1 //===-- GenericToNVVM.cpp - Convert generic module to NVVM module - C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Convert generic global variables into either .global or .const access based
11 // on the variable's "constant" qualifier.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "MCTargetDesc/NVPTXBaseInfo.h"
16 #include "NVPTX.h"
17 #include "NVPTXUtilities.h"
18 #include "llvm/CodeGen/ValueTypes.h"
19 #include "llvm/IR/Constants.h"
20 #include "llvm/IR/DerivedTypes.h"
21 #include "llvm/IR/IRBuilder.h"
22 #include "llvm/IR/Instructions.h"
23 #include "llvm/IR/Intrinsics.h"
24 #include "llvm/IR/LegacyPassManager.h"
25 #include "llvm/IR/Module.h"
26 #include "llvm/IR/Operator.h"
27 #include "llvm/IR/ValueMap.h"
28 #include "llvm/Transforms/Utils/ValueMapper.h"
29
30 using namespace llvm;
31
32 namespace llvm {
33 void initializeGenericToNVVMPass(PassRegistry &);
34 }
35
36 namespace {
37 class GenericToNVVM : public ModulePass {
38 public:
39 static char ID;
40
GenericToNVVM()41 GenericToNVVM() : ModulePass(ID) {}
42
43 bool runOnModule(Module &M) override;
44
getAnalysisUsage(AnalysisUsage & AU) const45 void getAnalysisUsage(AnalysisUsage &AU) const override {}
46
47 private:
48 Value *remapConstant(Module *M, Function *F, Constant *C,
49 IRBuilder<> &Builder);
50 Value *remapConstantVectorOrConstantAggregate(Module *M, Function *F,
51 Constant *C,
52 IRBuilder<> &Builder);
53 Value *remapConstantExpr(Module *M, Function *F, ConstantExpr *C,
54 IRBuilder<> &Builder);
55
56 typedef ValueMap<GlobalVariable *, GlobalVariable *> GVMapTy;
57 typedef ValueMap<Constant *, Value *> ConstantToValueMapTy;
58 GVMapTy GVMap;
59 ConstantToValueMapTy ConstantToValueMap;
60 };
61 } // end namespace
62
63 char GenericToNVVM::ID = 0;
64
createGenericToNVVMPass()65 ModulePass *llvm::createGenericToNVVMPass() { return new GenericToNVVM(); }
66
67 INITIALIZE_PASS(
68 GenericToNVVM, "generic-to-nvvm",
69 "Ensure that the global variables are in the global address space", false,
70 false)
71
runOnModule(Module & M)72 bool GenericToNVVM::runOnModule(Module &M) {
73 // Create a clone of each global variable that has the default address space.
74 // The clone is created with the global address space specifier, and the pair
75 // of original global variable and its clone is placed in the GVMap for later
76 // use.
77
78 for (Module::global_iterator I = M.global_begin(), E = M.global_end();
79 I != E;) {
80 GlobalVariable *GV = &*I++;
81 if (GV->getType()->getAddressSpace() == llvm::ADDRESS_SPACE_GENERIC &&
82 !llvm::isTexture(*GV) && !llvm::isSurface(*GV) &&
83 !llvm::isSampler(*GV) && !GV->getName().startswith("llvm.")) {
84 GlobalVariable *NewGV = new GlobalVariable(
85 M, GV->getValueType(), GV->isConstant(),
86 GV->getLinkage(),
87 GV->hasInitializer() ? GV->getInitializer() : nullptr,
88 "", GV, GV->getThreadLocalMode(), llvm::ADDRESS_SPACE_GLOBAL);
89 NewGV->copyAttributesFrom(GV);
90 GVMap[GV] = NewGV;
91 }
92 }
93
94 // Return immediately, if every global variable has a specific address space
95 // specifier.
96 if (GVMap.empty()) {
97 return false;
98 }
99
100 // Walk through the instructions in function defitinions, and replace any use
101 // of original global variables in GVMap with a use of the corresponding
102 // copies in GVMap. If necessary, promote constants to instructions.
103 for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I) {
104 if (I->isDeclaration()) {
105 continue;
106 }
107 IRBuilder<> Builder(I->getEntryBlock().getFirstNonPHIOrDbg());
108 for (Function::iterator BBI = I->begin(), BBE = I->end(); BBI != BBE;
109 ++BBI) {
110 for (BasicBlock::iterator II = BBI->begin(), IE = BBI->end(); II != IE;
111 ++II) {
112 for (unsigned i = 0, e = II->getNumOperands(); i < e; ++i) {
113 Value *Operand = II->getOperand(i);
114 if (isa<Constant>(Operand)) {
115 II->setOperand(
116 i, remapConstant(&M, &*I, cast<Constant>(Operand), Builder));
117 }
118 }
119 }
120 }
121 ConstantToValueMap.clear();
122 }
123
124 // Copy GVMap over to a standard value map.
