1 //===-- NVPTXISelLowering.cpp - NVPTX DAG Lowering Implementation ---------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the interfaces that NVPTX uses to lower LLVM code into a
11 // selection DAG.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "NVPTXISelLowering.h"
16 #include "MCTargetDesc/NVPTXBaseInfo.h"
17 #include "NVPTX.h"
18 #include "NVPTXSubtarget.h"
19 #include "NVPTXTargetMachine.h"
20 #include "NVPTXTargetObjectFile.h"
21 #include "NVPTXUtilities.h"
22 #include "llvm/ADT/APInt.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/ADT/StringRef.h"
25 #include "llvm/CodeGen/Analysis.h"
26 #include "llvm/CodeGen/MachineFunction.h"
27 #include "llvm/CodeGen/MachineMemOperand.h"
28 #include "llvm/CodeGen/SelectionDAG.h"
29 #include "llvm/CodeGen/SelectionDAGNodes.h"
30 #include "llvm/CodeGen/TargetCallingConv.h"
31 #include "llvm/CodeGen/TargetLowering.h"
32 #include "llvm/CodeGen/ValueTypes.h"
33 #include "llvm/IR/Argument.h"
34 #include "llvm/IR/Attributes.h"
35 #include "llvm/IR/CallSite.h"
36 #include "llvm/IR/Constants.h"
37 #include "llvm/IR/DataLayout.h"
38 #include "llvm/IR/DerivedTypes.h"
39 #include "llvm/IR/Function.h"
40 #include "llvm/IR/GlobalValue.h"
41 #include "llvm/IR/Instruction.h"
42 #include "llvm/IR/Instructions.h"
43 #include "llvm/IR/Module.h"
44 #include "llvm/IR/Type.h"
45 #include "llvm/IR/Value.h"
46 #include "llvm/Support/Casting.h"
47 #include "llvm/Support/CodeGen.h"
48 #include "llvm/Support/CommandLine.h"
49 #include "llvm/Support/ErrorHandling.h"
50 #include "llvm/Support/MachineValueType.h"
51 #include "llvm/Support/MathExtras.h"
52 #include "llvm/Support/raw_ostream.h"
53 #include "llvm/Target/TargetMachine.h"
54 #include "llvm/Target/TargetOptions.h"
55 #include <algorithm>
56 #include <cassert>
57 #include <cstdint>
58 #include <iterator>
59 #include <sstream>
60 #include <string>
61 #include <utility>
62 #include <vector>
63
64 #define DEBUG_TYPE "nvptx-lower"
65
66 using namespace llvm;
67
68 static unsigned int uniqueCallSite = 0;
69
70 static cl::opt<bool> sched4reg(
71 "nvptx-sched4reg",
72 cl::desc("NVPTX Specific: schedule for register pressue"), cl::init(false));
73
74 static cl::opt<unsigned>
75 FMAContractLevelOpt("nvptx-fma-level", cl::ZeroOrMore, cl::Hidden,
76 cl::desc("NVPTX Specific: FMA contraction (0: don't do it"
77 " 1: do it 2: do it aggressively"),
78 cl::init(2));
79
80 static cl::opt<int> UsePrecDivF32(
81 "nvptx-prec-divf32", cl::ZeroOrMore, cl::Hidden,
82 cl::desc("NVPTX Specifies: 0 use div.approx, 1 use div.full, 2 use"
83 " IEEE Compliant F32 div.rnd if available."),
84 cl::init(2));
85
86 static cl::opt<bool> UsePrecSqrtF32(
87 "nvptx-prec-sqrtf32", cl::Hidden,
88 cl::desc("NVPTX Specific: 0 use sqrt.approx, 1 use sqrt.rn."),
89 cl::init(true));
90
91 static cl::opt<bool> FtzEnabled(
92 "nvptx-f32ftz", cl::ZeroOrMore, cl::Hidden,
93 cl::desc("NVPTX Specific: Flush f32 subnormals to sign-preserving zero."),
94 cl::init(false));
95
getDivF32Level() const96 int NVPTXTargetLowering::getDivF32Level() const {
97 if (UsePrecDivF32.getNumOccurrences() > 0) {
98 // If nvptx-prec-div32=N is used on the command-line, always honor it
99 return UsePrecDivF32;
100 } else {
101 // Otherwise, use div.approx if fast math is enabled
102 if (getTargetMachine().Options.UnsafeFPMath)
103 return 0;
104 else
105 return 2;
106 }
107 }
108
usePrecSqrtF32() const109 bool NVPTXTargetLowering::usePrecSqrtF32() const {
110 if (UsePrecSqrtF32.getNumOccurrences() > 0) {
111 // If nvptx-prec-sqrtf32 is used on the command-line, always honor it
112 return UsePrecSqrtF32;
113 } else {
114 // Otherwise, use sqrt.approx if fast math is enabled
115 return !getTargetMachine().Options.UnsafeFPMath;
116 }
117 }
118
useF32FTZ(const MachineFunction & MF) const119 bool NVPTXTargetLowering::useF32FTZ(const MachineFunction &MF) const {
120 // TODO: Get rid of this flag; there can be only one way to do this.
121 if (FtzEnabled.getNumOccurrences() > 0) {
122 // If nvptx-f32ftz is used on the command-line, always honor it
123 return FtzEnabled;
124 } else {
125 const Function &F = MF.getFunction();
126 // Otherwise, check for an nvptx-f32ftz attribute on the function
127 if (F.hasFnAttribute("nvptx-f32ftz"))
128 return F.getFnAttribute("nvptx-f32ftz").getValueAsString() == "true";
129 else
130 return false;
131 }
132 }
133
IsPTXVectorType(MVT VT)134 static bool IsPTXVectorType(MVT VT) {
135 switch (VT.SimpleTy) {
136 default:
137 return false;
138 case MVT::v2i1:
139 case MVT::v4i1:
140 case MVT::v2i8:
141 case MVT::v4i8:
142 case MVT::v2i16:
143 case MVT::v4i16:
144 case MVT::v2i32:
145 case MVT::v4i32:
146 case MVT::v2i64:
147 case MVT::v2f16:
148 case MVT::v4f16:
149 case MVT::v8f16: // <4 x f16x2>
150 case MVT::v2f32:
151 case MVT::v4f32:
152 case MVT::v2f64:
153 return true;
154 }
155 }
156
157 /// ComputePTXValueVTs - For the given Type \p Ty, returns the set of primitive
158 /// EVTs that compose it. Unlike ComputeValueVTs, this will break apart vectors
159 /// into their primitive components.
160 /// NOTE: This is a band-aid for code that expects ComputeValueVTs to return the
161 /// same number of types as the Ins/Outs arrays in LowerFormalArguments,
162 /// LowerCall, and LowerReturn.
ComputePTXValueVTs(const TargetLowering & TLI,const DataLayout & DL,Type * Ty,SmallVectorImpl<EVT> & ValueVTs,SmallVectorImpl<uint64_t> * Offsets=nullptr,uint64_t StartingOffset=0)163 static void ComputePTXValueVTs(const TargetLowering &TLI, const DataLayout &DL,
164 Type *Ty, SmallVectorImpl<EVT> &ValueVTs,
165 SmallVectorImpl<uint64_t> *Offsets = nullptr,
166 uint64_t StartingOffset = 0) {
167 SmallVector<EVT, 16> TempVTs;
168 SmallVector<uint64_t, 16> TempOffsets;
169
170 // Special case for i128 - decompose to (i64, i64)
171 if (Ty->isIntegerTy(128)) {
172 ValueVTs.push_back(EVT(MVT::i64));
173 ValueVTs.push_back(EVT(MVT::i64));
174
175 if (Offsets) {
176 Offsets->push_back(StartingOffset + 0);
177 Offsets->push_back(StartingOffset + 8);
178 }
179
180 return;
181 }
182
183 ComputeValueVTs(TLI, DL, Ty, TempVTs, &TempOffsets, StartingOffset);
184 for (unsigned i = 0, e = TempVTs.size(); i != e; ++i) {
185 EVT VT = TempVTs[i];
186 uint64_t Off = TempOffsets[i];
187 // Split vectors into individual elements, except for v2f16, which
188 // we will pass as a single scalar.
189 if (VT.isVector()) {
190 unsigned NumElts = VT.getVectorNumElements();
191 EVT EltVT = VT.getVectorElementType();
192 // Vectors with an even number of f16 elements will be passed to
193 // us as an array of v2f16 elements. We must match this so we
194 // stay in sync with Ins/Outs.
195 if (EltVT == MVT::f16 && NumElts % 2 == 0) {
196 EltVT = MVT::v2f16;
197 NumElts /= 2;
198 }
199 for (unsigned j = 0; j != NumElts; ++j) {
200 ValueVTs.push_back(EltVT);
201 if (Offsets)
202 Offsets->push_back(Off + j * EltVT.getStoreSize());
203 }
204 } else {
205 ValueVTs.push_back(VT);
206 if (Offsets)
207 Offsets->push_back(Off);
208 }
209 }
210 }
211
212 // Check whether we can merge loads/stores of some of the pieces of a
213 // flattened function parameter or return value into a single vector
214 // load/store.
215 //
216 // The flattened parameter is represented as a list of EVTs and
217 // offsets, and the whole structure is aligned to ParamAlignment. This
218 // function determines whether we can load/store pieces of the
219 // parameter starting at index Idx using a single vectorized op of
220 // size AccessSize. If so, it returns the number of param pieces
221 // covered by the vector op. Otherwise, it returns 1.
CanMergeParamLoadStoresStartingAt(unsigned Idx,uint32_t AccessSize,const SmallVectorImpl<EVT> & ValueVTs,const SmallVectorImpl<uint64_t> & Offsets,unsigned ParamAlignment)222 static unsigned CanMergeParamLoadStoresStartingAt(
223 unsigned Idx, uint32_t AccessSize, const SmallVectorImpl<EVT> &ValueVTs,
224 const SmallVectorImpl<uint64_t> &Offsets, unsigned ParamAlignment) {
225 assert(isPowerOf2_32(AccessSize) && "must be a power of 2!");
226
227 // Can't vectorize if param alignment is not sufficient.
228 if (AccessSize > ParamAlignment)
229 return 1;
230 // Can't vectorize if offset is not aligned.
231 if (Offsets[Idx] & (AccessSize - 1))
232 return 1;
233
234 EVT EltVT = ValueVTs[Idx];
235 unsigned EltSize = EltVT.getStoreSize();
236
237 // Element is too large to vectorize.
238 if (EltSize >= AccessSize)
239 return 1;
240
241 unsigned NumElts = AccessSize / EltSize;
242 // Can't vectorize if AccessBytes if not a multiple of EltSize.
243 if (AccessSize != EltSize * NumElts)
244 return 1;
245
246 // We don't have enough elements to vectorize.
247 if (Idx + NumElts > ValueVTs.size())
248 return 1;
249
250 // PTX ISA can only deal with 2- and 4-element vector ops.
251 if (NumElts != 4 && NumElts != 2)
252 return 1;
253
254 for (unsigned j = Idx + 1; j < Idx + NumElts; ++j) {
255 // Types do not match.
256 if (ValueVTs[j] != EltVT)
257 return 1;
258
259 // Elements are not contiguous.
260 if (Offsets[j] - Offsets[j - 1] != EltSize)
261 return 1;
262 }
263 // OK. We can vectorize ValueVTs[i..i+NumElts)
264 return NumElts;
265 }
266
267 // Flags for tracking per-element vectorization state of loads/stores
268 // of a flattened function parameter or return value.
269 enum ParamVectorizationFlags {
270 PVF_INNER = 0x0, // Middle elements of a vector.
271 PVF_FIRST = 0x1, // First element of the vector.
272 PVF_LAST = 0x2, // Last element of the vector.
273 // Scalar is effectively a 1-element vector.
274 PVF_SCALAR = PVF_FIRST | PVF_LAST
275 };
276
277 // Computes whether and how we can vectorize the loads/stores of a
278 // flattened function parameter or return value.
279 //
280 // The flattened parameter is represented as the list of ValueVTs and
281 // Offsets, and is aligned to ParamAlignment bytes. We return a vector
282 // of the same size as ValueVTs indicating how each piece should be
283 // loaded/stored (i.e. as a scalar, or as part of a vector
284 // load/store).
285 static SmallVector<ParamVectorizationFlags, 16>
VectorizePTXValueVTs(const SmallVectorImpl<EVT> & ValueVTs,const SmallVectorImpl<uint64_t> & Offsets,unsigned ParamAlignment)286 VectorizePTXValueVTs(const SmallVectorImpl<EVT> &ValueVTs,
287 const SmallVectorImpl<uint64_t> &Offsets,
288 unsigned ParamAlignment) {
289 // Set vector size to match ValueVTs and mark all elements as
290 // scalars by default.
291 SmallVector<ParamVectorizationFlags, 16> VectorInfo;
292 VectorInfo.assign(ValueVTs.size(), PVF_SCALAR);
293
294 // Check what we can vectorize using 128/64/32-bit accesses.
295 for (int I = 0, E = ValueVTs.size(); I != E; ++I) {
296 // Skip elements we've already processed.
297 assert(VectorInfo[I] == PVF_SCALAR && "Unexpected vector info state.");
298 for (unsigned AccessSize : {16, 8, 4, 2}) {
299 unsigned NumElts = CanMergeParamLoadStoresStartingAt(
300 I, AccessSize, ValueVTs, Offsets, ParamAlignment);
301 // Mark vectorized elements.
302 switch (NumElts) {
303 default:
304 llvm_unreachable("Unexpected return value");
305 case 1:
306 // Can't vectorize using this size, try next smaller size.
307 continue;
308 case 2:
309 assert(I + 1 < E && "Not enough elements.");
310 VectorInfo[I] = PVF_FIRST;
311 VectorInfo[I + 1] = PVF_LAST;
312 I += 1;
313 break;
314 case 4:
315 assert(I + 3 < E && "Not enough elements.");
316 VectorInfo[I] = PVF_FIRST;
317 VectorInfo[I + 1] = PVF_INNER;
318 VectorInfo[I + 2] = PVF_INNER;
319 VectorInfo[I + 3] = PVF_LAST;
320 I += 3;
321 break;
322 }
323 // Break out of the inner loop because we've already succeeded
324 // using largest possible AccessSize.
325 break;
326 }
327 }
328 return VectorInfo;
329 }
330
331 // NVPTXTargetLowering Constructor.
NVPTXTargetLowering(const NVPTXTargetMachine & TM,const NVPTXSubtarget & STI)332 NVPTXTargetLowering::NVPTXTargetLowering(const NVPTXTargetMachine &TM,
333 const NVPTXSubtarget &STI)
334 : TargetLowering(TM), nvTM(&TM), STI(STI) {
335 // always lower memset, memcpy, and memmove intrinsics to load/store
336 // instructions, rather
337 // then generating calls to memset, mempcy or memmove.
338 MaxStoresPerMemset = (unsigned) 0xFFFFFFFF;
339 MaxStoresPerMemcpy = (unsigned) 0xFFFFFFFF;
340 MaxStoresPerMemmove = (unsigned) 0xFFFFFFFF;
341
342 setBooleanContents(ZeroOrNegativeOneBooleanContent);
343 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
344
345 // Jump is Expensive. Don't create extra control flow for 'and', 'or'
346 // condition branches.
347 setJumpIsExpensive(true);
348
349 // Wide divides are _very_ slow. Try to reduce the width of the divide if
350 // possible.
351 addBypassSlowDiv(64, 32);
352
353 // By default, use the Source scheduling
354 if (sched4reg)
355 setSchedulingPreference(Sched::RegPressure);
356 else
357 setSchedulingPreference(Sched::Source);
358
359 auto setFP16OperationAction = [&](unsigned Op, MVT VT, LegalizeAction Action,
360 LegalizeAction NoF16Action) {
361 setOperationAction(Op, VT, STI.allowFP16Math() ? Action : NoF16Action);
362 };
363
364 addRegisterClass(MVT::i1, &NVPTX::Int1RegsRegClass);
365 addRegisterClass(MVT::i16, &NVPTX::Int16RegsRegClass);
366 addRegisterClass(MVT::i32, &NVPTX::Int32RegsRegClass);
367 addRegisterClass(MVT::i64, &NVPTX::Int64RegsRegClass);
368 addRegisterClass(MVT::f32, &NVPTX::Float32RegsRegClass);
369 addRegisterClass(MVT::f64, &NVPTX::Float64RegsRegClass);
370 addRegisterClass(MVT::f16, &NVPTX::Float16RegsRegClass);
371 addRegisterClass(MVT::v2f16, &NVPTX::Float16x2RegsRegClass);
372
373 // Conversion to/from FP16/FP16x2 is always legal.
374 setOperationAction(ISD::SINT_TO_FP, MVT::f16, Legal);
375 setOperationAction(ISD::FP_TO_SINT, MVT::f16, Legal);
376 setOperationAction(ISD::BUILD_VECTOR, MVT::v2f16, Custom);
377 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f16, Custom);
378 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2f16, Expand);
379 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2f16, Expand);
380
381 setFP16OperationAction(ISD::SETCC, MVT::f16, Legal, Promote);
382 setFP16OperationAction(ISD::SETCC, MVT::v2f16, Legal, Expand);
383
384 // Operations not directly supported by NVPTX.
385 for (MVT VT : {MVT::f16, MVT::v2f16, MVT::f32, MVT::f64, MVT::i1, MVT::i8,
386 MVT::i16, MVT::i32, MVT::i64}) {
387 setOperationAction(ISD::SELECT_CC, VT, Expand);
388 setOperationAction(ISD::BR_CC, VT, Expand);
389 }
390
391 // Some SIGN_EXTEND_INREG can be done using cvt instruction.
392 // For others we will expand to a SHL/SRA pair.
393 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i64, Legal);
394 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal);
395 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Legal);
396 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8 , Legal);
397 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
398
399 setOperationAction(ISD::SHL_PARTS, MVT::i32 , Custom);
400 setOperationAction(ISD::SRA_PARTS, MVT::i32 , Custom);
401 setOperationAction(ISD::SRL_PARTS, MVT::i32 , Custom);
402 setOperationAction(ISD::SHL_PARTS, MVT::i64 , Custom);
403 setOperationAction(ISD::SRA_PARTS, MVT::i64 , Custom);
404 setOperationAction(ISD::SRL_PARTS, MVT::i64 , Custom);
405
406 setOperationAction(ISD::BITREVERSE, MVT::i32, Legal);
407 setOperationAction(ISD::BITREVERSE, MVT::i64, Legal);
408
409 // TODO: we may consider expanding ROTL/ROTR on older GPUs. Currently on GPUs
410 // that don't have h/w rotation we lower them to multi-instruction assembly.
411 // See ROT*_sw in NVPTXIntrInfo.td
412 setOperationAction(ISD::ROTL, MVT::i64, Legal);
413 setOperationAction(ISD::ROTR, MVT::i64, Legal);
414 setOperationAction(ISD::ROTL, MVT::i32, Legal);
415 setOperationAction(ISD::ROTR, MVT::i32, Legal);
416
417 setOperationAction(ISD::ROTL, MVT::i16, Expand);
418 setOperationAction(ISD::ROTR, MVT::i16, Expand);
419 setOperationAction(ISD::ROTL, MVT::i8, Expand);
420 setOperationAction(ISD::ROTR, MVT::i8, Expand);
421 setOperationAction(ISD::BSWAP, MVT::i16, Expand);
422 setOperationAction(ISD::BSWAP, MVT::i32, Expand);
423 setOperationAction(ISD::BSWAP, MVT::i64, Expand);
424
425 // Indirect branch is not supported.
426 // This also disables Jump Table creation.
427 setOperationAction(ISD::BR_JT, MVT::Other, Expand);
428 setOperationAction(ISD::BRIND, MVT::Other, Expand);
429
430 setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
431 setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
432
433 // We want to legalize constant related memmove and memcopy
434 // intrinsics.
435 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom);
436
437 // Turn FP extload into load/fpextend
438 setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand);
439 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand);
440 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand);
441 setLoadExtAction(ISD::EXTLOAD, MVT::v2f32, MVT::v2f16, Expand);
442 setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f16, Expand);
443 setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f32, Expand);
444 setLoadExtAction(ISD::EXTLOAD, MVT::v4f32, MVT::v4f16, Expand);
445 setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f16, Expand);
446 setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f32, Expand);
447 // Turn FP truncstore into trunc + store.
448 // FIXME: vector types should also be expanded
449 setTruncStoreAction(MVT::f32, MVT::f16, Expand);
450 setTruncStoreAction(MVT::f64, MVT::f16, Expand);
451 setTruncStoreAction(MVT::f64, MVT::f32, Expand);
452
453 // PTX does not support load / store predicate registers
454 setOperationAction(ISD::LOAD, MVT::i1, Custom);
455 setOperationAction(ISD::STORE, MVT::i1, Custom);
456
457 for (MVT VT : MVT::integer_valuetypes()) {
458 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
459 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
460 setTruncStoreAction(VT, MVT::i1, Expand);
461 }
462
463 // This is legal in NVPTX
464 setOperationAction(ISD::ConstantFP, MVT::f64, Legal);
465 setOperationAction(ISD::ConstantFP, MVT::f32, Legal);
466 setOperationAction(ISD::ConstantFP, MVT::f16, Legal);
467
468 // TRAP can be lowered to PTX trap
469 setOperationAction(ISD::TRAP, MVT::Other, Legal);
470
471 // Register custom handling for vector loads/stores
472 for (MVT VT : MVT::vector_valuetypes()) {
473 if (IsPTXVectorType(VT)) {
474 setOperationAction(ISD::LOAD, VT, Custom);
475 setOperationAction(ISD::STORE, VT, Custom);
476 setOperationAction(ISD::INTRINSIC_W_CHAIN, VT, Custom);
477 }
478 }
479
480 // Custom handling for i8 intrinsics
481 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i8, Custom);
482
483 for (const auto& Ty : {MVT::i16, MVT::i32, MVT::i64}) {
484 setOperationAction(ISD::ABS, Ty, Legal);
485 setOperationAction(ISD::SMIN, Ty, Legal);
486 setOperationAction(ISD::SMAX, Ty, Legal);
487 setOperationAction(ISD::UMIN, Ty, Legal);
488 setOperationAction(ISD::UMAX, Ty, Legal);
489
490 setOperationAction(ISD::CTPOP, Ty, Legal);
491 setOperationAction(ISD::CTLZ, Ty, Legal);
492 }
493
494 setOperationAction(ISD::CTTZ, MVT::i16, Expand);
495 setOperationAction(ISD::CTTZ, MVT::i32, Expand);
496 setOperationAction(ISD::CTTZ, MVT::i64, Expand);
497
498 // PTX does not directly support SELP of i1, so promote to i32 first
499 setOperationAction(ISD::SELECT, MVT::i1, Custom);
500
501 // PTX cannot multiply two i64s in a single instruction.
502 setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand);
503 setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand);
504
505 // We have some custom DAG combine patterns for these nodes
506 setTargetDAGCombine(ISD::ADD);
507 setTargetDAGCombine(ISD::AND);
508 setTargetDAGCombine(ISD::FADD);
509 setTargetDAGCombine(ISD::MUL);
510 setTargetDAGCombine(ISD::SHL);
511 setTargetDAGCombine(ISD::SREM);
512 setTargetDAGCombine(ISD::UREM);
513
514 // setcc for f16x2 needs special handling to prevent legalizer's
515 // attempt to scalarize it due to v2i1 not being legal.
516 if (STI.allowFP16Math())
517 setTargetDAGCombine(ISD::SETCC);
518
519 // Promote fp16 arithmetic if fp16 hardware isn't available or the
520 // user passed --nvptx-no-fp16-math. The flag is useful because,
521 // although sm_53+ GPUs have some sort of FP16 support in
522 // hardware, only sm_53 and sm_60 have full implementation. Others
523 // only have token amount of hardware and are likely to run faster
524 // by using fp32 units instead.
525 for (const auto &Op : {ISD::FADD, ISD::FMUL, ISD::FSUB, ISD::FMA}) {
526 setFP16OperationAction(Op, MVT::f16, Legal, Promote);
527 setFP16OperationAction(Op, MVT::v2f16, Legal, Expand);
528 }
529
530 // There's no neg.f16 instruction. Expand to (0-x).
531 setOperationAction(ISD::FNEG, MVT::f16, Expand);
532 setOperationAction(ISD::FNEG, MVT::v2f16, Expand);
533
534 // (would be) Library functions.
535
536 // These map to conversion instructions for scalar FP types.
537 for (const auto &Op : {ISD::FCEIL, ISD::FFLOOR, ISD::FNEARBYINT, ISD::FRINT,
538 ISD::FROUND, ISD::FTRUNC}) {
539 setOperationAction(Op, MVT::f16, Legal);
540 setOperationAction(Op, MVT::f32, Legal);
541 setOperationAction(Op, MVT::f64, Legal);
542 setOperationAction(Op, MVT::v2f16, Expand);
543 }
544
545 // 'Expand' implements FCOPYSIGN without calling an external library.
546 setOperationAction(ISD::FCOPYSIGN, MVT::f16, Expand);
547 setOperationAction(ISD::FCOPYSIGN, MVT::v2f16, Expand);
548 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
549 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
550
551 // These map to corresponding instructions for f32/f64. f16 must be
552 // promoted to f32. v2f16 is expanded to f16, which is then promoted
553 // to f32.
554 for (const auto &Op : {ISD::FDIV, ISD::FREM, ISD::FSQRT, ISD::FSIN, ISD::FCOS,
555 ISD::FABS, ISD::FMINNUM, ISD::FMAXNUM}) {
556 setOperationAction(Op, MVT::f16, Promote);
557 setOperationAction(Op, MVT::f32, Legal);
558 setOperationAction(Op, MVT::f64, Legal);
559 setOperationAction(Op, MVT::v2f16, Expand);
560 }
561 setOperationAction(ISD::FMINNUM, MVT::f16, Promote);
562 setOperationAction(ISD::FMAXNUM, MVT::f16, Promote);
563 setOperationAction(ISD::FMINNAN, MVT::f16, Promote);
564 setOperationAction(ISD::FMAXNAN, MVT::f16, Promote);
565
566 // No FEXP2, FLOG2. The PTX ex2 and log2 functions are always approximate.
567 // No FPOW or FREM in PTX.
