary in order to fit the above forms.
lowerVECTOR_SHUFFLE_ILVL(SDValue Op,EVT ResTy,SmallVector<int,16> Indices,SelectionDAG & DAG)2784 static SDValue lowerVECTOR_SHUFFLE_ILVL(SDValue Op, EVT ResTy,
2785 SmallVector<int, 16> Indices,
2786 SelectionDAG &DAG) {
2787 assert((Indices.size() % 2) == 0);
2788
2789 unsigned HalfSize = Indices.size() / 2;
2790 SDValue Wt;
2791 SDValue Ws;
2792 const auto &Begin = Indices.begin();
2793 const auto &End = Indices.end();
2794
2795 // Check even elements are taken from the left (highest-indexed) elements of
2796 // one half or the other and pick an operand accordingly.
2797 if (fitsRegularPattern<int>(Begin, 2, End, HalfSize, 1))
2798 Wt = Op->getOperand(0);
2799 else if (fitsRegularPattern<int>(Begin, 2, End, Indices.size() + HalfSize, 1))
2800 Wt = Op->getOperand(1);
2801 else
2802 return SDValue();
2803
2804 // Check odd elements are taken from the left (highest-indexed) elements of
2805 // one half or the other and pick an operand accordingly.
2806 if (fitsRegularPattern<int>(Begin + 1, 2, End, HalfSize, 1))
2807 Ws = Op->getOperand(0);
2808 else if (fitsRegularPattern<int>(Begin + 1, 2, End, Indices.size() + HalfSize,
2809 1))
2810 Ws = Op->getOperand(1);
2811 else
2812 return SDValue();
2813
2814 return DAG.getNode(MipsISD::ILVL, SDLoc(Op), ResTy, Ws, Wt);
2815 }
2816
2817 // Lower VECTOR_SHUFFLE into PCKEV (if possible).
2818 //
2819 // PCKEV copies the even elements of each vector into the result vector.
2820 //
2821 // It is possible to lower into PCKEV when the mask consists of two of the
2822 // following forms concatenated:
2823 // <0, 2, 4, ...>
2824 // <n, n+2, n+4, ...>
2825 // where n is the number of elements in the vector.
2826 // For example:
2827 // <0, 2, 4, ..., 0, 2, 4, ...>
2828 // <0, 2, 4, ..., n, n+2, n+4, ...>
2829 //
2830 // When undef's appear in the mask they are treated as if they were whatever
2831 // value is necessary in order to fit the above forms.
lowerVECTOR_SHUFFLE_PCKEV(SDValue Op,EVT ResTy,SmallVector<int,16> Indices,SelectionDAG & DAG)2832 static SDValue lowerVECTOR_SHUFFLE_PCKEV(SDValue Op, EVT ResTy,
2833 SmallVector<int, 16> Indices,
2834 SelectionDAG &DAG) {
2835 assert((Indices.size() % 2) == 0);
2836
2837 SDValue Wt;
2838 SDValue Ws;
2839 const auto &Begin = Indices.begin();
2840 const auto &Mid = Indices.begin() + Indices.size() / 2;
2841 const auto &End = Indices.end();
2842
2843 if (fitsRegularPattern<int>(Begin, 1, Mid, 0, 2))
2844 Wt = Op->getOperand(0);
2845 else if (fitsRegularPattern<int>(Begin, 1, Mid, Indices.size(), 2))
2846 Wt = Op->getOperand(1);
2847 else
2848 return SDValue();
2849
2850 if (fitsRegularPattern<int>(Mid, 1, End, 0, 2))
2851 Ws = Op->getOperand(0);
2852 else if (fitsRegularPattern<int>(Mid, 1, End, Indices.size(), 2))
2853 Ws = Op->getOperand(1);
2854 else
2855 return SDValue();
2856
2857 return DAG.getNode(MipsISD::PCKEV, SDLoc(Op), ResTy, Ws, Wt);
2858 }
2859
2860 // Lower VECTOR_SHUFFLE into PCKOD (if possible).
2861 //
2862 // PCKOD copies the odd elements of each vector into the result vector.
2863 //
2864 // It is possible to lower into PCKOD when the mask consists of two of the
2865 // following forms concatenated:
2866 // <1, 3, 5, ...>
2867 // <n+1, n+3, n+5, ...>
2868 // where n is the number of elements in the vector.
2869 // For example:
2870 // <1, 3, 5, ..., 1, 3, 5, ...>
2871 // <1, 3, 5, ..., n+1, n+3, n+5, ...>
2872 //
2873 // When undef's appear in the mask they are treated as if they were whatever
2874 // value is necessary in order to fit the above forms.
lowerVECTOR_SHUFFLE_PCKOD(SDValue Op,EVT ResTy,SmallVector<int,16> Indices,SelectionDAG & DAG)2875 static SDValue lowerVECTOR_SHUFFLE_PCKOD(SDValue Op, EVT ResTy,
2876 SmallVector<int, 16> Indices,
2877 SelectionDAG &DAG) {
2878 assert((Indices.size() % 2) == 0);
2879
2880 SDValue Wt;
2881 SDValue Ws;
2882 const auto &Begin = Indices.begin();
2883 const auto &Mid = Indices.begin() + Indices.size() / 2;
2884 const auto &End = Indices.end();
2885
2886 if (fitsRegularPattern<int>(Begin, 1, Mid, 1, 2))
2887 Wt = Op->getOperand(0);
2888 else if (fitsRegularPattern<int>(Begin, 1, Mid, Indices.size() + 1, 2))
2889 Wt = Op->getOperand(1);
2890 else
2891 return SDValue();
2892
2893 if (fitsRegularPattern<int>(Mid, 1, End, 1, 2))
2894 Ws = Op->getOperand(0);
2895 else if (fitsRegularPattern<int>(Mid, 1, End, Indices.size() + 1, 2))
2896 Ws = Op->getOperand(1);
2897 else
2898 return SDValue();
2899
2900 return DAG.getNode(MipsISD::PCKOD, SDLoc(Op), ResTy, Ws, Wt);
2901 }
2902
2903 // Lower VECTOR_SHUFFLE into VSHF.