125 ValueToValueMapTy VM;
126 for (auto I = GVMap.begin(), E = GVMap.end(); I != E; ++I)
127 VM[I->first] = I->second;
128
129 // Walk through the global variable initializers, and replace any use of
130 // original global variables in GVMap with a use of the corresponding copies
131 // in GVMap. The copies need to be bitcast to the original global variable
132 // types, as we cannot use cvta in global variable initializers.
133 for (GVMapTy::iterator I = GVMap.begin(), E = GVMap.end(); I != E;) {
134 GlobalVariable *GV = I->first;
135 GlobalVariable *NewGV = I->second;
136
137 // Remove GV from the map so that it can be RAUWed. Note that
138 // DenseMap::erase() won't invalidate any iterators but this one.
139 auto Next = std::next(I);
140 GVMap.erase(I);
141 I = Next;
142
143 Constant *BitCastNewGV = ConstantExpr::getPointerCast(NewGV, GV->getType());
144 // At this point, the remaining uses of GV should be found only in global
145 // variable initializers, as other uses have been already been removed
146 // while walking through the instructions in function definitions.
147 GV->replaceAllUsesWith(BitCastNewGV);
148 std::string Name = GV->getName();
149 GV->eraseFromParent();
150 NewGV->setName(Name);
151 }
152 assert(GVMap.empty() && "Expected it to be empty by now");
153
154 return true;
155 }
156
remapConstant(Module * M,Function * F,Constant * C,IRBuilder<> & Builder)157 Value *GenericToNVVM::remapConstant(Module *M, Function *F, Constant *C,
158 IRBuilder<> &Builder) {
159 // If the constant C has been converted already in the given function F, just
160 // return the converted value.
161 ConstantToValueMapTy::iterator CTII = ConstantToValueMap.find(C);
162 if (CTII != ConstantToValueMap.end()) {
163 return CTII->second;
164 }
165
166 Value *NewValue = C;
167 if (isa<GlobalVariable>(C)) {
168 // If the constant C is a global variable and is found in GVMap, substitute
169 //
170 // addrspacecast GVMap[C] to addrspace(0)
171 //
172 // for our use of C.
173 GVMapTy::iterator I = GVMap.find(cast<GlobalVariable>(C));
174 if (I != GVMap.end()) {
175 GlobalVariable *GV = I->second;
176 NewValue = Builder.CreateAddrSpaceCast(
177 GV,
178 PointerType::get(GV->getValueType(), llvm::ADDRESS_SPACE_GENERIC));
179 }
180 } else if (isa<ConstantAggregate>(C)) {
181 // If any element in the constant vector or aggregate C is or uses a global
182 // variable in GVMap, the constant C needs to be reconstructed, using a set
183 // of instructions.
184 NewValue = remapConstantVectorOrConstantAggregate(M, F, C, Builder);
185 } else if (isa<ConstantExpr>(C)) {
186 // If any operand in the constant expression C is or uses a global variable
187 // in GVMap, the constant expression C needs to be reconstructed, using a
188 // set of instructions.
189 NewValue = remapConstantExpr(M, F, cast<ConstantExpr>(C), Builder);
190 }
191
192 ConstantToValueMap[C] = NewValue;
193 return NewValue;
194 }
195
remapConstantVectorOrConstantAggregate(Module * M,Function * F,Constant * C,IRBuilder<> & Builder)196 Value *GenericToNVVM::remapConstantVectorOrConstantAggregate(
197 Module *M, Function *F, Constant *C, IRBuilder<> &Builder) {
198 bool OperandChanged = false;
199 SmallVector<Value *, 4> NewOperands;
200 unsigned NumOperands = C->getNumOperands();
201
202 // Check if any element is or uses a global variable in GVMap, and thus
203 // converted to another value.
204 for (unsigned i = 0; i < NumOperands; ++i) {
205 Value *Operand = C->getOperand(i);
206 Value *NewOperand = remapConstant(M, F, cast<Constant>(Operand), Builder);
207 OperandChanged |= Operand != NewOperand;
208 NewOperands.push_back(NewOperand);
209 }
210
211 // If none of the elements has been modified, return C as it is.