568
569 // Now deduce the information based on the above mentioned
570 // actions
571 computeRegisterProperties(STI.getRegisterInfo());
572 }
573
getTargetNodeName(unsigned Opcode) const574 const char *NVPTXTargetLowering::getTargetNodeName(unsigned Opcode) const {
575 switch ((NVPTXISD::NodeType)Opcode) {
576 case NVPTXISD::FIRST_NUMBER:
577 break;
578 case NVPTXISD::CALL:
579 return "NVPTXISD::CALL";
580 case NVPTXISD::RET_FLAG:
581 return "NVPTXISD::RET_FLAG";
582 case NVPTXISD::LOAD_PARAM:
583 return "NVPTXISD::LOAD_PARAM";
584 case NVPTXISD::Wrapper:
585 return "NVPTXISD::Wrapper";
586 case NVPTXISD::DeclareParam:
587 return "NVPTXISD::DeclareParam";
588 case NVPTXISD::DeclareScalarParam:
589 return "NVPTXISD::DeclareScalarParam";
590 case NVPTXISD::DeclareRet:
591 return "NVPTXISD::DeclareRet";
592 case NVPTXISD::DeclareScalarRet:
593 return "NVPTXISD::DeclareScalarRet";
594 case NVPTXISD::DeclareRetParam:
595 return "NVPTXISD::DeclareRetParam";
596 case NVPTXISD::PrintCall:
597 return "NVPTXISD::PrintCall";
598 case NVPTXISD::PrintConvergentCall:
599 return "NVPTXISD::PrintConvergentCall";
600 case NVPTXISD::PrintCallUni:
601 return "NVPTXISD::PrintCallUni";
602 case NVPTXISD::PrintConvergentCallUni:
603 return "NVPTXISD::PrintConvergentCallUni";
604 case NVPTXISD::LoadParam:
605 return "NVPTXISD::LoadParam";
606 case NVPTXISD::LoadParamV2:
607 return "NVPTXISD::LoadParamV2";
608 case NVPTXISD::LoadParamV4:
609 return "NVPTXISD::LoadParamV4";
610 case NVPTXISD::StoreParam:
611 return "NVPTXISD::StoreParam";
612 case NVPTXISD::StoreParamV2:
613 return "NVPTXISD::StoreParamV2";
614 case NVPTXISD::StoreParamV4:
615 return "NVPTXISD::StoreParamV4";
616 case NVPTXISD::StoreParamS32:
617 return "NVPTXISD::StoreParamS32";
618 case NVPTXISD::StoreParamU32:
619 return "NVPTXISD::StoreParamU32";
620 case NVPTXISD::CallArgBegin:
621 return "NVPTXISD::CallArgBegin";
622 case NVPTXISD::CallArg:
623 return "NVPTXISD::CallArg";
624 case NVPTXISD::LastCallArg:
625 return "NVPTXISD::LastCallArg";
626 case NVPTXISD::CallArgEnd:
627 return "NVPTXISD::CallArgEnd";
628 case NVPTXISD::CallVoid:
629 return "NVPTXISD::CallVoid";
630 case NVPTXISD::CallVal:
631 return "NVPTXISD::CallVal";
632 case NVPTXISD::CallSymbol:
633 return "NVPTXISD::CallSymbol";
634 case NVPTXISD::Prototype:
635 return "NVPTXISD::Prototype";
636 case NVPTXISD::MoveParam:
637 return "NVPTXISD::MoveParam";
638 case NVPTXISD::StoreRetval:
639 return "NVPTXISD::StoreRetval";
640 case NVPTXISD::StoreRetvalV2:
641 return "NVPTXISD::StoreRetvalV2";
642 case NVPTXISD::StoreRetvalV4:
643 return "NVPTXISD::StoreRetvalV4";
644 case NVPTXISD::PseudoUseParam:
645 return "NVPTXISD::PseudoUseParam";
646 case NVPTXISD::RETURN:
647 return "NVPTXISD::RETURN";
648 case NVPTXISD::CallSeqBegin:
649 return "NVPTXISD::CallSeqBegin";
650 case NVPTXISD::CallSeqEnd:
651 return "NVPTXISD::CallSeqEnd";
652 case NVPTXISD::CallPrototype:
653 return "NVPTXISD::CallPrototype";
654 case NVPTXISD::LoadV2:
655 return "NVPTXISD::LoadV2";
656 case NVPTXISD::LoadV4:
657 return "NVPTXISD::LoadV4";
658 case NVPTXISD::LDGV2:
659 return "NVPTXISD::LDGV2";
660 case NVPTXISD::LDGV4:
661 return "NVPTXISD::LDGV4";
662 case NVPTXISD::LDUV2:
663 return "NVPTXISD::LDUV2";
664 case NVPTXISD::LDUV4:
665 return "NVPTXISD::LDUV4";
666 case NVPTXISD::StoreV2:
667 return "NVPTXISD::StoreV2";
668 case NVPTXISD::StoreV4:
669 return "NVPTXISD::StoreV4";
670 case NVPTXISD::FUN_SHFL_CLAMP:
671 return "NVPTXISD::FUN_SHFL_CLAMP";
672 case NVPTXISD::FUN_SHFR_CLAMP:
673 return "NVPTXISD::FUN_SHFR_CLAMP";
674 case NVPTXISD::IMAD:
675 return "NVPTXISD::IMAD";
676 case NVPTXISD::SETP_F16X2:
677 return "NVPTXISD::SETP_F16X2";
678 case NVPTXISD::Dummy:
679 return "NVPTXISD::Dummy";
680 case NVPTXISD::MUL_WIDE_SIGNED:
681 return "NVPTXISD::MUL_WIDE_SIGNED";
682 case NVPTXISD::MUL_WIDE_UNSIGNED:
683 return "NVPTXISD::MUL_WIDE_UNSIGNED";
684 case NVPTXISD::Tex1DFloatS32: return "NVPTXISD::Tex1DFloatS32";
685 case NVPTXISD::Tex1DFloatFloat: return "NVPTXISD::Tex1DFloatFloat";
686 case NVPTXISD::Tex1DFloatFloatLevel:
687 return "NVPTXISD::Tex1DFloatFloatLevel";
688 case NVPTXISD::Tex1DFloatFloatGrad:
689 return "NVPTXISD::Tex1DFloatFloatGrad";
690 case NVPTXISD::Tex1DS32S32: return "NVPTXISD::Tex1DS32S32";
691 case NVPTXISD::Tex1DS32Float: return "NVPTXISD::Tex1DS32Float";
692 case NVPTXISD::Tex1DS32FloatLevel:
693 return "NVPTXISD::Tex1DS32FloatLevel";
694 case NVPTXISD::Tex1DS32FloatGrad:
695 return "NVPTXISD::Tex1DS32FloatGrad";
696 case NVPTXISD::Tex1DU32S32: return "NVPTXISD::Tex1DU32S32";
697 case NVPTXISD::Tex1DU32Float: return "NVPTXISD::Tex1DU32Float";
698 case NVPTXISD::Tex1DU32FloatLevel:
699 return "NVPTXISD::Tex1DU32FloatLevel";
700 case NVPTXISD::Tex1DU32FloatGrad:
701 return "NVPTXISD::Tex1DU32FloatGrad";
702 case NVPTXISD::Tex1DArrayFloatS32: return "NVPTXISD::Tex1DArrayFloatS32";
703 case NVPTXISD::Tex1DArrayFloatFloat: return "NVPTXISD::Tex1DArrayFloatFloat";
704 case NVPTXISD::Tex1DArrayFloatFloatLevel:
705 return "NVPTXISD::Tex1DArrayFloatFloatLevel";
706 case NVPTXISD::Tex1DArrayFloatFloatGrad:
707 return "NVPTXISD::Tex1DArrayFloatFloatGrad";
708 case NVPTXISD::Tex1DArrayS32S32: return "NVPTXISD::Tex1DArrayS32S32";
709 case NVPTXISD::Tex1DArrayS32Float: return "NVPTXISD::Tex1DArrayS32Float";
710 case NVPTXISD::Tex1DArrayS32FloatLevel:
711 return "NVPTXISD::Tex1DArrayS32FloatLevel";
712 case NVPTXISD::Tex1DArrayS32FloatGrad:
713 return "NVPTXISD::Tex1DArrayS32FloatGrad";
714 case NVPTXISD::Tex1DArrayU32S32: return "NVPTXISD::Tex1DArrayU32S32";
715 case NVPTXISD::Tex1DArrayU32Float: return "NVPTXISD::Tex1DArrayU32Float";
716 case NVPTXISD::Tex1DArrayU32FloatLevel:
717 return "NVPTXISD::Tex1DArrayU32FloatLevel";
718 case NVPTXISD::Tex1DArrayU32FloatGrad:
719 return "NVPTXISD::Tex1DArrayU32FloatGrad";
720 case NVPTXISD::Tex2DFloatS32: return "NVPTXISD::Tex2DFloatS32";
721 case NVPTXISD::Tex2DFloatFloat: return "NVPTXISD::Tex2DFloatFloat";
722 case NVPTXISD::Tex2DFloatFloatLevel:
723 return "NVPTXISD::Tex2DFloatFloatLevel";
724 case NVPTXISD::Tex2DFloatFloatGrad:
725 return "NVPTXISD::Tex2DFloatFloatGrad";
726 case NVPTXISD::Tex2DS32S32: return "NVPTXISD::Tex2DS32S32";
727 case NVPTXISD::Tex2DS32Float: return "NVPTXISD::Tex2DS32Float";
728 case NVPTXISD::Tex2DS32FloatLevel:
729 return "NVPTXISD::Tex2DS32FloatLevel";
730 case NVPTXISD::Tex2DS32FloatGrad:
731 return "NVPTXISD::Tex2DS32FloatGrad";
732 case NVPTXISD::Tex2DU32S32: return "NVPTXISD::Tex2DU32S32";
733 case NVPTXISD::Tex2DU32Float: return "NVPTXISD::Tex2DU32Float";
734 case NVPTXISD::Tex2DU32FloatLevel:
735 return "NVPTXISD::Tex2DU32FloatLevel";
736 case NVPTXISD::Tex2DU32FloatGrad:
737 return "NVPTXISD::Tex2DU32FloatGrad";
738 case NVPTXISD::Tex2DArrayFloatS32: return "NVPTXISD::Tex2DArrayFloatS32";
739 case NVPTXISD::Tex2DArrayFloatFloat: return "NVPTXISD::Tex2DArrayFloatFloat";
740 case NVPTXISD::Tex2DArrayFloatFloatLevel:
741 return "NVPTXISD::Tex2DArrayFloatFloatLevel";
742 case NVPTXISD::Tex2DArrayFloatFloatGrad:
743 return "NVPTXISD::Tex2DArrayFloatFloatGrad";
744 case NVPTXISD::Tex2DArrayS32S32: return "NVPTXISD::Tex2DArrayS32S32";
745 case NVPTXISD::Tex2DArrayS32Float: return "NVPTXISD::Tex2DArrayS32Float";
746 case NVPTXISD::Tex2DArrayS32FloatLevel:
747 return "NVPTXISD::Tex2DArrayS32FloatLevel";
748 case NVPTXISD::Tex2DArrayS32FloatGrad:
749 return "NVPTXISD::Tex2DArrayS32FloatGrad";
750 case NVPTXISD::Tex2DArrayU32S32: return "NVPTXISD::Tex2DArrayU32S32";
751 case NVPTXISD::Tex2DArrayU32Float: return "NVPTXISD::Tex2DArrayU32Float";
752 case NVPTXISD::Tex2DArrayU32FloatLevel:
753 return "NVPTXISD::Tex2DArrayU32FloatLevel";
754 case NVPTXISD::Tex2DArrayU32FloatGrad:
755 return "NVPTXISD::Tex2DArrayU32FloatGrad";
756 case NVPTXISD::Tex3DFloatS32: return "NVPTXISD::Tex3DFloatS32";
757 case NVPTXISD::Tex3DFloatFloat: return "NVPTXISD::Tex3DFloatFloat";
758 case NVPTXISD::Tex3DFloatFloatLevel:
759 return "NVPTXISD::Tex3DFloatFloatLevel";
760 case NVPTXISD::Tex3DFloatFloatGrad:
761 return "NVPTXISD::Tex3DFloatFloatGrad";
762 case NVPTXISD::Tex3DS32S32: return "NVPTXISD::Tex3DS32S32";
763 case NVPTXISD::Tex3DS32Float: return "NVPTXISD::Tex3DS32Float";
764 case NVPTXISD::Tex3DS32FloatLevel:
765 return "NVPTXISD::Tex3DS32FloatLevel";
766 case NVPTXISD::Tex3DS32FloatGrad:
767 return "NVPTXISD::Tex3DS32FloatGrad";
768 case NVPTXISD::Tex3DU32S32: return "NVPTXISD::Tex3DU32S32";
769 case NVPTXISD::Tex3DU32Float: return "NVPTXISD::Tex3DU32Float";
770 case NVPTXISD::Tex3DU32FloatLevel:
771 return "NVPTXISD::Tex3DU32FloatLevel";
772 case NVPTXISD::Tex3DU32FloatGrad:
773 return "NVPTXISD::Tex3DU32FloatGrad";
774 case NVPTXISD::TexCubeFloatFloat: return "NVPTXISD::TexCubeFloatFloat";
775 case NVPTXISD::TexCubeFloatFloatLevel:
776 return "NVPTXISD::TexCubeFloatFloatLevel";
777 case NVPTXISD::TexCubeS32Float: return "NVPTXISD::TexCubeS32Float";
778 case NVPTXISD::TexCubeS32FloatLevel:
779 return "NVPTXISD::TexCubeS32FloatLevel";
780 case NVPTXISD::TexCubeU32Float: return "NVPTXISD::TexCubeU32Float";
781 case NVPTXISD::TexCubeU32FloatLevel:
782 return "NVPTXISD::TexCubeU32FloatLevel";
783 case NVPTXISD::TexCubeArrayFloatFloat:
784 return "NVPTXISD::TexCubeArrayFloatFloat";
785 case NVPTXISD::TexCubeArrayFloatFloatLevel:
786 return "NVPTXISD::TexCubeArrayFloatFloatLevel";
787 case NVPTXISD::TexCubeArrayS32Float:
788 return "NVPTXISD::TexCubeArrayS32Float";
789 case NVPTXISD::TexCubeArrayS32FloatLevel:
790 return "NVPTXISD::TexCubeArrayS32FloatLevel";
791 case NVPTXISD::TexCubeArrayU32Float:
792 return "NVPTXISD::TexCubeArrayU32Float";
793 case NVPTXISD::TexCubeArrayU32FloatLevel:
794 return "NVPTXISD::TexCubeArrayU32FloatLevel";
795 case NVPTXISD::Tld4R2DFloatFloat:
796 return "NVPTXISD::Tld4R2DFloatFloat";
797 case NVPTXISD::Tld4G2DFloatFloat:
798 return "NVPTXISD::Tld4G2DFloatFloat";
799 case NVPTXISD::Tld4B2DFloatFloat:
800 return "NVPTXISD::Tld4B2DFloatFloat";
801 case NVPTXISD::Tld4A2DFloatFloat:
802 return "NVPTXISD::Tld4A2DFloatFloat";
803 case NVPTXISD::Tld4R2DS64Float:
804 return "NVPTXISD::Tld4R2DS64Float";
805 case NVPTXISD::Tld4G2DS64Float:
806 return "NVPTXISD::Tld4G2DS64Float";
807 case NVPTXISD::Tld4B2DS64Float:
808 return "NVPTXISD::Tld4B2DS64Float";
809 case NVPTXISD::Tld4A2DS64Float:
810 return "NVPTXISD::Tld4A2DS64Float";
811 case NVPTXISD::Tld4R2DU64Float:
812 return "NVPTXISD::Tld4R2DU64Float";
813 case NVPTXISD::Tld4G2DU64Float:
814 return "NVPTXISD::Tld4G2DU64Float";
815 case NVPTXISD::Tld4B2DU64Float:
816 return "NVPTXISD::Tld4B2DU64Float";
817 case NVPTXISD::Tld4A2DU64Float:
818 return "NVPTXISD::Tld4A2DU64Float";
819
820 case NVPTXISD::TexUnified1DFloatS32:
821 return "NVPTXISD::TexUnified1DFloatS32";
822 case NVPTXISD::TexUnified1DFloatFloat:
823 return "NVPTXISD::TexUnified1DFloatFloat";
824 case NVPTXISD::TexUnified1DFloatFloatLevel:
825 return "NVPTXISD::TexUnified1DFloatFloatLevel";
826 case NVPTXISD::TexUnified1DFloatFloatGrad:
827 return "NVPTXISD::TexUnified1DFloatFloatGrad";
828 case NVPTXISD::TexUnified1DS32S32:
829 return "NVPTXISD::TexUnified1DS32S32";
830 case NVPTXISD::TexUnified1DS32Float:
831 return "NVPTXISD::TexUnified1DS32Float";
832 case NVPTXISD::TexUnified1DS32FloatLevel:
833 return "NVPTXISD::TexUnified1DS32FloatLevel";
834 case NVPTXISD::TexUnified1DS32FloatGrad:
835 return "NVPTXISD::TexUnified1DS32FloatGrad";
836 case NVPTXISD::TexUnified1DU32S32:
837 return "NVPTXISD::TexUnified1DU32S32";
838 case NVPTXISD::TexUnified1DU32Float:
839 return "NVPTXISD::TexUnified1DU32Float";
840 case NVPTXISD::TexUnified1DU32FloatLevel:
841 return "NVPTXISD::TexUnified1DU32FloatLevel";
842 case NVPTXISD::TexUnified1DU32FloatGrad:
843 return "NVPTXISD::TexUnified1DU32FloatGrad";
844 case NVPTXISD::TexUnified1DArrayFloatS32:
845 return "NVPTXISD::TexUnified1DArrayFloatS32";
846 case NVPTXISD::TexUnified1DArrayFloatFloat:
847 return "NVPTXISD::TexUnified1DArrayFloatFloat";
848 case NVPTXISD::TexUnified1DArrayFloatFloatLevel:
849 return "NVPTXISD::TexUnified1DArrayFloatFloatLevel";
850 case NVPTXISD::TexUnified1DArrayFloatFloatGrad:
851 return "NVPTXISD::TexUnified1DArrayFloatFloatGrad";
852 case NVPTXISD::TexUnified1DArrayS32S32:
853 return "NVPTXISD::TexUnified1DArrayS32S32";
854 case NVPTXISD::TexUnified1DArrayS32Float:
855 return "NVPTXISD::TexUnified1DArrayS32Float";
856 case NVPTXISD::TexUnified1DArrayS32FloatLevel:
857 return "NVPTXISD::TexUnified1DArrayS32FloatLevel";
858 case NVPTXISD::TexUnified1DArrayS32FloatGrad:
859 return "NVPTXISD::TexUnified1DArrayS32FloatGrad";
860 case NVPTXISD::TexUnified1DArrayU32S32:
861 return "NVPTXISD::TexUnified1DArrayU32S32";
862 case NVPTXISD::TexUnified1DArrayU32Float:
863 return "NVPTXISD::TexUnified1DArrayU32Float";
864 case NVPTXISD::TexUnified1DArrayU32FloatLevel:
865 return "NVPTXISD::TexUnified1DArrayU32FloatLevel";
866 case NVPTXISD::TexUnified1DArrayU32FloatGrad:
867 return "NVPTXISD::TexUnified1DArrayU32FloatGrad";
868 case NVPTXISD::TexUnified2DFloatS32:
869 return "NVPTXISD::TexUnified2DFloatS32";
870 case NVPTXISD::TexUnified2DFloatFloat:
871 return "NVPTXISD::TexUnified2DFloatFloat";
872 case NVPTXISD::TexUnified2DFloatFloatLevel:
873 return "NVPTXISD::TexUnified2DFloatFloatLevel";
874 case NVPTXISD::TexUnified2DFloatFloatGrad:
875 return "NVPTXISD::TexUnified2DFloatFloatGrad";
876 case NVPTXISD::TexUnified2DS32S32:
877 return "NVPTXISD::TexUnified2DS32S32";
878 case NVPTXISD::TexUnified2DS32Float:
879 return "NVPTXISD::TexUnified2DS32Float";
880 case NVPTXISD::TexUnified2DS32FloatLevel:
881 return "NVPTXISD::TexUnified2DS32FloatLevel";
882 case NVPTXISD::TexUnified2DS32FloatGrad:
883 return "NVPTXISD::TexUnified2DS32FloatGrad";
884 case NVPTXISD::TexUnified2DU32S32:
885 return "NVPTXISD::TexUnified2DU32S32";
886 case NVPTXISD::TexUnified2DU32Float:
887 return "NVPTXISD::TexUnified2DU32Float";
888 case NVPTXISD::TexUnified2DU32FloatLevel:
889 return "NVPTXISD::TexUnified2DU32FloatLevel";
890 case NVPTXISD::TexUnified2DU32FloatGrad:
891 return "NVPTXISD::TexUnified2DU32FloatGrad";
892 case NVPTXISD::TexUnified2DArrayFloatS32:
893 return "NVPTXISD::TexUnified2DArrayFloatS32";
894 case NVPTXISD::TexUnified2DArrayFloatFloat:
895 return "NVPTXISD::TexUnified2DArrayFloatFloat";
896 case NVPTXISD::TexUnified2DArrayFloatFloatLevel:
897 return "NVPTXISD::TexUnified2DArrayFloatFloatLevel";
898 case NVPTXISD::TexUnified2DArrayFloatFloatGrad:
899 return "NVPTXISD::TexUnified2DArrayFloatFloatGrad";
900 case NVPTXISD::TexUnified2DArrayS32S32:
901 return "NVPTXISD::TexUnified2DArrayS32S32";
902 case NVPTXISD::TexUnified2DArrayS32Float:
903 return "NVPTXISD::TexUnified2DArrayS32Float";
904 case NVPTXISD::TexUnified2DArrayS32FloatLevel:
905 return "NVPTXISD::TexUnified2DArrayS32FloatLevel";
906 case NVPTXISD::TexUnified2DArrayS32FloatGrad:
907 return "NVPTXISD::TexUnified2DArrayS32FloatGrad";
908 case NVPTXISD::TexUnified2DArrayU32S32:
909 return "NVPTXISD::TexUnified2DArrayU32S32";
910 case NVPTXISD::TexUnified2DArrayU32Float:
911 return "NVPTXISD::TexUnified2DArrayU32Float";
912 case NVPTXISD::TexUnified2DArrayU32FloatLevel:
913 return "NVPTXISD::TexUnified2DArrayU32FloatLevel";
914 case NVPTXISD::TexUnified2DArrayU32FloatGrad:
915 return "NVPTXISD::TexUnified2DArrayU32FloatGrad";
916 case NVPTXISD::TexUnified3DFloatS32:
917 return "NVPTXISD::TexUnified3DFloatS32";
918 case NVPTXISD::TexUnified3DFloatFloat:
919 return "NVPTXISD::TexUnified3DFloatFloat";
920 case NVPTXISD::TexUnified3DFloatFloatLevel:
921 return "NVPTXISD::TexUnified3DFloatFloatLevel";
922 case NVPTXISD::TexUnified3DFloatFloatGrad:
923 return "NVPTXISD::TexUnified3DFloatFloatGrad";
924 case NVPTXISD::TexUnified3DS32S32:
925 return "NVPTXISD::TexUnified3DS32S32";
926 case NVPTXISD::TexUnified3DS32Float:
927 return "NVPTXISD::TexUnified3DS32Float";
928 case NVPTXISD::TexUnified3DS32FloatLevel:
929 return "NVPTXISD::TexUnified3DS32FloatLevel";
930 case NVPTXISD::TexUnified3DS32FloatGrad:
931 return "NVPTXISD::TexUnified3DS32FloatGrad";
932 case NVPTXISD::TexUnified3DU32S32:
933 return "NVPTXISD::TexUnified3DU32S32";
934 case NVPTXISD::TexUnified3DU32Float:
935 return "NVPTXISD::TexUnified3DU32Float";
936 case NVPTXISD::TexUnified3DU32FloatLevel:
937 return "NVPTXISD::TexUnified3DU32FloatLevel";
938 case NVPTXISD::TexUnified3DU32FloatGrad:
939 return "NVPTXISD::TexUnified3DU32FloatGrad";
940 case NVPTXISD::TexUnifiedCubeFloatFloat:
941 return "NVPTXISD::TexUnifiedCubeFloatFloat";
942 case NVPTXISD::TexUnifiedCubeFloatFloatLevel:
943 return "NVPTXISD::TexUnifiedCubeFloatFloatLevel";
944 case NVPTXISD::TexUnifiedCubeS32Float:
945 return "NVPTXISD::TexUnifiedCubeS32Float";
946 case NVPTXISD::TexUnifiedCubeS32FloatLevel:
947 return "NVPTXISD::TexUnifiedCubeS32FloatLevel";
948 case NVPTXISD::TexUnifiedCubeU32Float:
949 return "NVPTXISD::TexUnifiedCubeU32Float";
950 case NVPTXISD::TexUnifiedCubeU32FloatLevel:
951 return "NVPTXISD::TexUnifiedCubeU32FloatLevel";
952 case NVPTXISD::TexUnifiedCubeArrayFloatFloat:
953 return "NVPTXISD::TexUnifiedCubeArrayFloatFloat";
954 case NVPTXISD::TexUnifiedCubeArrayFloatFloatLevel:
955 return "NVPTXISD::TexUnifiedCubeArrayFloatFloatLevel";
956 case NVPTXISD::TexUnifiedCubeArrayS32Float:
957 return "NVPTXISD::TexUnifiedCubeArrayS32Float";
958 case NVPTXISD::TexUnifiedCubeArrayS32FloatLevel:
959 return "NVPTXISD::TexUnifiedCubeArrayS32FloatLevel";
960 case NVPTXISD::TexUnifiedCubeArrayU32Float:
961 return "NVPTXISD::TexUnifiedCubeArrayU32Float";
962 case NVPTXISD::TexUnifiedCubeArrayU32FloatLevel:
963 return "NVPTXISD::TexUnifiedCubeArrayU32FloatLevel";
964 case NVPTXISD::Tld4UnifiedR2DFloatFloat:
965 return "NVPTXISD::Tld4UnifiedR2DFloatFloat";
966 case NVPTXISD::Tld4UnifiedG2DFloatFloat:
967 return "NVPTXISD::Tld4UnifiedG2DFloatFloat";
968 case NVPTXISD::Tld4UnifiedB2DFloatFloat:
969 return "NVPTXISD::Tld4UnifiedB2DFloatFloat";
970 case NVPTXISD::Tld4UnifiedA2DFloatFloat:
971 return "NVPTXISD::Tld4UnifiedA2DFloatFloat";
972 case NVPTXISD::Tld4UnifiedR2DS64Float:
973 return "NVPTXISD::Tld4UnifiedR2DS64Float";
974 case NVPTXISD::Tld4UnifiedG2DS64Float:
975 return "NVPTXISD::Tld4UnifiedG2DS64Float";
976 case NVPTXISD::Tld4UnifiedB2DS64Float:
977 return "NVPTXISD::Tld4UnifiedB2DS64Float";
978 case NVPTXISD::Tld4UnifiedA2DS64Float:
979 return "NVPTXISD::Tld4UnifiedA2DS64Float";
980 case NVPTXISD::Tld4UnifiedR2DU64Float:
981 return "NVPTXISD::Tld4UnifiedR2DU64Float";
982 case NVPTXISD::Tld4UnifiedG2DU64Float:
983 return "NVPTXISD::Tld4UnifiedG2DU64Float";
984 case NVPTXISD::Tld4UnifiedB2DU64Float:
985 return "NVPTXISD::Tld4UnifiedB2DU64Float";
986 case NVPTXISD::Tld4UnifiedA2DU64Float:
987 return "NVPTXISD::Tld4UnifiedA2DU64Float";
988
989 case NVPTXISD::Suld1DI8Clamp: return "NVPTXISD::Suld1DI8Clamp";
990 case NVPTXISD::Suld1DI16Clamp: return "NVPTXISD::Suld1DI16Clamp";
991 case NVPTXISD::Suld1DI32Clamp: return "NVPTXISD::Suld1DI32Clamp";
992 case NVPTXISD::Suld1DI64Clamp: return "NVPTXISD::Suld1DI64Clamp";
993 case NVPTXISD::Suld1DV2I8Clamp: return "NVPTXISD::Suld1DV2I8Clamp";
994 case NVPTXISD::Suld1DV2I16Clamp: return "NVPTXISD::Suld1DV2I16Clamp";
995 case NVPTXISD::Suld1DV2I32Clamp: return "NVPTXISD::Suld1DV2I32Clamp";
996 case NVPTXISD::Suld1DV2I64Clamp: return "NVPTXISD::Suld1DV2I64Clamp";
997 case NVPTXISD::Suld1DV4I8Clamp: return "NVPTXISD::Suld1DV4I8Clamp";
998 case NVPTXISD::Suld1DV4I16Clamp: return "NVPTXISD::Suld1DV4I16Clamp";
999 case NVPTXISD::Suld1DV4I32Clamp: return "NVPTXISD::Suld1DV4I32Clamp";
1000
1001 case NVPTXISD::Suld1DArrayI8Clamp: return "NVPTXISD::Suld1DArrayI8Clamp";
1002 case NVPTXISD::Suld1DArrayI16Clamp: return "NVPTXISD::Suld1DArrayI16Clamp";
1003 case NVPTXISD::Suld1DArrayI32Clamp: return "NVPTXISD::Suld1DArrayI32Clamp";
1004 case NVPTXISD::Suld1DArrayI64Clamp: return "NVPTXISD::Suld1DArrayI64Clamp";
1005 case NVPTXISD::Suld1DArrayV2I8Clamp: return "NVPTXISD::Suld1DArrayV2I8Clamp";
1006 case NVPTXISD::Suld1DArrayV2I16Clamp:return "NVPTXISD::Suld1DArrayV2I16Clamp";
1007 case NVPTXISD::Suld1DArrayV2I32Clamp:return "NVPTXISD::Suld1DArrayV2I32Clamp";
1008 case NVPTXISD::Suld1DArrayV2I64Clamp:return "NVPTXISD::Suld1DArrayV2I64Clamp";
1009 case NVPTXISD::Suld1DArrayV4I8Clamp: return "NVPTXISD::Suld1DArrayV4I8Clamp";
1010 case NVPTXISD::Suld1DArrayV4I16Clamp:return "NVPTXISD::Suld1DArrayV4I16Clamp";
1011 case NVPTXISD::Suld1DArrayV4I32Clamp:return "NVPTXISD::Suld1DArrayV4I32Clamp";
1012
1013 case NVPTXISD::Suld2DI8Clamp: return "NVPTXISD::Suld2DI8Clamp";
1014 case NVPTXISD::Suld2DI16Clamp: return "NVPTXISD::Suld2DI16Clamp";
1015 case NVPTXISD::Suld2DI32Clamp: return "NVPTXISD::Suld2DI32Clamp";
1016 case NVPTXISD::Suld2DI64Clamp: return "NVPTXISD::Suld2DI64Clamp";
1017 case NVPTXISD::Suld2DV2I8Clamp: return "NVPTXISD::Suld2DV2I8Clamp";
1018 case NVPTXISD::Suld2DV2I16Clamp: return "NVPTXISD::Suld2DV2I16Clamp";
1019 case NVPTXISD::Suld2DV2I32Clamp: return "NVPTXISD::Suld2DV2I32Clamp";
1020 case NVPTXISD::Suld2DV2I64Clamp: return "NVPTXISD::Suld2DV2I64Clamp";
1021 case NVPTXISD::Suld2DV4I8Clamp: return "NVPTXISD::Suld2DV4I8Clamp";
1022 case NVPTXISD::Suld2DV4I16Clamp: return "NVPTXISD::Suld2DV4I16Clamp";
1023 case NVPTXISD::Suld2DV4I32Clamp: return "NVPTXISD::Suld2DV4I32Clamp";
1024
1025 case NVPTXISD::Suld2DArrayI8Clamp: return "NVPTXISD::Suld2DArrayI8Clamp";
1026 case NVPTXISD::Suld2DArrayI16Clamp: return "NVPTXISD::Suld2DArrayI16Clamp";
1027 case NVPTXISD::Suld2DArrayI32Clamp: return "NVPTXISD::Suld2DArrayI32Clamp";
1028 case NVPTXISD::Suld2DArrayI64Clamp: return "NVPTXISD::Suld2DArrayI64Clamp";
1029 case NVPTXISD::Suld2DArrayV2I8Clamp: return "NVPTXISD::Suld2DArrayV2I8Clamp";
1030 case NVPTXISD::Suld2DArrayV2I16Clamp:return "NVPTXISD::Suld2DArrayV2I16Clamp";
1031 case NVPTXISD::Suld2DArrayV2I32Clamp:return "NVPTXISD::Suld2DArrayV2I32Clamp";
1032 case NVPTXISD::Suld2DArrayV2I64Clamp:return "NVPTXISD::Suld2DArrayV2I64Clamp";
1033 case NVPTXISD::Suld2DArrayV4I8Clamp: return "NVPTXISD::Suld2DArrayV4I8Clamp";
1034 case NVPTXISD::Suld2DArrayV4I16Clamp:return "NVPTXISD::Suld2DArrayV4I16Clamp";
1035 case NVPTXISD::Suld2DArrayV4I32Clamp:return "NVPTXISD::Suld2DArrayV4I32Clamp";
1036
1037 case NVPTXISD::Suld3DI8Clamp: return "NVPTXISD::Suld3DI8Clamp";
1038 case NVPTXISD::Suld3DI16Clamp: return "NVPTXISD::Suld3DI16Clamp";
1039 case NVPTXISD::Suld3DI32Clamp: return "NVPTXISD::Suld3DI32Clamp";
1040 case NVPTXISD::Suld3DI64Clamp: return "NVPTXISD::Suld3DI64Clamp";
1041 case NVPTXISD::Suld3DV2I8Clamp: return "NVPTXISD::Suld3DV2I8Clamp";
1042 case NVPTXISD::Suld3DV2I16Clamp: return "NVPTXISD::Suld3DV2I16Clamp";
1043 case NVPTXISD::Suld3DV2I32Clamp: return "NVPTXISD::Suld3DV2I32Clamp";
1044 case NVPTXISD::Suld3DV2I64Clamp: return "NVPTXISD::Suld3DV2I64Clamp";
1045 case NVPTXISD::Suld3DV4I8Clamp: return "NVPTXISD::Suld3DV4I8Clamp";
1046 case NVPTXISD::Suld3DV4I16Clamp: return "NVPTXISD::Suld3DV4I16Clamp";
1047 case NVPTXISD::Suld3DV4I32Clamp: return "NVPTXISD::Suld3DV4I32Clamp";
1048
1049 case NVPTXISD::Suld1DI8Trap: return "NVPTXISD::Suld1DI8Trap";
1050 case NVPTXISD::Suld1DI16Trap: return "NVPTXISD::Suld1DI16Trap";
1051 case NVPTXISD::Suld1DI32Trap: return "NVPTXISD::Suld1DI32Trap";
1052 case NVPTXISD::Suld1DI64Trap: return "NVPTXISD::Suld1DI64Trap";
1053 case NVPTXISD::Suld1DV2I8Trap: return "NVPTXISD::Suld1DV2I8Trap";
1054 case NVPTXISD::Suld1DV2I16Trap: return "NVPTXISD::Suld1DV2I16Trap";
1055 case NVPTXISD::Suld1DV2I32Trap: return "NVPTXISD::Suld1DV2I32Trap";
1056 case NVPTXISD::Suld1DV2I64Trap: return "NVPTXISD::Suld1DV2I64Trap";
1057 case NVPTXISD::Suld1DV4I8Trap: return "NVPTXISD::Suld1DV4I8Trap";
1058 case NVPTXISD::Suld1DV4I16Trap: return "NVPTXISD::Suld1DV4I16Trap";
1059 case NVPTXISD::Suld1DV4I32Trap: return "NVPTXISD::Suld1DV4I32Trap";
1060
1061 case NVPTXISD::Suld1DArrayI8Trap: return "NVPTXISD::Suld1DArrayI8Trap";
1062 case NVPTXISD::Suld1DArrayI16Trap: return "NVPTXISD::Suld1DArrayI16Trap";
1063 case NVPTXISD::Suld1DArrayI32Trap: return "NVPTXISD::Suld1DArrayI32Trap";
1064 case NVPTXISD::Suld1DArrayI64Trap: return "NVPTXISD::Suld1DArrayI64Trap";
1065 case NVPTXISD::Suld1DArrayV2I8Trap: return "NVPTXISD::Suld1DArrayV2I8Trap";
1066 case NVPTXISD::Suld1DArrayV2I16Trap: return "NVPTXISD::Suld1DArrayV2I16Trap";
1067 case NVPTXISD::Suld1DArrayV2I32Trap: return "NVPTXISD::Suld1DArrayV2I32Trap";
1068 case NVPTXISD::Suld1DArrayV2I64Trap: return "NVPTXISD::Suld1DArrayV2I64Trap";
1069 case NVPTXISD::Suld1DArrayV4I8Trap: return "NVPTXISD::Suld1DArrayV4I8Trap";
1070 case NVPTXISD::Suld1DArrayV4I16Trap: return "NVPTXISD::Suld1DArrayV4I16Trap";
1071 case NVPTXISD::Suld1DArrayV4I32Trap: return "NVPTXISD::Suld1DArrayV4I32Trap";
1072
1073 case NVPTXISD::Suld2DI8Trap: return "NVPTXISD::Suld2DI8Trap";
1074 case NVPTXISD::Suld2DI16Trap: return "NVPTXISD::Suld2DI16Trap";
1075 case NVPTXISD::Suld2DI32Trap: return "NVPTXISD::Suld2DI32Trap";
1076 case NVPTXISD::Suld2DI64Trap: return "NVPTXISD::Suld2DI64Trap";
1077 case NVPTXISD::Suld2DV2I8Trap: return "NVPTXISD::Suld2DV2I8Trap";
1078 case NVPTXISD::Suld2DV2I16Trap: return "NVPTXISD::Suld2DV2I16Trap";
1079 case NVPTXISD::Suld2DV2I32Trap: return "NVPTXISD::Suld2DV2I32Trap";
1080 case NVPTXISD::Suld2DV2I64Trap: return "NVPTXISD::Suld2DV2I64Trap";
1081 case NVPTXISD::Suld2DV4I8Trap: return "NVPTXISD::Suld2DV4I8Trap";
1082 case NVPTXISD::Suld2DV4I16Trap: return "NVPTXISD::Suld2DV4I16Trap";
1083 case NVPTXISD::Suld2DV4I32Trap: return "NVPTXISD::Suld2DV4I32Trap";
1084
1085 case NVPTXISD::Suld2DArrayI8Trap: return "NVPTXISD::Suld2DArrayI8Trap";
1086 case NVPTXISD::Suld2DArrayI16Trap: return "NVPTXISD::Suld2DArrayI16Trap";
1087 case NVPTXISD::Suld2DArrayI32Trap: return "NVPTXISD::Suld2DArrayI32Trap";
1088 case NVPTXISD::Suld2DArrayI64Trap: return "NVPTXISD::Suld2DArrayI64Trap";
1089 case NVPTXISD::Suld2DArrayV2I8Trap: return "NVPTXISD::Suld2DArrayV2I8Trap";
1090 case NVPTXISD::Suld2DArrayV2I16Trap: return "NVPTXISD::Suld2DArrayV2I16Trap";
1091 case NVPTXISD::Suld2DArrayV2I32Trap: return "NVPTXISD::Suld2DArrayV2I32Trap";
1092 case NVPTXISD::Suld2DArrayV2I64Trap: return "NVPTXISD::Suld2DArrayV2I64Trap";
1093 case NVPTXISD::Suld2DArrayV4I8Trap: return "NVPTXISD::Suld2DArrayV4I8Trap";
1094 case NVPTXISD::Suld2DArrayV4I16Trap: return "NVPTXISD::Suld2DArrayV4I16Trap";
1095 case NVPTXISD::Suld2DArrayV4I32Trap: return "NVPTXISD::Suld2DArrayV4I32Trap";
1096
1097 case NVPTXISD::Suld3DI8Trap: return "NVPTXISD::Suld3DI8Trap";
1098 case NVPTXISD::Suld3DI16Trap: return "NVPTXISD::Suld3DI16Trap";
1099 case NVPTXISD::Suld3DI32Trap: return "NVPTXISD::Suld3DI32Trap";
1100 case NVPTXISD::Suld3DI64Trap: return "NVPTXISD::Suld3DI64Trap";
1101 case NVPTXISD::Suld3DV2I8Trap: return "NVPTXISD::Suld3DV2I8Trap";
1102 case NVPTXISD::Suld3DV2I16Trap: return "NVPTXISD::Suld3DV2I16Trap";
1103 case NVPTXISD::Suld3DV2I32Trap: return "NVPTXISD::Suld3DV2I32Trap";
1104 case NVPTXISD::Suld3DV2I64Trap: return "NVPTXISD::Suld3DV2I64Trap";
1105 case NVPTXISD::Suld3DV4I8Trap: return "NVPTXISD::Suld3DV4I8Trap";
1106 case NVPTXISD::Suld3DV4I16Trap: return "NVPTXISD::Suld3DV4I16Trap";
1107 case NVPTXISD::Suld3DV4I32Trap: return "NVPTXISD::Suld3DV4I32Trap";
1108
1109 case NVPTXISD::Suld1DI8Zero: return "NVPTXISD::Suld1DI8Zero";
1110 case NVPTXISD::Suld1DI16Zero: return "NVPTXISD::Suld1DI16Zero";
1111 case NVPTXISD::Suld1DI32Zero: return "NVPTXISD::Suld1DI32Zero";
1112 case NVPTXISD::Suld1DI64Zero: return "NVPTXISD::Suld1DI64Zero";
1113 case NVPTXISD::Suld1DV2I8Zero: return "NVPTXISD::Suld1DV2I8Zero";
1114 case NVPTXISD::Suld1DV2I16Zero: return "NVPTXISD::Suld1DV2I16Zero";
1115 case NVPTXISD::Suld1DV2I32Zero: return "NVPTXISD::Suld1DV2I32Zero";
1116 case NVPTXISD::Suld1DV2I64Zero: return "NVPTXISD::Suld1DV2I64Zero";
1117 case NVPTXISD::Suld1DV4I8Zero: return "NVPTXISD::Suld1DV4I8Zero";
1118 case NVPTXISD::Suld1DV4I16Zero: return "NVPTXISD::Suld1DV4I16Zero";
1119 case NVPTXISD::Suld1DV4I32Zero: return "NVPTXISD::Suld1DV4I32Zero";
1120
1121 case NVPTXISD::Suld1DArrayI8Zero: return "NVPTXISD::Suld1DArrayI8Zero";
1122 case NVPTXISD::Suld1DArrayI16Zero: return "NVPTXISD::Suld1DArrayI16Zero";
1123 case NVPTXISD::Suld1DArrayI32Zero: return "NVPTXISD::Suld1DArrayI32Zero";
1124 case NVPTXISD::Suld1DArrayI64Zero: return "NVPTXISD::Suld1DArrayI64Zero";
1125 case NVPTXISD::Suld1DArrayV2I8Zero: return "NVPTXISD::Suld1DArrayV2I8Zero";
1126 case NVPTXISD::Suld1DArrayV2I16Zero: return "NVPTXISD::Suld1DArrayV2I16Zero";
1127 case NVPTXISD::Suld1DArrayV2I32Zero: return "NVPTXISD::Suld1DArrayV2I32Zero";
1128 case NVPTXISD::Suld1DArrayV2I64Zero: return "NVPTXISD::Suld1DArrayV2I64Zero";
1129 case NVPTXISD::Suld1DArrayV4I8Zero: return "NVPTXISD::Suld1DArrayV4I8Zero";
1130 case NVPTXISD::Suld1DArrayV4I16Zero: return "NVPTXISD::Suld1DArrayV4I16Zero";
1131 case NVPTXISD::Suld1DArrayV4I32Zero: return "NVPTXISD::Suld1DArrayV4I32Zero";
1132
1133 case NVPTXISD::Suld2DI8Zero: return "NVPTXISD::Suld2DI8Zero";
1134 case NVPTXISD::Suld2DI16Zero: return "NVPTXISD::Suld2DI16Zero";
1135 case NVPTXISD::Suld2DI32Zero: return "NVPTXISD::Suld2DI32Zero";
1136 case NVPTXISD::Suld2DI64Zero: return "NVPTXISD::Suld2DI64Zero";
1137 case NVPTXISD::Suld2DV2I8Zero: return "NVPTXISD::Suld2DV2I8Zero";
1138 case NVPTXISD::Suld2DV2I16Zero: return "NVPTXISD::Suld2DV2I16Zero";
1139 case NVPTXISD::Suld2DV2I32Zero: return "NVPTXISD::Suld2DV2I32Zero";
1140 case NVPTXISD::Suld2DV2I64Zero: return "NVPTXISD::Suld2DV2I64Zero";
1141 case NVPTXISD::Suld2DV4I8Zero: return "NVPTXISD::Suld2DV4I8Zero";
1142 case NVPTXISD::Suld2DV4I16Zero: return "NVPTXISD::Suld2DV4I16Zero";
1143 case NVPTXISD::Suld2DV4I32Zero: return "NVPTXISD::Suld2DV4I32Zero";
1144
1145 case NVPTXISD::Suld2DArrayI8Zero: return "NVPTXISD::Suld2DArrayI8Zero";
1146 case NVPTXISD::Suld2DArrayI16Zero: return "NVPTXISD::Suld2DArrayI16Zero";
1147 case NVPTXISD::Suld2DArrayI32Zero: return "NVPTXISD::Suld2DArrayI32Zero";
1148 case NVPTXISD::Suld2DArrayI64Zero: return "NVPTXISD::Suld2DArrayI64Zero";
1149 case NVPTXISD::Suld2DArrayV2I8Zero: return "NVPTXISD::Suld2DArrayV2I8Zero";
1150 case NVPTXISD::Suld2DArrayV2I16Zero: return "NVPTXISD::Suld2DArrayV2I16Zero";
1151 case NVPTXISD::Suld2DArrayV2I32Zero: return "NVPTXISD::Suld2DArrayV2I32Zero";
1152 case NVPTXISD::Suld2DArrayV2I64Zero: return "NVPTXISD::Suld2DArrayV2I64Zero";
1153 case NVPTXISD::Suld2DArrayV4I8Zero: return "NVPTXISD::Suld2DArrayV4I8Zero";
1154 case NVPTXISD::Suld2DArrayV4I16Zero: return "NVPTXISD::Suld2DArrayV4I16Zero";
1155 case NVPTXISD::Suld2DArrayV4I32Zero: return "NVPTXISD::Suld2DArrayV4I32Zero";
1156
1157 case NVPTXISD::Suld3DI8Zero: return "NVPTXISD::Suld3DI8Zero";
1158 case NVPTXISD::Suld3DI16Zero: return "NVPTXISD::Suld3DI16Zero";
1159 case NVPTXISD::Suld3DI32Zero: return "NVPTXISD::Suld3DI32Zero";
1160 case NVPTXISD::Suld3DI64Zero: return "NVPTXISD::Suld3DI64Zero";
1161 case NVPTXISD::Suld3DV2I8Zero: return "NVPTXISD::Suld3DV2I8Zero";
1162 case NVPTXISD::Suld3DV2I16Zero: return "NVPTXISD::Suld3DV2I16Zero";
1163 case NVPTXISD::Suld3DV2I32Zero: return "NVPTXISD::Suld3DV2I32Zero";
1164 case NVPTXISD::Suld3DV2I64Zero: return "NVPTXISD::Suld3DV2I64Zero";
1165 case NVPTXISD::Suld3DV4I8Zero: return "NVPTXISD::Suld3DV4I8Zero";
1166 case NVPTXISD::Suld3DV4I16Zero: return "NVPTXISD::Suld3DV4I16Zero";
1167 case NVPTXISD::Suld3DV4I32Zero: return "NVPTXISD::Suld3DV4I32Zero";
1168 }
1169 return nullptr;
1170 }
1171
1172 TargetLoweringBase::LegalizeTypeAction
getPreferredVectorAction(EVT VT) const1173 NVPTXTargetLowering::getPreferredVectorAction(EVT VT) const {
1174 if (VT.getVectorNumElements() != 1 && VT.getScalarType() == MVT::i1)
1175 return TypeSplitVector;
1176 if (VT == MVT::v2f16)
1177 return TypeLegal;
1178 return TargetLoweringBase::getPreferredVectorAction(VT);
1179 }
1180
getSqrtEstimate(SDValue Operand,SelectionDAG & DAG,int Enabled,int & ExtraSteps,bool & UseOneConst,bool Reciprocal) const1181 SDValue NVPTXTargetLowering::getSqrtEstimate(SDValue Operand, SelectionDAG &DAG,
1182 int Enabled, int &ExtraSteps,
1183 bool &UseOneConst,
1184 bool Reciprocal) const {
1185 if (!(Enabled == ReciprocalEstimate::Enabled ||
1186 (Enabled == ReciprocalEstimate::Unspecified && !usePrecSqrtF32())))
1187 return SDValue();
1188
1189 if (ExtraSteps == ReciprocalEstimate::Unspecified)
1190 ExtraSteps = 0;
1191
1192 SDLoc DL(Operand);
1193 EVT VT = Operand.getValueType();
1194 bool Ftz = useF32FTZ(DAG.getMachineFunction());
1195
1196 auto MakeIntrinsicCall = [&](Intrinsic::ID IID) {
1197 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
1198 DAG.getConstant(IID, DL, MVT::i32), Operand);
1199 };
1200
1201 // The sqrt and rsqrt refinement processes assume we always start out with an
1202 // approximation of the rsqrt. Therefore, if we're going to do any refinement
1203 // (i.e. ExtraSteps > 0), we must return an rsqrt. But if we're *not* doing
1204 // any refinement, we must return a regular sqrt.