2904 //
2905 // This mostly consists of converting the shuffle indices in Indices into a
2906 // BUILD_VECTOR and adding it as an operand to the resulting VSHF. There is
2907 // also code to eliminate unused operands of the VECTOR_SHUFFLE. For example,
2908 // if the type is v8i16 and all the indices are less than 8 then the second
2909 // operand is unused and can be replaced with anything. We choose to replace it
2910 // with the used operand since this reduces the number of instructions overall.
lowerVECTOR_SHUFFLE_VSHF(SDValue Op,EVT ResTy,SmallVector<int,16> Indices,SelectionDAG & DAG)2911 static SDValue lowerVECTOR_SHUFFLE_VSHF(SDValue Op, EVT ResTy,
2912 SmallVector<int, 16> Indices,
2913 SelectionDAG &DAG) {
2914 SmallVector<SDValue, 16> Ops;
2915 SDValue Op0;
2916 SDValue Op1;
2917 EVT MaskVecTy = ResTy.changeVectorElementTypeToInteger();
2918 EVT MaskEltTy = MaskVecTy.getVectorElementType();
2919 bool Using1stVec = false;
2920 bool Using2ndVec = false;
2921 SDLoc DL(Op);
2922 int ResTyNumElts = ResTy.getVectorNumElements();
2923
2924 for (int i = 0; i < ResTyNumElts; ++i) {
2925 // Idx == -1 means UNDEF
2926 int Idx = Indices[i];
2927
2928 if (0 <= Idx && Idx < ResTyNumElts)
2929 Using1stVec = true;
2930 if (ResTyNumElts <= Idx && Idx < ResTyNumElts * 2)
2931 Using2ndVec = true;
2932 }
2933
2934 for (SmallVector<int, 16>::iterator I = Indices.begin(); I != Indices.end();
2935 ++I)
2936 Ops.push_back(DAG.getTargetConstant(*I, DL, MaskEltTy));
2937
2938 SDValue MaskVec = DAG.getBuildVector(MaskVecTy, DL, Ops);
2939
2940 if (Using1stVec && Using2ndVec) {
2941 Op0 = Op->getOperand(0);
2942 Op1 = Op->getOperand(1);
2943 } else if (Using1stVec)
2944 Op0 = Op1 = Op->getOperand(0);
2945 else if (Using2ndVec)
2946 Op0 = Op1 = Op->getOperand(1);
2947 else
2948 llvm_unreachable("shuffle vector mask references neither vector operand?");
2949
2950 // VECTOR_SHUFFLE concatenates the vectors in an vectorwise fashion.
2951 // <0b00, 0b01> + <0b10, 0b11> -> <0b00, 0b01, 0b10, 0b11>
2952 // VSHF concatenates the vectors in a bitwise fashion:
2953 // <0b00, 0b01> + <0b10, 0b11> ->
2954 // 0b0100 + 0b1110 -> 0b01001110
2955 // <0b10, 0b11, 0b00, 0b01>
2956 // We must therefore swap the operands to get the correct result.
2957 return DAG.getNode(MipsISD::VSHF, DL, ResTy, MaskVec, Op1, Op0);
2958 }
2959
2960 // Lower VECTOR_SHUFFLE into one of a number of instructions depending on the
2961 // indices in the shuffle.
lowerVECTOR_SHUFFLE(SDValue Op,SelectionDAG & DAG) const2962 SDValue MipsSETargetLowering::lowerVECTOR_SHUFFLE(SDValue Op,
2963 SelectionDAG &DAG) const {
2964 ShuffleVectorSDNode *Node = cast<ShuffleVectorSDNode>(Op);
2965 EVT ResTy = Op->getValueType(0);
2966
2967 if (!ResTy.is128BitVector())
2968 return SDValue();
2969
2970 int ResTyNumElts = ResTy.getVectorNumElements();
2971 SmallVector<int, 16> Indices;
2972
2973 for (int i = 0; i < ResTyNumElts; ++i)
2974 Indices.push_back(Node->getMaskElt(i));
2975
2976 // splati.[bhwd] is preferable to the others but is matched from
2977 // MipsISD::VSHF.
2978 if (isVECTOR_SHUFFLE_SPLATI(Op, ResTy, Indices, DAG))
2979 return lowerVECTOR_SHUFFLE_VSHF(Op, ResTy, Indices, DAG);
2980 SDValue Result;
2981 if ((Result = lowerVECTOR_SHUFFLE_ILVEV(Op, ResTy, Indices, DAG)))
2982 return Result;
2983 if ((Result = lowerVECTOR_SHUFFLE_ILVOD(Op, ResTy, Indices, DAG)))
2984 return Result;
2985 if ((Result = lowerVECTOR_SHUFFLE_ILVL(Op, ResTy, Indices, DAG)))
2986 return Result;
2987 if ((Result = lowerVECTOR_SHUFFLE_ILVR(Op, ResTy, Indices, DAG)))
2988 return Result;
2989 if ((Result = lowerVECTOR_SHUFFLE_PCKEV(Op, ResTy, Indices, DAG)))
2990 return Result;
2991 if ((Result = lowerVECTOR_SHUFFLE_PCKOD(Op, ResTy, Indices, DAG)))
2992 return Result;
2993 if ((Result = lowerVECTOR_SHUFFLE_SHF(Op, ResTy, Indices, DAG)))
2994 return Result;
2995 return lowerVECTOR_SHUFFLE_VSHF(Op, ResTy, Indices, DAG);
2996 }
2997
2998 MachineBasicBlock *
emitBPOSGE32(MachineInstr & MI,MachineBasicBlock * BB) const2999 MipsSETargetLowering::emitBPOSGE32(MachineInstr &MI,
3000 MachineBasicBlock *BB) const {
3001 // $bb:
3002 // bposge32_pseudo $vr0
3003 // =>
3004 // $bb:
3005 // bposge32 $tbb
3006 // $fbb:
3007 // li $vr2, 0
3008 // b $sink
3009 // $tbb:
3010 // li $vr1, 1
3011 // $sink:
3012 // $vr0 = phi($vr2, $fbb, $vr1, $tbb)
3013
3014 MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
3015 const TargetInstrInfo *TII = Subtarget.getInstrInfo();
3016 const TargetRegisterClass *RC = &Mips::GPR32RegClass;
3017 DebugLoc DL = MI.getDebugLoc();
3018 const BasicBlock *LLVM_BB = BB->getBasicBlock();
3019 MachineFunction::iterator It = std::next(MachineFunction::iterator(BB));
3020 MachineFunction *F = BB->getParent();
3021 MachineBasicBlock *FBB = F->CreateMachineBasicBlock(LLVM_BB);
3022 MachineBasicBlock *TBB = F->CreateMachineBasicBlock(LLVM_BB);
3023 MachineBasicBlock *Sink = F->CreateMachineBasicBlock(LLVM_BB);
3024 F->insert(It, FBB);
3025 F->insert(It, TBB);
3026 F->insert(It, Sink);
3027
3028 // Transfer the remainder of BB and its successor edges to Sink.
3029 Sink->splice(Sink->begin(), BB, std::next(MachineBasicBlock::iterator(MI)),
3030 BB->end());
3031 Sink->transferSuccessorsAndUpdatePHIs(BB);
3032
3033 // Add successors.
3034 BB->addSuccessor(FBB);
3035 BB->addSuccessor(TBB);
3036 FBB->addSuccessor(Sink);
3037 TBB->addSuccessor(Sink);
3038
3039 // Insert the real bposge32 instruction to $BB.
3040 BuildMI(BB, DL, TII->get(Mips::BPOSGE32)).addMBB(TBB);
3041 // Insert the real bposge32c instruction to $BB.
3042 BuildMI(BB, DL, TII->get(Mips::BPOSGE32C_MMR3)).addMBB(TBB);
3043
3044 // Fill $FBB.
3045 unsigned VR2 = RegInfo.createVirtualRegister(RC);
3046 BuildMI(*FBB, FBB->end(), DL, TII->get(Mips::ADDiu), VR2)
3047 .addReg(Mips::ZERO).addImm(0);
3048 BuildMI(*FBB, FBB->end(), DL, TII->get(Mips::B)).addMBB(Sink);
3049
3050 // Fill $TBB.