212 if (!OperandChanged) {
213 return C;
214 }
215
216 // If any of the elements has been modified, construct the equivalent
217 // vector or aggregate value with a set instructions and the converted
218 // elements.
219 Value *NewValue = UndefValue::get(C->getType());
220 if (isa<ConstantVector>(C)) {
221 for (unsigned i = 0; i < NumOperands; ++i) {
222 Value *Idx = ConstantInt::get(Type::getInt32Ty(M->getContext()), i);
223 NewValue = Builder.CreateInsertElement(NewValue, NewOperands[i], Idx);
224 }
225 } else {
226 for (unsigned i = 0; i < NumOperands; ++i) {
227 NewValue =
228 Builder.CreateInsertValue(NewValue, NewOperands[i], makeArrayRef(i));
229 }
230 }
231
232 return NewValue;
233 }
234
remapConstantExpr(Module * M,Function * F,ConstantExpr * C,IRBuilder<> & Builder)235 Value *GenericToNVVM::remapConstantExpr(Module *M, Function *F, ConstantExpr *C,
236 IRBuilder<> &Builder) {
237 bool OperandChanged = false;
238 SmallVector<Value *, 4> NewOperands;
239 unsigned NumOperands = C->getNumOperands();
240
241 // Check if any operand is or uses a global variable in GVMap, and thus
242 // converted to another value.
243 for (unsigned i = 0; i < NumOperands; ++i) {
244 Value *Operand = C->getOperand(i);
245 Value *NewOperand = remapConstant(M, F, cast<Constant>(Operand), Builder);
246 OperandChanged |= Operand != NewOperand;
247 NewOperands.push_back(NewOperand);
248 }
249
250 // If none of the operands has been modified, return C as it is.
251 if (!OperandChanged) {
252 return C;
253 }
254
255 // If any of the operands has been modified, construct the instruction with
256 // the converted operands.
257 unsigned Opcode = C->getOpcode();
258 switch (Opcode) {
259 case Instruction::ICmp:
260 // CompareConstantExpr (icmp)
261 return Builder.CreateICmp(CmpInst::Predicate(C->getPredicate()),
262 NewOperands[0], NewOperands[1]);
263 case Instruction::FCmp:
264 // CompareConstantExpr (fcmp)
265 llvm_unreachable("Address space conversion should have no effect "
266 "on float point CompareConstantExpr (fcmp)!");
267 case Instruction::ExtractElement:
268 // ExtractElementConstantExpr
269 return Builder.CreateExtractElement(NewOperands[0], NewOperands[1]);
270 case Instruction::InsertElement:
271 // InsertElementConstantExpr
272 return Builder.CreateInsertElement(NewOperands[0], NewOperands[1],
273 NewOperands[2]);
274 case Instruction::ShuffleVector:
275 // ShuffleVector
276 return Builder.CreateShuffleVector(NewOperands[0], NewOperands[1],
277 NewOperands[2]);
278 case Instruction::ExtractValue:
279 // ExtractValueConstantExpr
280 return Builder.CreateExtractValue(NewOperands[0], C->getIndices());
281 case Instruction::InsertValue:
282 // InsertValueConstantExpr
283 return Builder.CreateInsertValue(NewOperands[0], NewOperands[1],
284 C->getIndices());
285 case Instruction::GetElementPtr:
286 // GetElementPtrConstantExpr
287 return cast<GEPOperator>(C)->isInBounds()
288 ? Builder.CreateGEP(
289 cast<GEPOperator>(C)->getSourceElementType(),
290 NewOperands[0],
291 makeArrayRef(&NewOperands[1], NumOperands - 1))
292 : Builder.CreateInBoundsGEP(
293 cast<GEPOperator>(C)->getSourceElementType(),
294 NewOperands[0],
295 makeArrayRef(&NewOperands[1], NumOperands - 1));
296 case Instruction::Select:
297 // SelectConstantExpr
298 return Builder.CreateSelect(NewOperands[0], NewOperands[1], NewOperands[2]);
299 default:
300 // BinaryConstantExpr
301 if (Instruction::isBinaryOp(Opcode)) {
302 return Builder.CreateBinOp(Instruction::BinaryOps(C->getOpcode()),
303 NewOperands[0], NewOperands[1]);
304 }
305 // UnaryConstantExpr
306 if (Instruction::isCast(Opcode)) {
307 return Builder.CreateCast(Instruction::CastOps(C->getOpcode()),
308 NewOperands[0], C->getType());
309 }
310 llvm_unreachable("GenericToNVVM encountered an unsupported ConstantExpr");
311 }
312 }
313