1205 if (Reciprocal || ExtraSteps > 0) {
1206 if (VT == MVT::f32)
1207 return MakeIntrinsicCall(Ftz ? Intrinsic::nvvm_rsqrt_approx_ftz_f
1208 : Intrinsic::nvvm_rsqrt_approx_f);
1209 else if (VT == MVT::f64)
1210 return MakeIntrinsicCall(Intrinsic::nvvm_rsqrt_approx_d);
1211 else
1212 return SDValue();
1213 } else {
1214 if (VT == MVT::f32)
1215 return MakeIntrinsicCall(Ftz ? Intrinsic::nvvm_sqrt_approx_ftz_f
1216 : Intrinsic::nvvm_sqrt_approx_f);
1217 else {
1218 // There's no sqrt.approx.f64 instruction, so we emit
1219 // reciprocal(rsqrt(x)). This is faster than
1220 // select(x == 0, 0, x * rsqrt(x)). (In fact, it's faster than plain
1221 // x * rsqrt(x).)
1222 return DAG.getNode(
1223 ISD::INTRINSIC_WO_CHAIN, DL, VT,
1224 DAG.getConstant(Intrinsic::nvvm_rcp_approx_ftz_d, DL, MVT::i32),
1225 MakeIntrinsicCall(Intrinsic::nvvm_rsqrt_approx_d));
1226 }
1227 }
1228 }
1229
1230 SDValue
LowerGlobalAddress(SDValue Op,SelectionDAG & DAG) const1231 NVPTXTargetLowering::LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const {
1232 SDLoc dl(Op);
1233 const GlobalAddressSDNode *GAN = cast<GlobalAddressSDNode>(Op);
1234 auto PtrVT = getPointerTy(DAG.getDataLayout(), GAN->getAddressSpace());
1235 Op = DAG.getTargetGlobalAddress(GAN->getGlobal(), dl, PtrVT);
1236 return DAG.getNode(NVPTXISD::Wrapper, dl, PtrVT, Op);
1237 }
1238
getPrototype(const DataLayout & DL,Type * retTy,const ArgListTy & Args,const SmallVectorImpl<ISD::OutputArg> & Outs,unsigned retAlignment,ImmutableCallSite CS) const1239 std::string NVPTXTargetLowering::getPrototype(
1240 const DataLayout &DL, Type *retTy, const ArgListTy &Args,
1241 const SmallVectorImpl<ISD::OutputArg> &Outs, unsigned retAlignment,
1242 ImmutableCallSite CS) const {
1243 auto PtrVT = getPointerTy(DL);
1244
1245 bool isABI = (STI.getSmVersion() >= 20);
1246 assert(isABI && "Non-ABI compilation is not supported");
1247 if (!isABI)
1248 return "";
1249
1250 std::stringstream O;
1251 O << "prototype_" << uniqueCallSite << " : .callprototype ";
1252
1253 if (retTy->getTypeID() == Type::VoidTyID) {
1254 O << "()";
1255 } else {
1256 O << "(";
1257 if (retTy->isFloatingPointTy() || (retTy->isIntegerTy() && !retTy->isIntegerTy(128))) {
1258 unsigned size = 0;
1259 if (auto *ITy = dyn_cast<IntegerType>(retTy)) {
1260 size = ITy->getBitWidth();
1261 } else {
1262 assert(retTy->isFloatingPointTy() &&
1263 "Floating point type expected here");
1264 size = retTy->getPrimitiveSizeInBits();
1265 }
1266 // PTX ABI requires all scalar return values to be at least 32
1267 // bits in size. fp16 normally uses .b16 as its storage type in
1268 // PTX, so its size must be adjusted here, too.
1269 if (size < 32)
1270 size = 32;
1271
1272 O << ".param .b" << size << " _";
1273 } else if (isa<PointerType>(retTy)) {
1274 O << ".param .b" << PtrVT.getSizeInBits() << " _";
1275 } else if (retTy->isAggregateType() || retTy->isVectorTy() || retTy->isIntegerTy(128)) {
1276 auto &DL = CS.getCalledFunction()->getParent()->getDataLayout();
1277 O << ".param .align " << retAlignment << " .b8 _["
1278 << DL.getTypeAllocSize(retTy) << "]";
1279 } else {
1280 llvm_unreachable("Unknown return type");
1281 }
1282 O << ") ";
1283 }
1284 O << "_ (";
1285
1286 bool first = true;
1287
1288 unsigned OIdx = 0;
1289 for (unsigned i = 0, e = Args.size(); i != e; ++i, ++OIdx) {
1290 Type *Ty = Args[i].Ty;
1291 if (!first) {
1292 O << ", ";
1293 }
1294 first = false;
1295
1296 if (!Outs[OIdx].Flags.isByVal()) {
1297 if (Ty->isAggregateType() || Ty->isVectorTy() || Ty->isIntegerTy(128)) {
1298 unsigned align = 0;
1299 const CallInst *CallI = cast<CallInst>(CS.getInstruction());
1300 // +1 because index 0 is reserved for return type alignment
1301 if (!getAlign(*CallI, i + 1, align))
1302 align = DL.getABITypeAlignment(Ty);
1303 unsigned sz = DL.getTypeAllocSize(Ty);
1304 O << ".param .align " << align << " .b8 ";
1305 O << "_";
1306 O << "[" << sz << "]";
1307 // update the index for Outs
1308 SmallVector<EVT, 16> vtparts;
1309 ComputeValueVTs(*this, DL, Ty, vtparts);
1310 if (unsigned len = vtparts.size())
1311 OIdx += len - 1;
1312 continue;
1313 }
1314 // i8 types in IR will be i16 types in SDAG
1315 assert((getValueType(DL, Ty) == Outs[OIdx].VT ||
1316 (getValueType(DL, Ty) == MVT::i8 && Outs[OIdx].VT == MVT::i16)) &&
1317 "type mismatch between callee prototype and arguments");
1318 // scalar type
1319 unsigned sz = 0;
1320 if (isa<IntegerType>(Ty)) {
1321 sz = cast<IntegerType>(Ty)->getBitWidth();
1322 if (sz < 32)
1323 sz = 32;
1324 } else if (isa<PointerType>(Ty)) {
1325 sz = PtrVT.getSizeInBits();
1326 } else if (Ty->isHalfTy())
1327 // PTX ABI requires all scalar parameters to be at least 32
1328 // bits in size. fp16 normally uses .b16 as its storage type
1329 // in PTX, so its size must be adjusted here, too.
1330 sz = 32;
1331 else
1332 sz = Ty->getPrimitiveSizeInBits();
1333 O << ".param .b" << sz << " ";
1334 O << "_";
1335 continue;
1336 }
1337 auto *PTy = dyn_cast<PointerType>(Ty);
1338 assert(PTy && "Param with byval attribute should be a pointer type");
1339 Type *ETy = PTy->getElementType();
1340
1341 unsigned align = Outs[OIdx].Flags.getByValAlign();
1342 unsigned sz = DL.getTypeAllocSize(ETy);
1343 O << ".param .align " << align << " .b8 ";
1344 O << "_";
1345 O << "[" << sz << "]";
1346 }
1347 O << ");";
1348 return O.str();
1349 }
1350
getArgumentAlignment(SDValue Callee,ImmutableCallSite CS,Type * Ty,unsigned Idx,const DataLayout & DL) const1351 unsigned NVPTXTargetLowering::getArgumentAlignment(SDValue Callee,
1352 ImmutableCallSite CS,
1353 Type *Ty, unsigned Idx,
1354 const DataLayout &DL) const {
1355 if (!CS) {
1356 // CallSite is zero, fallback to ABI type alignment
1357 return DL.getABITypeAlignment(Ty);
1358 }
1359
1360 unsigned Align = 0;
1361 const Value *DirectCallee = CS.getCalledFunction();
1362
1363 if (!DirectCallee) {
1364 // We don't have a direct function symbol, but that may be because of
1365 // constant cast instructions in the call.
1366 const Instruction *CalleeI = CS.getInstruction();
1367 assert(CalleeI && "Call target is not a function or derived value?");
1368
1369 // With bitcast'd call targets, the instruction will be the call
1370 if (isa<CallInst>(CalleeI)) {
1371 // Check if we have call alignment metadata
1372 if (getAlign(*cast<CallInst>(CalleeI), Idx, Align))
1373 return Align;
1374
1375 const Value *CalleeV = cast<CallInst>(CalleeI)->getCalledValue();
1376 // Ignore any bitcast instructions
1377 while (isa<ConstantExpr>(CalleeV)) {
1378 const ConstantExpr *CE = cast<ConstantExpr>(CalleeV);
1379 if (!CE->isCast())
1380 break;
1381 // Look through the bitcast
1382 CalleeV = cast<ConstantExpr>(CalleeV)->getOperand(0);
1383 }
1384
1385 // We have now looked past all of the bitcasts. Do we finally have a
1386 // Function?
1387 if (isa<Function>(CalleeV))
1388 DirectCallee = CalleeV;
1389 }
1390 }
1391
1392 // Check for function alignment information if we found that the
1393 // ultimate target is a Function
1394 if (DirectCallee)
1395 if (getAlign(*cast<Function>(DirectCallee), Idx, Align))
1396 return Align;
1397
1398 // Call is indirect or alignment information is not available, fall back to
1399 // the ABI type alignment
1400 return DL.getABITypeAlignment(Ty);
1401 }
1402
LowerCall(TargetLowering::CallLoweringInfo & CLI,SmallVectorImpl<SDValue> & InVals) const1403 SDValue NVPTXTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
1404 SmallVectorImpl<SDValue> &InVals) const {
1405 SelectionDAG &DAG = CLI.DAG;
1406 SDLoc dl = CLI.DL;
1407 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
1408 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
1409 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
1410 SDValue Chain = CLI.Chain;
1411 SDValue Callee = CLI.Callee;
1412 bool &isTailCall = CLI.IsTailCall;
1413 ArgListTy &Args = CLI.getArgs();
1414 Type *RetTy = CLI.RetTy;
1415 ImmutableCallSite CS = CLI.CS;
1416 const DataLayout &DL = DAG.getDataLayout();
1417
1418 bool isABI = (STI.getSmVersion() >= 20);
1419 assert(isABI && "Non-ABI compilation is not supported");
1420 if (!isABI)
1421 return Chain;
1422
1423 SDValue tempChain = Chain;
1424 Chain = DAG.getCALLSEQ_START(Chain, uniqueCallSite, 0, dl);
1425 SDValue InFlag = Chain.getValue(1);
1426
1427 unsigned paramCount = 0;
1428 // Args.size() and Outs.size() need not match.
1429 // Outs.size() will be larger
1430 // * if there is an aggregate argument with multiple fields (each field
1431 // showing up separately in Outs)
1432 // * if there is a vector argument with more than typical vector-length
1433 // elements (generally if more than 4) where each vector element is
1434 // individually present in Outs.
1435 // So a different index should be used for indexing into Outs/OutVals.
1436 // See similar issue in LowerFormalArguments.
1437 unsigned OIdx = 0;
1438 // Declare the .params or .reg need to pass values
1439 // to the function
1440 for (unsigned i = 0, e = Args.size(); i != e; ++i, ++OIdx) {
1441 EVT VT = Outs[OIdx].VT;
1442 Type *Ty = Args[i].Ty;
1443
1444 if (!Outs[OIdx].Flags.isByVal()) {
1445 SmallVector<EVT, 16> VTs;
1446 SmallVector<uint64_t, 16> Offsets;
1447 ComputePTXValueVTs(*this, DL, Ty, VTs, &Offsets);
1448 unsigned ArgAlign =
1449 getArgumentAlignment(Callee, CS, Ty, paramCount + 1, DL);
1450 unsigned AllocSize = DL.getTypeAllocSize(Ty);
1451 SDVTList DeclareParamVTs = DAG.getVTList(MVT::Other, MVT::Glue);
1452 bool NeedAlign; // Does argument declaration specify alignment?
1453 if (Ty->isAggregateType() || Ty->isVectorTy() || Ty->isIntegerTy(128)) {
1454 // declare .param .align <align> .b8 .param<n>[<size>];
1455 SDValue DeclareParamOps[] = {
1456 Chain, DAG.getConstant(ArgAlign, dl, MVT::i32),
1457 DAG.getConstant(paramCount, dl, MVT::i32),
1458 DAG.getConstant(AllocSize, dl, MVT::i32), InFlag};
1459 Chain = DAG.getNode(NVPTXISD::DeclareParam, dl, DeclareParamVTs,
1460 DeclareParamOps);
1461 NeedAlign = true;
1462 } else {
1463 // declare .param .b<size> .param<n>;
1464 if ((VT.isInteger() || VT.isFloatingPoint()) && AllocSize < 4) {
1465 // PTX ABI requires integral types to be at least 32 bits in
1466 // size. FP16 is loaded/stored using i16, so it's handled
1467 // here as well.
1468 AllocSize = 4;
1469 }
1470 SDValue DeclareScalarParamOps[] = {
1471 Chain, DAG.getConstant(paramCount, dl, MVT::i32),
1472 DAG.getConstant(AllocSize * 8, dl, MVT::i32),
1473 DAG.getConstant(0, dl, MVT::i32), InFlag};
1474 Chain = DAG.getNode(NVPTXISD::DeclareScalarParam, dl, DeclareParamVTs,
1475 DeclareScalarParamOps);
1476 NeedAlign = false;
1477 }
1478 InFlag = Chain.getValue(1);
1479
1480 // PTX Interoperability Guide 3.3(A): [Integer] Values shorter
1481 // than 32-bits are sign extended or zero extended, depending on
1482 // whether they are signed or unsigned types. This case applies
1483 // only to scalar parameters and not to aggregate values.
1484 bool ExtendIntegerParam =
1485 Ty->isIntegerTy() && DL.getTypeAllocSizeInBits(Ty) < 32;
1486
1487 auto VectorInfo = VectorizePTXValueVTs(VTs, Offsets, ArgAlign);
1488 SmallVector<SDValue, 6> StoreOperands;
1489 for (unsigned j = 0, je = VTs.size(); j != je; ++j) {
1490 // New store.
1491 if (VectorInfo[j] & PVF_FIRST) {
1492 assert(StoreOperands.empty() && "Unfinished preceeding store.");
1493 StoreOperands.push_back(Chain);
1494 StoreOperands.push_back(DAG.getConstant(paramCount, dl, MVT::i32));
1495 StoreOperands.push_back(DAG.getConstant(Offsets[j], dl, MVT::i32));
1496 }
1497
1498 EVT EltVT = VTs[j];
1499 SDValue StVal = OutVals[OIdx];
1500 if (ExtendIntegerParam) {
1501 assert(VTs.size() == 1 && "Scalar can't have multiple parts.");
1502 // zext/sext to i32
1503 StVal = DAG.getNode(Outs[OIdx].Flags.isSExt() ? ISD::SIGN_EXTEND
1504 : ISD::ZERO_EXTEND,
1505 dl, MVT::i32, StVal);
1506 } else if (EltVT.getSizeInBits() < 16) {
1507 // Use 16-bit registers for small stores as it's the
1508 // smallest general purpose register size supported by NVPTX.
1509 StVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i16, StVal);
1510 }
1511
1512 // Record the value to store.
1513 StoreOperands.push_back(StVal);
1514
1515 if (VectorInfo[j] & PVF_LAST) {
1516 unsigned NumElts = StoreOperands.size() - 3;
1517 NVPTXISD::NodeType Op;
1518 switch (NumElts) {
1519 case 1:
1520 Op = NVPTXISD::StoreParam;
1521 break;
1522 case 2:
1523 Op = NVPTXISD::StoreParamV2;
1524 break;
1525 case 4:
1526 Op = NVPTXISD::StoreParamV4;
1527 break;
1528 default:
1529 llvm_unreachable("Invalid vector info.");
1530 }
1531
1532 StoreOperands.push_back(InFlag);
1533
1534 // Adjust type of the store op if we've extended the scalar
1535 // return value.
1536 EVT TheStoreType = ExtendIntegerParam ? MVT::i32 : VTs[j];
1537 unsigned EltAlign =
1538 NeedAlign ? GreatestCommonDivisor64(ArgAlign, Offsets[j]) : 0;
1539
1540 Chain = DAG.getMemIntrinsicNode(
1541 Op, dl, DAG.getVTList(MVT::Other, MVT::Glue), StoreOperands,
1542 TheStoreType, MachinePointerInfo(), EltAlign,
1543 MachineMemOperand::MOStore);
1544 InFlag = Chain.getValue(1);
1545
1546 // Cleanup.
1547 StoreOperands.clear();
1548 }
1549 ++OIdx;
1550 }
1551 assert(StoreOperands.empty() && "Unfinished parameter store.");
1552 if (VTs.size() > 0)
1553 --OIdx;
1554 ++paramCount;
1555 continue;
1556 }
1557
1558 // ByVal arguments
1559 SmallVector<EVT, 16> VTs;
1560 SmallVector<uint64_t, 16> Offsets;
1561 auto *PTy = dyn_cast<PointerType>(Args[i].Ty);
1562 assert(PTy && "Type of a byval parameter should be pointer");
1563 ComputePTXValueVTs(*this, DL, PTy->getElementType(), VTs, &Offsets, 0);
1564
1565 // declare .param .align <align> .b8 .param<n>[<size>];
1566 unsigned sz = Outs[OIdx].Flags.getByValSize();
1567 SDVTList DeclareParamVTs = DAG.getVTList(MVT::Other, MVT::Glue);
1568 unsigned ArgAlign = Outs[OIdx].Flags.getByValAlign();
1569 // The ByValAlign in the Outs[OIdx].Flags is alway set at this point,
1570 // so we don't need to worry about natural alignment or not.
1571 // See TargetLowering::LowerCallTo().
1572
1573 // Enforce minumum alignment of 4 to work around ptxas miscompile
1574 // for sm_50+. See corresponding alignment adjustment in
1575 // emitFunctionParamList() for details.
1576 if (ArgAlign < 4)
1577 ArgAlign = 4;
1578 SDValue DeclareParamOps[] = {Chain, DAG.getConstant(ArgAlign, dl, MVT::i32),
1579 DAG.getConstant(paramCount, dl, MVT::i32),
1580 DAG.getConstant(sz, dl, MVT::i32), InFlag};
1581 Chain = DAG.getNode(NVPTXISD::DeclareParam, dl, DeclareParamVTs,
1582 DeclareParamOps);
1583 InFlag = Chain.getValue(1);
1584 for (unsigned j = 0, je = VTs.size(); j != je; ++j) {
1585 EVT elemtype = VTs[j];
1586 int curOffset = Offsets[j];
1587 unsigned PartAlign = GreatestCommonDivisor64(ArgAlign, curOffset);
1588 auto PtrVT = getPointerTy(DL);
1589 SDValue srcAddr = DAG.getNode(ISD::ADD, dl, PtrVT, OutVals[OIdx],
1590 DAG.getConstant(curOffset, dl, PtrVT));
1591 SDValue theVal = DAG.getLoad(elemtype, dl, tempChain, srcAddr,
1592 MachinePointerInfo(), PartAlign);
1593 if (elemtype.getSizeInBits() < 16) {
1594 theVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i16, theVal);
1595 }
1596 SDVTList CopyParamVTs = DAG.getVTList(MVT::Other, MVT::Glue);
1597 SDValue CopyParamOps[] = { Chain,
1598 DAG.getConstant(paramCount, dl, MVT::i32),
1599 DAG.getConstant(curOffset, dl, MVT::i32),
1600 theVal, InFlag };
1601 Chain = DAG.getMemIntrinsicNode(NVPTXISD::StoreParam, dl, CopyParamVTs,
1602 CopyParamOps, elemtype,
1603 MachinePointerInfo(), /* Align */ 0,
1604 MachineMemOperand::MOStore);
1605
1606 InFlag = Chain.getValue(1);
1607 }
1608 ++paramCount;
1609 }
1610
1611 GlobalAddressSDNode *Func = dyn_cast<GlobalAddressSDNode>(Callee.getNode());
1612 unsigned retAlignment = 0;
1613
1614 // Handle Result
1615 if (Ins.size() > 0) {
1616 SmallVector<EVT, 16> resvtparts;
1617 ComputeValueVTs(*this, DL, RetTy, resvtparts);
1618
1619 // Declare
1620 // .param .align 16 .b8 retval0[<size-in-bytes>], or
1621 // .param .b<size-in-bits> retval0
1622 unsigned resultsz = DL.getTypeAllocSizeInBits(RetTy);
1623 // Emit ".param .b<size-in-bits> retval0" instead of byte arrays only for
1624 // these three types to match the logic in
1625 // NVPTXAsmPrinter::printReturnValStr and NVPTXTargetLowering::getPrototype.
1626 // Plus, this behavior is consistent with nvcc's.
1627 if (RetTy->isFloatingPointTy() || RetTy->isPointerTy() ||
1628 (RetTy->isIntegerTy() && !RetTy->isIntegerTy(128))) {
1629 // Scalar needs to be at least 32bit wide
1630 if (resultsz < 32)
1631 resultsz = 32;
1632 SDVTList DeclareRetVTs = DAG.getVTList(MVT::Other, MVT::Glue);
1633 SDValue DeclareRetOps[] = { Chain, DAG.getConstant(1, dl, MVT::i32),
1634 DAG.getConstant(resultsz, dl, MVT::i32),
1635 DAG.getConstant(0, dl, MVT::i32), InFlag };
1636 Chain = DAG.getNode(NVPTXISD::DeclareRet, dl, DeclareRetVTs,
1637 DeclareRetOps);
1638 InFlag = Chain.getValue(1);
1639 } else {
1640 retAlignment = getArgumentAlignment(Callee, CS, RetTy, 0, DL);
1641 SDVTList DeclareRetVTs = DAG.getVTList(MVT::Other, MVT::Glue);
1642 SDValue DeclareRetOps[] = { Chain,
1643 DAG.getConstant(retAlignment, dl, MVT::i32),
1644 DAG.getConstant(resultsz / 8, dl, MVT::i32),
1645 DAG.getConstant(0, dl, MVT::i32), InFlag };
1646 Chain = DAG.getNode(NVPTXISD::DeclareRetParam, dl, DeclareRetVTs,
1647 DeclareRetOps);
1648 InFlag = Chain.getValue(1);
1649 }
1650 }
1651
1652 if (!Func) {
1653 // This is indirect function call case : PTX requires a prototype of the
1654 // form
1655 // proto_0 : .callprototype(.param .b32 _) _ (.param .b32 _);
1656 // to be emitted, and the label has to used as the last arg of call
1657 // instruction.
1658 // The prototype is embedded in a string and put as the operand for a
1659 // CallPrototype SDNode which will print out to the value of the string.
1660 SDVTList ProtoVTs = DAG.getVTList(MVT::Other, MVT::Glue);
1661 std::string Proto = getPrototype(DL, RetTy, Args, Outs, retAlignment, CS);
1662 const char *ProtoStr =
1663 nvTM->getManagedStrPool()->getManagedString(Proto.c_str())->c_str();
1664 SDValue ProtoOps[] = {
1665 Chain, DAG.getTargetExternalSymbol(ProtoStr, MVT::i32), InFlag,
1666 };
1667 Chain = DAG.getNode(NVPTXISD::CallPrototype, dl, ProtoVTs, ProtoOps);
1668 InFlag = Chain.getValue(1);
1669 }
1670 // Op to just print "call"
1671 SDVTList PrintCallVTs = DAG.getVTList(MVT::Other, MVT::Glue);
1672 SDValue PrintCallOps[] = {
1673 Chain, DAG.getConstant((Ins.size() == 0) ? 0 : 1, dl, MVT::i32), InFlag
1674 };
1675 // We model convergent calls as separate opcodes.
1676 unsigned Opcode = Func ? NVPTXISD::PrintCallUni : NVPTXISD::PrintCall;
1677 if (CLI.IsConvergent)
1678 Opcode = Opcode == NVPTXISD::PrintCallUni ? NVPTXISD::PrintConvergentCallUni
1679 : NVPTXISD::PrintConvergentCall;
1680 Chain = DAG.getNode(Opcode, dl, PrintCallVTs, PrintCallOps);
1681 InFlag = Chain.getValue(1);
1682
1683 // Ops to print out the function name
1684 SDVTList CallVoidVTs = DAG.getVTList(MVT::Other, MVT::Glue);
1685 SDValue CallVoidOps[] = { Chain, Callee, InFlag };
1686 Chain = DAG.getNode(NVPTXISD::CallVoid, dl, CallVoidVTs, CallVoidOps);
1687 InFlag = Chain.getValue(1);
1688
1689 // Ops to print out the param list
1690 SDVTList CallArgBeginVTs = DAG.getVTList(MVT::Other, MVT::Glue);
1691 SDValue CallArgBeginOps[] = { Chain, InFlag };
1692 Chain = DAG.getNode(NVPTXISD::CallArgBegin, dl, CallArgBeginVTs,
1693 CallArgBeginOps);
1694 InFlag = Chain.getValue(1);
1695
1696 for (unsigned i = 0, e = paramCount; i != e; ++i) {
1697 unsigned opcode;
1698 if (i == (e - 1))
1699 opcode = NVPTXISD::LastCallArg;
1700 else
1701 opcode = NVPTXISD::CallArg;
1702 SDVTList CallArgVTs = DAG.getVTList(MVT::Other, MVT::Glue);
1703 SDValue CallArgOps[] = { Chain, DAG.getConstant(1, dl, MVT::i32),
1704 DAG.getConstant(i, dl, MVT::i32), InFlag };
1705 Chain = DAG.getNode(opcode, dl, CallArgVTs, CallArgOps);
1706 InFlag = Chain.getValue(1);
1707 }
1708 SDVTList CallArgEndVTs = DAG.getVTList(MVT::Other, MVT::Glue);
1709 SDValue CallArgEndOps[] = { Chain,
1710 DAG.getConstant(Func ? 1 : 0, dl, MVT::i32),
1711 InFlag };
1712 Chain = DAG.getNode(NVPTXISD::CallArgEnd, dl, CallArgEndVTs, CallArgEndOps);
1713 InFlag = Chain.getValue(1);
1714
1715 if (!Func) {
1716 SDVTList PrototypeVTs = DAG.getVTList(MVT::Other, MVT::Glue);
1717 SDValue PrototypeOps[] = { Chain,
1718 DAG.getConstant(uniqueCallSite, dl, MVT::i32),
1719 InFlag };
1720 Chain = DAG.getNode(NVPTXISD::Prototype, dl, PrototypeVTs, PrototypeOps);
1721 InFlag = Chain.getValue(1);
1722 }
1723
1724 // Generate loads from param memory/moves from registers for result
1725 if (Ins.size() > 0) {
1726 SmallVector<EVT, 16> VTs;
1727 SmallVector<uint64_t, 16> Offsets;
1728 ComputePTXValueVTs(*this, DL, RetTy, VTs, &Offsets, 0);
1729 assert(VTs.size() == Ins.size() && "Bad value decomposition");
1730
1731 unsigned RetAlign = getArgumentAlignment(Callee, CS, RetTy, 0, DL);
1732 auto VectorInfo = VectorizePTXValueVTs(VTs, Offsets, RetAlign);
1733
1734 SmallVector<EVT, 6> LoadVTs;
1735 int VecIdx = -1; // Index of the first element of the vector.