3051 unsigned VR1 = RegInfo.createVirtualRegister(RC);
3052 BuildMI(*TBB, TBB->end(), DL, TII->get(Mips::ADDiu), VR1)
3053 .addReg(Mips::ZERO).addImm(1);
3054
3055 // Insert phi function to $Sink.
3056 BuildMI(*Sink, Sink->begin(), DL, TII->get(Mips::PHI),
3057 MI.getOperand(0).getReg())
3058 .addReg(VR2)
3059 .addMBB(FBB)
3060 .addReg(VR1)
3061 .addMBB(TBB);
3062
3063 MI.eraseFromParent(); // The pseudo instruction is gone now.
3064 return Sink;
3065 }
3066
emitMSACBranchPseudo(MachineInstr & MI,MachineBasicBlock * BB,unsigned BranchOp) const3067 MachineBasicBlock *MipsSETargetLowering::emitMSACBranchPseudo(
3068 MachineInstr &MI, MachineBasicBlock *BB, unsigned BranchOp) const {
3069 // $bb:
3070 // vany_nonzero $rd, $ws
3071 // =>
3072 // $bb:
3073 // bnz.b $ws, $tbb
3074 // b $fbb
3075 // $fbb:
3076 // li $rd1, 0
3077 // b $sink
3078 // $tbb:
3079 // li $rd2, 1
3080 // $sink:
3081 // $rd = phi($rd1, $fbb, $rd2, $tbb)
3082
3083 MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
3084 const TargetInstrInfo *TII = Subtarget.getInstrInfo();
3085 const TargetRegisterClass *RC = &Mips::GPR32RegClass;
3086 DebugLoc DL = MI.getDebugLoc();
3087 const BasicBlock *LLVM_BB = BB->getBasicBlock();
3088 MachineFunction::iterator It = std::next(MachineFunction::iterator(BB));
3089 MachineFunction *F = BB->getParent();
3090 MachineBasicBlock *FBB = F->CreateMachineBasicBlock(LLVM_BB);
3091 MachineBasicBlock *TBB = F->CreateMachineBasicBlock(LLVM_BB);
3092 MachineBasicBlock *Sink = F->CreateMachineBasicBlock(LLVM_BB);
3093 F->insert(It, FBB);
3094 F->insert(It, TBB);
3095 F->insert(It, Sink);
3096
3097 // Transfer the remainder of BB and its successor edges to Sink.
3098 Sink->splice(Sink->begin(), BB, std::next(MachineBasicBlock::iterator(MI)),
3099 BB->end());
3100 Sink->transferSuccessorsAndUpdatePHIs(BB);
3101
3102 // Add successors.
3103 BB->addSuccessor(FBB);
3104 BB->addSuccessor(TBB);
3105 FBB->addSuccessor(Sink);
3106 TBB->addSuccessor(Sink);
3107
3108 // Insert the real bnz.b instruction to $BB.
3109 BuildMI(BB, DL, TII->get(BranchOp))
3110 .addReg(MI.getOperand(1).getReg())
3111 .addMBB(TBB);
3112
3113 // Fill $FBB.
3114 unsigned RD1 = RegInfo.createVirtualRegister(RC);
3115 BuildMI(*FBB, FBB->end(), DL, TII->get(Mips::ADDiu), RD1)
3116 .addReg(Mips::ZERO).addImm(0);
3117 BuildMI(*FBB, FBB->end(), DL, TII->get(Mips::B)).addMBB(Sink);
3118
3119 // Fill $TBB.
3120 unsigned RD2 = RegInfo.createVirtualRegister(RC);
3121 BuildMI(*TBB, TBB->end(), DL, TII->get(Mips::ADDiu), RD2)
3122 .addReg(Mips::ZERO).addImm(1);
3123
3124 // Insert phi function to $Sink.
3125 BuildMI(*Sink, Sink->begin(), DL, TII->get(Mips::PHI),
3126 MI.getOperand(0).getReg())
3127 .addReg(RD1)
3128 .addMBB(FBB)
3129 .addReg(RD2)
3130 .addMBB(TBB);
3131
3132 MI.eraseFromParent(); // The pseudo instruction is gone now.
3133 return Sink;
3134 }
3135
3136 // Emit the COPY_FW pseudo instruction.
3137 //
3138 // copy_fw_pseudo $fd, $ws, n
3139 // =>
3140 // copy_u_w $rt, $ws, $n
3141 // mtc1 $rt, $fd
3142 //
3143 // When n is zero, the equivalent operation can be performed with (potentially)
3144 // zero instructions due to register overlaps. This optimization is never valid
3145 // for lane 1 because it would require FR=0 mode which isn't supported by MSA.
3146 MachineBasicBlock *
emitCOPY_FW(MachineInstr & MI,MachineBasicBlock * BB) const3147 MipsSETargetLowering::emitCOPY_FW(MachineInstr &MI,
3148 MachineBasicBlock *BB) const {
3149 const TargetInstrInfo *TII = Subtarget.getInstrInfo();
3150 MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
3151 DebugLoc DL = MI.getDebugLoc();
3152 unsigned Fd = MI.getOperand(0).getReg();
3153 unsigned Ws = MI.getOperand(1).getReg();
3154 unsigned Lane = MI.getOperand(2).getImm();
3155
3156 if (Lane == 0) {
3157 unsigned Wt = Ws;
3158 if (!Subtarget.useOddSPReg()) {
3159 // We must copy to an even-numbered MSA register so that the
3160 // single-precision sub-register is also guaranteed to be even-numbered.
3161 Wt = RegInfo.createVirtualRegister(&Mips::MSA128WEvensRegClass);
3162
3163 BuildMI(*BB, MI, DL, TII->get(Mips::COPY), Wt).addReg(Ws);
3164 }
3165
3166 BuildMI(*BB, MI, DL, TII->get(Mips::COPY), Fd).addReg(Wt, 0, Mips::sub_lo);
3167 } else {
3168 unsigned Wt = RegInfo.createVirtualRegister(
3169 Subtarget.useOddSPReg() ? &Mips::MSA128WRegClass :
3170 &Mips::MSA128WEvensRegClass);
3171
3172 BuildMI(*BB, MI, DL, TII->get(Mips::SPLATI_W), Wt).addReg(Ws).addImm(Lane);
3173 BuildMI(*BB, MI, DL, TII->get(Mips::COPY), Fd).addReg(Wt, 0, Mips::sub_lo);
3174 }
3175
3176 MI.eraseFromParent(); // The pseudo instruction is gone now.
3177 return BB;
3178 }
3179
3180 // Emit the COPY_FD pseudo instruction.
3181 //
3182 // copy_fd_pseudo $fd, $ws, n
3183 // =>
3184 // splati.d $wt, $ws, $n
3185 // copy $fd, $wt:sub_64
3186 //
3187 // When n is zero, the equivalent operation can be performed with (potentially)
3188 // zero instructions due to register overlaps. This optimization is always
3189 // valid because FR=1 mode which is the only supported mode in MSA.
3190 MachineBasicBlock *
emitCOPY_FD(MachineInstr & MI,MachineBasicBlock * BB) const3191 MipsSETargetLowering::emitCOPY_FD(MachineInstr &MI,
3192 MachineBasicBlock *BB) const {
3193 assert(Subtarget.isFP64bit());
3194
3195 const TargetInstrInfo *TII = Subtarget.getInstrInfo();
3196 MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
3197 unsigned Fd = MI.getOperand(0).getReg();
3198 unsigned Ws = MI.getOperand(1).getReg();
3199 unsigned Lane = MI.getOperand(2).getImm() * 2;
3200 DebugLoc DL = MI.getDebugLoc();
3201
3202 if (Lane == 0)
3203 BuildMI(*BB, MI, DL, TII->get(Mips::COPY), Fd).addReg(Ws, 0, Mips::sub_64);
3204 else {
3205 unsigned Wt = RegInfo.createVirtualRegister(&Mips::MSA128DRegClass);
3206
3207 BuildMI(*BB, MI, DL, TII->get(Mips::SPLATI_D), Wt).addReg(Ws).addImm(1);
3208 BuildMI(*BB, MI, DL, TII->get(Mips::COPY), Fd).addReg(Wt, 0, Mips::sub_64);
3209 }
3210
3211 MI.eraseFromParent(); // The pseudo instruction is gone now.
3212 return BB;
3213 }
3214
3215 // Emit the INSERT_FW pseudo instruction.
3216 //
3217 // insert_fw_pseudo $wd, $wd_in, $n, $fs
3218 // =>
3219 // subreg_to_reg $wt:sub_lo, $fs
3220 // insve_w $wd[$n], $wd_in, $wt[0]
3221 MachineBasicBlock *
emitINSERT_FW(MachineInstr & MI,MachineBasicBlock * BB) const3222 MipsSETargetLowering::emitINSERT_FW(MachineInstr &MI,
3223 MachineBasicBlock *BB) const {
3224 const TargetInstrInfo *TII = Subtarget.getInstrInfo();
3225 MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
3226 DebugLoc DL = MI.getDebugLoc();
3227 unsigned Wd = MI.getOperand(0).getReg();
3228 unsigned Wd_in = MI.getOperand(1).getReg();
3229 unsigned Lane = MI.getOperand(2).getImm();
3230 unsigned Fs = MI.getOperand(3).getReg();
3231 unsigned Wt = RegInfo.createVirtualRegister(
3232 Subtarget.useOddSPReg() ? &Mips::MSA128WRegClass :
3233 &Mips::MSA128WEvensRegClass);
3234
3235 BuildMI(*BB, MI, DL, TII->get(Mips::SUBREG_TO_REG), Wt)
3236 .addImm(0)
3237 .addReg(Fs)
3238 .addImm(Mips::sub_lo);
3239 BuildMI(*BB, MI, DL, TII->get(Mips::INSVE_W), Wd)
3240 .addReg(Wd_in)
3241 .addImm(Lane)
3242 .addReg(Wt)
3243 .addImm(0);
3244
3245 MI.eraseFromParent(); // The pseudo instruction is gone now.
3246 return BB;
3247 }
3248
3249 // Emit the INSERT_FD pseudo instruction.
3250 //
3251 // insert_fd_pseudo $wd, $fs, n
3252 // =>
3253 // subreg_to_reg $wt:sub_64, $fs
3254 // insve_d $wd[$n], $wd_in, $wt[0]
3255 MachineBasicBlock *
emitINSERT_FD(MachineInstr & MI,MachineBasicBlock * BB) const3256 MipsSETargetLowering::emitINSERT_FD(MachineInstr &MI,
3257 MachineBasicBlock *BB) const {
3258 assert(Subtarget.isFP64bit());
3259
3260 const TargetInstrInfo *TII = Subtarget.getInstrInfo();
3261 MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
3262 DebugLoc DL = MI.getDebugLoc();
3263 unsigned Wd = MI.getOperand(0).getReg();
3264 unsigned Wd_in = MI.getOperand(1).getReg();
3265 unsigned Lane = MI.getOperand(2).getImm();
3266 unsigned Fs = MI.getOperand(3).getReg();
3267 unsigned Wt = RegInfo.createVirtualRegister(&Mips::MSA128DRegClass);
3268
3269 BuildMI(*BB, MI, DL, TII->get(Mips::SUBREG_TO_REG), Wt)
3270 .addImm(0)
3271 .addReg(Fs)
3272 .addImm(Mips::sub_64);
3273 BuildMI(*BB, MI, DL, TII->get(Mips::INSVE_D), Wd)
3274 .addReg(Wd_in)
3275 .addImm(Lane)
3276 .addReg(Wt)
3277 .addImm(0);
3278
3279 MI.eraseFromParent(); // The pseudo instruction is gone now.
3280 return BB;
3281 }
3282
3283 // Emit the INSERT_([BHWD]|F[WD])_VIDX pseudo instruction.
3284 //
3285 // For integer:
3286 // (INSERT_([BHWD]|F[WD])_PSEUDO $wd, $wd_in, $n, $rs)
3287 // =>
3288 // (SLL $lanetmp1, $lane, <log2size)
3289 // (SLD_B $wdtmp1, $wd_in, $wd_in, $lanetmp1)
3290 // (INSERT_[BHWD], $wdtmp2, $wdtmp1, 0, $rs)
3291 // (NEG $lanetmp2, $lanetmp1)
3292 // (SLD_B $wd, $wdtmp2, $wdtmp2, $lanetmp2)
3293 //
3294 // For floating point:
3295 // (INSERT_([BHWD]|F[WD])_PSEUDO $wd, $wd_in, $n, $fs)
3296 // =>
3297 // (SUBREG_TO_REG $wt, $fs, <subreg>)
3298 // (SLL $lanetmp1, $lane, <log2size)
3299 // (SLD_B $wdtmp1, $wd_in, $wd_in, $lanetmp1)
3300 // (INSVE_[WD], $wdtmp2, 0, $wdtmp1, 0)
3301 // (NEG $lanetmp2, $lanetmp1)
3302 // (SLD_B $wd, $wdtmp2, $wdtmp2, $lanetmp2)
emitINSERT_DF_VIDX(MachineInstr & MI,MachineBasicBlock * BB,unsigned EltSizeInBytes,bool IsFP) const3303 MachineBasicBlock *MipsSETargetLowering::emitINSERT_DF_VIDX(
3304 MachineInstr &MI, MachineBasicBlock *BB, unsigned EltSizeInBytes,
3305 bool IsFP) const {
3306 const TargetInstrInfo *TII = Subtarget.getInstrInfo();
3307 MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
3308 DebugLoc DL = MI.getDebugLoc();
3309 unsigned Wd = MI.getOperand(0).getReg();
3310 unsigned SrcVecReg = MI.getOperand(1).getReg();
3311 unsigned LaneReg = MI.getOperand(2).getReg();
3312 unsigned SrcValReg = MI.getOperand(3).getReg();
3313
3314 const TargetRegisterClass *VecRC = nullptr;
3315 // FIXME: This should be true for N32 too.