1736
1737 // PTX Interoperability Guide 3.3(A): [Integer] Values shorter than
1738 // 32-bits are sign extended or zero extended, depending on whether
1739 // they are signed or unsigned types.
1740 bool ExtendIntegerRetVal =
1741 RetTy->isIntegerTy() && DL.getTypeAllocSizeInBits(RetTy) < 32;
1742
1743 for (unsigned i = 0, e = VTs.size(); i != e; ++i) {
1744 bool needTruncate = false;
1745 EVT TheLoadType = VTs[i];
1746 EVT EltType = Ins[i].VT;
1747 unsigned EltAlign = GreatestCommonDivisor64(RetAlign, Offsets[i]);
1748 if (ExtendIntegerRetVal) {
1749 TheLoadType = MVT::i32;
1750 EltType = MVT::i32;
1751 needTruncate = true;
1752 } else if (TheLoadType.getSizeInBits() < 16) {
1753 if (VTs[i].isInteger())
1754 needTruncate = true;
1755 EltType = MVT::i16;
1756 }
1757
1758 // Record index of the very first element of the vector.
1759 if (VectorInfo[i] & PVF_FIRST) {
1760 assert(VecIdx == -1 && LoadVTs.empty() && "Orphaned operand list.");
1761 VecIdx = i;
1762 }
1763
1764 LoadVTs.push_back(EltType);
1765
1766 if (VectorInfo[i] & PVF_LAST) {
1767 unsigned NumElts = LoadVTs.size();
1768 LoadVTs.push_back(MVT::Other);
1769 LoadVTs.push_back(MVT::Glue);
1770 NVPTXISD::NodeType Op;
1771 switch (NumElts) {
1772 case 1:
1773 Op = NVPTXISD::LoadParam;
1774 break;
1775 case 2:
1776 Op = NVPTXISD::LoadParamV2;
1777 break;
1778 case 4:
1779 Op = NVPTXISD::LoadParamV4;
1780 break;
1781 default:
1782 llvm_unreachable("Invalid vector info.");
1783 }
1784
1785 SDValue LoadOperands[] = {
1786 Chain, DAG.getConstant(1, dl, MVT::i32),
1787 DAG.getConstant(Offsets[VecIdx], dl, MVT::i32), InFlag};
1788 SDValue RetVal = DAG.getMemIntrinsicNode(
1789 Op, dl, DAG.getVTList(LoadVTs), LoadOperands, TheLoadType,
1790 MachinePointerInfo(), EltAlign,
1791 MachineMemOperand::MOLoad);
1792
1793 for (unsigned j = 0; j < NumElts; ++j) {
1794 SDValue Ret = RetVal.getValue(j);
1795 if (needTruncate)
1796 Ret = DAG.getNode(ISD::TRUNCATE, dl, Ins[VecIdx + j].VT, Ret);
1797 InVals.push_back(Ret);
1798 }
1799 Chain = RetVal.getValue(NumElts);
1800 InFlag = RetVal.getValue(NumElts + 1);
1801
1802 // Cleanup
1803 VecIdx = -1;
1804 LoadVTs.clear();
1805 }
1806 }
1807 }
1808
1809 Chain = DAG.getCALLSEQ_END(Chain,
1810 DAG.getIntPtrConstant(uniqueCallSite, dl, true),
1811 DAG.getIntPtrConstant(uniqueCallSite + 1, dl,
1812 true),
1813 InFlag, dl);
1814 uniqueCallSite++;
1815
1816 // set isTailCall to false for now, until we figure out how to express
1817 // tail call optimization in PTX
1818 isTailCall = false;
1819 return Chain;
1820 }
1821
1822 // By default CONCAT_VECTORS is lowered by ExpandVectorBuildThroughStack()
1823 // (see LegalizeDAG.cpp). This is slow and uses local memory.
1824 // We use extract/insert/build vector just as what LegalizeOp() does in llvm 2.5
1825 SDValue
LowerCONCAT_VECTORS(SDValue Op,SelectionDAG & DAG) const1826 NVPTXTargetLowering::LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) const {
1827 SDNode *Node = Op.getNode();
1828 SDLoc dl(Node);
1829 SmallVector<SDValue, 8> Ops;
1830 unsigned NumOperands = Node->getNumOperands();
1831 for (unsigned i = 0; i < NumOperands; ++i) {
1832 SDValue SubOp = Node->getOperand(i);
1833 EVT VVT = SubOp.getNode()->getValueType(0);
1834 EVT EltVT = VVT.getVectorElementType();
1835 unsigned NumSubElem = VVT.getVectorNumElements();
1836 for (unsigned j = 0; j < NumSubElem; ++j) {
1837 Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, SubOp,
1838 DAG.getIntPtrConstant(j, dl)));
1839 }
1840 }
1841 return DAG.getBuildVector(Node->getValueType(0), dl, Ops);
1842 }
1843
1844 // We can init constant f16x2 with a single .b32 move. Normally it
1845 // would get lowered as two constant loads and vector-packing move.
1846 // mov.b16 %h1, 0x4000;
1847 // mov.b16 %h2, 0x3C00;
1848 // mov.b32 %hh2, {%h2, %h1};
1849 // Instead we want just a constant move:
1850 // mov.b32 %hh2, 0x40003C00
1851 //
1852 // This results in better SASS code with CUDA 7.x. Ptxas in CUDA 8.0
1853 // generates good SASS in both cases.
LowerBUILD_VECTOR(SDValue Op,SelectionDAG & DAG) const1854 SDValue NVPTXTargetLowering::LowerBUILD_VECTOR(SDValue Op,
1855 SelectionDAG &DAG) const {
1856 //return Op;
1857 if (!(Op->getValueType(0) == MVT::v2f16 &&
1858 isa<ConstantFPSDNode>(Op->getOperand(0)) &&
1859 isa<ConstantFPSDNode>(Op->getOperand(1))))
1860 return Op;
1861
1862 APInt E0 =
1863 cast<ConstantFPSDNode>(Op->getOperand(0))->getValueAPF().bitcastToAPInt();
1864 APInt E1 =
1865 cast<ConstantFPSDNode>(Op->getOperand(1))->getValueAPF().bitcastToAPInt();
1866 SDValue Const =
1867 DAG.getConstant(E1.zext(32).shl(16) | E0.zext(32), SDLoc(Op), MVT::i32);
1868 return DAG.getNode(ISD::BITCAST, SDLoc(Op), MVT::v2f16, Const);
1869 }
1870
LowerEXTRACT_VECTOR_ELT(SDValue Op,SelectionDAG & DAG) const1871 SDValue NVPTXTargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
1872 SelectionDAG &DAG) const {
1873 SDValue Index = Op->getOperand(1);
1874 // Constant index will be matched by tablegen.
1875 if (isa<ConstantSDNode>(Index.getNode()))
1876 return Op;
1877
1878 // Extract individual elements and select one of them.
1879 SDValue Vector = Op->getOperand(0);
1880 EVT VectorVT = Vector.getValueType();
1881 assert(VectorVT == MVT::v2f16 && "Unexpected vector type.");
1882 EVT EltVT = VectorVT.getVectorElementType();
1883
1884 SDLoc dl(Op.getNode());
1885 SDValue E0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, Vector,
1886 DAG.getIntPtrConstant(0, dl));
1887 SDValue E1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, Vector,
1888 DAG.getIntPtrConstant(1, dl));
1889 return DAG.getSelectCC(dl, Index, DAG.getIntPtrConstant(0, dl), E0, E1,
1890 ISD::CondCode::SETEQ);
1891 }
1892
1893 /// LowerShiftRightParts - Lower SRL_PARTS, SRA_PARTS, which
1894 /// 1) returns two i32 values and take a 2 x i32 value to shift plus a shift
1895 /// amount, or
1896 /// 2) returns two i64 values and take a 2 x i64 value to shift plus a shift
1897 /// amount.
LowerShiftRightParts(SDValue Op,SelectionDAG & DAG) const1898 SDValue NVPTXTargetLowering::LowerShiftRightParts(SDValue Op,
1899 SelectionDAG &DAG) const {
1900 assert(Op.getNumOperands() == 3 && "Not a double-shift!");
1901 assert(Op.getOpcode() == ISD::SRA_PARTS || Op.getOpcode() == ISD::SRL_PARTS);
1902
1903 EVT VT = Op.getValueType();
1904 unsigned VTBits = VT.getSizeInBits();
1905 SDLoc dl(Op);
1906 SDValue ShOpLo = Op.getOperand(0);
1907 SDValue ShOpHi = Op.getOperand(1);
1908 SDValue ShAmt = Op.getOperand(2);
1909 unsigned Opc = (Op.getOpcode() == ISD::SRA_PARTS) ? ISD::SRA : ISD::SRL;
1910
1911 if (VTBits == 32 && STI.getSmVersion() >= 35) {
1912 // For 32bit and sm35, we can use the funnel shift 'shf' instruction.
1913 // {dHi, dLo} = {aHi, aLo} >> Amt
1914 // dHi = aHi >> Amt
1915 // dLo = shf.r.clamp aLo, aHi, Amt
1916
1917 SDValue Hi = DAG.getNode(Opc, dl, VT, ShOpHi, ShAmt);
1918 SDValue Lo = DAG.getNode(NVPTXISD::FUN_SHFR_CLAMP, dl, VT, ShOpLo, ShOpHi,
1919 ShAmt);
1920
1921 SDValue Ops[2] = { Lo, Hi };
1922 return DAG.getMergeValues(Ops, dl);
1923 }
1924 else {
1925 // {dHi, dLo} = {aHi, aLo} >> Amt
1926 // - if (Amt>=size) then
1927 // dLo = aHi >> (Amt-size)
1928 // dHi = aHi >> Amt (this is either all 0 or all 1)
1929 // else
1930 // dLo = (aLo >>logic Amt) | (aHi << (size-Amt))
1931 // dHi = aHi >> Amt
1932
1933 SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32,
1934 DAG.getConstant(VTBits, dl, MVT::i32),
1935 ShAmt);
1936 SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, ShAmt);
1937 SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, ShAmt,
1938 DAG.getConstant(VTBits, dl, MVT::i32));
1939 SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, RevShAmt);
1940 SDValue FalseVal = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
1941 SDValue TrueVal = DAG.getNode(Opc, dl, VT, ShOpHi, ExtraShAmt);
1942
1943 SDValue Cmp = DAG.getSetCC(dl, MVT::i1, ShAmt,
1944 DAG.getConstant(VTBits, dl, MVT::i32),
1945 ISD::SETGE);
1946 SDValue Hi = DAG.getNode(Opc, dl, VT, ShOpHi, ShAmt);
1947 SDValue Lo = DAG.getNode(ISD::SELECT, dl, VT, Cmp, TrueVal, FalseVal);
1948
1949 SDValue Ops[2] = { Lo, Hi };
1950 return DAG.getMergeValues(Ops, dl);
1951 }
1952 }
1953
1954 /// LowerShiftLeftParts - Lower SHL_PARTS, which
1955 /// 1) returns two i32 values and take a 2 x i32 value to shift plus a shift
1956 /// amount, or
1957 /// 2) returns two i64 values and take a 2 x i64 value to shift plus a shift
1958 /// amount.
LowerShiftLeftParts(SDValue Op,SelectionDAG & DAG) const1959 SDValue NVPTXTargetLowering::LowerShiftLeftParts(SDValue Op,
1960 SelectionDAG &DAG) const {
1961 assert(Op.getNumOperands() == 3 && "Not a double-shift!");
1962 assert(Op.getOpcode() == ISD::SHL_PARTS);
1963
1964 EVT VT = Op.getValueType();
1965 unsigned VTBits = VT.getSizeInBits();
1966 SDLoc dl(Op);
1967 SDValue ShOpLo = Op.getOperand(0);
1968 SDValue ShOpHi = Op.getOperand(1);
1969 SDValue ShAmt = Op.getOperand(2);
1970
1971 if (VTBits == 32 && STI.getSmVersion() >= 35) {
1972 // For 32bit and sm35, we can use the funnel shift 'shf' instruction.
1973 // {dHi, dLo} = {aHi, aLo} << Amt
1974 // dHi = shf.l.clamp aLo, aHi, Amt
1975 // dLo = aLo << Amt
1976
1977 SDValue Hi = DAG.getNode(NVPTXISD::FUN_SHFL_CLAMP, dl, VT, ShOpLo, ShOpHi,
1978 ShAmt);
1979 SDValue Lo = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
1980
1981 SDValue Ops[2] = { Lo, Hi };
1982 return DAG.getMergeValues(Ops, dl);
1983 }
1984 else {
1985 // {dHi, dLo} = {aHi, aLo} << Amt
1986 // - if (Amt>=size) then
1987 // dLo = aLo << Amt (all 0)
1988 // dLo = aLo << (Amt-size)
1989 // else
1990 // dLo = aLo << Amt
1991 // dHi = (aHi << Amt) | (aLo >> (size-Amt))
1992
1993 SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32,
1994 DAG.getConstant(VTBits, dl, MVT::i32),
1995 ShAmt);
1996 SDValue Tmp1 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, ShAmt);
1997 SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, ShAmt,
1998 DAG.getConstant(VTBits, dl, MVT::i32));
1999 SDValue Tmp2 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, RevShAmt);
2000 SDValue FalseVal = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
2001 SDValue TrueVal = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ExtraShAmt);
2002
2003 SDValue Cmp = DAG.getSetCC(dl, MVT::i1, ShAmt,
2004 DAG.getConstant(VTBits, dl, MVT::i32),
2005 ISD::SETGE);
2006 SDValue Lo = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
2007 SDValue Hi = DAG.getNode(ISD::SELECT, dl, VT, Cmp, TrueVal, FalseVal);
2008
2009 SDValue Ops[2] = { Lo, Hi };
2010 return DAG.getMergeValues(Ops, dl);
2011 }
2012 }
2013
2014 SDValue
LowerOperation(SDValue Op,SelectionDAG & DAG) const2015 NVPTXTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
2016 switch (Op.getOpcode()) {
2017 case ISD::RETURNADDR:
2018 return SDValue();
2019 case ISD::FRAMEADDR:
2020 return SDValue();
2021 case ISD::GlobalAddress:
2022 return LowerGlobalAddress(Op, DAG);
2023 case ISD::INTRINSIC_W_CHAIN:
2024 return Op;
2025 case ISD::BUILD_VECTOR:
2026 return LowerBUILD_VECTOR(Op, DAG);
2027 case ISD::EXTRACT_SUBVECTOR:
2028 return Op;
2029 case ISD::EXTRACT_VECTOR_ELT:
2030 return LowerEXTRACT_VECTOR_ELT(Op, DAG);
2031 case ISD::CONCAT_VECTORS:
2032 return LowerCONCAT_VECTORS(Op, DAG);
2033 case ISD::STORE:
2034 return LowerSTORE(Op, DAG);
2035 case ISD::LOAD:
2036 return LowerLOAD(Op, DAG);
2037 case ISD::SHL_PARTS:
2038 return LowerShiftLeftParts(Op, DAG);
2039 case ISD::SRA_PARTS:
2040 case ISD::SRL_PARTS:
2041 return LowerShiftRightParts(Op, DAG);
2042 case ISD::SELECT:
2043 return LowerSelect(Op, DAG);
2044 default:
2045 llvm_unreachable("Custom lowering not defined for operation");
2046 }
2047 }
2048
LowerSelect(SDValue Op,SelectionDAG & DAG) const2049 SDValue NVPTXTargetLowering::LowerSelect(SDValue Op, SelectionDAG &DAG) const {
2050 SDValue Op0 = Op->getOperand(0);
2051 SDValue Op1 = Op->getOperand(1);
2052 SDValue Op2 = Op->getOperand(2);
2053 SDLoc DL(Op.getNode());
2054
2055 assert(Op.getValueType() == MVT::i1 && "Custom lowering enabled only for i1");
2056
2057 Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Op1);
2058 Op2 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Op2);
2059 SDValue Select = DAG.getNode(ISD::SELECT, DL, MVT::i32, Op0, Op1, Op2);
2060 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Select);
2061
2062 return Trunc;
2063 }
2064
LowerLOAD(SDValue Op,SelectionDAG & DAG) const2065 SDValue NVPTXTargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const {
2066 if (Op.getValueType() == MVT::i1)
2067 return LowerLOADi1(Op, DAG);
2068
2069 // v2f16 is legal, so we can't rely on legalizer to handle unaligned
2070 // loads and have to handle it here.
2071 if (Op.getValueType() == MVT::v2f16) {
2072 LoadSDNode *Load = cast<LoadSDNode>(Op);
2073 EVT MemVT = Load->getMemoryVT();
2074 if (!allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), MemVT,
2075 Load->getAddressSpace(), Load->getAlignment())) {
2076 SDValue Ops[2];
2077 std::tie(Ops[0], Ops[1]) = expandUnalignedLoad(Load, DAG);
2078 return DAG.getMergeValues(Ops, SDLoc(Op));
2079 }
2080 }
2081
2082 return SDValue();
2083 }
2084
2085 // v = ld i1* addr
2086 // =>
2087 // v1 = ld i8* addr (-> i16)
2088 // v = trunc i16 to i1
LowerLOADi1(SDValue Op,SelectionDAG & DAG) const2089 SDValue NVPTXTargetLowering::LowerLOADi1(SDValue Op, SelectionDAG &DAG) const {
2090 SDNode *Node = Op.getNode();
2091 LoadSDNode *LD = cast<LoadSDNode>(Node);
2092 SDLoc dl(Node);
2093 assert(LD->getExtensionType() == ISD::NON_EXTLOAD);
2094 assert(Node->getValueType(0) == MVT::i1 &&
2095 "Custom lowering for i1 load only");
2096 SDValue newLD = DAG.getLoad(MVT::i16, dl, LD->getChain(), LD->getBasePtr(),
2097 LD->getPointerInfo(), LD->getAlignment(),
2098 LD->getMemOperand()->getFlags());
2099 SDValue result = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, newLD);
2100 // The legalizer (the caller) is expecting two values from the legalized
2101 // load, so we build a MergeValues node for it. See ExpandUnalignedLoad()
2102 // in LegalizeDAG.cpp which also uses MergeValues.
2103 SDValue Ops[] = { result, LD->getChain() };
2104 return DAG.getMergeValues(Ops, dl);
2105 }
2106
LowerSTORE(SDValue Op,SelectionDAG & DAG) const2107 SDValue NVPTXTargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const {
2108 StoreSDNode *Store = cast<StoreSDNode>(Op);
2109 EVT VT = Store->getMemoryVT();
2110
2111 if (VT == MVT::i1)
2112 return LowerSTOREi1(Op, DAG);
2113
2114 // v2f16 is legal, so we can't rely on legalizer to handle unaligned
2115 // stores and have to handle it here.
2116 if (VT == MVT::v2f16 &&
2117 !allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), VT,
2118 Store->getAddressSpace(), Store->getAlignment()))
2119 return expandUnalignedStore(Store, DAG);
2120
2121 if (VT.isVector())
2122 return LowerSTOREVector(Op, DAG);
2123
2124 return SDValue();
2125 }
2126
2127 SDValue
LowerSTOREVector(SDValue Op,SelectionDAG & DAG) const2128 NVPTXTargetLowering::LowerSTOREVector(SDValue Op, SelectionDAG &DAG) const {
2129 SDNode *N = Op.getNode();
2130 SDValue Val = N->getOperand(1);
2131 SDLoc DL(N);
2132 EVT ValVT = Val.getValueType();
2133
2134 if (ValVT.isVector()) {
2135 // We only handle "native" vector sizes for now, e.g. <4 x double> is not
2136 // legal. We can (and should) split that into 2 stores of <2 x double> here
2137 // but I'm leaving that as a TODO for now.
2138 if (!ValVT.isSimple())
2139 return SDValue();
2140 switch (ValVT.getSimpleVT().SimpleTy) {
2141 default:
2142 return SDValue();
2143 case MVT::v2i8:
2144 case MVT::v2i16:
2145 case MVT::v2i32:
2146 case MVT::v2i64:
2147 case MVT::v2f16:
2148 case MVT::v2f32:
2149 case MVT::v2f64:
2150 case MVT::v4i8:
2151 case MVT::v4i16:
2152 case MVT::v4i32:
2153 case MVT::v4f16:
2154 case MVT::v4f32:
2155 case MVT::v8f16: // <4 x f16x2>
2156 // This is a "native" vector type
2157 break;
2158 }
2159
2160 MemSDNode *MemSD = cast<MemSDNode>(N);
2161 const DataLayout &TD = DAG.getDataLayout();
2162
2163 unsigned Align = MemSD->getAlignment();
2164 unsigned PrefAlign =
2165 TD.getPrefTypeAlignment(ValVT.getTypeForEVT(*DAG.getContext()));
2166 if (Align < PrefAlign) {
2167 // This store is not sufficiently aligned, so bail out and let this vector
2168 // store be scalarized. Note that we may still be able to emit smaller
2169 // vector stores. For example, if we are storing a <4 x float> with an
2170 // alignment of 8, this check will fail but the legalizer will try again
2171 // with 2 x <2 x float>, which will succeed with an alignment of 8.
2172 return SDValue();
2173 }
2174
2175 unsigned Opcode = 0;
2176 EVT EltVT = ValVT.getVectorElementType();
2177 unsigned NumElts = ValVT.getVectorNumElements();
2178
2179 // Since StoreV2 is a target node, we cannot rely on DAG type legalization.
2180 // Therefore, we must ensure the type is legal. For i1 and i8, we set the
2181 // stored type to i16 and propagate the "real" type as the memory type.
2182 bool NeedExt = false;
2183 if (EltVT.getSizeInBits() < 16)
2184 NeedExt = true;
2185
2186 bool StoreF16x2 = false;
2187 switch (NumElts) {
2188 default:
2189 return SDValue();
2190 case 2:
2191 Opcode = NVPTXISD::StoreV2;
2192 break;
2193 case 4:
2194 Opcode = NVPTXISD::StoreV4;
2195 break;
2196 case 8:
2197 // v8f16 is a special case. PTX doesn't have st.v8.f16
2198 // instruction. Instead, we split the vector into v2f16 chunks and
2199 // store them with st.v4.b32.
2200 assert(EltVT == MVT::f16 && "Wrong type for the vector.");
2201 Opcode = NVPTXISD::StoreV4;
2202 StoreF16x2 = true;
2203 break;
2204 }
2205
2206 SmallVector<SDValue, 8> Ops;
2207
2208 // First is the chain
2209 Ops.push_back(N->getOperand(0));
2210
2211 if (StoreF16x2) {
2212 // Combine f16,f16 -> v2f16
2213 NumElts /= 2;
2214 for (unsigned i = 0; i < NumElts; ++i) {
2215 SDValue E0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f16, Val,
2216 DAG.getIntPtrConstant(i * 2, DL));
2217 SDValue E1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f16, Val,
2218 DAG.getIntPtrConstant(i * 2 + 1, DL));
2219 SDValue V2 = DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v2f16, E0, E1);
2220 Ops.push_back(V2);
2221 }
2222 } else {
2223 // Then the split values
2224 for (unsigned i = 0; i < NumElts; ++i) {
2225 SDValue ExtVal = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Val,
2226 DAG.getIntPtrConstant(i, DL));
2227 if (NeedExt)
2228 ExtVal = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i16, ExtVal);
2229 Ops.push_back(ExtVal);
2230 }
2231 }
2232
2233 // Then any remaining arguments
2234 Ops.append(N->op_begin() + 2, N->op_end());
2235
2236 SDValue NewSt =
2237 DAG.getMemIntrinsicNode(Opcode, DL, DAG.getVTList(MVT::Other), Ops,
2238 MemSD->getMemoryVT(), MemSD->getMemOperand());
2239
2240 // return DCI.CombineTo(N, NewSt, true);
2241 return NewSt;
2242 }
2243
2244 return SDValue();
2245 }
2246
2247 // st i1 v, addr
2248 // =>
2249 // v1 = zxt v to i16
2250 // st.u8 i16, addr
LowerSTOREi1(SDValue Op,SelectionDAG & DAG) const2251 SDValue NVPTXTargetLowering::LowerSTOREi1(SDValue Op, SelectionDAG &DAG) const {
2252 SDNode *Node = Op.getNode();
2253 SDLoc dl(Node);
2254 StoreSDNode *ST = cast<StoreSDNode>(Node);
2255 SDValue Tmp1 = ST->getChain();
2256 SDValue Tmp2 = ST->getBasePtr();
2257 SDValue Tmp3 = ST->getValue();
2258 assert(Tmp3.getValueType() == MVT::i1 && "Custom lowering for i1 store only");
2259 Tmp3 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, Tmp3);
2260 SDValue Result =
2261 DAG.getTruncStore(Tmp1, dl, Tmp3, Tmp2, ST->getPointerInfo(), MVT::i8,
2262 ST->getAlignment(), ST->getMemOperand()->getFlags());
2263 return Result;
2264 }
2265
2266 SDValue
getParamSymbol(SelectionDAG & DAG,int idx,EVT v) const2267 NVPTXTargetLowering::getParamSymbol(SelectionDAG &DAG, int idx, EVT v) const {
2268 std::string ParamSym;
2269 raw_string_ostream ParamStr(ParamSym);
2270
2271 ParamStr << DAG.getMachineFunction().getName() << "_param_" << idx;
2272 ParamStr.flush();
2273
2274 std::string *SavedStr =
2275 nvTM->getManagedStrPool()->getManagedString(ParamSym.c_str());
2276 return DAG.getTargetExternalSymbol(SavedStr->c_str(), v);
2277 }
2278
2279 // Check to see if the kernel argument is image*_t or sampler_t
2280
isImageOrSamplerVal(const Value * arg,const Module * context)2281 static bool isImageOrSamplerVal(const Value *arg, const Module *context) {
2282 static const char *const specialTypes[] = { "struct._image2d_t",
2283 "struct._image3d_t",
2284 "struct._sampler_t" };
2285
2286 Type *Ty = arg->getType();
2287 auto *PTy = dyn_cast<PointerType>(Ty);
2288
2289 if (!PTy)
2290 return false;
2291
2292 if (!context)
2293 return false;
2294
2295 auto *STy = dyn_cast<StructType>(PTy->getElementType());
2296 if (!STy || STy->isLiteral())
2297 return false;
2298
2299 return std::find(std::begin(specialTypes), std::end(specialTypes),
2300 STy->getName()) != std::end(specialTypes);
2301 }
2302
LowerFormalArguments(SDValue Chain,CallingConv::ID CallConv,bool isVarArg,const SmallVectorImpl<ISD::InputArg> & Ins,const SDLoc & dl,SelectionDAG & DAG,SmallVectorImpl<SDValue> & InVals) const2303 SDValue NVPTXTargetLowering::LowerFormalArguments(
2304 SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
2305 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
2306 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
2307 MachineFunction &MF = DAG.getMachineFunction();
2308 const DataLayout &DL = DAG.getDataLayout();
2309 auto PtrVT = getPointerTy(DAG.getDataLayout());
2310
2311 const Function *F = &MF.getFunction();
2312 const AttributeList &PAL = F->getAttributes();
2313 const TargetLowering *TLI = STI.getTargetLowering();
2314
2315 SDValue Root = DAG.getRoot();
2316 std::vector<SDValue> OutChains;
2317
2318 bool isABI = (STI.getSmVersion() >= 20);
2319 assert(isABI && "Non-ABI compilation is not supported");
2320 if (!isABI)
2321 return Chain;
2322
2323 std::vector<Type *> argTypes;
2324 std::vector<const Argument *> theArgs;
2325 for (const Argument &I : F->args()) {
2326 theArgs.push_back(&I);
2327 argTypes.push_back(I.getType());
2328 }
2329 // argTypes.size() (or theArgs.size()) and Ins.size() need not match.
2330 // Ins.size() will be larger
2331 // * if there is an aggregate argument with multiple fields (each field
2332 // showing up separately in Ins)
2333 // * if there is a vector argument with more than typical vector-length
2334 // elements (generally if more than 4) where each vector element is
2335 // individually present in Ins.
2336 // So a different index should be used for indexing into Ins.
2337 // See similar issue in LowerCall.
2338 unsigned InsIdx = 0;
2339
2340 int idx = 0;
2341 for (unsigned i = 0, e = theArgs.size(); i != e; ++i, ++idx, ++InsIdx) {
2342 Type *Ty = argTypes[i];
2343
2344 // If the kernel argument is image*_t or sampler_t, convert it to
2345 // a i32 constant holding the parameter position. This can later
2346 // matched in the AsmPrinter to output the correct mangled name.
2347 if (isImageOrSamplerVal(
2348 theArgs[i],
2349 (theArgs[i]->getParent() ? theArgs[i]->getParent()->getParent()
2350 : nullptr))) {
2351 assert(isKernelFunction(*F) &&
2352 "Only kernels can have image/sampler params");
2353 InVals.push_back(DAG.getConstant(i + 1, dl, MVT::i32));
2354 continue;
2355 }
2356
2357 if (theArgs[i]->use_empty()) {
2358 // argument is dead
2359 if (Ty->isAggregateType() || Ty->isIntegerTy(128)) {
2360 SmallVector<EVT, 16> vtparts;
2361
2362 ComputePTXValueVTs(*this, DAG.getDataLayout(), Ty, vtparts);
2363 assert(vtparts.size() > 0 && "empty aggregate type not expected");
2364 for (unsigned parti = 0, parte = vtparts.size(); parti != parte;
2365 ++parti) {
2366 InVals.push_back(DAG.getNode(ISD::UNDEF, dl, Ins[InsIdx].VT));
2367 ++InsIdx;
2368 }
2369 if (vtparts.size() > 0)
2370 --InsIdx;
2371 continue;
2372 }
2373 if (Ty->isVectorTy()) {
2374 EVT ObjectVT = getValueType(DL, Ty);
2375 unsigned NumRegs = TLI->getNumRegisters(F->getContext(), ObjectVT);
2376 for (unsigned parti = 0; parti < NumRegs; ++parti) {
2377 InVals.push_back(DAG.getNode(ISD::UNDEF, dl, Ins[InsIdx].VT));
2378 ++InsIdx;
2379 }
2380 if (NumRegs > 0)
2381 --InsIdx;
2382 continue;
2383 }
2384 InVals.push_back(DAG.getNode(ISD::UNDEF, dl, Ins[InsIdx].VT));
2385 continue;
2386 }
2387
2388 // In the following cases, assign a node order of "idx+1"
2389 // to newly created nodes. The SDNodes for params have to
2390 // appear in the same order as their order of appearance
2391 // in the original function. "idx+1" holds that order.
2392 if (!PAL.hasParamAttribute(i, Attribute::ByVal)) {
2393 bool aggregateIsPacked = false;
2394 if (StructType *STy = dyn_cast<StructType>(Ty))
2395 aggregateIsPacked = STy->isPacked();
2396
2397 SmallVector<EVT, 16> VTs;
2398 SmallVector<uint64_t, 16> Offsets;
2399 ComputePTXValueVTs(*this, DL, Ty, VTs, &Offsets, 0);
2400 assert(VTs.size() > 0 && "Unexpected empty type.");
2401 auto VectorInfo =
2402 VectorizePTXValueVTs(VTs, Offsets, DL.getABITypeAlignment(Ty));
2403
2404 SDValue Arg = getParamSymbol(DAG, idx, PtrVT);
2405 int VecIdx = -1; // Index of the first element of the current vector.
2406 for (unsigned parti = 0, parte = VTs.size(); parti != parte; ++parti) {
2407 if (VectorInfo[parti] & PVF_FIRST) {
2408 assert(VecIdx == -1 && "Orphaned vector.");
2409 VecIdx = parti;
2410 }
2411
2412 // That's the last element of this store op.
2413 if (VectorInfo[parti] & PVF_LAST) {
2414 unsigned NumElts = parti - VecIdx + 1;
2415 EVT EltVT = VTs[parti];
2416 // i1 is loaded/stored as i8.
2417 EVT LoadVT = EltVT;
2418 if (EltVT == MVT::i1)
2419 LoadVT = MVT::i8;
2420 else if (EltVT == MVT::v2f16)
2421 // getLoad needs a vector type, but it can't handle
2422 // vectors which contain v2f16 elements. So we must load
2423 // using i32 here and then bitcast back.