3316 const TargetRegisterClass *GPRRC =
3317 Subtarget.isABI_N64() ? &Mips::GPR64RegClass : &Mips::GPR32RegClass;
3318 unsigned SubRegIdx = Subtarget.isABI_N64() ? Mips::sub_32 : 0;
3319 unsigned ShiftOp = Subtarget.isABI_N64() ? Mips::DSLL : Mips::SLL;
3320 unsigned EltLog2Size;
3321 unsigned InsertOp = 0;
3322 unsigned InsveOp = 0;
3323 switch (EltSizeInBytes) {
3324 default:
3325 llvm_unreachable("Unexpected size");
3326 case 1:
3327 EltLog2Size = 0;
3328 InsertOp = Mips::INSERT_B;
3329 InsveOp = Mips::INSVE_B;
3330 VecRC = &Mips::MSA128BRegClass;
3331 break;
3332 case 2:
3333 EltLog2Size = 1;
3334 InsertOp = Mips::INSERT_H;
3335 InsveOp = Mips::INSVE_H;
3336 VecRC = &Mips::MSA128HRegClass;
3337 break;
3338 case 4:
3339 EltLog2Size = 2;
3340 InsertOp = Mips::INSERT_W;
3341 InsveOp = Mips::INSVE_W;
3342 VecRC = &Mips::MSA128WRegClass;
3343 break;
3344 case 8:
3345 EltLog2Size = 3;
3346 InsertOp = Mips::INSERT_D;
3347 InsveOp = Mips::INSVE_D;
3348 VecRC = &Mips::MSA128DRegClass;
3349 break;
3350 }
3351
3352 if (IsFP) {
3353 unsigned Wt = RegInfo.createVirtualRegister(VecRC);
3354 BuildMI(*BB, MI, DL, TII->get(Mips::SUBREG_TO_REG), Wt)
3355 .addImm(0)
3356 .addReg(SrcValReg)
3357 .addImm(EltSizeInBytes == 8 ? Mips::sub_64 : Mips::sub_lo);
3358 SrcValReg = Wt;
3359 }
3360
3361 // Convert the lane index into a byte index
3362 if (EltSizeInBytes != 1) {
3363 unsigned LaneTmp1 = RegInfo.createVirtualRegister(GPRRC);
3364 BuildMI(*BB, MI, DL, TII->get(ShiftOp), LaneTmp1)
3365 .addReg(LaneReg)
3366 .addImm(EltLog2Size);
3367 LaneReg = LaneTmp1;
3368 }
3369
3370 // Rotate bytes around so that the desired lane is element zero
3371 unsigned WdTmp1 = RegInfo.createVirtualRegister(VecRC);
3372 BuildMI(*BB, MI, DL, TII->get(Mips::SLD_B), WdTmp1)
3373 .addReg(SrcVecReg)
3374 .addReg(SrcVecReg)
3375 .addReg(LaneReg, 0, SubRegIdx);
3376
3377 unsigned WdTmp2 = RegInfo.createVirtualRegister(VecRC);
3378 if (IsFP) {
3379 // Use insve.df to insert to element zero
3380 BuildMI(*BB, MI, DL, TII->get(InsveOp), WdTmp2)
3381 .addReg(WdTmp1)
3382 .addImm(0)
3383 .addReg(SrcValReg)
3384 .addImm(0);
3385 } else {
3386 // Use insert.df to insert to element zero
3387 BuildMI(*BB, MI, DL, TII->get(InsertOp), WdTmp2)
3388 .addReg(WdTmp1)
3389 .addReg(SrcValReg)
3390 .addImm(0);
3391 }
3392
3393 // Rotate elements the rest of the way for a full rotation.
3394 // sld.df inteprets $rt modulo the number of columns so we only need to negate
3395 // the lane index to do this.
3396 unsigned LaneTmp2 = RegInfo.createVirtualRegister(GPRRC);
3397 BuildMI(*BB, MI, DL, TII->get(Subtarget.isABI_N64() ? Mips::DSUB : Mips::SUB),
3398 LaneTmp2)
3399 .addReg(Subtarget.isABI_N64() ? Mips::ZERO_64 : Mips::ZERO)
3400 .addReg(LaneReg);
3401 BuildMI(*BB, MI, DL, TII->get(Mips::SLD_B), Wd)
3402 .addReg(WdTmp2)
3403 .addReg(WdTmp2)
3404 .addReg(LaneTmp2, 0, SubRegIdx);
3405
3406 MI.eraseFromParent(); // The pseudo instruction is gone now.
3407 return BB;
3408 }
3409
3410 // Emit the FILL_FW pseudo instruction.
3411 //
3412 // fill_fw_pseudo $wd, $fs
3413 // =>
3414 // implicit_def $wt1
3415 // insert_subreg $wt2:subreg_lo, $wt1, $fs
3416 // splati.w $wd, $wt2[0]
3417 MachineBasicBlock *
emitFILL_FW(MachineInstr & MI,MachineBasicBlock * BB) const3418 MipsSETargetLowering::emitFILL_FW(MachineInstr &MI,
3419 MachineBasicBlock *BB) const {
3420 const TargetInstrInfo *TII = Subtarget.getInstrInfo();
3421 MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
3422 DebugLoc DL = MI.getDebugLoc();
3423 unsigned Wd = MI.getOperand(0).getReg();
3424 unsigned Fs = MI.getOperand(1).getReg();
3425 unsigned Wt1 = RegInfo.createVirtualRegister(
3426 Subtarget.useOddSPReg() ? &Mips::MSA128WRegClass
3427 : &Mips::MSA128WEvensRegClass);
3428 unsigned Wt2 = RegInfo.createVirtualRegister(
3429 Subtarget.useOddSPReg() ? &Mips::MSA128WRegClass
3430 : &Mips::MSA128WEvensRegClass);
3431
3432 BuildMI(*BB, MI, DL, TII->get(Mips::IMPLICIT_DEF), Wt1);
3433 BuildMI(*BB, MI, DL, TII->get(Mips::INSERT_SUBREG), Wt2)
3434 .addReg(Wt1)
3435 .addReg(Fs)
3436 .addImm(Mips::sub_lo);
3437 BuildMI(*BB, MI, DL, TII->get(Mips::SPLATI_W), Wd).addReg(Wt2).addImm(0);
3438
3439 MI.eraseFromParent(); // The pseudo instruction is gone now.
3440 return BB;
3441 }
3442
3443 // Emit the FILL_FD pseudo instruction.