2424 LoadVT = MVT::i32;
2425
2426 EVT VecVT = EVT::getVectorVT(F->getContext(), LoadVT, NumElts);
2427 SDValue VecAddr =
2428 DAG.getNode(ISD::ADD, dl, PtrVT, Arg,
2429 DAG.getConstant(Offsets[VecIdx], dl, PtrVT));
2430 Value *srcValue = Constant::getNullValue(PointerType::get(
2431 EltVT.getTypeForEVT(F->getContext()), ADDRESS_SPACE_PARAM));
2432 SDValue P =
2433 DAG.getLoad(VecVT, dl, Root, VecAddr,
2434 MachinePointerInfo(srcValue), aggregateIsPacked,
2435 MachineMemOperand::MODereferenceable |
2436 MachineMemOperand::MOInvariant);
2437 if (P.getNode())
2438 P.getNode()->setIROrder(idx + 1);
2439 for (unsigned j = 0; j < NumElts; ++j) {
2440 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, LoadVT, P,
2441 DAG.getIntPtrConstant(j, dl));
2442 // We've loaded i1 as an i8 and now must truncate it back to i1
2443 if (EltVT == MVT::i1)
2444 Elt = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, Elt);
2445 // v2f16 was loaded as an i32. Now we must bitcast it back.
2446 else if (EltVT == MVT::v2f16)
2447 Elt = DAG.getNode(ISD::BITCAST, dl, MVT::v2f16, Elt);
2448 // Extend the element if necessary (e.g. an i8 is loaded
2449 // into an i16 register)
2450 if (Ins[InsIdx].VT.isInteger() &&
2451 Ins[InsIdx].VT.getSizeInBits() > LoadVT.getSizeInBits()) {
2452 unsigned Extend = Ins[InsIdx].Flags.isSExt() ? ISD::SIGN_EXTEND
2453 : ISD::ZERO_EXTEND;
2454 Elt = DAG.getNode(Extend, dl, Ins[InsIdx].VT, Elt);
2455 }
2456 InVals.push_back(Elt);
2457 }
2458
2459 // Reset vector tracking state.
2460 VecIdx = -1;
2461 }
2462 ++InsIdx;
2463 }
2464 if (VTs.size() > 0)
2465 --InsIdx;
2466 continue;
2467 }
2468
2469 // Param has ByVal attribute
2470 // Return MoveParam(param symbol).
2471 // Ideally, the param symbol can be returned directly,
2472 // but when SDNode builder decides to use it in a CopyToReg(),
2473 // machine instruction fails because TargetExternalSymbol
2474 // (not lowered) is target dependent, and CopyToReg assumes
2475 // the source is lowered.
2476 EVT ObjectVT = getValueType(DL, Ty);
2477 assert(ObjectVT == Ins[InsIdx].VT &&
2478 "Ins type did not match function type");
2479 SDValue Arg = getParamSymbol(DAG, idx, PtrVT);
2480 SDValue p = DAG.getNode(NVPTXISD::MoveParam, dl, ObjectVT, Arg);
2481 if (p.getNode())
2482 p.getNode()->setIROrder(idx + 1);
2483 InVals.push_back(p);
2484 }
2485
2486 // Clang will check explicit VarArg and issue error if any. However, Clang
2487 // will let code with
2488 // implicit var arg like f() pass. See bug 617733.
2489 // We treat this case as if the arg list is empty.
2490 // if (F.isVarArg()) {
2491 // assert(0 && "VarArg not supported yet!");
2492 //}
2493
2494 if (!OutChains.empty())
2495 DAG.setRoot(DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains));
2496
2497 return Chain;
2498 }
2499
2500 SDValue
LowerReturn(SDValue Chain,CallingConv::ID CallConv,bool isVarArg,const SmallVectorImpl<ISD::OutputArg> & Outs,const SmallVectorImpl<SDValue> & OutVals,const SDLoc & dl,SelectionDAG & DAG) const2501 NVPTXTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
2502 bool isVarArg,
2503 const SmallVectorImpl<ISD::OutputArg> &Outs,
2504 const SmallVectorImpl<SDValue> &OutVals,
2505 const SDLoc &dl, SelectionDAG &DAG) const {
2506 MachineFunction &MF = DAG.getMachineFunction();
2507 Type *RetTy = MF.getFunction().getReturnType();
2508
2509 bool isABI = (STI.getSmVersion() >= 20);
2510 assert(isABI && "Non-ABI compilation is not supported");
2511 if (!isABI)
2512 return Chain;
2513
2514 const DataLayout DL = DAG.getDataLayout();
2515 SmallVector<EVT, 16> VTs;
2516 SmallVector<uint64_t, 16> Offsets;
2517 ComputePTXValueVTs(*this, DL, RetTy, VTs, &Offsets);
2518 assert(VTs.size() == OutVals.size() && "Bad return value decomposition");
2519
2520 auto VectorInfo = VectorizePTXValueVTs(
2521 VTs, Offsets, RetTy->isSized() ? DL.getABITypeAlignment(RetTy) : 1);
2522
2523 // PTX Interoperability Guide 3.3(A): [Integer] Values shorter than
2524 // 32-bits are sign extended or zero extended, depending on whether
2525 // they are signed or unsigned types.
2526 bool ExtendIntegerRetVal =
2527 RetTy->isIntegerTy() && DL.getTypeAllocSizeInBits(RetTy) < 32;
2528
2529 SmallVector<SDValue, 6> StoreOperands;
2530 for (unsigned i = 0, e = VTs.size(); i != e; ++i) {
2531 // New load/store. Record chain and offset operands.
2532 if (VectorInfo[i] & PVF_FIRST) {
2533 assert(StoreOperands.empty() && "Orphaned operand list.");
2534 StoreOperands.push_back(Chain);
2535 StoreOperands.push_back(DAG.getConstant(Offsets[i], dl, MVT::i32));
2536 }
2537
2538 SDValue RetVal = OutVals[i];
2539 if (ExtendIntegerRetVal) {
2540 RetVal = DAG.getNode(Outs[i].Flags.isSExt() ? ISD::SIGN_EXTEND
2541 : ISD::ZERO_EXTEND,
2542 dl, MVT::i32, RetVal);
2543 } else if (RetVal.getValueSizeInBits() < 16) {
2544 // Use 16-bit registers for small load-stores as it's the
2545 // smallest general purpose register size supported by NVPTX.
2546 RetVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i16, RetVal);
2547 }
2548
2549 // Record the value to return.
2550 StoreOperands.push_back(RetVal);
2551
2552 // That's the last element of this store op.
2553 if (VectorInfo[i] & PVF_LAST) {
2554 NVPTXISD::NodeType Op;
2555 unsigned NumElts = StoreOperands.size() - 2;
2556 switch (NumElts) {
2557 case 1:
2558 Op = NVPTXISD::StoreRetval;
2559 break;
2560 case 2:
2561 Op = NVPTXISD::StoreRetvalV2;
2562 break;
2563 case 4:
2564 Op = NVPTXISD::StoreRetvalV4;
2565 break;
2566 default:
2567 llvm_unreachable("Invalid vector info.");
2568 }
2569
2570 // Adjust type of load/store op if we've extended the scalar
2571 // return value.
2572 EVT TheStoreType = ExtendIntegerRetVal ? MVT::i32 : VTs[i];
2573 Chain = DAG.getMemIntrinsicNode(Op, dl, DAG.getVTList(MVT::Other),
2574 StoreOperands, TheStoreType,
2575 MachinePointerInfo(), /* Align */ 1,
2576 MachineMemOperand::MOStore);
2577 // Cleanup vector state.
2578 StoreOperands.clear();
2579 }
2580 }
2581
2582 return DAG.getNode(NVPTXISD::RET_FLAG, dl, MVT::Other, Chain);
2583 }
2584
LowerAsmOperandForConstraint(SDValue Op,std::string & Constraint,std::vector<SDValue> & Ops,SelectionDAG & DAG) const2585 void NVPTXTargetLowering::LowerAsmOperandForConstraint(
2586 SDValue Op, std::string &Constraint, std::vector<SDValue> &Ops,
2587 SelectionDAG &DAG) const {
2588 if (Constraint.length() > 1)
2589 return;
2590 else
2591 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
2592 }
2593
getOpcForTextureInstr(unsigned Intrinsic)2594 static unsigned getOpcForTextureInstr(unsigned Intrinsic) {
2595 switch (Intrinsic) {
2596 default:
2597 return 0;
2598
2599 case Intrinsic::nvvm_tex_1d_v4f32_s32:
2600 return NVPTXISD::Tex1DFloatS32;
2601 case Intrinsic::nvvm_tex_1d_v4f32_f32:
2602 return NVPTXISD::Tex1DFloatFloat;
2603 case Intrinsic::nvvm_tex_1d_level_v4f32_f32:
2604 return NVPTXISD::Tex1DFloatFloatLevel;
2605 case Intrinsic::nvvm_tex_1d_grad_v4f32_f32:
2606 return NVPTXISD::Tex1DFloatFloatGrad;
2607 case Intrinsic::nvvm_tex_1d_v4s32_s32:
2608 return NVPTXISD::Tex1DS32S32;
2609 case Intrinsic::nvvm_tex_1d_v4s32_f32:
2610 return NVPTXISD::Tex1DS32Float;
2611 case Intrinsic::nvvm_tex_1d_level_v4s32_f32:
2612 return NVPTXISD::Tex1DS32FloatLevel;
2613 case Intrinsic::nvvm_tex_1d_grad_v4s32_f32:
2614 return NVPTXISD::Tex1DS32FloatGrad;
2615 case Intrinsic::nvvm_tex_1d_v4u32_s32:
2616 return NVPTXISD::Tex1DU32S32;
2617 case Intrinsic::nvvm_tex_1d_v4u32_f32:
2618 return NVPTXISD::Tex1DU32Float;
2619 case Intrinsic::nvvm_tex_1d_level_v4u32_f32:
2620 return NVPTXISD::Tex1DU32FloatLevel;
2621 case Intrinsic::nvvm_tex_1d_grad_v4u32_f32:
2622 return NVPTXISD::Tex1DU32FloatGrad;
2623
2624 case Intrinsic::nvvm_tex_1d_array_v4f32_s32:
2625 return NVPTXISD::Tex1DArrayFloatS32;
2626 case Intrinsic::nvvm_tex_1d_array_v4f32_f32:
2627 return NVPTXISD::Tex1DArrayFloatFloat;
2628 case Intrinsic::nvvm_tex_1d_array_level_v4f32_f32:
2629 return NVPTXISD::Tex1DArrayFloatFloatLevel;
2630 case Intrinsic::nvvm_tex_1d_array_grad_v4f32_f32:
2631 return NVPTXISD::Tex1DArrayFloatFloatGrad;
2632 case Intrinsic::nvvm_tex_1d_array_v4s32_s32:
2633 return NVPTXISD::Tex1DArrayS32S32;
2634 case Intrinsic::nvvm_tex_1d_array_v4s32_f32:
2635 return NVPTXISD::Tex1DArrayS32Float;
2636 case Intrinsic::nvvm_tex_1d_array_level_v4s32_f32:
2637 return NVPTXISD::Tex1DArrayS32FloatLevel;
2638 case Intrinsic::nvvm_tex_1d_array_grad_v4s32_f32:
2639 return NVPTXISD::Tex1DArrayS32FloatGrad;
2640 case Intrinsic::nvvm_tex_1d_array_v4u32_s32:
2641 return NVPTXISD::Tex1DArrayU32S32;
2642 case Intrinsic::nvvm_tex_1d_array_v4u32_f32:
2643 return NVPTXISD::Tex1DArrayU32Float;
2644 case Intrinsic::nvvm_tex_1d_array_level_v4u32_f32:
2645 return NVPTXISD::Tex1DArrayU32FloatLevel;
2646 case Intrinsic::nvvm_tex_1d_array_grad_v4u32_f32:
2647 return NVPTXISD::Tex1DArrayU32FloatGrad;
2648
2649 case Intrinsic::nvvm_tex_2d_v4f32_s32:
2650 return NVPTXISD::Tex2DFloatS32;
2651 case Intrinsic::nvvm_tex_2d_v4f32_f32:
2652 return NVPTXISD::Tex2DFloatFloat;
2653 case Intrinsic::nvvm_tex_2d_level_v4f32_f32:
2654 return NVPTXISD::Tex2DFloatFloatLevel;
2655 case Intrinsic::nvvm_tex_2d_grad_v4f32_f32:
2656 return NVPTXISD::Tex2DFloatFloatGrad;
2657 case Intrinsic::nvvm_tex_2d_v4s32_s32:
2658 return NVPTXISD::Tex2DS32S32;
2659 case Intrinsic::nvvm_tex_2d_v4s32_f32:
2660 return NVPTXISD::Tex2DS32Float;
2661 case Intrinsic::nvvm_tex_2d_level_v4s32_f32:
2662 return NVPTXISD::Tex2DS32FloatLevel;
2663 case Intrinsic::nvvm_tex_2d_grad_v4s32_f32:
2664 return NVPTXISD::Tex2DS32FloatGrad;
2665 case Intrinsic::nvvm_tex_2d_v4u32_s32:
2666 return NVPTXISD::Tex2DU32S32;
2667 case Intrinsic::nvvm_tex_2d_v4u32_f32:
2668 return NVPTXISD::Tex2DU32Float;
2669 case Intrinsic::nvvm_tex_2d_level_v4u32_f32:
2670 return NVPTXISD::Tex2DU32FloatLevel;
2671 case Intrinsic::nvvm_tex_2d_grad_v4u32_f32:
2672 return NVPTXISD::Tex2DU32FloatGrad;
2673
2674 case Intrinsic::nvvm_tex_2d_array_v4f32_s32:
2675 return NVPTXISD::Tex2DArrayFloatS32;
2676 case Intrinsic::nvvm_tex_2d_array_v4f32_f32:
2677 return NVPTXISD::Tex2DArrayFloatFloat;
2678 case Intrinsic::nvvm_tex_2d_array_level_v4f32_f32:
2679 return NVPTXISD::Tex2DArrayFloatFloatLevel;
2680 case Intrinsic::nvvm_tex_2d_array_grad_v4f32_f32:
2681 return NVPTXISD::Tex2DArrayFloatFloatGrad;
2682 case Intrinsic::nvvm_tex_2d_array_v4s32_s32:
2683 return NVPTXISD::Tex2DArrayS32S32;
2684 case Intrinsic::nvvm_tex_2d_array_v4s32_f32:
2685 return NVPTXISD::Tex2DArrayS32Float;
2686 case Intrinsic::nvvm_tex_2d_array_level_v4s32_f32:
2687 return NVPTXISD::Tex2DArrayS32FloatLevel;
2688 case Intrinsic::nvvm_tex_2d_array_grad_v4s32_f32:
2689 return NVPTXISD::Tex2DArrayS32FloatGrad;
2690 case Intrinsic::nvvm_tex_2d_array_v4u32_s32:
2691 return NVPTXISD::Tex2DArrayU32S32;
2692 case Intrinsic::nvvm_tex_2d_array_v4u32_f32:
2693 return NVPTXISD::Tex2DArrayU32Float;
2694 case Intrinsic::nvvm_tex_2d_array_level_v4u32_f32:
2695 return NVPTXISD::Tex2DArrayU32FloatLevel;
2696 case Intrinsic::nvvm_tex_2d_array_grad_v4u32_f32:
2697 return NVPTXISD::Tex2DArrayU32FloatGrad;
2698
2699 case Intrinsic::nvvm_tex_3d_v4f32_s32:
2700 return NVPTXISD::Tex3DFloatS32;
2701 case Intrinsic::nvvm_tex_3d_v4f32_f32:
2702 return NVPTXISD::Tex3DFloatFloat;
2703 case Intrinsic::nvvm_tex_3d_level_v4f32_f32:
2704 return NVPTXISD::Tex3DFloatFloatLevel;
2705 case Intrinsic::nvvm_tex_3d_grad_v4f32_f32:
2706 return NVPTXISD::Tex3DFloatFloatGrad;
2707 case Intrinsic::nvvm_tex_3d_v4s32_s32:
2708 return NVPTXISD::Tex3DS32S32;
2709 case Intrinsic::nvvm_tex_3d_v4s32_f32:
2710 return NVPTXISD::Tex3DS32Float;
2711 case Intrinsic::nvvm_tex_3d_level_v4s32_f32:
2712 return NVPTXISD::Tex3DS32FloatLevel;
2713 case Intrinsic::nvvm_tex_3d_grad_v4s32_f32:
2714 return NVPTXISD::Tex3DS32FloatGrad;
2715 case Intrinsic::nvvm_tex_3d_v4u32_s32:
2716 return NVPTXISD::Tex3DU32S32;
2717 case Intrinsic::nvvm_tex_3d_v4u32_f32:
2718 return NVPTXISD::Tex3DU32Float;
2719 case Intrinsic::nvvm_tex_3d_level_v4u32_f32:
2720 return NVPTXISD::Tex3DU32FloatLevel;
2721 case Intrinsic::nvvm_tex_3d_grad_v4u32_f32:
2722 return NVPTXISD::Tex3DU32FloatGrad;
2723
2724 case Intrinsic::nvvm_tex_cube_v4f32_f32:
2725 return NVPTXISD::TexCubeFloatFloat;
2726 case Intrinsic::nvvm_tex_cube_level_v4f32_f32:
2727 return NVPTXISD::TexCubeFloatFloatLevel;
2728 case Intrinsic::nvvm_tex_cube_v4s32_f32:
2729 return NVPTXISD::TexCubeS32Float;
2730 case Intrinsic::nvvm_tex_cube_level_v4s32_f32:
2731 return NVPTXISD::TexCubeS32FloatLevel;
2732 case Intrinsic::nvvm_tex_cube_v4u32_f32:
2733 return NVPTXISD::TexCubeU32Float;
2734 case Intrinsic::nvvm_tex_cube_level_v4u32_f32:
2735 return NVPTXISD::TexCubeU32FloatLevel;
2736
2737 case Intrinsic::nvvm_tex_cube_array_v4f32_f32:
2738 return NVPTXISD::TexCubeArrayFloatFloat;
2739 case Intrinsic::nvvm_tex_cube_array_level_v4f32_f32:
2740 return NVPTXISD::TexCubeArrayFloatFloatLevel;
2741 case Intrinsic::nvvm_tex_cube_array_v4s32_f32:
2742 return NVPTXISD::TexCubeArrayS32Float;
2743 case Intrinsic::nvvm_tex_cube_array_level_v4s32_f32:
2744 return NVPTXISD::TexCubeArrayS32FloatLevel;
2745 case Intrinsic::nvvm_tex_cube_array_v4u32_f32:
2746 return NVPTXISD::TexCubeArrayU32Float;
2747 case Intrinsic::nvvm_tex_cube_array_level_v4u32_f32:
2748 return NVPTXISD::TexCubeArrayU32FloatLevel;
2749
2750 case Intrinsic::nvvm_tld4_r_2d_v4f32_f32:
2751 return NVPTXISD::Tld4R2DFloatFloat;
2752 case Intrinsic::nvvm_tld4_g_2d_v4f32_f32:
2753 return NVPTXISD::Tld4G2DFloatFloat;
2754 case Intrinsic::nvvm_tld4_b_2d_v4f32_f32:
2755 return NVPTXISD::Tld4B2DFloatFloat;
2756 case Intrinsic::nvvm_tld4_a_2d_v4f32_f32:
2757 return NVPTXISD::Tld4A2DFloatFloat;
2758 case Intrinsic::nvvm_tld4_r_2d_v4s32_f32:
2759 return NVPTXISD::Tld4R2DS64Float;
2760 case Intrinsic::nvvm_tld4_g_2d_v4s32_f32:
2761 return NVPTXISD::Tld4G2DS64Float;
2762 case Intrinsic::nvvm_tld4_b_2d_v4s32_f32:
2763 return NVPTXISD::Tld4B2DS64Float;
2764 case Intrinsic::nvvm_tld4_a_2d_v4s32_f32:
2765 return NVPTXISD::Tld4A2DS64Float;
2766 case Intrinsic::nvvm_tld4_r_2d_v4u32_f32:
2767 return NVPTXISD::Tld4R2DU64Float;
2768 case Intrinsic::nvvm_tld4_g_2d_v4u32_f32:
2769 return NVPTXISD::Tld4G2DU64Float;
2770 case Intrinsic::nvvm_tld4_b_2d_v4u32_f32:
2771 return NVPTXISD::Tld4B2DU64Float;
2772 case Intrinsic::nvvm_tld4_a_2d_v4u32_f32:
2773 return NVPTXISD::Tld4A2DU64Float;
2774
2775 case Intrinsic::nvvm_tex_unified_1d_v4f32_s32:
2776 return NVPTXISD::TexUnified1DFloatS32;
2777 case Intrinsic::nvvm_tex_unified_1d_v4f32_f32:
2778 return NVPTXISD::TexUnified1DFloatFloat;
2779 case Intrinsic::nvvm_tex_unified_1d_level_v4f32_f32:
2780 return NVPTXISD::TexUnified1DFloatFloatLevel;
2781 case Intrinsic::nvvm_tex_unified_1d_grad_v4f32_f32:
2782 return NVPTXISD::TexUnified1DFloatFloatGrad;
2783 case Intrinsic::nvvm_tex_unified_1d_v4s32_s32:
2784 return NVPTXISD::TexUnified1DS32S32;
2785 case Intrinsic::nvvm_tex_unified_1d_v4s32_f32:
2786 return NVPTXISD::TexUnified1DS32Float;
2787 case Intrinsic::nvvm_tex_unified_1d_level_v4s32_f32:
2788 return NVPTXISD::TexUnified1DS32FloatLevel;
2789 case Intrinsic::nvvm_tex_unified_1d_grad_v4s32_f32:
2790 return NVPTXISD::TexUnified1DS32FloatGrad;
2791 case Intrinsic::nvvm_tex_unified_1d_v4u32_s32:
2792 return NVPTXISD::TexUnified1DU32S32;
2793 case Intrinsic::nvvm_tex_unified_1d_v4u32_f32:
2794 return NVPTXISD::TexUnified1DU32Float;
2795 case Intrinsic::nvvm_tex_unified_1d_level_v4u32_f32:
2796 return NVPTXISD::TexUnified1DU32FloatLevel;
2797 case Intrinsic::nvvm_tex_unified_1d_grad_v4u32_f32:
2798 return NVPTXISD::TexUnified1DU32FloatGrad;
2799
2800 case Intrinsic::nvvm_tex_unified_1d_array_v4f32_s32:
2801 return NVPTXISD::TexUnified1DArrayFloatS32;
2802 case Intrinsic::nvvm_tex_unified_1d_array_v4f32_f32:
2803 return NVPTXISD::TexUnified1DArrayFloatFloat;
2804 case Intrinsic::nvvm_tex_unified_1d_array_level_v4f32_f32:
2805 return NVPTXISD::TexUnified1DArrayFloatFloatLevel;
2806 case Intrinsic::nvvm_tex_unified_1d_array_grad_v4f32_f32:
2807 return NVPTXISD::TexUnified1DArrayFloatFloatGrad;
2808 case Intrinsic::nvvm_tex_unified_1d_array_v4s32_s32:
2809 return NVPTXISD::TexUnified1DArrayS32S32;
2810 case Intrinsic::nvvm_tex_unified_1d_array_v4s32_f32:
2811 return NVPTXISD::TexUnified1DArrayS32Float;
2812 case Intrinsic::nvvm_tex_unified_1d_array_level_v4s32_f32:
2813 return NVPTXISD::TexUnified1DArrayS32FloatLevel;
2814 case Intrinsic::nvvm_tex_unified_1d_array_grad_v4s32_f32:
2815 return NVPTXISD::TexUnified1DArrayS32FloatGrad;
2816 case Intrinsic::nvvm_tex_unified_1d_array_v4u32_s32:
2817 return NVPTXISD::TexUnified1DArrayU32S32;
2818 case Intrinsic::nvvm_tex_unified_1d_array_v4u32_f32:
2819 return NVPTXISD::TexUnified1DArrayU32Float;
2820 case Intrinsic::nvvm_tex_unified_1d_array_level_v4u32_f32:
2821 return NVPTXISD::TexUnified1DArrayU32FloatLevel;
2822 case Intrinsic::nvvm_tex_unified_1d_array_grad_v4u32_f32:
2823 return NVPTXISD::TexUnified1DArrayU32FloatGrad;
2824
2825 case Intrinsic::nvvm_tex_unified_2d_v4f32_s32:
2826 return NVPTXISD::TexUnified2DFloatS32;
2827 case Intrinsic::nvvm_tex_unified_2d_v4f32_f32:
2828 return NVPTXISD::TexUnified2DFloatFloat;
2829 case Intrinsic::nvvm_tex_unified_2d_level_v4f32_f32:
2830 return NVPTXISD::TexUnified2DFloatFloatLevel;
2831 case Intrinsic::nvvm_tex_unified_2d_grad_v4f32_f32:
2832 return NVPTXISD::TexUnified2DFloatFloatGrad;
2833 case Intrinsic::nvvm_tex_unified_2d_v4s32_s32:
2834 return NVPTXISD::TexUnified2DS32S32;
2835 case Intrinsic::nvvm_tex_unified_2d_v4s32_f32:
2836 return NVPTXISD::TexUnified2DS32Float;
2837 case Intrinsic::nvvm_tex_unified_2d_level_v4s32_f32:
2838 return NVPTXISD::TexUnified2DS32FloatLevel;
2839 case Intrinsic::nvvm_tex_unified_2d_grad_v4s32_f32:
2840 return NVPTXISD::TexUnified2DS32FloatGrad;
2841 case Intrinsic::nvvm_tex_unified_2d_v4u32_s32:
2842 return NVPTXISD::TexUnified2DU32S32;
2843 case Intrinsic::nvvm_tex_unified_2d_v4u32_f32:
2844 return NVPTXISD::TexUnified2DU32Float;
2845 case Intrinsic::nvvm_tex_unified_2d_level_v4u32_f32:
2846 return NVPTXISD::TexUnified2DU32FloatLevel;
2847 case Intrinsic::nvvm_tex_unified_2d_grad_v4u32_f32:
2848 return NVPTXISD::TexUnified2DU32FloatGrad;
2849
2850 case Intrinsic::nvvm_tex_unified_2d_array_v4f32_s32:
2851 return NVPTXISD::TexUnified2DArrayFloatS32;
2852 case Intrinsic::nvvm_tex_unified_2d_array_v4f32_f32:
2853 return NVPTXISD::TexUnified2DArrayFloatFloat;
2854 case Intrinsic::nvvm_tex_unified_2d_array_level_v4f32_f32:
2855 return NVPTXISD::TexUnified2DArrayFloatFloatLevel;
2856 case Intrinsic::nvvm_tex_unified_2d_array_grad_v4f32_f32:
2857 return NVPTXISD::TexUnified2DArrayFloatFloatGrad;
2858 case Intrinsic::nvvm_tex_unified_2d_array_v4s32_s32:
2859 return NVPTXISD::TexUnified2DArrayS32S32;
2860 case Intrinsic::nvvm_tex_unified_2d_array_v4s32_f32:
2861 return NVPTXISD::TexUnified2DArrayS32Float;
2862 case Intrinsic::nvvm_tex_unified_2d_array_level_v4s32_f32:
2863 return NVPTXISD::TexUnified2DArrayS32FloatLevel;
2864 case Intrinsic::nvvm_tex_unified_2d_array_grad_v4s32_f32:
2865 return NVPTXISD::TexUnified2DArrayS32FloatGrad;
2866 case Intrinsic::nvvm_tex_unified_2d_array_v4u32_s32:
2867 return NVPTXISD::TexUnified2DArrayU32S32;
2868 case Intrinsic::nvvm_tex_unified_2d_array_v4u32_f32:
2869 return NVPTXISD::TexUnified2DArrayU32Float;
2870 case Intrinsic::nvvm_tex_unified_2d_array_level_v4u32_f32:
2871 return NVPTXISD::TexUnified2DArrayU32FloatLevel;
2872 case Intrinsic::nvvm_tex_unified_2d_array_grad_v4u32_f32:
2873 return NVPTXISD::TexUnified2DArrayU32FloatGrad;
2874
2875 case Intrinsic::nvvm_tex_unified_3d_v4f32_s32:
2876 return NVPTXISD::TexUnified3DFloatS32;
2877 case Intrinsic::nvvm_tex_unified_3d_v4f32_f32:
2878 return NVPTXISD::TexUnified3DFloatFloat;
2879 case Intrinsic::nvvm_tex_unified_3d_level_v4f32_f32:
2880 return NVPTXISD::TexUnified3DFloatFloatLevel;
2881 case Intrinsic::nvvm_tex_unified_3d_grad_v4f32_f32:
2882 return NVPTXISD::TexUnified3DFloatFloatGrad;
2883 case Intrinsic::nvvm_tex_unified_3d_v4s32_s32:
2884 return NVPTXISD::TexUnified3DS32S32;
2885 case Intrinsic::nvvm_tex_unified_3d_v4s32_f32:
2886 return NVPTXISD::TexUnified3DS32Float;
2887 case Intrinsic::nvvm_tex_unified_3d_level_v4s32_f32:
2888 return NVPTXISD::TexUnified3DS32FloatLevel;
2889 case Intrinsic::nvvm_tex_unified_3d_grad_v4s32_f32:
2890 return NVPTXISD::TexUnified3DS32FloatGrad;
2891 case Intrinsic::nvvm_tex_unified_3d_v4u32_s32:
2892 return NVPTXISD::TexUnified3DU32S32;
2893 case Intrinsic::nvvm_tex_unified_3d_v4u32_f32:
2894 return NVPTXISD::TexUnified3DU32Float;
2895 case Intrinsic::nvvm_tex_unified_3d_level_v4u32_f32:
2896 return NVPTXISD::TexUnified3DU32FloatLevel;
2897 case Intrinsic::nvvm_tex_unified_3d_grad_v4u32_f32:
2898 return NVPTXISD::TexUnified3DU32FloatGrad;
2899
2900 case Intrinsic::nvvm_tex_unified_cube_v4f32_f32:
2901 return NVPTXISD::TexUnifiedCubeFloatFloat;
2902 case Intrinsic::nvvm_tex_unified_cube_level_v4f32_f32:
2903 return NVPTXISD::TexUnifiedCubeFloatFloatLevel;
2904 case Intrinsic::nvvm_tex_unified_cube_v4s32_f32:
2905 return NVPTXISD::TexUnifiedCubeS32Float;
2906 case Intrinsic::nvvm_tex_unified_cube_level_v4s32_f32:
2907 return NVPTXISD::TexUnifiedCubeS32FloatLevel;
2908 case Intrinsic::nvvm_tex_unified_cube_v4u32_f32:
2909 return NVPTXISD::TexUnifiedCubeU32Float;
2910 case Intrinsic::nvvm_tex_unified_cube_level_v4u32_f32:
2911 return NVPTXISD::TexUnifiedCubeU32FloatLevel;
2912
2913 case Intrinsic::nvvm_tex_unified_cube_array_v4f32_f32:
2914 return NVPTXISD::TexUnifiedCubeArrayFloatFloat;
2915 case Intrinsic::nvvm_tex_unified_cube_array_level_v4f32_f32:
2916 return NVPTXISD::TexUnifiedCubeArrayFloatFloatLevel;
2917 case Intrinsic::nvvm_tex_unified_cube_array_v4s32_f32:
2918 return NVPTXISD::TexUnifiedCubeArrayS32Float;
2919 case Intrinsic::nvvm_tex_unified_cube_array_level_v4s32_f32:
2920 return NVPTXISD::TexUnifiedCubeArrayS32FloatLevel;
2921 case Intrinsic::nvvm_tex_unified_cube_array_v4u32_f32:
2922 return NVPTXISD::TexUnifiedCubeArrayU32Float;
2923 case Intrinsic::nvvm_tex_unified_cube_array_level_v4u32_f32:
2924 return NVPTXISD::TexUnifiedCubeArrayU32FloatLevel;
2925
2926 case Intrinsic::nvvm_tld4_unified_r_2d_v4f32_f32:
2927 return NVPTXISD::Tld4UnifiedR2DFloatFloat;
2928 case Intrinsic::nvvm_tld4_unified_g_2d_v4f32_f32:
2929 return NVPTXISD::Tld4UnifiedG2DFloatFloat;
2930 case Intrinsic::nvvm_tld4_unified_b_2d_v4f32_f32:
2931 return NVPTXISD::Tld4UnifiedB2DFloatFloat;
2932 case Intrinsic::nvvm_tld4_unified_a_2d_v4f32_f32:
2933 return NVPTXISD::Tld4UnifiedA2DFloatFloat;
2934 case Intrinsic::nvvm_tld4_unified_r_2d_v4s32_f32:
2935 return NVPTXISD::Tld4UnifiedR2DS64Float;
2936 case Intrinsic::nvvm_tld4_unified_g_2d_v4s32_f32:
2937 return NVPTXISD::Tld4UnifiedG2DS64Float;
2938 case Intrinsic::nvvm_tld4_unified_b_2d_v4s32_f32:
2939 return NVPTXISD::Tld4UnifiedB2DS64Float;
2940 case Intrinsic::nvvm_tld4_unified_a_2d_v4s32_f32:
2941 return NVPTXISD::Tld4UnifiedA2DS64Float;
2942 case Intrinsic::nvvm_tld4_unified_r_2d_v4u32_f32:
2943 return NVPTXISD::Tld4UnifiedR2DU64Float;
2944 case Intrinsic::nvvm_tld4_unified_g_2d_v4u32_f32:
2945 return NVPTXISD::Tld4UnifiedG2DU64Float;
2946 case Intrinsic::nvvm_tld4_unified_b_2d_v4u32_f32:
2947 return NVPTXISD::Tld4UnifiedB2DU64Float;
2948 case Intrinsic::nvvm_tld4_unified_a_2d_v4u32_f32:
2949 return NVPTXISD::Tld4UnifiedA2DU64Float;
2950 }
2951 }
2952
getOpcForSurfaceInstr(unsigned Intrinsic)2953 static unsigned getOpcForSurfaceInstr(unsigned Intrinsic) {
2954 switch (Intrinsic) {
2955 default:
2956 return 0;
2957 case Intrinsic::nvvm_suld_1d_i8_clamp:
2958 return NVPTXISD::Suld1DI8Clamp;
2959 case Intrinsic::nvvm_suld_1d_i16_clamp:
2960 return NVPTXISD::Suld1DI16Clamp;
2961 case Intrinsic::nvvm_suld_1d_i32_clamp:
2962 return NVPTXISD::Suld1DI32Clamp;
2963 case Intrinsic::nvvm_suld_1d_i64_clamp:
2964 return NVPTXISD::Suld1DI64Clamp;
2965 case Intrinsic::nvvm_suld_1d_v2i8_clamp:
2966 return NVPTXISD::Suld1DV2I8Clamp;
2967 case Intrinsic::nvvm_suld_1d_v2i16_clamp:
2968 return NVPTXISD::Suld1DV2I16Clamp;
2969 case Intrinsic::nvvm_suld_1d_v2i32_clamp:
2970 return NVPTXISD::Suld1DV2I32Clamp;
2971 case Intrinsic::nvvm_suld_1d_v2i64_clamp:
2972 return NVPTXISD::Suld1DV2I64Clamp;
2973 case Intrinsic::nvvm_suld_1d_v4i8_clamp:
2974 return NVPTXISD::Suld1DV4I8Clamp;
2975 case Intrinsic::nvvm_suld_1d_v4i16_clamp:
2976 return NVPTXISD::Suld1DV4I16Clamp;
2977 case Intrinsic::nvvm_suld_1d_v4i32_clamp:
2978 return NVPTXISD::Suld1DV4I32Clamp;
2979 case Intrinsic::nvvm_suld_1d_array_i8_clamp:
2980 return NVPTXISD::Suld1DArrayI8Clamp;
2981 case Intrinsic::nvvm_suld_1d_array_i16_clamp:
2982 return NVPTXISD::Suld1DArrayI16Clamp;
2983 case Intrinsic::nvvm_suld_1d_array_i32_clamp:
2984 return NVPTXISD::Suld1DArrayI32Clamp;
2985 case Intrinsic::nvvm_suld_1d_array_i64_clamp:
2986 return NVPTXISD::Suld1DArrayI64Clamp;
2987 case Intrinsic::nvvm_suld_1d_array_v2i8_clamp:
2988 return NVPTXISD::Suld1DArrayV2I8Clamp;
2989 case Intrinsic::nvvm_suld_1d_array_v2i16_clamp:
2990 return NVPTXISD::Suld1DArrayV2I16Clamp;
2991 case Intrinsic::nvvm_suld_1d_array_v2i32_clamp:
2992 return NVPTXISD::Suld1DArrayV2I32Clamp;
2993 case Intrinsic::nvvm_suld_1d_array_v2i64_clamp:
2994 return NVPTXISD::Suld1DArrayV2I64Clamp;
2995 case Intrinsic::nvvm_suld_1d_array_v4i8_clamp:
2996 return NVPTXISD::Suld1DArrayV4I8Clamp;
2997 case Intrinsic::nvvm_suld_1d_array_v4i16_clamp:
2998 return NVPTXISD::Suld1DArrayV4I16Clamp;
2999 case Intrinsic::nvvm_suld_1d_array_v4i32_clamp:
3000 return NVPTXISD::Suld1DArrayV4I32Clamp;
3001 case Intrinsic::nvvm_suld_2d_i8_clamp:
3002 return NVPTXISD::Suld2DI8Clamp;
3003 case Intrinsic::nvvm_suld_2d_i16_clamp:
3004 return NVPTXISD::Suld2DI16Clamp;
3005 case Intrinsic::nvvm_suld_2d_i32_clamp:
3006 return NVPTXISD::Suld2DI32Clamp;
3007 case Intrinsic::nvvm_suld_2d_i64_clamp:
3008 return NVPTXISD::Suld2DI64Clamp;
3009 case Intrinsic::nvvm_suld_2d_v2i8_clamp:
3010 return NVPTXISD::Suld2DV2I8Clamp;
3011 case Intrinsic::nvvm_suld_2d_v2i16_clamp:
3012 return NVPTXISD::Suld2DV2I16Clamp;
3013 case Intrinsic::nvvm_suld_2d_v2i32_clamp:
3014 return NVPTXISD::Suld2DV2I32Clamp;
3015 case Intrinsic::nvvm_suld_2d_v2i64_clamp:
3016 return NVPTXISD::Suld2DV2I64Clamp;
3017 case Intrinsic::nvvm_suld_2d_v4i8_clamp:
3018 return NVPTXISD::Suld2DV4I8Clamp;
3019 case Intrinsic::nvvm_suld_2d_v4i16_clamp:
3020 return NVPTXISD::Suld2DV4I16Clamp;
3021 case Intrinsic::nvvm_suld_2d_v4i32_clamp:
3022 return NVPTXISD::Suld2DV4I32Clamp;
3023 case Intrinsic::nvvm_suld_2d_array_i8_clamp:
3024 return NVPTXISD::Suld2DArrayI8Clamp;
3025 case Intrinsic::nvvm_suld_2d_array_i16_clamp:
3026 return NVPTXISD::Suld2DArrayI16Clamp;
3027 case Intrinsic::nvvm_suld_2d_array_i32_clamp:
3028 return NVPTXISD::Suld2DArrayI32Clamp;
3029 case Intrinsic::nvvm_suld_2d_array_i64_clamp:
3030 return NVPTXISD::Suld2DArrayI64Clamp;
3031 case Intrinsic::nvvm_suld_2d_array_v2i8_clamp:
3032 return NVPTXISD::Suld2DArrayV2I8Clamp;
3033 case Intrinsic::nvvm_suld_2d_array_v2i16_clamp:
3034 return NVPTXISD::Suld2DArrayV2I16Clamp;
3035 case Intrinsic::nvvm_suld_2d_array_v2i32_clamp:
3036 return NVPTXISD::Suld2DArrayV2I32Clamp;
3037 case Intrinsic::nvvm_suld_2d_array_v2i64_clamp:
3038 return NVPTXISD::Suld2DArrayV2I64Clamp;
3039 case Intrinsic::nvvm_suld_2d_array_v4i8_clamp:
3040 return NVPTXISD::Suld2DArrayV4I8Clamp;
3041 case Intrinsic::nvvm_suld_2d_array_v4i16_clamp:
3042 return NVPTXISD::Suld2DArrayV4I16Clamp;
3043 case Intrinsic::nvvm_suld_2d_array_v4i32_clamp:
3044 return NVPTXISD::Suld2DArrayV4I32Clamp;
3045 case Intrinsic::nvvm_suld_3d_i8_clamp:
3046 return NVPTXISD::Suld3DI8Clamp;
3047 case Intrinsic::nvvm_suld_3d_i16_clamp:
3048 return NVPTXISD::Suld3DI16Clamp;
3049 case Intrinsic::nvvm_suld_3d_i32_clamp:
3050 return NVPTXISD::Suld3DI32Clamp;
3051 case Intrinsic::nvvm_suld_3d_i64_clamp:
3052 return NVPTXISD::Suld3DI64Clamp;
3053 case Intrinsic::nvvm_suld_3d_v2i8_clamp:
3054 return NVPTXISD::Suld3DV2I8Clamp;
3055 case Intrinsic::nvvm_suld_3d_v2i16_clamp:
3056 return NVPTXISD::Suld3DV2I16Clamp;
3057 case Intrinsic::nvvm_suld_3d_v2i32_clamp:
3058 return NVPTXISD::Suld3DV2I32Clamp;
3059 case Intrinsic::nvvm_suld_3d_v2i64_clamp:
3060 return NVPTXISD::Suld3DV2I64Clamp;
3061 case Intrinsic::nvvm_suld_3d_v4i8_clamp:
3062 return NVPTXISD::Suld3DV4I8Clamp;
3063 case Intrinsic::nvvm_suld_3d_v4i16_clamp:
3064 return NVPTXISD::Suld3DV4I16Clamp;
3065 case Intrinsic::nvvm_suld_3d_v4i32_clamp:
3066 return NVPTXISD::Suld3DV4I32Clamp;
3067 case Intrinsic::nvvm_suld_1d_i8_trap:
3068 return NVPTXISD::Suld1DI8Trap;
3069 case Intrinsic::nvvm_suld_1d_i16_trap:
3070 return NVPTXISD::Suld1DI16Trap;
3071 case Intrinsic::nvvm_suld_1d_i32_trap:
3072 return NVPTXISD::Suld1DI32Trap;
3073 case Intrinsic::nvvm_suld_1d_i64_trap:
3074 return NVPTXISD::Suld1DI64Trap;
3075 case Intrinsic::nvvm_suld_1d_v2i8_trap:
3076 return NVPTXISD::Suld1DV2I8Trap;
3077 case Intrinsic::nvvm_suld_1d_v2i16_trap:
3078 return NVPTXISD::Suld1DV2I16Trap;
3079 case Intrinsic::nvvm_suld_1d_v2i32_trap:
3080 return NVPTXISD::Suld1DV2I32Trap;
3081 case Intrinsic::nvvm_suld_1d_v2i64_trap:
3082 return NVPTXISD::Suld1DV2I64Trap;
3083 case Intrinsic::nvvm_suld_1d_v4i8_trap:
3084 return NVPTXISD::Suld1DV4I8Trap;
3085 case Intrinsic::nvvm_suld_1d_v4i16_trap:
3086 return NVPTXISD::Suld1DV4I16Trap;
3087 case Intrinsic::nvvm_suld_1d_v4i32_trap:
3088 return NVPTXISD::Suld1DV4I32Trap;
3089 case Intrinsic::nvvm_suld_1d_array_i8_trap:
3090 return NVPTXISD::Suld1DArrayI8Trap;
3091 case Intrinsic::nvvm_suld_1d_array_i16_trap:
3092 return NVPTXISD::Suld1DArrayI16Trap;
3093 case Intrinsic::nvvm_suld_1d_array_i32_trap:
3094 return NVPTXISD::Suld1DArrayI32Trap;
3095 case Intrinsic::nvvm_suld_1d_array_i64_trap:
3096 return NVPTXISD::Suld1DArrayI64Trap;
3097 case Intrinsic::nvvm_suld_1d_array_v2i8_trap:
3098 return NVPTXISD::Suld1DArrayV2I8Trap;
3099 case Intrinsic::nvvm_suld_1d_array_v2i16_trap:
3100 return NVPTXISD::Suld1DArrayV2I16Trap;
3101 case Intrinsic::nvvm_suld_1d_array_v2i32_trap:
3102 return NVPTXISD::Suld1DArrayV2I32Trap;
3103 case Intrinsic::nvvm_suld_1d_array_v2i64_trap:
3104 return NVPTXISD::Suld1DArrayV2I64Trap;
3105 case Intrinsic::nvvm_suld_1d_array_v4i8_trap:
3106 return NVPTXISD::Suld1DArrayV4I8Trap;
3107 case Intrinsic::nvvm_suld_1d_array_v4i16_trap:
3108 return NVPTXISD::Suld1DArrayV4I16Trap;
3109 case Intrinsic::nvvm_suld_1d_array_v4i32_trap:
3110 return NVPTXISD::Suld1DArrayV4I32Trap;
3111 case Intrinsic::nvvm_suld_2d_i8_trap:
3112 return NVPTXISD::Suld2DI8Trap;
3113 case Intrinsic::nvvm_suld_2d_i16_trap:
3114 return NVPTXISD::Suld2DI16Trap;
3115 case Intrinsic::nvvm_suld_2d_i32_trap:
3116 return NVPTXISD::Suld2DI32Trap;
3117 case Intrinsic::nvvm_suld_2d_i64_trap:
3118 return NVPTXISD::Suld2DI64Trap;
3119 case Intrinsic::nvvm_suld_2d_v2i8_trap:
3120 return NVPTXISD::Suld2DV2I8Trap;
3121 case Intrinsic::nvvm_suld_2d_v2i16_trap:
3122 return NVPTXISD::Suld2DV2I16Trap;
3123 case Intrinsic::nvvm_suld_2d_v2i32_trap:
3124 return NVPTXISD::Suld2DV2I32Trap;
3125 case Intrinsic::nvvm_suld_2d_v2i64_trap:
3126 return NVPTXISD::Suld2DV2I64Trap;
3127 case Intrinsic::nvvm_suld_2d_v4i8_trap:
3128 return NVPTXISD::Suld2DV4I8Trap;
3129 case Intrinsic::nvvm_suld_2d_v4i16_trap:
3130 return NVPTXISD::Suld2DV4I16Trap;
3131 case Intrinsic::nvvm_suld_2d_v4i32_trap:
3132 return NVPTXISD::Suld2DV4I32Trap;
3133 case Intrinsic::nvvm_suld_2d_array_i8_trap:
3134 return NVPTXISD::Suld2DArrayI8Trap;
3135 case Intrinsic::nvvm_suld_2d_array_i16_trap:
3136 return NVPTXISD::Suld2DArrayI16Trap;
3137 case Intrinsic::nvvm_suld_2d_array_i32_trap:
3138 return NVPTXISD::Suld2DArrayI32Trap;
3139 case Intrinsic::nvvm_suld_2d_array_i64_trap:
3140 return NVPTXISD::Suld2DArrayI64Trap;
3141 case Intrinsic::nvvm_suld_2d_array_v2i8_trap:
3142 return NVPTXISD::Suld2DArrayV2I8Trap;
3143 case Intrinsic::nvvm_suld_2d_array_v2i16_trap:
3144 return NVPTXISD::Suld2DArrayV2I16Trap;
3145 case Intrinsic::nvvm_suld_2d_array_v2i32_trap:
3146 return NVPTXISD::Suld2DArrayV2I32Trap;
3147 case Intrinsic::nvvm_suld_2d_array_v2i64_trap:
3148 return NVPTXISD::Suld2DArrayV2I64Trap;
3149 case Intrinsic::nvvm_suld_2d_array_v4i8_trap:
3150 return NVPTXISD::Suld2DArrayV4I8Trap;
3151 case Intrinsic::nvvm_suld_2d_array_v4i16_trap:
3152 return NVPTXISD::Suld2DArrayV4I16Trap;
3153 case Intrinsic::nvvm_suld_2d_array_v4i32_trap:
3154 return NVPTXISD::Suld2DArrayV4I32Trap;
3155 case Intrinsic::nvvm_suld_3d_i8_trap:
3156 return NVPTXISD::Suld3DI8Trap;
3157 case Intrinsic::nvvm_suld_3d_i16_trap:
3158 return NVPTXISD::Suld3DI16Trap;
3159 case Intrinsic::nvvm_suld_3d_i32_trap:
3160 return NVPTXISD::Suld3DI32Trap;
3161 case Intrinsic::nvvm_suld_3d_i64_trap:
3162 return NVPTXISD::Suld3DI64Trap;
3163 case Intrinsic::nvvm_suld_3d_v2i8_trap:
3164 return NVPTXISD::Suld3DV2I8Trap;
3165 case Intrinsic::nvvm_suld_3d_v2i16_trap:
3166 return NVPTXISD::Suld3DV2I16Trap;
3167 case Intrinsic::nvvm_suld_3d_v2i32_trap:
3168 return NVPTXISD::Suld3DV2I32Trap;
3169 case Intrinsic::nvvm_suld_3d_v2i64_trap:
3170 return NVPTXISD::Suld3DV2I64Trap;
3171 case Intrinsic::nvvm_suld_3d_v4i8_trap:
3172 return NVPTXISD::Suld3DV4I8Trap;
3173 case Intrinsic::nvvm_suld_3d_v4i16_trap:
3174 return NVPTXISD::Suld3DV4I16Trap;
3175 case Intrinsic::nvvm_suld_3d_v4i32_trap:
3176 return NVPTXISD::Suld3DV4I32Trap;
3177 case Intrinsic::nvvm_suld_1d_i8_zero:
3178 return NVPTXISD::Suld1DI8Zero;
3179 case Intrinsic::nvvm_suld_1d_i16_zero:
3180 return NVPTXISD::Suld1DI16Zero;
3181 case Intrinsic::nvvm_suld_1d_i32_zero:
3182 return NVPTXISD::Suld1DI32Zero;
3183 case Intrinsic::nvvm_suld_1d_i64_zero:
3184 return NVPTXISD::Suld1DI64Zero;
3185 case Intrinsic::nvvm_suld_1d_v2i8_zero:
3186 return NVPTXISD::Suld1DV2I8Zero;
3187 case Intrinsic::nvvm_suld_1d_v2i16_zero:
3188 return NVPTXISD::Suld1DV2I16Zero;
3189 case Intrinsic::nvvm_suld_1d_v2i32_zero:
3190 return NVPTXISD::Suld1DV2I32Zero;
3191 case Intrinsic::nvvm_suld_1d_v2i64_zero:
3192 return NVPTXISD::Suld1DV2I64Zero;
3193 case Intrinsic::nvvm_suld_1d_v4i8_zero:
3194 return NVPTXISD::Suld1DV4I8Zero;
3195 case Intrinsic::nvvm_suld_1d_v4i16_zero:
3196 return NVPTXISD::Suld1DV4I16Zero;
3197 case Intrinsic::nvvm_suld_1d_v4i32_zero:
3198 return NVPTXISD::Suld1DV4I32Zero;
3199 case Intrinsic::nvvm_suld_1d_array_i8_zero:
3200 return NVPTXISD::Suld1DArrayI8Zero;
3201 case Intrinsic::nvvm_suld_1d_array_i16_zero:
3202 return NVPTXISD::Suld1DArrayI16Zero;
3203 case Intrinsic::nvvm_suld_1d_array_i32_zero:
3204 return NVPTXISD::Suld1DArrayI32Zero;
3205 case Intrinsic::nvvm_suld_1d_array_i64_zero:
3206 return NVPTXISD::Suld1DArrayI64Zero;
3207 case Intrinsic::nvvm_suld_1d_array_v2i8_zero:
3208 return NVPTXISD::Suld1DArrayV2I8Zero;
3209 case Intrinsic::nvvm_suld_1d_array_v2i16_zero:
3210 return NVPTXISD::Suld1DArrayV2I16Zero;
3211 case Intrinsic::nvvm_suld_1d_array_v2i32_zero:
3212 return NVPTXISD::Suld1DArrayV2I32Zero;
3213 case Intrinsic::nvvm_suld_1d_array_v2i64_zero:
3214 return NVPTXISD::Suld1DArrayV2I64Zero;
3215 case Intrinsic::nvvm_suld_1d_array_v4i8_zero:
3216 return NVPTXISD::Suld1DArrayV4I8Zero;
3217 case Intrinsic::nvvm_suld_1d_array_v4i16_zero:
3218 return NVPTXISD::Suld1DArrayV4I16Zero;
3219 case Intrinsic::nvvm_suld_1d_array_v4i32_zero:
3220 return NVPTXISD::Suld1DArrayV4I32Zero;
3221 case Intrinsic::nvvm_suld_2d_i8_zero:
3222 return NVPTXISD::Suld2DI8Zero;
3223 case Intrinsic::nvvm_suld_2d_i16_zero:
3224 return NVPTXISD::Suld2DI16Zero;
3225 case Intrinsic::nvvm_suld_2d_i32_zero:
3226 return NVPTXISD::Suld2DI32Zero;
3227 case Intrinsic::nvvm_suld_2d_i64_zero:
3228 return NVPTXISD::Suld2DI64Zero;
3229 case Intrinsic::nvvm_suld_2d_v2i8_zero:
3230 return NVPTXISD::Suld2DV2I8Zero;
3231 case Intrinsic::nvvm_suld_2d_v2i16_zero:
3232 return NVPTXISD::Suld2DV2I16Zero;
3233 case Intrinsic::nvvm_suld_2d_v2i32_zero:
3234 return NVPTXISD::Suld2DV2I32Zero;
3235 case Intrinsic::nvvm_suld_2d_v2i64_zero:
3236 return NVPTXISD::Suld2DV2I64Zero;
3237 case Intrinsic::nvvm_suld_2d_v4i8_zero:
3238 return NVPTXISD::Suld2DV4I8Zero;
3239 case Intrinsic::nvvm_suld_2d_v4i16_zero:
3240 return NVPTXISD::Suld2DV4I16Zero;
3241 case Intrinsic::nvvm_suld_2d_v4i32_zero:
3242 return NVPTXISD::Suld2DV4I32Zero;
3243 case Intrinsic::nvvm_suld_2d_array_i8_zero:
3244 return NVPTXISD::Suld2DArrayI8Zero;
3245 case Intrinsic::nvvm_suld_2d_array_i16_zero:
3246 return NVPTXISD::Suld2DArrayI16Zero;
3247 case Intrinsic::nvvm_suld_2d_array_i32_zero:
3248 return NVPTXISD::Suld2DArrayI32Zero;
3249 case Intrinsic::nvvm_suld_2d_array_i64_zero:
3250 return NVPTXISD::Suld2DArrayI64Zero;
3251 case Intrinsic::nvvm_suld_2d_array_v2i8_zero:
3252 return NVPTXISD::Suld2DArrayV2I8Zero;
3253 case Intrinsic::nvvm_suld_2d_array_v2i16_zero:
3254 return NVPTXISD::Suld2DArrayV2I16Zero;
3255 case Intrinsic::nvvm_suld_2d_array_v2i32_zero:
3256 return NVPTXISD::Suld2DArrayV2I32Zero;
3257 case Intrinsic::nvvm_suld_2d_array_v2i64_zero:
3258 return NVPTXISD::Suld2DArrayV2I64Zero;
3259 case Intrinsic::nvvm_suld_2d_array_v4i8_zero:
3260 return NVPTXISD::Suld2DArrayV4I8Zero;
3261 case Intrinsic::nvvm_suld_2d_array_v4i16_zero:
3262 return NVPTXISD::Suld2DArrayV4I16Zero;
3263 case Intrinsic::nvvm_suld_2d_array_v4i32_zero:
3264 return NVPTXISD::Suld2DArrayV4I32Zero;
3265 case Intrinsic::nvvm_suld_3d_i8_zero:
3266 return NVPTXISD::Suld3DI8Zero;
3267 case Intrinsic::nvvm_suld_3d_i16_zero:
3268 return NVPTXISD::Suld3DI16Zero;
3269 case Intrinsic::nvvm_suld_3d_i32_zero:
3270 return NVPTXISD::Suld3DI32Zero;
3271 case Intrinsic::nvvm_suld_3d_i64_zero:
3272 return NVPTXISD::Suld3DI64Zero;
3273 case Intrinsic::nvvm_suld_3d_v2i8_zero:
3274 return NVPTXISD::Suld3DV2I8Zero;
3275 case Intrinsic::nvvm_suld_3d_v2i16_zero:
3276 return NVPTXISD::Suld3DV2I16Zero;
3277 case Intrinsic::nvvm_suld_3d_v2i32_zero:
3278 return NVPTXISD::Suld3DV2I32Zero;
3279 case Intrinsic::nvvm_suld_3d_v2i64_zero:
3280 return NVPTXISD::Suld3DV2I64Zero;
3281 case Intrinsic::nvvm_suld_3d_v4i8_zero:
3282 return NVPTXISD::Suld3DV4I8Zero;
3283 case Intrinsic::nvvm_suld_3d_v4i16_zero:
3284 return NVPTXISD::Suld3DV4I16Zero;
3285 case Intrinsic::nvvm_suld_3d_v4i32_zero:
3286 return NVPTXISD::Suld3DV4I32Zero;
3287 }
3288 }
3289
3290 // llvm.ptx.memcpy.const and llvm.ptx.memmove.const need to be modeled as
3291 // TgtMemIntrinsic
3292 // because we need the information that is only available in the "Value" type
3293 // of destination
3294 // pointer. In particular, the address space information.
getTgtMemIntrinsic(IntrinsicInfo & Info,const CallInst & I,MachineFunction & MF,unsigned Intrinsic) const3295 bool NVPTXTargetLowering::getTgtMemIntrinsic(
3296 IntrinsicInfo &Info, const CallInst &I,
3297 MachineFunction &MF, unsigned Intrinsic) const {
3298 switch (Intrinsic) {
3299 default:
3300 return false;
3301 case Intrinsic::nvvm_match_all_sync_i32p:
3302 case Intrinsic::nvvm_match_all_sync_i64p:
3303 Info.opc = ISD::INTRINSIC_W_CHAIN;
3304 // memVT is bogus. These intrinsics have IntrInaccessibleMemOnly attribute
3305 // in order to model data exchange with other threads, but perform no real
3306 // memory accesses.
3307 Info.memVT = MVT::i1;
3308
3309 // Our result depends on both our and other thread's arguments.