3444 //
3445 // fill_fd_pseudo $wd, $fs
3446 // =>
3447 // implicit_def $wt1
3448 // insert_subreg $wt2:subreg_64, $wt1, $fs
3449 // splati.d $wd, $wt2[0]
3450 MachineBasicBlock *
emitFILL_FD(MachineInstr & MI,MachineBasicBlock * BB) const3451 MipsSETargetLowering::emitFILL_FD(MachineInstr &MI,
3452 MachineBasicBlock *BB) const {
3453 assert(Subtarget.isFP64bit());
3454
3455 const TargetInstrInfo *TII = Subtarget.getInstrInfo();
3456 MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
3457 DebugLoc DL = MI.getDebugLoc();
3458 unsigned Wd = MI.getOperand(0).getReg();
3459 unsigned Fs = MI.getOperand(1).getReg();
3460 unsigned Wt1 = RegInfo.createVirtualRegister(&Mips::MSA128DRegClass);
3461 unsigned Wt2 = RegInfo.createVirtualRegister(&Mips::MSA128DRegClass);
3462
3463 BuildMI(*BB, MI, DL, TII->get(Mips::IMPLICIT_DEF), Wt1);
3464 BuildMI(*BB, MI, DL, TII->get(Mips::INSERT_SUBREG), Wt2)
3465 .addReg(Wt1)
3466 .addReg(Fs)
3467 .addImm(Mips::sub_64);
3468 BuildMI(*BB, MI, DL, TII->get(Mips::SPLATI_D), Wd).addReg(Wt2).addImm(0);
3469
3470 MI.eraseFromParent(); // The pseudo instruction is gone now.
3471 return BB;
3472 }
3473
3474 // Emit the ST_F16_PSEDUO instruction to store a f16 value from an MSA
3475 // register.
3476 //
3477 // STF16 MSA128F16:$wd, mem_simm10:$addr
3478 // =>
3479 // copy_u.h $rtemp,$wd[0]
3480 // sh $rtemp, $addr
3481 //
3482 // Safety: We can't use st.h & co as they would over write the memory after
3483 // the destination. It would require half floats be allocated 16 bytes(!) of
3484 // space.
3485 MachineBasicBlock *
emitST_F16_PSEUDO(MachineInstr & MI,MachineBasicBlock * BB) const3486 MipsSETargetLowering::emitST_F16_PSEUDO(MachineInstr &MI,
3487 MachineBasicBlock *BB) const {
3488
3489 const TargetInstrInfo *TII = Subtarget.getInstrInfo();
3490 MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
3491 DebugLoc DL = MI.getDebugLoc();
3492 unsigned Ws = MI.getOperand(0).getReg();
3493 unsigned Rt = MI.getOperand(1).getReg();
3494 const MachineMemOperand &MMO = **MI.memoperands_begin();
3495 unsigned Imm = MMO.getOffset();
3496
3497 // Caution: A load via the GOT can expand to a GPR32 operand, a load via
3498 // spill and reload can expand as a GPR64 operand. Examine the
3499 // operand in detail and default to ABI.
3500 const TargetRegisterClass *RC =
3501 MI.getOperand(1).isReg() ? RegInfo.getRegClass(MI.getOperand(1).getReg())
3502 : (Subtarget.isABI_O32() ? &Mips::GPR32RegClass
3503 : &Mips::GPR64RegClass);
3504 const bool UsingMips32 = RC == &Mips::GPR32RegClass;
3505 unsigned Rs = RegInfo.createVirtualRegister(&Mips::GPR32RegClass);
3506
3507 BuildMI(*BB, MI, DL, TII->get(Mips::COPY_U_H), Rs).addReg(Ws).addImm(0);
3508 if(!UsingMips32) {
3509 unsigned Tmp = RegInfo.createVirtualRegister(&Mips::GPR64RegClass);
3510 BuildMI(*BB, MI, DL, TII->get(Mips::SUBREG_TO_REG), Tmp)
3511 .addImm(0)
3512 .addReg(Rs)
3513 .addImm(Mips::sub_32);
3514 Rs = Tmp;
3515 }
3516 BuildMI(*BB, MI, DL, TII->get(UsingMips32 ? Mips::SH : Mips::SH64))
3517 .addReg(Rs)
3518 .addReg(Rt)
3519 .addImm(Imm)
3520 .addMemOperand(BB->getParent()->getMachineMemOperand(
3521 &MMO, MMO.getOffset(), MMO.getSize()));
3522
3523 MI.eraseFromParent();
3524 return BB;
3525 }
3526
3527 // Emit the LD_F16_PSEDUO instruction to load a f16 value into an MSA register.
3528 //
3529 // LD_F16 MSA128F16:$wd, mem_simm10:$addr
3530 // =>
3531 // lh $rtemp, $addr
3532 // fill.h $wd, $rtemp
3533 //
3534 // Safety: We can't use ld.h & co as they over-read from the source.
3535 // Additionally, if the address is not modulo 16, 2 cases can occur:
3536 // a) Segmentation fault as the load instruction reads from a memory page
3537 // memory it's not supposed to.
3538 // b) The load crosses an implementation specific boundary, requiring OS
3539 // intervention.
3540 MachineBasicBlock *
emitLD_F16_PSEUDO(MachineInstr & MI,MachineBasicBlock * BB) const3541 MipsSETargetLowering::emitLD_F16_PSEUDO(MachineInstr &MI,
3542 MachineBasicBlock *BB) const {
3543
3544 const TargetInstrInfo *TII = Subtarget.getInstrInfo();
3545 MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
3546 DebugLoc DL = MI.getDebugLoc();
3547 unsigned Wd = MI.getOperand(0).getReg();
3548
3549 // Caution: A load via the GOT can expand to a GPR32 operand, a load via
3550 // spill and reload can expand as a GPR64 operand. Examine the
3551 // operand in detail and default to ABI.
3552 const TargetRegisterClass *RC =
3553 MI.getOperand(1).isReg() ? RegInfo.getRegClass(MI.getOperand(1).getReg())
3554 : (Subtarget.isABI_O32() ? &Mips::GPR32RegClass
3555 : &Mips::GPR64RegClass);
3556
3557 const bool UsingMips32 = RC == &Mips::GPR32RegClass;
3558 unsigned Rt = RegInfo.createVirtualRegister(RC);
3559
3560 MachineInstrBuilder MIB =
3561 BuildMI(*BB, MI, DL, TII->get(UsingMips32 ? Mips::LH : Mips::LH64), Rt);
3562 for (unsigned i = 1; i < MI.getNumOperands(); i++)
3563 MIB.add(MI.getOperand(i));
3564
3565 if(!UsingMips32) {
3566 unsigned Tmp = RegInfo.createVirtualRegister(&Mips::GPR32RegClass);
3567 BuildMI(*BB, MI, DL, TII->get(Mips::COPY), Tmp).addReg(Rt, 0, Mips::sub_32);
3568 Rt = Tmp;
3569 }
3570
3571 BuildMI(*BB, MI, DL, TII->get(Mips::FILL_H), Wd).addReg(Rt);
3572
3573 MI.eraseFromParent();
3574 return BB;
3575 }
3576
3577 // Emit the FPROUND_PSEUDO instruction.
3578 //
3579 // Round an FGR64Opnd, FGR32Opnd to an f16.
3580 //
3581 // Safety: Cycle the operand through the GPRs so the result always ends up
3582 // the correct MSA register.
3583 //
3584 // FIXME: This copying is strictly unnecessary. If we could tie FGR32Opnd:$Fs
3585 // / FGR64Opnd:$Fs and MSA128F16:$Wd to the same physical register
3586 // (which they can be, as the MSA registers are defined to alias the
3587 // FPU's 64 bit and 32 bit registers) the result can be accessed using
3588 // the correct register class. That requires operands be tie-able across
3589 // register classes which have a sub/super register class relationship.