3310 Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
3311 return true;
3312 case Intrinsic::nvvm_wmma_m16n16k16_load_a_f16_col:
3313 case Intrinsic::nvvm_wmma_m16n16k16_load_a_f16_row:
3314 case Intrinsic::nvvm_wmma_m16n16k16_load_a_f16_col_stride:
3315 case Intrinsic::nvvm_wmma_m16n16k16_load_a_f16_row_stride:
3316 case Intrinsic::nvvm_wmma_m16n16k16_load_b_f16_col:
3317 case Intrinsic::nvvm_wmma_m16n16k16_load_b_f16_row:
3318 case Intrinsic::nvvm_wmma_m16n16k16_load_b_f16_col_stride:
3319 case Intrinsic::nvvm_wmma_m16n16k16_load_b_f16_row_stride:
3320 case Intrinsic::nvvm_wmma_m32n8k16_load_a_f16_col:
3321 case Intrinsic::nvvm_wmma_m32n8k16_load_a_f16_row:
3322 case Intrinsic::nvvm_wmma_m32n8k16_load_a_f16_col_stride:
3323 case Intrinsic::nvvm_wmma_m32n8k16_load_a_f16_row_stride:
3324 case Intrinsic::nvvm_wmma_m32n8k16_load_b_f16_col:
3325 case Intrinsic::nvvm_wmma_m32n8k16_load_b_f16_row:
3326 case Intrinsic::nvvm_wmma_m32n8k16_load_b_f16_col_stride:
3327 case Intrinsic::nvvm_wmma_m32n8k16_load_b_f16_row_stride:
3328 case Intrinsic::nvvm_wmma_m8n32k16_load_a_f16_col:
3329 case Intrinsic::nvvm_wmma_m8n32k16_load_a_f16_row:
3330 case Intrinsic::nvvm_wmma_m8n32k16_load_a_f16_col_stride:
3331 case Intrinsic::nvvm_wmma_m8n32k16_load_a_f16_row_stride:
3332 case Intrinsic::nvvm_wmma_m8n32k16_load_b_f16_col:
3333 case Intrinsic::nvvm_wmma_m8n32k16_load_b_f16_row:
3334 case Intrinsic::nvvm_wmma_m8n32k16_load_b_f16_col_stride:
3335 case Intrinsic::nvvm_wmma_m8n32k16_load_b_f16_row_stride: {
3336 Info.opc = ISD::INTRINSIC_W_CHAIN;
3337 Info.memVT = MVT::v8f16;
3338 Info.ptrVal = I.getArgOperand(0);
3339 Info.offset = 0;
3340 Info.flags = MachineMemOperand::MOLoad;
3341 Info.align = 16;
3342 return true;
3343 }
3344
3345 case Intrinsic::nvvm_wmma_m16n16k16_load_c_f16_col:
3346 case Intrinsic::nvvm_wmma_m16n16k16_load_c_f16_row:
3347 case Intrinsic::nvvm_wmma_m16n16k16_load_c_f16_col_stride:
3348 case Intrinsic::nvvm_wmma_m16n16k16_load_c_f16_row_stride:
3349 case Intrinsic::nvvm_wmma_m32n8k16_load_c_f16_col:
3350 case Intrinsic::nvvm_wmma_m32n8k16_load_c_f16_row:
3351 case Intrinsic::nvvm_wmma_m32n8k16_load_c_f16_col_stride:
3352 case Intrinsic::nvvm_wmma_m32n8k16_load_c_f16_row_stride:
3353 case Intrinsic::nvvm_wmma_m8n32k16_load_c_f16_col:
3354 case Intrinsic::nvvm_wmma_m8n32k16_load_c_f16_row:
3355 case Intrinsic::nvvm_wmma_m8n32k16_load_c_f16_col_stride:
3356 case Intrinsic::nvvm_wmma_m8n32k16_load_c_f16_row_stride: {
3357 Info.opc = ISD::INTRINSIC_W_CHAIN;
3358 Info.memVT = MVT::v4f16;
3359 Info.ptrVal = I.getArgOperand(0);
3360 Info.offset = 0;
3361 Info.flags = MachineMemOperand::MOLoad;
3362 Info.align = 16;
3363 return true;
3364 }
3365
3366 case Intrinsic::nvvm_wmma_m16n16k16_load_c_f32_col:
3367 case Intrinsic::nvvm_wmma_m16n16k16_load_c_f32_row:
3368 case Intrinsic::nvvm_wmma_m16n16k16_load_c_f32_col_stride:
3369 case Intrinsic::nvvm_wmma_m16n16k16_load_c_f32_row_stride:
3370 case Intrinsic::nvvm_wmma_m32n8k16_load_c_f32_col:
3371 case Intrinsic::nvvm_wmma_m32n8k16_load_c_f32_row:
3372 case Intrinsic::nvvm_wmma_m32n8k16_load_c_f32_col_stride:
3373 case Intrinsic::nvvm_wmma_m32n8k16_load_c_f32_row_stride:
3374 case Intrinsic::nvvm_wmma_m8n32k16_load_c_f32_col:
3375 case Intrinsic::nvvm_wmma_m8n32k16_load_c_f32_row:
3376 case Intrinsic::nvvm_wmma_m8n32k16_load_c_f32_col_stride:
3377 case Intrinsic::nvvm_wmma_m8n32k16_load_c_f32_row_stride: {
3378 Info.opc = ISD::INTRINSIC_W_CHAIN;
3379 Info.memVT = MVT::v8f32;
3380 Info.ptrVal = I.getArgOperand(0);
3381 Info.offset = 0;
3382 Info.flags = MachineMemOperand::MOLoad;
3383 Info.align = 16;
3384 return true;
3385 }
3386
3387 case Intrinsic::nvvm_wmma_m16n16k16_store_d_f16_col:
3388 case Intrinsic::nvvm_wmma_m16n16k16_store_d_f16_row:
3389 case Intrinsic::nvvm_wmma_m16n16k16_store_d_f16_col_stride:
3390 case Intrinsic::nvvm_wmma_m16n16k16_store_d_f16_row_stride:
3391 case Intrinsic::nvvm_wmma_m32n8k16_store_d_f16_col:
3392 case Intrinsic::nvvm_wmma_m32n8k16_store_d_f16_row:
3393 case Intrinsic::nvvm_wmma_m32n8k16_store_d_f16_col_stride:
3394 case Intrinsic::nvvm_wmma_m32n8k16_store_d_f16_row_stride:
3395 case Intrinsic::nvvm_wmma_m8n32k16_store_d_f16_col:
3396 case Intrinsic::nvvm_wmma_m8n32k16_store_d_f16_row:
3397 case Intrinsic::nvvm_wmma_m8n32k16_store_d_f16_col_stride:
3398 case Intrinsic::nvvm_wmma_m8n32k16_store_d_f16_row_stride: {
3399 Info.opc = ISD::INTRINSIC_VOID;
3400 Info.memVT = MVT::v4f16;
3401 Info.ptrVal = I.getArgOperand(0);
3402 Info.offset = 0;
3403 Info.flags = MachineMemOperand::MOStore;
3404 Info.align = 16;
3405 return true;
3406 }
3407
3408 case Intrinsic::nvvm_wmma_m16n16k16_store_d_f32_col:
3409 case Intrinsic::nvvm_wmma_m16n16k16_store_d_f32_row:
3410 case Intrinsic::nvvm_wmma_m16n16k16_store_d_f32_col_stride:
3411 case Intrinsic::nvvm_wmma_m16n16k16_store_d_f32_row_stride:
3412 case Intrinsic::nvvm_wmma_m32n8k16_store_d_f32_col:
3413 case Intrinsic::nvvm_wmma_m32n8k16_store_d_f32_row:
3414 case Intrinsic::nvvm_wmma_m32n8k16_store_d_f32_col_stride:
3415 case Intrinsic::nvvm_wmma_m32n8k16_store_d_f32_row_stride:
3416 case Intrinsic::nvvm_wmma_m8n32k16_store_d_f32_col:
3417 case Intrinsic::nvvm_wmma_m8n32k16_store_d_f32_row:
3418 case Intrinsic::nvvm_wmma_m8n32k16_store_d_f32_col_stride:
3419 case Intrinsic::nvvm_wmma_m8n32k16_store_d_f32_row_stride: {
3420 Info.opc = ISD::INTRINSIC_VOID;
3421 Info.memVT = MVT::v8f32;
3422 Info.ptrVal = I.getArgOperand(0);
3423 Info.offset = 0;
3424 Info.flags = MachineMemOperand::MOStore;
3425 Info.align = 16;
3426 return true;
3427 }
3428
3429 case Intrinsic::nvvm_atomic_load_add_f32:
3430 case Intrinsic::nvvm_atomic_load_add_f64:
3431 case Intrinsic::nvvm_atomic_load_inc_32:
3432 case Intrinsic::nvvm_atomic_load_dec_32:
3433
3434 case Intrinsic::nvvm_atomic_add_gen_f_cta:
3435 case Intrinsic::nvvm_atomic_add_gen_f_sys:
3436 case Intrinsic::nvvm_atomic_add_gen_i_cta:
3437 case Intrinsic::nvvm_atomic_add_gen_i_sys:
3438 case Intrinsic::nvvm_atomic_and_gen_i_cta:
3439 case Intrinsic::nvvm_atomic_and_gen_i_sys:
3440 case Intrinsic::nvvm_atomic_cas_gen_i_cta:
3441 case Intrinsic::nvvm_atomic_cas_gen_i_sys:
3442 case Intrinsic::nvvm_atomic_dec_gen_i_cta:
3443 case Intrinsic::nvvm_atomic_dec_gen_i_sys:
3444 case Intrinsic::nvvm_atomic_inc_gen_i_cta:
3445 case Intrinsic::nvvm_atomic_inc_gen_i_sys:
3446 case Intrinsic::nvvm_atomic_max_gen_i_cta:
3447 case Intrinsic::nvvm_atomic_max_gen_i_sys:
3448 case Intrinsic::nvvm_atomic_min_gen_i_cta:
3449 case Intrinsic::nvvm_atomic_min_gen_i_sys:
3450 case Intrinsic::nvvm_atomic_or_gen_i_cta:
3451 case Intrinsic::nvvm_atomic_or_gen_i_sys:
3452 case Intrinsic::nvvm_atomic_exch_gen_i_cta:
3453 case Intrinsic::nvvm_atomic_exch_gen_i_sys:
3454 case Intrinsic::nvvm_atomic_xor_gen_i_cta:
3455 case Intrinsic::nvvm_atomic_xor_gen_i_sys: {
3456 auto &DL = I.getModule()->getDataLayout();
3457 Info.opc = ISD::INTRINSIC_W_CHAIN;
3458 Info.memVT = getValueType(DL, I.getType());
3459 Info.ptrVal = I.getArgOperand(0);
3460 Info.offset = 0;
3461 Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
3462 Info.align = 0;
3463 return true;
3464 }
3465
3466 case Intrinsic::nvvm_ldu_global_i:
3467 case Intrinsic::nvvm_ldu_global_f:
3468 case Intrinsic::nvvm_ldu_global_p: {
3469 auto &DL = I.getModule()->getDataLayout();
3470 Info.opc = ISD::INTRINSIC_W_CHAIN;
3471 if (Intrinsic == Intrinsic::nvvm_ldu_global_i)
3472 Info.memVT = getValueType(DL, I.getType());
3473 else if(Intrinsic == Intrinsic::nvvm_ldu_global_p)
3474 Info.memVT = getPointerTy(DL);
3475 else
3476 Info.memVT = getValueType(DL, I.getType());
3477 Info.ptrVal = I.getArgOperand(0);
3478 Info.offset = 0;
3479 Info.flags = MachineMemOperand::MOLoad;
3480 Info.align = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
3481
3482 return true;
3483 }
3484 case Intrinsic::nvvm_ldg_global_i:
3485 case Intrinsic::nvvm_ldg_global_f:
3486 case Intrinsic::nvvm_ldg_global_p: {
3487 auto &DL = I.getModule()->getDataLayout();
3488
3489 Info.opc = ISD::INTRINSIC_W_CHAIN;
3490 if (Intrinsic == Intrinsic::nvvm_ldg_global_i)
3491 Info.memVT = getValueType(DL, I.getType());
3492 else if(Intrinsic == Intrinsic::nvvm_ldg_global_p)
3493 Info.memVT = getPointerTy(DL);
3494 else
3495 Info.memVT = getValueType(DL, I.getType());
3496 Info.ptrVal = I.getArgOperand(0);
3497 Info.offset = 0;
3498 Info.flags = MachineMemOperand::MOLoad;
3499 Info.align = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
3500
3501 return true;
3502 }
3503
3504 case Intrinsic::nvvm_tex_1d_v4f32_s32:
3505 case Intrinsic::nvvm_tex_1d_v4f32_f32:
3506 case Intrinsic::nvvm_tex_1d_level_v4f32_f32:
3507 case Intrinsic::nvvm_tex_1d_grad_v4f32_f32:
3508 case Intrinsic::nvvm_tex_1d_array_v4f32_s32:
3509 case Intrinsic::nvvm_tex_1d_array_v4f32_f32:
3510 case Intrinsic::nvvm_tex_1d_array_level_v4f32_f32:
3511 case Intrinsic::nvvm_tex_1d_array_grad_v4f32_f32:
3512 case Intrinsic::nvvm_tex_2d_v4f32_s32:
3513 case Intrinsic::nvvm_tex_2d_v4f32_f32:
3514 case Intrinsic::nvvm_tex_2d_level_v4f32_f32:
3515 case Intrinsic::nvvm_tex_2d_grad_v4f32_f32:
3516 case Intrinsic::nvvm_tex_2d_array_v4f32_s32:
3517 case Intrinsic::nvvm_tex_2d_array_v4f32_f32:
3518 case Intrinsic::nvvm_tex_2d_array_level_v4f32_f32:
3519 case Intrinsic::nvvm_tex_2d_array_grad_v4f32_f32:
3520 case Intrinsic::nvvm_tex_3d_v4f32_s32:
3521 case Intrinsic::nvvm_tex_3d_v4f32_f32:
3522 case Intrinsic::nvvm_tex_3d_level_v4f32_f32:
3523 case Intrinsic::nvvm_tex_3d_grad_v4f32_f32:
3524 case Intrinsic::nvvm_tex_cube_v4f32_f32:
3525 case Intrinsic::nvvm_tex_cube_level_v4f32_f32:
3526 case Intrinsic::nvvm_tex_cube_array_v4f32_f32:
3527 case Intrinsic::nvvm_tex_cube_array_level_v4f32_f32:
3528 case Intrinsic::nvvm_tld4_r_2d_v4f32_f32:
3529 case Intrinsic::nvvm_tld4_g_2d_v4f32_f32:
3530 case Intrinsic::nvvm_tld4_b_2d_v4f32_f32:
3531 case Intrinsic::nvvm_tld4_a_2d_v4f32_f32:
3532 case Intrinsic::nvvm_tex_unified_1d_v4f32_s32:
3533 case Intrinsic::nvvm_tex_unified_1d_v4f32_f32:
3534 case Intrinsic::nvvm_tex_unified_1d_level_v4f32_f32:
3535 case Intrinsic::nvvm_tex_unified_1d_grad_v4f32_f32:
3536 case Intrinsic::nvvm_tex_unified_1d_array_v4f32_s32:
3537 case Intrinsic::nvvm_tex_unified_1d_array_v4f32_f32:
3538 case Intrinsic::nvvm_tex_unified_1d_array_level_v4f32_f32:
3539 case Intrinsic::nvvm_tex_unified_1d_array_grad_v4f32_f32:
3540 case Intrinsic::nvvm_tex_unified_2d_v4f32_s32:
3541 case Intrinsic::nvvm_tex_unified_2d_v4f32_f32:
3542 case Intrinsic::nvvm_tex_unified_2d_level_v4f32_f32:
3543 case Intrinsic::nvvm_tex_unified_2d_grad_v4f32_f32:
3544 case Intrinsic::nvvm_tex_unified_2d_array_v4f32_s32:
3545 case Intrinsic::nvvm_tex_unified_2d_array_v4f32_f32:
3546 case Intrinsic::nvvm_tex_unified_2d_array_level_v4f32_f32:
3547 case Intrinsic::nvvm_tex_unified_2d_array_grad_v4f32_f32:
3548 case Intrinsic::nvvm_tex_unified_3d_v4f32_s32:
3549 case Intrinsic::nvvm_tex_unified_3d_v4f32_f32:
3550 case Intrinsic::nvvm_tex_unified_3d_level_v4f32_f32:
3551 case Intrinsic::nvvm_tex_unified_3d_grad_v4f32_f32:
3552 case Intrinsic::nvvm_tex_unified_cube_v4f32_f32:
3553 case Intrinsic::nvvm_tex_unified_cube_level_v4f32_f32:
3554 case Intrinsic::nvvm_tex_unified_cube_array_v4f32_f32:
3555 case Intrinsic::nvvm_tex_unified_cube_array_level_v4f32_f32:
3556 case Intrinsic::nvvm_tld4_unified_r_2d_v4f32_f32:
3557 case Intrinsic::nvvm_tld4_unified_g_2d_v4f32_f32:
3558 case Intrinsic::nvvm_tld4_unified_b_2d_v4f32_f32:
3559 case Intrinsic::nvvm_tld4_unified_a_2d_v4f32_f32:
3560 Info.opc = getOpcForTextureInstr(Intrinsic);
3561 Info.memVT = MVT::v4f32;
3562 Info.ptrVal = nullptr;
3563 Info.offset = 0;
3564 Info.flags = MachineMemOperand::MOLoad;
3565 Info.align = 16;
3566 return true;
3567
3568 case Intrinsic::nvvm_tex_1d_v4s32_s32:
3569 case Intrinsic::nvvm_tex_1d_v4s32_f32:
3570 case Intrinsic::nvvm_tex_1d_level_v4s32_f32:
3571 case Intrinsic::nvvm_tex_1d_grad_v4s32_f32:
3572 case Intrinsic::nvvm_tex_1d_array_v4s32_s32:
3573 case Intrinsic::nvvm_tex_1d_array_v4s32_f32:
3574 case Intrinsic::nvvm_tex_1d_array_level_v4s32_f32:
3575 case Intrinsic::nvvm_tex_1d_array_grad_v4s32_f32:
3576 case Intrinsic::nvvm_tex_2d_v4s32_s32:
3577 case Intrinsic::nvvm_tex_2d_v4s32_f32:
3578 case Intrinsic::nvvm_tex_2d_level_v4s32_f32:
3579 case Intrinsic::nvvm_tex_2d_grad_v4s32_f32:
3580 case Intrinsic::nvvm_tex_2d_array_v4s32_s32:
3581 case Intrinsic::nvvm_tex_2d_array_v4s32_f32:
3582 case Intrinsic::nvvm_tex_2d_array_level_v4s32_f32:
3583 case Intrinsic::nvvm_tex_2d_array_grad_v4s32_f32:
3584 case Intrinsic::nvvm_tex_3d_v4s32_s32:
3585 case Intrinsic::nvvm_tex_3d_v4s32_f32:
3586 case Intrinsic::nvvm_tex_3d_level_v4s32_f32:
3587 case Intrinsic::nvvm_tex_3d_grad_v4s32_f32:
3588 case Intrinsic::nvvm_tex_cube_v4s32_f32:
3589 case Intrinsic::nvvm_tex_cube_level_v4s32_f32:
3590 case Intrinsic::nvvm_tex_cube_array_v4s32_f32:
3591 case Intrinsic::nvvm_tex_cube_array_level_v4s32_f32:
3592 case Intrinsic::nvvm_tex_cube_v4u32_f32:
3593 case Intrinsic::nvvm_tex_cube_level_v4u32_f32:
3594 case Intrinsic::nvvm_tex_cube_array_v4u32_f32:
3595 case Intrinsic::nvvm_tex_cube_array_level_v4u32_f32:
3596 case Intrinsic::nvvm_tex_1d_v4u32_s32:
3597 case Intrinsic::nvvm_tex_1d_v4u32_f32:
3598 case Intrinsic::nvvm_tex_1d_level_v4u32_f32:
3599 case Intrinsic::nvvm_tex_1d_grad_v4u32_f32:
3600 case Intrinsic::nvvm_tex_1d_array_v4u32_s32:
3601 case Intrinsic::nvvm_tex_1d_array_v4u32_f32:
3602 case Intrinsic::nvvm_tex_1d_array_level_v4u32_f32:
3603 case Intrinsic::nvvm_tex_1d_array_grad_v4u32_f32:
3604 case Intrinsic::nvvm_tex_2d_v4u32_s32:
3605 case Intrinsic::nvvm_tex_2d_v4u32_f32:
3606 case Intrinsic::nvvm_tex_2d_level_v4u32_f32:
3607 case Intrinsic::nvvm_tex_2d_grad_v4u32_f32:
3608 case Intrinsic::nvvm_tex_2d_array_v4u32_s32:
3609 case Intrinsic::nvvm_tex_2d_array_v4u32_f32:
3610 case Intrinsic::nvvm_tex_2d_array_level_v4u32_f32:
3611 case Intrinsic::nvvm_tex_2d_array_grad_v4u32_f32:
3612 case Intrinsic::nvvm_tex_3d_v4u32_s32:
3613 case Intrinsic::nvvm_tex_3d_v4u32_f32:
3614 case Intrinsic::nvvm_tex_3d_level_v4u32_f32:
3615 case Intrinsic::nvvm_tex_3d_grad_v4u32_f32:
3616 case Intrinsic::nvvm_tld4_r_2d_v4s32_f32:
3617 case Intrinsic::nvvm_tld4_g_2d_v4s32_f32:
3618 case Intrinsic::nvvm_tld4_b_2d_v4s32_f32:
3619 case Intrinsic::nvvm_tld4_a_2d_v4s32_f32:
3620 case Intrinsic::nvvm_tld4_r_2d_v4u32_f32:
3621 case Intrinsic::nvvm_tld4_g_2d_v4u32_f32:
3622 case Intrinsic::nvvm_tld4_b_2d_v4u32_f32:
3623 case Intrinsic::nvvm_tld4_a_2d_v4u32_f32:
3624 case Intrinsic::nvvm_tex_unified_1d_v4s32_s32:
3625 case Intrinsic::nvvm_tex_unified_1d_v4s32_f32:
3626 case Intrinsic::nvvm_tex_unified_1d_level_v4s32_f32:
3627 case Intrinsic::nvvm_tex_unified_1d_grad_v4s32_f32:
3628 case Intrinsic::nvvm_tex_unified_1d_array_v4s32_s32:
3629 case Intrinsic::nvvm_tex_unified_1d_array_v4s32_f32:
3630 case Intrinsic::nvvm_tex_unified_1d_array_level_v4s32_f32:
3631 case Intrinsic::nvvm_tex_unified_1d_array_grad_v4s32_f32:
3632 case Intrinsic::nvvm_tex_unified_2d_v4s32_s32:
3633 case Intrinsic::nvvm_tex_unified_2d_v4s32_f32:
3634 case Intrinsic::nvvm_tex_unified_2d_level_v4s32_f32:
3635 case Intrinsic::nvvm_tex_unified_2d_grad_v4s32_f32:
3636 case Intrinsic::nvvm_tex_unified_2d_array_v4s32_s32:
3637 case Intrinsic::nvvm_tex_unified_2d_array_v4s32_f32:
3638 case Intrinsic::nvvm_tex_unified_2d_array_level_v4s32_f32:
3639 case Intrinsic::nvvm_tex_unified_2d_array_grad_v4s32_f32:
3640 case Intrinsic::nvvm_tex_unified_3d_v4s32_s32:
3641 case Intrinsic::nvvm_tex_unified_3d_v4s32_f32:
3642 case Intrinsic::nvvm_tex_unified_3d_level_v4s32_f32:
3643 case Intrinsic::nvvm_tex_unified_3d_grad_v4s32_f32:
3644 case Intrinsic::nvvm_tex_unified_1d_v4u32_s32:
3645 case Intrinsic::nvvm_tex_unified_1d_v4u32_f32:
3646 case Intrinsic::nvvm_tex_unified_1d_level_v4u32_f32:
3647 case Intrinsic::nvvm_tex_unified_1d_grad_v4u32_f32:
3648 case Intrinsic::nvvm_tex_unified_1d_array_v4u32_s32:
3649 case Intrinsic::nvvm_tex_unified_1d_array_v4u32_f32:
3650 case Intrinsic::nvvm_tex_unified_1d_array_level_v4u32_f32:
3651 case Intrinsic::nvvm_tex_unified_1d_array_grad_v4u32_f32:
3652 case Intrinsic::nvvm_tex_unified_2d_v4u32_s32:
3653 case Intrinsic::nvvm_tex_unified_2d_v4u32_f32:
3654 case Intrinsic::nvvm_tex_unified_2d_level_v4u32_f32:
3655 case Intrinsic::nvvm_tex_unified_2d_grad_v4u32_f32:
3656 case Intrinsic::nvvm_tex_unified_2d_array_v4u32_s32:
3657 case Intrinsic::nvvm_tex_unified_2d_array_v4u32_f32:
3658 case Intrinsic::nvvm_tex_unified_2d_array_level_v4u32_f32:
3659 case Intrinsic::nvvm_tex_unified_2d_array_grad_v4u32_f32:
3660 case Intrinsic::nvvm_tex_unified_3d_v4u32_s32:
3661 case Intrinsic::nvvm_tex_unified_3d_v4u32_f32:
3662 case Intrinsic::nvvm_tex_unified_3d_level_v4u32_f32:
3663 case Intrinsic::nvvm_tex_unified_3d_grad_v4u32_f32:
3664 case Intrinsic::nvvm_tex_unified_cube_v4s32_f32:
3665 case Intrinsic::nvvm_tex_unified_cube_level_v4s32_f32:
3666 case Intrinsic::nvvm_tex_unified_cube_array_v4s32_f32:
3667 case Intrinsic::nvvm_tex_unified_cube_array_level_v4s32_f32:
3668 case Intrinsic::nvvm_tex_unified_cube_v4u32_f32:
3669 case Intrinsic::nvvm_tex_unified_cube_level_v4u32_f32:
3670 case Intrinsic::nvvm_tex_unified_cube_array_v4u32_f32:
3671 case Intrinsic::nvvm_tex_unified_cube_array_level_v4u32_f32:
3672 case Intrinsic::nvvm_tld4_unified_r_2d_v4s32_f32:
3673 case Intrinsic::nvvm_tld4_unified_g_2d_v4s32_f32:
3674 case Intrinsic::nvvm_tld4_unified_b_2d_v4s32_f32:
3675 case Intrinsic::nvvm_tld4_unified_a_2d_v4s32_f32:
3676 case Intrinsic::nvvm_tld4_unified_r_2d_v4u32_f32:
3677 case Intrinsic::nvvm_tld4_unified_g_2d_v4u32_f32:
3678 case Intrinsic::nvvm_tld4_unified_b_2d_v4u32_f32:
3679 case Intrinsic::nvvm_tld4_unified_a_2d_v4u32_f32:
3680 Info.opc = getOpcForTextureInstr(Intrinsic);
3681 Info.memVT = MVT::v4i32;
3682 Info.ptrVal = nullptr;
3683 Info.offset = 0;
3684 Info.flags = MachineMemOperand::MOLoad;
3685 Info.align = 16;
3686 return true;
3687
3688 case Intrinsic::nvvm_suld_1d_i8_clamp:
3689 case Intrinsic::nvvm_suld_1d_v2i8_clamp:
3690 case Intrinsic::nvvm_suld_1d_v4i8_clamp:
3691 case Intrinsic::nvvm_suld_1d_array_i8_clamp:
3692 case Intrinsic::nvvm_suld_1d_array_v2i8_clamp:
3693 case Intrinsic::nvvm_suld_1d_array_v4i8_clamp:
3694 case Intrinsic::nvvm_suld_2d_i8_clamp:
3695 case Intrinsic::nvvm_suld_2d_v2i8_clamp:
3696 case Intrinsic::nvvm_suld_2d_v4i8_clamp:
3697 case Intrinsic::nvvm_suld_2d_array_i8_clamp:
3698 case Intrinsic::nvvm_suld_2d_array_v2i8_clamp:
3699 case Intrinsic::nvvm_suld_2d_array_v4i8_clamp:
3700 case Intrinsic::nvvm_suld_3d_i8_clamp:
3701 case Intrinsic::nvvm_suld_3d_v2i8_clamp:
3702 case Intrinsic::nvvm_suld_3d_v4i8_clamp:
3703 case Intrinsic::nvvm_suld_1d_i8_trap:
3704 case Intrinsic::nvvm_suld_1d_v2i8_trap:
3705 case Intrinsic::nvvm_suld_1d_v4i8_trap:
3706 case Intrinsic::nvvm_suld_1d_array_i8_trap:
3707 case Intrinsic::nvvm_suld_1d_array_v2i8_trap:
3708 case Intrinsic::nvvm_suld_1d_array_v4i8_trap:
3709 case Intrinsic::nvvm_suld_2d_i8_trap:
3710 case Intrinsic::nvvm_suld_2d_v2i8_trap:
3711 case Intrinsic::nvvm_suld_2d_v4i8_trap:
3712 case Intrinsic::nvvm_suld_2d_array_i8_trap:
3713 case Intrinsic::nvvm_suld_2d_array_v2i8_trap:
3714 case Intrinsic::nvvm_suld_2d_array_v4i8_trap:
3715 case Intrinsic::nvvm_suld_3d_i8_trap:
3716 case Intrinsic::nvvm_suld_3d_v2i8_trap:
3717 case Intrinsic::nvvm_suld_3d_v4i8_trap:
3718 case Intrinsic::nvvm_suld_1d_i8_zero:
3719 case Intrinsic::nvvm_suld_1d_v2i8_zero:
3720 case Intrinsic::nvvm_suld_1d_v4i8_zero:
3721 case Intrinsic::nvvm_suld_1d_array_i8_zero:
3722 case Intrinsic::nvvm_suld_1d_array_v2i8_zero:
3723 case Intrinsic::nvvm_suld_1d_array_v4i8_zero:
3724 case Intrinsic::nvvm_suld_2d_i8_zero:
3725 case Intrinsic::nvvm_suld_2d_v2i8_zero:
3726 case Intrinsic::nvvm_suld_2d_v4i8_zero:
3727 case Intrinsic::nvvm_suld_2d_array_i8_zero:
3728 case Intrinsic::nvvm_suld_2d_array_v2i8_zero:
3729 case Intrinsic::nvvm_suld_2d_array_v4i8_zero:
3730 case Intrinsic::nvvm_suld_3d_i8_zero:
3731 case Intrinsic::nvvm_suld_3d_v2i8_zero:
3732 case Intrinsic::nvvm_suld_3d_v4i8_zero:
3733 Info.opc = getOpcForSurfaceInstr(Intrinsic);
3734 Info.memVT = MVT::i8;
3735 Info.ptrVal = nullptr;
3736 Info.offset = 0;
3737 Info.flags = MachineMemOperand::MOLoad;
3738 Info.align = 16;
3739 return true;
3740
3741 case Intrinsic::nvvm_suld_1d_i16_clamp:
3742 case Intrinsic::nvvm_suld_1d_v2i16_clamp:
3743 case Intrinsic::nvvm_suld_1d_v4i16_clamp:
3744 case Intrinsic::nvvm_suld_1d_array_i16_clamp:
3745 case Intrinsic::nvvm_suld_1d_array_v2i16_clamp:
3746 case Intrinsic::nvvm_suld_1d_array_v4i16_clamp:
3747 case Intrinsic::nvvm_suld_2d_i16_clamp:
3748 case Intrinsic::nvvm_suld_2d_v2i16_clamp:
3749 case Intrinsic::nvvm_suld_2d_v4i16_clamp:
3750 case Intrinsic::nvvm_suld_2d_array_i16_clamp:
3751 case Intrinsic::nvvm_suld_2d_array_v2i16_clamp:
3752 case Intrinsic::nvvm_suld_2d_array_v4i16_clamp:
3753 case Intrinsic::nvvm_suld_3d_i16_clamp:
3754 case Intrinsic::nvvm_suld_3d_v2i16_clamp:
3755 case Intrinsic::nvvm_suld_3d_v4i16_clamp:
3756 case Intrinsic::nvvm_suld_1d_i16_trap:
3757 case Intrinsic::nvvm_suld_1d_v2i16_trap:
3758 case Intrinsic::nvvm_suld_1d_v4i16_trap:
3759 case Intrinsic::nvvm_suld_1d_array_i16_trap:
3760 case Intrinsic::nvvm_suld_1d_array_v2i16_trap:
3761 case Intrinsic::nvvm_suld_1d_array_v4i16_trap:
3762 case Intrinsic::nvvm_suld_2d_i16_trap:
3763 case Intrinsic::nvvm_suld_2d_v2i16_trap:
3764 case Intrinsic::nvvm_suld_2d_v4i16_trap:
3765 case Intrinsic::nvvm_suld_2d_array_i16_trap:
3766 case Intrinsic::nvvm_suld_2d_array_v2i16_trap:
3767 case Intrinsic::nvvm_suld_2d_array_v4i16_trap:
3768 case Intrinsic::nvvm_suld_3d_i16_trap:
3769 case Intrinsic::nvvm_suld_3d_v2i16_trap:
3770 case Intrinsic::nvvm_suld_3d_v4i16_trap:
3771 case Intrinsic::nvvm_suld_1d_i16_zero:
3772 case Intrinsic::nvvm_suld_1d_v2i16_zero:
3773 case Intrinsic::nvvm_suld_1d_v4i16_zero:
3774 case Intrinsic::nvvm_suld_1d_array_i16_zero:
3775 case Intrinsic::nvvm_suld_1d_array_v2i16_zero:
3776 case Intrinsic::nvvm_suld_1d_array_v4i16_zero:
3777 case Intrinsic::nvvm_suld_2d_i16_zero:
3778 case Intrinsic::nvvm_suld_2d_v2i16_zero:
3779 case Intrinsic::nvvm_suld_2d_v4i16_zero:
3780 case Intrinsic::nvvm_suld_2d_array_i16_zero:
3781 case Intrinsic::nvvm_suld_2d_array_v2i16_zero:
3782 case Intrinsic::nvvm_suld_2d_array_v4i16_zero:
3783 case Intrinsic::nvvm_suld_3d_i16_zero:
3784 case Intrinsic::nvvm_suld_3d_v2i16_zero:
3785 case Intrinsic::nvvm_suld_3d_v4i16_zero:
3786 Info.opc = getOpcForSurfaceInstr(Intrinsic);
3787 Info.memVT = MVT::i16;
3788 Info.ptrVal = nullptr;
3789 Info.offset = 0;
3790 Info.flags = MachineMemOperand::MOLoad;
3791 Info.align = 16;
3792 return true;
3793
3794 case Intrinsic::nvvm_suld_1d_i32_clamp:
3795 case Intrinsic::nvvm_suld_1d_v2i32_clamp:
3796 case Intrinsic::nvvm_suld_1d_v4i32_clamp:
3797 case Intrinsic::nvvm_suld_1d_array_i32_clamp:
3798 case Intrinsic::nvvm_suld_1d_array_v2i32_clamp:
3799 case Intrinsic::nvvm_suld_1d_array_v4i32_clamp:
3800 case Intrinsic::nvvm_suld_2d_i32_clamp:
3801 case Intrinsic::nvvm_suld_2d_v2i32_clamp:
3802 case Intrinsic::nvvm_suld_2d_v4i32_clamp:
3803 case Intrinsic::nvvm_suld_2d_array_i32_clamp:
3804 case Intrinsic::nvvm_suld_2d_array_v2i32_clamp:
3805 case Intrinsic::nvvm_suld_2d_array_v4i32_clamp:
3806 case Intrinsic::nvvm_suld_3d_i32_clamp:
3807 case Intrinsic::nvvm_suld_3d_v2i32_clamp:
3808 case Intrinsic::nvvm_suld_3d_v4i32_clamp:
3809 case Intrinsic::nvvm_suld_1d_i32_trap:
3810 case Intrinsic::nvvm_suld_1d_v2i32_trap:
3811 case Intrinsic::nvvm_suld_1d_v4i32_trap:
3812 case Intrinsic::nvvm_suld_1d_array_i32_trap:
3813 case Intrinsic::nvvm_suld_1d_array_v2i32_trap:
3814 case Intrinsic::nvvm_suld_1d_array_v4i32_trap:
3815 case Intrinsic::nvvm_suld_2d_i32_trap:
3816 case Intrinsic::nvvm_suld_2d_v2i32_trap:
3817 case Intrinsic::nvvm_suld_2d_v4i32_trap:
3818 case Intrinsic::nvvm_suld_2d_array_i32_trap:
3819 case Intrinsic::nvvm_suld_2d_array_v2i32_trap:
3820 case Intrinsic::nvvm_suld_2d_array_v4i32_trap:
3821 case Intrinsic::nvvm_suld_3d_i32_trap:
3822 case Intrinsic::nvvm_suld_3d_v2i32_trap:
3823 case Intrinsic::nvvm_suld_3d_v4i32_trap:
3824 case Intrinsic::nvvm_suld_1d_i32_zero:
3825 case Intrinsic::nvvm_suld_1d_v2i32_zero:
3826 case Intrinsic::nvvm_suld_1d_v4i32_zero:
3827 case Intrinsic::nvvm_suld_1d_array_i32_zero:
3828 case Intrinsic::nvvm_suld_1d_array_v2i32_zero:
3829 case Intrinsic::nvvm_suld_1d_array_v4i32_zero:
3830 case Intrinsic::nvvm_suld_2d_i32_zero:
3831 case Intrinsic::nvvm_suld_2d_v2i32_zero:
3832 case Intrinsic::nvvm_suld_2d_v4i32_zero:
3833 case Intrinsic::nvvm_suld_2d_array_i32_zero:
3834 case Intrinsic::nvvm_suld_2d_array_v2i32_zero:
3835 case Intrinsic::nvvm_suld_2d_array_v4i32_zero:
3836 case Intrinsic::nvvm_suld_3d_i32_zero:
3837 case Intrinsic::nvvm_suld_3d_v2i32_zero:
3838 case Intrinsic::nvvm_suld_3d_v4i32_zero:
3839 Info.opc = getOpcForSurfaceInstr(Intrinsic);
3840 Info.memVT = MVT::i32;
3841 Info.ptrVal = nullptr;
3842 Info.offset = 0;
3843 Info.flags = MachineMemOperand::MOLoad;
3844 Info.align = 16;
3845 return true;
3846
3847 case Intrinsic::nvvm_suld_1d_i64_clamp:
3848 case Intrinsic::nvvm_suld_1d_v2i64_clamp:
3849 case Intrinsic::nvvm_suld_1d_array_i64_clamp:
3850 case Intrinsic::nvvm_suld_1d_array_v2i64_clamp:
3851 case Intrinsic::nvvm_suld_2d_i64_clamp:
3852 case Intrinsic::nvvm_suld_2d_v2i64_clamp:
3853 case Intrinsic::nvvm_suld_2d_array_i64_clamp:
3854 case Intrinsic::nvvm_suld_2d_array_v2i64_clamp:
3855 case Intrinsic::nvvm_suld_3d_i64_clamp:
3856 case Intrinsic::nvvm_suld_3d_v2i64_clamp:
3857 case Intrinsic::nvvm_suld_1d_i64_trap:
3858 case Intrinsic::nvvm_suld_1d_v2i64_trap:
3859 case Intrinsic::nvvm_suld_1d_array_i64_trap:
3860 case Intrinsic::nvvm_suld_1d_array_v2i64_trap:
3861 case Intrinsic::nvvm_suld_2d_i64_trap:
3862 case Intrinsic::nvvm_suld_2d_v2i64_trap:
3863 case Intrinsic::nvvm_suld_2d_array_i64_trap:
3864 case Intrinsic::nvvm_suld_2d_array_v2i64_trap:
3865 case Intrinsic::nvvm_suld_3d_i64_trap:
3866 case Intrinsic::nvvm_suld_3d_v2i64_trap:
3867 case Intrinsic::nvvm_suld_1d_i64_zero:
3868 case Intrinsic::nvvm_suld_1d_v2i64_zero:
3869 case Intrinsic::nvvm_suld_1d_array_i64_zero:
3870 case Intrinsic::nvvm_suld_1d_array_v2i64_zero:
3871 case Intrinsic::nvvm_suld_2d_i64_zero:
3872 case Intrinsic::nvvm_suld_2d_v2i64_zero:
3873 case Intrinsic::nvvm_suld_2d_array_i64_zero:
3874 case Intrinsic::nvvm_suld_2d_array_v2i64_zero:
3875 case Intrinsic::nvvm_suld_3d_i64_zero:
3876 case Intrinsic::nvvm_suld_3d_v2i64_zero:
3877 Info.opc = getOpcForSurfaceInstr(Intrinsic);
3878 Info.memVT = MVT::i64;
3879 Info.ptrVal = nullptr;
3880 Info.offset = 0;
3881 Info.flags = MachineMemOperand::MOLoad;
3882 Info.align = 16;
3883 return true;
3884 }
3885 return false;
3886 }
3887
3888 /// isLegalAddressingMode - Return true if the addressing mode represented
3889 /// by AM is legal for this target, for a load/store of the specified type.
3890 /// Used to guide target specific optimizations, like loop strength reduction
3891 /// (LoopStrengthReduce.cpp) and memory optimization for address mode
3892 /// (CodeGenPrepare.cpp)
isLegalAddressingMode(const DataLayout & DL,const AddrMode & AM,Type * Ty,unsigned AS,Instruction * I) const3893 bool NVPTXTargetLowering::isLegalAddressingMode(const DataLayout &DL,
3894 const AddrMode &AM, Type *Ty,
3895 unsigned AS, Instruction *I) const {
3896 // AddrMode - This represents an addressing mode of:
3897 // BaseGV + BaseOffs + BaseReg + Scale*ScaleReg
3898 //
3899 // The legal address modes are
3900 // - [avar]
3901 // - [areg]
3902 // - [areg+immoff]
3903 // - [immAddr]
3904
3905 if (AM.BaseGV) {
3906 return !AM.BaseOffs && !AM.HasBaseReg && !AM.Scale;
3907 }
3908
3909 switch (AM.Scale) {
3910 case 0: // "r", "r+i" or "i" is allowed
3911 break;
3912 case 1:
3913 if (AM.HasBaseReg) // "r+r+i" or "r+r" is not allowed.
3914 return false;
3915 // Otherwise we have r+i.
3916 break;
3917 default:
3918 // No scale > 1 is allowed
3919 return false;
3920 }
3921 return true;
3922 }
3923
3924 //===----------------------------------------------------------------------===//
3925 // NVPTX Inline Assembly Support
3926 //===----------------------------------------------------------------------===//
3927
3928 /// getConstraintType - Given a constraint letter, return the type of
3929 /// constraint it is for this target.
3930 NVPTXTargetLowering::ConstraintType
getConstraintType(StringRef Constraint) const3931 NVPTXTargetLowering::getConstraintType(StringRef Constraint) const {
3932 if (Constraint.size() == 1) {
3933 switch (Constraint[0]) {
3934 default:
3935 break;
3936 case 'b':
3937 case 'r':
3938 case 'h':
3939 case 'c':
3940 case 'l':
3941 case 'f':
3942 case 'd':
3943 case '0':
3944 case 'N':
3945 return C_RegisterClass;
3946 }
3947 }
3948 return TargetLowering::getConstraintType(Constraint);
3949 }
3950
3951 std::pair<unsigned, const TargetRegisterClass *>
getRegForInlineAsmConstraint(const TargetRegisterInfo * TRI,StringRef Constraint,MVT VT) const3952 NVPTXTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
3953 StringRef Constraint,
3954 MVT VT) const {
3955 if (Constraint.size() == 1) {
3956 switch (Constraint[0]) {
3957 case 'b':
3958 return std::make_pair(0U, &NVPTX::Int1RegsRegClass);
3959 case 'c':
3960 return std::make_pair(0U, &NVPTX::Int16RegsRegClass);
3961 case 'h':
3962 return std::make_pair(0U, &NVPTX::Int16RegsRegClass);
3963 case 'r':
3964 return std::make_pair(0U, &NVPTX::Int32RegsRegClass);
3965 case 'l':
3966 case 'N':
3967 return std::make_pair(0U, &NVPTX::Int64RegsRegClass);
3968 case 'f':
3969 return std::make_pair(0U, &NVPTX::Float32RegsRegClass);
3970 case 'd':
3971 return std::make_pair(0U, &NVPTX::Float64RegsRegClass);
3972 }
3973 }
3974 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
3975 }
3976
3977 //===----------------------------------------------------------------------===//
3978 // NVPTX DAG Combining
3979 //===----------------------------------------------------------------------===//
3980
allowFMA(MachineFunction & MF,CodeGenOpt::Level OptLevel) const3981 bool NVPTXTargetLowering::allowFMA(MachineFunction &MF,
3982 CodeGenOpt::Level OptLevel) const {
3983 // Always honor command-line argument
3984 if (FMAContractLevelOpt.getNumOccurrences() > 0)
3985 return FMAContractLevelOpt > 0;
3986
3987 // Do not contract if we're not optimizing the code.
3988 if (OptLevel == 0)
3989 return false;
3990
3991 // Honor TargetOptions flags that explicitly say fusion is okay.
3992 if (MF.getTarget().Options.AllowFPOpFusion == FPOpFusion::Fast)
3993 return true;
3994
3995 return allowUnsafeFPMath(MF);
3996 }
3997
allowUnsafeFPMath(MachineFunction & MF) const3998 bool NVPTXTargetLowering::allowUnsafeFPMath(MachineFunction &MF) const {
3999 // Honor TargetOptions flags that explicitly say unsafe math is okay.
4000 if (MF.getTarget().Options.UnsafeFPMath)
4001 return true;
4002
4003 // Allow unsafe math if unsafe-fp-math attribute explicitly says so.
4004 const Function &F = MF.getFunction();
4005 if (F.hasFnAttribute("unsafe-fp-math")) {
4006 Attribute Attr = F.getFnAttribute("unsafe-fp-math");
4007 StringRef Val = Attr.getValueAsString();
4008 if (Val == "true")
4009 return true;
4010 }
4011
4012 return false;
4013 }
4014
4015 /// PerformADDCombineWithOperands - Try DAG combinations for an ADD with
4016 /// operands N0 and N1. This is a helper for PerformADDCombine that is
4017 /// called with the default operands, and if that fails, with commuted
4018 /// operands.
PerformADDCombineWithOperands(SDNode * N,SDValue N0,SDValue N1,TargetLowering::DAGCombinerInfo & DCI,const NVPTXSubtarget & Subtarget,CodeGenOpt::Level OptLevel)4019 static SDValue PerformADDCombineWithOperands(SDNode *N, SDValue N0, SDValue N1,
4020 TargetLowering::DAGCombinerInfo &DCI,
4021 const NVPTXSubtarget &Subtarget,
4022 CodeGenOpt::Level OptLevel) {
4023 SelectionDAG &DAG = DCI.DAG;
4024 // Skip non-integer, non-scalar case
4025 EVT VT=N0.getValueType();
4026 if (VT.isVector())
4027 return SDValue();
4028
4029 // fold (add (mul a, b), c) -> (mad a, b, c)
4030 //
4031 if (N0.getOpcode() == ISD::MUL) {
4032 assert (VT.isInteger());
4033 // For integer:
4034 // Since integer multiply-add costs the same as integer multiply
4035 // but is more costly than integer add, do the fusion only when
4036 // the mul is only used in the add.
4037 if (OptLevel==CodeGenOpt::None || VT != MVT::i32 ||
4038 !N0.getNode()->hasOneUse())
4039 return SDValue();
4040
4041 // Do the folding
4042 return DAG.getNode(NVPTXISD::IMAD, SDLoc(N), VT,
4043 N0.getOperand(0), N0.getOperand(1), N1);
4044 }
4045 else if (N0.getOpcode() == ISD::FMUL) {
4046 if (VT == MVT::f32 || VT == MVT::f64) {
4047 const auto *TLI = static_cast<const NVPTXTargetLowering *>(
4048 &DAG.getTargetLoweringInfo());
4049 if (!TLI->allowFMA(DAG.getMachineFunction(), OptLevel))
4050 return SDValue();
4051
4052 // For floating point:
4053 // Do the fusion only when the mul has less than 5 uses and all
4054 // are add.
4055 // The heuristic is that if a use is not an add, then that use
4056 // cannot be fused into fma, therefore mul is still needed anyway.
4057 // If there are more than 4 uses, even if they are all add, fusing
4058 // them will increase register pressue.
4059 //
4060 int numUses = 0;
4061 int nonAddCount = 0;
4062 for (SDNode::use_iterator UI = N0.getNode()->use_begin(),
4063 UE = N0.getNode()->use_end();
4064 UI != UE; ++UI) {
4065 numUses++;
4066 SDNode *User = *UI;
4067 if (User->getOpcode() != ISD::FADD)
4068 ++nonAddCount;
4069 }
4070 if (numUses >= 5)
4071 return SDValue();
4072 if (nonAddCount) {
4073 int orderNo = N->getIROrder();
4074 int orderNo2 = N0.getNode()->getIROrder();
4075 // simple heuristics here for considering potential register
4076 // pressure, the logics here is that the differnce are used
4077 // to measure the distance between def and use, the longer distance
4078 // more likely cause register pressure.
4079 if (orderNo - orderNo2 < 500)
4080 return SDValue();
4081
4082 // Now, check if at least one of the FMUL's operands is live beyond the node N,
4083 // which guarantees that the FMA will not increase register pressure at node N.
4084 bool opIsLive = false;
4085 const SDNode *left = N0.getOperand(0).getNode();
4086 const SDNode *right = N0.getOperand(1).getNode();
4087
4088 if (isa<ConstantSDNode>(left) || isa<ConstantSDNode>(right))
4089 opIsLive = true;
4090
4091 if (!opIsLive)
4092 for (SDNode::use_iterator UI = left->use_begin(), UE = left->use_end(); UI != UE; ++UI) {
4093 SDNode *User = *UI;
4094 int orderNo3 = User->getIROrder();
4095 if (orderNo3 > orderNo) {
4096 opIsLive = true;
4097 break;
4098 }
4099 }
4100
4101 if (!opIsLive)
4102 for (SDNode::use_iterator UI = right->use_begin(), UE = right->use_end(); UI != UE; ++UI) {
4103 SDNode *User = *UI;
4104 int orderNo3 = User->getIROrder();
4105 if (orderNo3 > orderNo) {
4106 opIsLive = true;
4107 break;
4108 }
4109 }
4110
4111 if (!opIsLive)
4112 return SDValue();
4113 }
4114
4115 return DAG.getNode(ISD::FMA, SDLoc(N), VT,
4116 N0.getOperand(0), N0.getOperand(1), N1);
4117 }
4118 }
4119
4120 return SDValue();
4121 }
4122
4123 /// PerformADDCombine - Target-specific dag combine xforms for ISD::ADD.
4124 ///
PerformADDCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,const NVPTXSubtarget & Subtarget,CodeGenOpt::Level OptLevel)4125 static SDValue PerformADDCombine(SDNode *N,
4126 TargetLowering::DAGCombinerInfo &DCI,
4127 const NVPTXSubtarget &Subtarget,
4128 CodeGenOpt::Level OptLevel) {
4129 SDValue N0 = N->getOperand(0);
4130 SDValue N1 = N->getOperand(1);
4131
4132 // First try with the default operand order.
4133 if (SDValue Result =
4134 PerformADDCombineWithOperands(N, N0, N1, DCI, Subtarget, OptLevel))
4135 return Result;
4136
4137 // If that didn't work, try again with the operands commuted.
4138 return PerformADDCombineWithOperands(N, N1, N0, DCI, Subtarget, OptLevel);
4139 }
4140
PerformANDCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI)4141 static SDValue PerformANDCombine(SDNode *N,
4142 TargetLowering::DAGCombinerInfo &DCI) {
4143 // The type legalizer turns a vector load of i8 values into a zextload to i16
4144 // registers, optionally ANY_EXTENDs it (if target type is integer),
4145 // and ANDs off the high 8 bits. Since we turn this load into a
4146 // target-specific DAG node, the DAG combiner fails to eliminate these AND
4147 // nodes. Do that here.
4148 SDValue Val = N->getOperand(0);
4149 SDValue Mask = N->getOperand(1);
4150
4151 if (isa<ConstantSDNode>(Val)) {
4152 std::swap(Val, Mask);
4153 }
4154
4155 SDValue AExt;
4156 // Generally, we will see zextload -> IMOV16rr -> ANY_EXTEND -> and
4157 if (Val.getOpcode() == ISD::ANY_EXTEND) {
4158 AExt = Val;
4159 Val = Val->getOperand(0);
4160 }
4161
4162 if (Val->isMachineOpcode() && Val->getMachineOpcode() == NVPTX::IMOV16rr) {
4163 Val = Val->getOperand(0);
4164 }
4165
4166 if (Val->getOpcode() == NVPTXISD::LoadV2 ||
4167 Val->getOpcode() == NVPTXISD::LoadV4) {
4168 ConstantSDNode *MaskCnst = dyn_cast<ConstantSDNode>(Mask);
4169 if (!MaskCnst) {
4170 // Not an AND with a constant
4171 return SDValue();
4172 }
4173
4174 uint64_t MaskVal = MaskCnst->getZExtValue();
4175 if (MaskVal != 0xff) {
4176 // Not an AND that chops off top 8 bits
4177 return SDValue();
4178 }
4179
4180 MemSDNode *Mem = dyn_cast<MemSDNode>(Val);
4181 if (!Mem) {
4182 // Not a MemSDNode?!?
4183 return SDValue();
4184 }
4185
4186 EVT MemVT = Mem->getMemoryVT();
4187 if (MemVT != MVT::v2i8 && MemVT != MVT::v4i8) {
4188 // We only handle the i8 case
4189 return SDValue();
4190 }
4191
4192 unsigned ExtType =
4193 cast<ConstantSDNode>(Val->getOperand(Val->getNumOperands()-1))->
4194 getZExtValue();
4195 if (ExtType == ISD::SEXTLOAD) {
4196 // If for some reason the load is a sextload, the and is needed to zero
4197 // out the high 8 bits
4198 return SDValue();
4199 }
4200
4201 bool AddTo = false;
4202 if (AExt.getNode() != nullptr) {
4203 // Re-insert the ext as a zext.
4204 Val = DCI.DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N),
4205 AExt.getValueType(), Val);
4206 AddTo = true;
4207 }
4208
4209 // If we get here, the AND is unnecessary. Just replace it with the load
4210 DCI.CombineTo(N, Val, AddTo);
4211 }
4212
4213 return SDValue();
4214 }
4215
PerformREMCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,CodeGenOpt::Level OptLevel)4216 static SDValue PerformREMCombine(SDNode *N,
4217 TargetLowering::DAGCombinerInfo &DCI,
4218 CodeGenOpt::Level OptLevel) {
4219 assert(N->getOpcode() == ISD::SREM || N->getOpcode() == ISD::UREM);
4220
4221 // Don't do anything at less than -O2.
4222 if (OptLevel < CodeGenOpt::Default)
4223 return SDValue();
4224
4225 SelectionDAG &DAG = DCI.DAG;
4226 SDLoc DL(N);
4227 EVT VT = N->getValueType(0);
4228 bool IsSigned = N->getOpcode() == ISD::SREM;
4229 unsigned DivOpc = IsSigned ? ISD::SDIV : ISD::UDIV;
4230
4231 const SDValue &Num = N->getOperand(0);
4232 const SDValue &Den = N->getOperand(1);
4233
4234 for (const SDNode *U : Num->uses()) {
4235 if (U->getOpcode() == DivOpc && U->getOperand(0) == Num &&
4236 U->getOperand(1) == Den) {
4237 // Num % Den -> Num - (Num / Den) * Den
4238 return DAG.getNode(ISD::SUB, DL, VT, Num,
4239 DAG.getNode(ISD::MUL, DL, VT,
4240 DAG.getNode(DivOpc, DL, VT, Num, Den),
4241 Den));
4242 }
4243 }
4244 return SDValue();
4245 }
4246
4247 enum OperandSignedness {
4248 Signed = 0,
4249 Unsigned,
4250 Unknown
4251 };
4252
4253 /// IsMulWideOperandDemotable - Checks if the provided DAG node is an operand
4254 /// that can be demoted to \p OptSize bits without loss of information. The
4255 /// signedness of the operand, if determinable, is placed in \p S.
IsMulWideOperandDemotable(SDValue Op,unsigned OptSize,OperandSignedness & S)4256 static bool IsMulWideOperandDemotable(SDValue Op,
4257 unsigned OptSize,
4258 OperandSignedness &S) {
4259 S = Unknown;
4260
4261 if (Op.getOpcode() == ISD::SIGN_EXTEND ||
4262 Op.getOpcode() == ISD::SIGN_EXTEND_INREG) {
4263 EVT OrigVT = Op.getOperand(0).getValueType();
4264 if (OrigVT.getSizeInBits() <= OptSize) {
4265 S = Signed;
4266 return true;
4267 }
4268 } else if (Op.getOpcode() == ISD::ZERO_EXTEND) {
4269 EVT OrigVT = Op.getOperand(0).getValueType();
4270 if (OrigVT.getSizeInBits() <= OptSize) {
4271 S = Unsigned;
4272 return true;
4273 }
4274 }
4275
4276 return false;
4277 }
4278
4279 /// AreMulWideOperandsDemotable - Checks if the given LHS and RHS operands can
4280 /// be demoted to \p OptSize bits without loss of information. If the operands
4281 /// contain a constant, it should appear as the RHS operand. The signedness of
4282 /// the operands is placed in \p IsSigned.
AreMulWideOperandsDemotable(SDValue LHS,SDValue RHS,unsigned OptSize,bool & IsSigned)4283 static bool AreMulWideOperandsDemotable(SDValue LHS, SDValue RHS,
4284 unsigned OptSize,
4285 bool &IsSigned) {
4286 OperandSignedness LHSSign;
4287
4288 // The LHS operand must be a demotable op
4289 if (!IsMulWideOperandDemotable(LHS, OptSize, LHSSign))
4290 return false;
4291
4292 // We should have been able to determine the signedness from the LHS
4293 if (LHSSign == Unknown)
4294 return false;
4295
4296 IsSigned = (LHSSign == Signed);
4297
4298 // The RHS can be a demotable op or a constant
4299 if (ConstantSDNode *CI = dyn_cast<ConstantSDNode>(RHS)) {
4300 const APInt &Val = CI->getAPIntValue();
4301 if (LHSSign == Unsigned) {
4302 return Val.isIntN(OptSize);
4303 } else {
4304 return Val.isSignedIntN(OptSize);
4305 }
4306 } else {
4307 OperandSignedness RHSSign;
4308 if (!IsMulWideOperandDemotable(RHS, OptSize, RHSSign))
4309 return false;
4310
4311 return LHSSign == RHSSign;
4312 }
4313 }
4314
4315 /// TryMULWIDECombine - Attempt to replace a multiply of M bits with a multiply
4316 /// of M/2 bits that produces an M-bit result (i.e. mul.wide). This transform
4317 /// works on both multiply DAG nodes and SHL DAG nodes with a constant shift
4318 /// amount.
TryMULWIDECombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI)4319 static SDValue TryMULWIDECombine(SDNode *N,
4320 TargetLowering::DAGCombinerInfo &DCI) {
4321 EVT MulType = N->getValueType(0);
4322 if (MulType != MVT::i32 && MulType != MVT::i64) {
4323 return SDValue();
4324 }
4325
4326 SDLoc DL(N);
4327 unsigned OptSize = MulType.getSizeInBits() >> 1;
4328 SDValue LHS = N->getOperand(0);
4329 SDValue RHS = N->getOperand(1);
4330
4331 // Canonicalize the multiply so the constant (if any) is on the right
4332 if (N->getOpcode() == ISD::MUL) {
4333 if (isa<ConstantSDNode>(LHS)) {
4334 std::swap(LHS, RHS);
4335 }
4336 }
4337
4338 // If we have a SHL, determine the actual multiply amount
4339 if (N->getOpcode() == ISD::SHL) {
4340 ConstantSDNode *ShlRHS = dyn_cast<ConstantSDNode>(RHS);
4341 if (!ShlRHS) {
4342 return SDValue();
4343 }
4344
4345 APInt ShiftAmt = ShlRHS->getAPIntValue();
4346 unsigned BitWidth = MulType.getSizeInBits();
4347 if (ShiftAmt.sge(0) && ShiftAmt.slt(BitWidth)) {
4348 APInt MulVal = APInt(BitWidth, 1) << ShiftAmt;
4349 RHS = DCI.DAG.getConstant(MulVal, DL, MulType);
4350 } else {
4351 return SDValue();
4352 }
4353 }
4354
4355 bool Signed;
4356 // Verify that our operands are demotable
4357 if (!AreMulWideOperandsDemotable(LHS, RHS, OptSize, Signed)) {
4358 return SDValue();
4359 }
4360
4361 EVT DemotedVT;
4362 if (MulType == MVT::i32) {
4363 DemotedVT = MVT::i16;
4364 } else {
4365 DemotedVT = MVT::i32;
4366 }
4367
4368 // Truncate the operands to the correct size. Note that these are just for
4369 // type consistency and will (likely) be eliminated in later phases.
4370 SDValue TruncLHS =
4371 DCI.DAG.getNode(ISD::TRUNCATE, DL, DemotedVT, LHS);
4372 SDValue TruncRHS =
4373 DCI.DAG.getNode(ISD::TRUNCATE, DL, DemotedVT, RHS);
4374
4375 unsigned Opc;
4376 if (Signed) {
4377 Opc = NVPTXISD::MUL_WIDE_SIGNED;
4378 } else {
4379 Opc = NVPTXISD::MUL_WIDE_UNSIGNED;
4380 }
4381
4382 return DCI.DAG.getNode(Opc, DL, MulType, TruncLHS, TruncRHS);
4383 }
4384
4385 /// PerformMULCombine - Runs PTX-specific DAG combine patterns on MUL nodes.
PerformMULCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,CodeGenOpt::Level OptLevel)4386 static SDValue PerformMULCombine(SDNode *N,
4387 TargetLowering::DAGCombinerInfo &DCI,
4388 CodeGenOpt::Level OptLevel) {
4389 if (OptLevel > 0) {
4390 // Try mul.wide combining at OptLevel > 0
4391 if (SDValue Ret = TryMULWIDECombine(N, DCI))
4392 return Ret;
4393 }
4394
4395 return SDValue();
4396 }
4397
4398 /// PerformSHLCombine - Runs PTX-specific DAG combine patterns on SHL nodes.
PerformSHLCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,CodeGenOpt::Level OptLevel)4399 static SDValue PerformSHLCombine(SDNode *N,
4400 TargetLowering::DAGCombinerInfo &DCI,
4401 CodeGenOpt::Level OptLevel) {
4402 if (OptLevel > 0) {
4403 // Try mul.wide combining at OptLevel > 0
4404 if (SDValue Ret = TryMULWIDECombine(N, DCI))
4405 return Ret;
4406 }
4407
4408 return SDValue();
4409 }
4410
PerformSETCCCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI)4411 static SDValue PerformSETCCCombine(SDNode *N,
4412 TargetLowering::DAGCombinerInfo &DCI) {
4413 EVT CCType = N->getValueType(0);
4414 SDValue A = N->getOperand(0);
4415 SDValue B = N->getOperand(1);
4416
4417 if (CCType != MVT::v2i1 || A.getValueType() != MVT::v2f16)
4418 return SDValue();
4419
4420 SDLoc DL(N);
4421 // setp.f16x2 returns two scalar predicates, which we need to
4422 // convert back to v2i1. The returned result will be scalarized by
4423 // the legalizer, but the comparison will remain a single vector
4424 // instruction.
4425 SDValue CCNode = DCI.DAG.getNode(NVPTXISD::SETP_F16X2, DL,
4426 DCI.DAG.getVTList(MVT::i1, MVT::i1),
4427 {A, B, N->getOperand(2)});
4428 return DCI.DAG.getNode(ISD::BUILD_VECTOR, DL, CCType, CCNode.getValue(0),
4429 CCNode.getValue(1));
4430 }
4431
PerformDAGCombine(SDNode * N,DAGCombinerInfo & DCI) const4432 SDValue NVPTXTargetLowering::PerformDAGCombine(SDNode *N,
4433 DAGCombinerInfo &DCI) const {
4434 CodeGenOpt::Level OptLevel = getTargetMachine().getOptLevel();
4435 switch (N->getOpcode()) {
4436 default: break;
4437 case ISD::ADD:
4438 case ISD::FADD:
4439 return PerformADDCombine(N, DCI, STI, OptLevel);
4440 case ISD::MUL:
4441 return PerformMULCombine(N, DCI, OptLevel);
4442 case ISD::SHL:
4443 return PerformSHLCombine(N, DCI, OptLevel);
4444 case ISD::AND:
4445 return PerformANDCombine(N, DCI);
4446 case ISD::UREM:
4447 case ISD::SREM:
4448 return PerformREMCombine(N, DCI, OptLevel);
4449 case ISD::SETCC:
4450 return PerformSETCCCombine(N, DCI);
4451 }
4452 return SDValue();
4453 }
4454
4455 /// ReplaceVectorLoad - Convert vector loads into multi-output scalar loads.
ReplaceLoadVector(SDNode * N,SelectionDAG & DAG,SmallVectorImpl<SDValue> & Results)4456 static void ReplaceLoadVector(SDNode *N, SelectionDAG &DAG,
4457 SmallVectorImpl<SDValue> &Results) {
4458 EVT ResVT = N->getValueType(0);
4459 SDLoc DL(N);
4460
4461 assert(ResVT.isVector() && "Vector load must have vector type");
4462
4463 // We only handle "native" vector sizes for now, e.g. <4 x double> is not
4464 // legal. We can (and should) split that into 2 loads of <2 x double> here
4465 // but I'm leaving that as a TODO for now.
4466 assert(ResVT.isSimple() && "Can only handle simple types");
4467 switch (ResVT.getSimpleVT().SimpleTy) {
4468 default:
4469 return;
4470 case MVT::v2i8:
4471 case MVT::v2i16:
4472 case MVT::v2i32:
4473 case MVT::v2i64:
4474 case MVT::v2f16:
4475 case MVT::v2f32:
4476 case MVT::v2f64:
4477 case MVT::v4i8:
4478 case MVT::v4i16:
4479 case MVT::v4i32:
4480 case MVT::v4f16:
4481 case MVT::v4f32:
4482 case MVT::v8f16: // <4 x f16x2>
4483 // This is a "native" vector type
4484 break;
4485 }
4486
4487 LoadSDNode *LD = cast<LoadSDNode>(N);
4488
4489 unsigned Align = LD->getAlignment();
4490 auto &TD = DAG.getDataLayout();
4491 unsigned PrefAlign =
4492 TD.getPrefTypeAlignment(ResVT.getTypeForEVT(*DAG.getContext()));
4493 if (Align < PrefAlign) {
4494 // This load is not sufficiently aligned, so bail out and let this vector
4495 // load be scalarized. Note that we may still be able to emit smaller
4496 // vector loads. For example, if we are loading a <4 x float> with an
4497 // alignment of 8, this check will fail but the legalizer will try again
4498 // with 2 x <2 x float>, which will succeed with an alignment of 8.
4499 return;
4500 }
4501
4502 EVT EltVT = ResVT.getVectorElementType();
4503 unsigned NumElts = ResVT.getVectorNumElements();
4504
4505 // Since LoadV2 is a target node, we cannot rely on DAG type legalization.
4506 // Therefore, we must ensure the type is legal. For i1 and i8, we set the
4507 // loaded type to i16 and propagate the "real" type as the memory type.
4508 bool NeedTrunc = false;
4509 if (EltVT.getSizeInBits() < 16) {
4510 EltVT = MVT::i16;
4511 NeedTrunc = true;
4512 }
4513
4514 unsigned Opcode = 0;
4515 SDVTList LdResVTs;
4516 bool LoadF16x2 = false;
4517
4518 switch (NumElts) {
4519 default:
4520 return;
4521 case 2:
4522 Opcode = NVPTXISD::LoadV2;
4523 LdResVTs = DAG.getVTList(EltVT, EltVT, MVT::Other);
4524 break;
4525 case 4: {
4526 Opcode = NVPTXISD::LoadV4;
4527 EVT ListVTs[] = { EltVT, EltVT, EltVT, EltVT, MVT::Other };
4528 LdResVTs = DAG.getVTList(ListVTs);
4529 break;
4530 }
4531 case 8: {
4532 // v8f16 is a special case. PTX doesn't have ld.v8.f16
4533 // instruction. Instead, we split the vector into v2f16 chunks and
4534 // load them with ld.v4.b32.
4535 assert(EltVT == MVT::f16 && "Unsupported v8 vector type.");
4536 LoadF16x2 = true;
4537 Opcode = NVPTXISD::LoadV4;
4538 EVT ListVTs[] = {MVT::v2f16, MVT::v2f16, MVT::v2f16, MVT::v2f16,
4539 MVT::Other};
4540 LdResVTs = DAG.getVTList(ListVTs);
4541 break;
4542 }
4543 }
4544
4545 // Copy regular operands
4546 SmallVector<SDValue, 8> OtherOps(N->op_begin(), N->op_end());
4547
4548 // The select routine does not have access to the LoadSDNode instance, so
4549 // pass along the extension information
4550 OtherOps.push_back(DAG.getIntPtrConstant(LD->getExtensionType(), DL));
4551
4552 SDValue NewLD = DAG.getMemIntrinsicNode(Opcode, DL, LdResVTs, OtherOps,
4553 LD->getMemoryVT(),
4554 LD->getMemOperand());
4555
4556 SmallVector<SDValue, 8> ScalarRes;
4557 if (LoadF16x2) {
4558 // Split v2f16 subvectors back into individual elements.
4559 NumElts /= 2;
4560 for (unsigned i = 0; i < NumElts; ++i) {
4561 SDValue SubVector = NewLD.getValue(i);
4562 SDValue E0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, SubVector,
4563 DAG.getIntPtrConstant(0, DL));
4564 SDValue E1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, SubVector,
4565 DAG.getIntPtrConstant(1, DL));
4566 ScalarRes.push_back(E0);
4567 ScalarRes.push_back(E1);
4568 }
4569 } else {
4570 for (unsigned i = 0; i < NumElts; ++i) {
4571 SDValue Res = NewLD.getValue(i);
4572 if (NeedTrunc)
4573 Res = DAG.getNode(ISD::TRUNCATE, DL, ResVT.getVectorElementType(), Res);
4574 ScalarRes.push_back(Res);
4575 }
4576 }
4577
4578 SDValue LoadChain = NewLD.getValue(NumElts);
4579
4580 SDValue BuildVec = DAG.getBuildVector(ResVT, DL, ScalarRes);
4581
4582 Results.push_back(BuildVec);
4583 Results.push_back(LoadChain);
4584 }
4585
ReplaceINTRINSIC_W_CHAIN(SDNode * N,SelectionDAG & DAG,SmallVectorImpl<SDValue> & Results)4586 static void ReplaceINTRINSIC_W_CHAIN(SDNode *N, SelectionDAG &DAG,
4587 SmallVectorImpl<SDValue> &Results) {
4588 SDValue Chain = N->getOperand(0);
4589 SDValue Intrin = N->getOperand(1);
4590 SDLoc DL(N);
4591
4592 // Get the intrinsic ID
4593 unsigned IntrinNo = cast<ConstantSDNode>(Intrin.getNode())->getZExtValue();
4594 switch (IntrinNo) {
4595 default:
4596 return;
4597 case Intrinsic::nvvm_ldg_global_i:
4598 case Intrinsic::nvvm_ldg_global_f:
4599 case Intrinsic::nvvm_ldg_global_p:
4600 case Intrinsic::nvvm_ldu_global_i:
4601 case Intrinsic::nvvm_ldu_global_f:
4602 case Intrinsic::nvvm_ldu_global_p: {
4603 EVT ResVT = N->getValueType(0);
4604
4605 if (ResVT.isVector()) {
4606 // Vector LDG/LDU
4607
4608 unsigned NumElts = ResVT.getVectorNumElements();
4609 EVT EltVT = ResVT.getVectorElementType();
4610
4611 // Since LDU/LDG are target nodes, we cannot rely on DAG type
4612 // legalization.
4613 // Therefore, we must ensure the type is legal. For i1 and i8, we set the
4614 // loaded type to i16 and propagate the "real" type as the memory type.
4615 bool NeedTrunc = false;
4616 if (EltVT.getSizeInBits() < 16) {
4617 EltVT = MVT::i16;
4618 NeedTrunc = true;
4619 }
4620
4621 unsigned Opcode = 0;
4622 SDVTList LdResVTs;
4623
4624 switch (NumElts) {
4625 default:
4626 return;
4627 case 2:
4628 switch (IntrinNo) {
4629 default:
4630 return;
4631 case Intrinsic::nvvm_ldg_global_i:
4632 case Intrinsic::nvvm_ldg_global_f:
4633 case Intrinsic::nvvm_ldg_global_p:
4634 Opcode = NVPTXISD::LDGV2;
4635 break;
4636 case Intrinsic::nvvm_ldu_global_i:
4637 case Intrinsic::nvvm_ldu_global_f:
4638 case Intrinsic::nvvm_ldu_global_p:
4639 Opcode = NVPTXISD::LDUV2;
4640 break;
4641 }
4642 LdResVTs = DAG.getVTList(EltVT, EltVT, MVT::Other);
4643 break;
4644 case 4: {
4645 switch (IntrinNo) {
4646 default:
4647 return;
4648 case Intrinsic::nvvm_ldg_global_i:
4649 case Intrinsic::nvvm_ldg_global_f:
4650 case Intrinsic::nvvm_ldg_global_p:
4651 Opcode = NVPTXISD::LDGV4;
4652 break;
4653 case Intrinsic::nvvm_ldu_global_i:
4654 case Intrinsic::nvvm_ldu_global_f:
4655 case Intrinsic::nvvm_ldu_global_p:
4656 Opcode = NVPTXISD::LDUV4;
4657 break;
4658 }
4659 EVT ListVTs[] = { EltVT, EltVT, EltVT, EltVT, MVT::Other };
4660 LdResVTs = DAG.getVTList(ListVTs);
4661 break;
4662 }
4663 }
4664
4665 SmallVector<SDValue, 8> OtherOps;
4666
4667 // Copy regular operands
4668
4669 OtherOps.push_back(Chain); // Chain
4670 // Skip operand 1 (intrinsic ID)
4671 // Others
4672 OtherOps.append(N->op_begin() + 2, N->op_end());
4673
4674 MemIntrinsicSDNode *MemSD = cast<MemIntrinsicSDNode>(N);
4675
4676 SDValue NewLD = DAG.getMemIntrinsicNode(Opcode, DL, LdResVTs, OtherOps,
4677 MemSD->getMemoryVT(),
4678 MemSD->getMemOperand());
4679
4680 SmallVector<SDValue, 4> ScalarRes;
4681
4682 for (unsigned i = 0; i < NumElts; ++i) {
4683 SDValue Res = NewLD.getValue(i);
4684 if (NeedTrunc)
4685 Res =
4686 DAG.getNode(ISD::TRUNCATE, DL, ResVT.getVectorElementType(), Res);
4687 ScalarRes.push_back(Res);
4688 }
4689
4690 SDValue LoadChain = NewLD.getValue(NumElts);
4691
4692 SDValue BuildVec =
4693 DAG.getBuildVector(ResVT, DL, ScalarRes);
4694
4695 Results.push_back(BuildVec);
4696 Results.push_back(LoadChain);
4697 } else {
4698 // i8 LDG/LDU
4699 assert(ResVT.isSimple() && ResVT.getSimpleVT().SimpleTy == MVT::i8 &&
4700 "Custom handling of non-i8 ldu/ldg?");
4701
4702 // Just copy all operands as-is
4703 SmallVector<SDValue, 4> Ops(N->op_begin(), N->op_end());
4704
4705 // Force output to i16
4706 SDVTList LdResVTs = DAG.getVTList(MVT::i16, MVT::Other);
4707
4708 MemIntrinsicSDNode *MemSD = cast<MemIntrinsicSDNode>(N);
4709
4710 // We make sure the memory type is i8, which will be used during isel
4711 // to select the proper instruction.
4712 SDValue NewLD =
4713 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, LdResVTs, Ops,
4714 MVT::i8, MemSD->getMemOperand());
4715
4716 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i8,
4717 NewLD.getValue(0)));
4718 Results.push_back(NewLD.getValue(1));
4719 }
4720 }
4721 }
4722 }
4723
ReplaceNodeResults(SDNode * N,SmallVectorImpl<SDValue> & Results,SelectionDAG & DAG) const4724 void NVPTXTargetLowering::ReplaceNodeResults(
4725 SDNode *N, SmallVectorImpl<SDValue> &Results, SelectionDAG &DAG) const {
4726 switch (N->getOpcode()) {
4727 default:
4728 report_fatal_error("Unhandled custom legalization");
4729 case ISD::LOAD:
4730 ReplaceLoadVector(N, DAG, Results);
4731 return;
4732 case ISD::INTRINSIC_W_CHAIN:
4733 ReplaceINTRINSIC_W_CHAIN(N, DAG, Results);
4734 return;
4735 }
4736 }
4737
4738 // Pin NVPTXTargetObjectFile's vtables to this file.
~NVPTXTargetObjectFile()4739 NVPTXTargetObjectFile::~NVPTXTargetObjectFile() {}
4740
SelectSectionForGlobal(const GlobalObject * GO,SectionKind Kind,const TargetMachine & TM) const4741 MCSection *NVPTXTargetObjectFile::SelectSectionForGlobal(
4742 const GlobalObject *GO, SectionKind Kind, const TargetMachine &TM) const {
4743 return getDataSection();
4744 }
4745