3590 //
3591 // For FPG32Opnd:
3592 //
3593 // FPROUND MSA128F16:$wd, FGR32Opnd:$fs
3594 // =>
3595 // mfc1 $rtemp, $fs
3596 // fill.w $rtemp, $wtemp
3597 // fexdo.w $wd, $wtemp, $wtemp
3598 //
3599 // For FPG64Opnd on mips32r2+:
3600 //
3601 // FPROUND MSA128F16:$wd, FGR64Opnd:$fs
3602 // =>
3603 // mfc1 $rtemp, $fs
3604 // fill.w $rtemp, $wtemp
3605 // mfhc1 $rtemp2, $fs
3606 // insert.w $wtemp[1], $rtemp2
3607 // insert.w $wtemp[3], $rtemp2
3608 // fexdo.w $wtemp2, $wtemp, $wtemp
3609 // fexdo.h $wd, $temp2, $temp2
3610 //
3611 // For FGR64Opnd on mips64r2+:
3612 //
3613 // FPROUND MSA128F16:$wd, FGR64Opnd:$fs
3614 // =>
3615 // dmfc1 $rtemp, $fs
3616 // fill.d $rtemp, $wtemp
3617 // fexdo.w $wtemp2, $wtemp, $wtemp
3618 // fexdo.h $wd, $wtemp2, $wtemp2
3619 //
3620 // Safety note: As $wtemp is UNDEF, we may provoke a spurious exception if the
3621 // undef bits are "just right" and the exception enable bits are
3622 // set. By using fill.w to replicate $fs into all elements over
3623 // insert.w for one element, we avoid that potiential case. If
3624 // fexdo.[hw] causes an exception in, the exception is valid and it
3625 // occurs for all elements.
3626 MachineBasicBlock *
emitFPROUND_PSEUDO(MachineInstr & MI,MachineBasicBlock * BB,bool IsFGR64) const3627 MipsSETargetLowering::emitFPROUND_PSEUDO(MachineInstr &MI,
3628 MachineBasicBlock *BB,
3629 bool IsFGR64) const {
3630
3631 // Strictly speaking, we need MIPS32R5 to support MSA. We'll be generous
3632 // here. It's technically doable to support MIPS32 here, but the ISA forbids
3633 // it.
3634 assert(Subtarget.hasMSA() && Subtarget.hasMips32r2());
3635
3636 bool IsFGR64onMips64 = Subtarget.hasMips64() && IsFGR64;
3637 bool IsFGR64onMips32 = !Subtarget.hasMips64() && IsFGR64;
3638
3639 const TargetInstrInfo *TII = Subtarget.getInstrInfo();
3640 DebugLoc DL = MI.getDebugLoc();
3641 unsigned Wd = MI.getOperand(0).getReg();
3642 unsigned Fs = MI.getOperand(1).getReg();
3643
3644 MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
3645 unsigned Wtemp = RegInfo.createVirtualRegister(&Mips::MSA128WRegClass);
3646 const TargetRegisterClass *GPRRC =
3647 IsFGR64onMips64 ? &Mips::GPR64RegClass : &Mips::GPR32RegClass;
3648 unsigned MFC1Opc = IsFGR64onMips64
3649 ? Mips::DMFC1
3650 : (IsFGR64onMips32 ? Mips::MFC1_D64 : Mips::MFC1);
3651 unsigned FILLOpc = IsFGR64onMips64 ? Mips::FILL_D : Mips::FILL_W;
3652
3653 // Perform the register class copy as mentioned above.
3654 unsigned Rtemp = RegInfo.createVirtualRegister(GPRRC);
3655 BuildMI(*BB, MI, DL, TII->get(MFC1Opc), Rtemp).addReg(Fs);
3656 BuildMI(*BB, MI, DL, TII->get(FILLOpc), Wtemp).addReg(Rtemp);
3657 unsigned WPHI = Wtemp;
3658
3659 if (IsFGR64onMips32) {
3660 unsigned Rtemp2 = RegInfo.createVirtualRegister(GPRRC);
3661 BuildMI(*BB, MI, DL, TII->get(Mips::MFHC1_D64), Rtemp2).addReg(Fs);
3662 unsigned Wtemp2 = RegInfo.createVirtualRegister(&Mips::MSA128WRegClass);
3663 unsigned Wtemp3 = RegInfo.createVirtualRegister(&Mips::MSA128WRegClass);
3664 BuildMI(*BB, MI, DL, TII->get(Mips::INSERT_W), Wtemp2)
3665 .addReg(Wtemp)
3666 .addReg(Rtemp2)
3667 .addImm(1);
3668 BuildMI(*BB, MI, DL, TII->get(Mips::INSERT_W), Wtemp3)
3669 .addReg(Wtemp2)
3670 .addReg(Rtemp2)
3671 .addImm(3);
3672 WPHI = Wtemp3;
3673 }
3674
3675 if (IsFGR64) {
3676 unsigned Wtemp2 = RegInfo.createVirtualRegister(&Mips::MSA128WRegClass);
3677 BuildMI(*BB, MI, DL, TII->get(Mips::FEXDO_W), Wtemp2)
3678 .addReg(WPHI)
3679 .addReg(WPHI);
3680 WPHI = Wtemp2;
3681 }
3682
3683 BuildMI(*BB, MI, DL, TII->get(Mips::FEXDO_H), Wd).addReg(WPHI).addReg(WPHI);
3684
3685 MI.eraseFromParent();
3686 return BB;
3687 }
3688
3689 // Emit the FPEXTEND_PSEUDO instruction.
3690 //
3691 // Expand an f16 to either a FGR32Opnd or FGR64Opnd.
3692 //
3693 // Safety: Cycle the result through the GPRs so the result always ends up
3694 // the correct floating point register.
3695 //
3696 // FIXME: This copying is strictly unnecessary. If we could tie FGR32Opnd:$Fd
3697 // / FGR64Opnd:$Fd and MSA128F16:$Ws to the same physical register
3698 // (which they can be, as the MSA registers are defined to alias the
3699 // FPU's 64 bit and 32 bit registers) the result can be accessed using
3700 // the correct register class. That requires operands be tie-able across
3701 // register classes which have a sub/super register class relationship. I
3702 // haven't checked.
3703 //
3704 // For FGR32Opnd:
3705 //
3706 // FPEXTEND FGR32Opnd:$fd, MSA128F16:$ws
3707 // =>
3708 // fexupr.w $wtemp, $ws
3709 // copy_s.w $rtemp, $ws[0]
3710 // mtc1 $rtemp, $fd
3711 //
3712 // For FGR64Opnd on Mips64:
3713 //
3714 // FPEXTEND FGR64Opnd:$fd, MSA128F16:$ws
3715 // =>
3716 // fexupr.w $wtemp, $ws
3717 // fexupr.d $wtemp2, $wtemp
3718 // copy_s.d $rtemp, $wtemp2s[0]
3719 // dmtc1 $rtemp, $fd
3720 //
3721 // For FGR64Opnd on Mips32:
3722 //
3723 // FPEXTEND FGR64Opnd:$fd, MSA128F16:$ws
3724 // =>
3725 // fexupr.w $wtemp, $ws
3726 // fexupr.d $wtemp2, $wtemp
3727 // copy_s.w $rtemp, $wtemp2[0]
3728 // mtc1 $rtemp, $ftemp
3729 // copy_s.w $rtemp2, $wtemp2[1]
3730 // $fd = mthc1 $rtemp2, $ftemp
3731 MachineBasicBlock *
emitFPEXTEND_PSEUDO(MachineInstr & MI,MachineBasicBlock * BB,bool IsFGR64) const3732 MipsSETargetLowering::emitFPEXTEND_PSEUDO(MachineInstr &MI,
3733 MachineBasicBlock *BB,
3734 bool IsFGR64) const {
3735
3736 // Strictly speaking, we need MIPS32R5 to support MSA. We'll be generous
3737 // here. It's technically doable to support MIPS32 here, but the ISA forbids
3738 // it.
3739 assert(Subtarget.hasMSA() && Subtarget.hasMips32r2());
3740
3741 bool IsFGR64onMips64 = Subtarget.hasMips64() && IsFGR64;
3742 bool IsFGR64onMips32 = !Subtarget.hasMips64() && IsFGR64;
3743
3744 const TargetInstrInfo *TII = Subtarget.getInstrInfo();
3745 DebugLoc DL = MI.getDebugLoc();
3746 unsigned Fd = MI.getOperand(0).getReg();
3747 unsigned Ws = MI.getOperand(1).getReg();
3748
3749 MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
3750 const TargetRegisterClass *GPRRC =
3751 IsFGR64onMips64 ? &Mips::GPR64RegClass : &Mips::GPR32RegClass;
3752 unsigned MTC1Opc = IsFGR64onMips64
3753 ? Mips::DMTC1
3754 : (IsFGR64onMips32 ? Mips::MTC1_D64 : Mips::MTC1);
3755 unsigned COPYOpc = IsFGR64onMips64 ? Mips::COPY_S_D : Mips::COPY_S_W;
3756
3757 unsigned Wtemp = RegInfo.createVirtualRegister(&Mips::MSA128WRegClass);
3758 unsigned WPHI = Wtemp;
3759
3760 BuildMI(*BB, MI, DL, TII->get(Mips::FEXUPR_W), Wtemp).addReg(Ws);
3761 if (IsFGR64) {
3762 WPHI = RegInfo.createVirtualRegister(&Mips::MSA128DRegClass);
3763 BuildMI(*BB, MI, DL, TII->get(Mips::FEXUPR_D), WPHI).addReg(Wtemp);
3764 }
3765
3766 // Perform the safety regclass copy mentioned above.
3767 unsigned Rtemp = RegInfo.createVirtualRegister(GPRRC);
3768 unsigned FPRPHI = IsFGR64onMips32
3769 ? RegInfo.createVirtualRegister(&Mips::FGR64RegClass)
3770 : Fd;
3771 BuildMI(*BB, MI, DL, TII->get(COPYOpc), Rtemp).addReg(WPHI).addImm(0);
3772 BuildMI(*BB, MI, DL, TII->get(MTC1Opc), FPRPHI).addReg(Rtemp);
3773
3774 if (IsFGR64onMips32) {
3775 unsigned Rtemp2 = RegInfo.createVirtualRegister(GPRRC);
3776 BuildMI(*BB, MI, DL, TII->get(Mips::COPY_S_W), Rtemp2)
3777 .addReg(WPHI)
3778 .addImm(1);
3779 BuildMI(*BB, MI, DL, TII->get(Mips::MTHC1_D64), Fd)
3780 .addReg(FPRPHI)
3781 .addReg(Rtemp2);
3782 }
3783
3784 MI.eraseFromParent();
3785 return BB;
3786 }
3787
3788 // Emit the FEXP2_W_1 pseudo instructions.
3789 //
3790 // fexp2_w_1_pseudo $wd, $wt
3791 // =>
3792 // ldi.w $ws, 1
3793 // fexp2.w $wd, $ws, $wt
3794 MachineBasicBlock *
emitFEXP2_W_1(MachineInstr & MI,MachineBasicBlock * BB) const3795 MipsSETargetLowering::emitFEXP2_W_1(MachineInstr &MI,
3796 MachineBasicBlock *BB) const {
3797 const TargetInstrInfo *TII = Subtarget.getInstrInfo();
3798 MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
3799 const TargetRegisterClass *RC = &Mips::MSA128WRegClass;
3800 unsigned Ws1 = RegInfo.createVirtualRegister(RC);
3801 unsigned Ws2 = RegInfo.createVirtualRegister(RC);
3802 DebugLoc DL = MI.getDebugLoc();
3803
3804 // Splat 1.0 into a vector
3805 BuildMI(*BB, MI, DL, TII->get(Mips::LDI_W), Ws1).addImm(1);
3806 BuildMI(*BB, MI, DL, TII->get(Mips::FFINT_U_W), Ws2).addReg(Ws1);
3807
3808 // Emit 1.0 * fexp2(Wt)
3809 BuildMI(*BB, MI, DL, TII->get(Mips::FEXP2_W), MI.getOperand(0).getReg())
3810 .addReg(Ws2)
3811 .addReg(MI.getOperand(1).getReg());
3812
3813 MI.eraseFromParent(); // The pseudo instruction is gone now.
3814 return BB;
3815 }
3816
3817 // Emit the FEXP2_D_1 pseudo instructions.
3818 //
3819 // fexp2_d_1_pseudo $wd, $wt
3820 // =>
3821 // ldi.d $ws, 1
3822 // fexp2.d $wd, $ws, $wt
3823 MachineBasicBlock *
emitFEXP2_D_1(MachineInstr & MI,MachineBasicBlock * BB) const3824 MipsSETargetLowering::emitFEXP2_D_1(MachineInstr &MI,
3825 MachineBasicBlock *BB) const {
3826 const TargetInstrInfo *TII = Subtarget.getInstrInfo();
3827 MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
3828 const TargetRegisterClass *RC = &Mips::MSA128DRegClass;
3829 unsigned Ws1 = RegInfo.createVirtualRegister(RC);
3830 unsigned Ws2 = RegInfo.createVirtualRegister(RC);
3831 DebugLoc DL = MI.getDebugLoc();
3832
3833 // Splat 1.0 into a vector
3834 BuildMI(*BB, MI, DL, TII->get(Mips::LDI_D), Ws1).addImm(1);
3835 BuildMI(*BB, MI, DL, TII->get(Mips::FFINT_U_D), Ws2).addReg(Ws1);
3836
3837 // Emit 1.0 * fexp2(Wt)
3838 BuildMI(*BB, MI, DL, TII->get(Mips::FEXP2_D), MI.getOperand(0).getReg())
3839 .addReg(Ws2)
3840 .addReg(MI.getOperand(1).getReg());
3841
3842 MI.eraseFromParent(); // The pseudo instruction is gone now.
3843 return BB;
3844 }
3845