1 //===-- PPCFastISel.cpp - PowerPC FastISel implementation -----------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the PowerPC-specific support for the FastISel class. Some
11 // of the target-specific code is generated by tablegen in the file
12 // PPCGenFastISel.inc, which is #included here.
13 //
14 //===----------------------------------------------------------------------===//
15
16 #include "MCTargetDesc/PPCPredicates.h"
17 #include "PPC.h"
18 #include "PPCCCState.h"
19 #include "PPCCallingConv.h"
20 #include "PPCISelLowering.h"
21 #include "PPCMachineFunctionInfo.h"
22 #include "PPCSubtarget.h"
23 #include "PPCTargetMachine.h"
24 #include "llvm/ADT/Optional.h"
25 #include "llvm/CodeGen/CallingConvLower.h"
26 #include "llvm/CodeGen/FastISel.h"
27 #include "llvm/CodeGen/FunctionLoweringInfo.h"
28 #include "llvm/CodeGen/MachineConstantPool.h"
29 #include "llvm/CodeGen/MachineFrameInfo.h"
30 #include "llvm/CodeGen/MachineInstrBuilder.h"
31 #include "llvm/CodeGen/MachineRegisterInfo.h"
32 #include "llvm/CodeGen/TargetLowering.h"
33 #include "llvm/IR/CallingConv.h"
34 #include "llvm/IR/GetElementPtrTypeIterator.h"
35 #include "llvm/IR/GlobalAlias.h"
36 #include "llvm/IR/GlobalVariable.h"
37 #include "llvm/IR/IntrinsicInst.h"
38 #include "llvm/IR/Operator.h"
39 #include "llvm/Support/Debug.h"
40 #include "llvm/Target/TargetMachine.h"
41
42 //===----------------------------------------------------------------------===//
43 //
44 // TBD:
45 // fastLowerArguments: Handle simple cases.
46 // PPCMaterializeGV: Handle TLS.
47 // SelectCall: Handle function pointers.
48 // SelectCall: Handle multi-register return values.
49 // SelectCall: Optimize away nops for local calls.
50 // processCallArgs: Handle bit-converted arguments.
51 // finishCall: Handle multi-register return values.
52 // PPCComputeAddress: Handle parameter references as FrameIndex's.
53 // PPCEmitCmp: Handle immediate as operand 1.
54 // SelectCall: Handle small byval arguments.
55 // SelectIntrinsicCall: Implement.
56 // SelectSelect: Implement.
57 // Consider factoring isTypeLegal into the base class.
58 // Implement switches and jump tables.
59 //
60 //===----------------------------------------------------------------------===//
61 using namespace llvm;
62
63 #define DEBUG_TYPE "ppcfastisel"
64
65 namespace {
66
67 typedef struct Address {
68 enum {
69 RegBase,
70 FrameIndexBase
71 } BaseType;
72
73 union {
74 unsigned Reg;
75 int FI;
76 } Base;
77
78 long Offset;
79
80 // Innocuous defaults for our address.
Address__anonabfd2fcd0111::Address81 Address()
82 : BaseType(RegBase), Offset(0) {
83 Base.Reg = 0;
84 }
85 } Address;
86
87 class PPCFastISel final : public FastISel {
88
89 const TargetMachine &TM;
90 const PPCSubtarget *PPCSubTarget;
91 PPCFunctionInfo *PPCFuncInfo;
92 const TargetInstrInfo &TII;
93 const TargetLowering &TLI;
94 LLVMContext *Context;
95
96 public:
PPCFastISel(FunctionLoweringInfo & FuncInfo,const TargetLibraryInfo * LibInfo)97 explicit PPCFastISel(FunctionLoweringInfo &FuncInfo,
98 const TargetLibraryInfo *LibInfo)
99 : FastISel(FuncInfo, LibInfo), TM(FuncInfo.MF->getTarget()),
100 PPCSubTarget(&FuncInfo.MF->getSubtarget<PPCSubtarget>()),
101 PPCFuncInfo(FuncInfo.MF->getInfo<PPCFunctionInfo>()),
102 TII(*PPCSubTarget->getInstrInfo()),
103 TLI(*PPCSubTarget->getTargetLowering()),
104 Context(&FuncInfo.Fn->getContext()) {}
105
106 // Backend specific FastISel code.
107 private:
108 bool fastSelectInstruction(const Instruction *I) override;
109 unsigned fastMaterializeConstant(const Constant *C) override;
110 unsigned fastMaterializeAlloca(const AllocaInst *AI) override;
111 bool tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo,
112 const LoadInst *LI) override;
113 bool fastLowerArguments() override;
114 unsigned fastEmit_i(MVT Ty, MVT RetTy, unsigned Opc, uint64_t Imm) override;
115 unsigned fastEmitInst_ri(unsigned MachineInstOpcode,
116 const TargetRegisterClass *RC,
117 unsigned Op0, bool Op0IsKill,
118 uint64_t Imm);
119 unsigned fastEmitInst_r(unsigned MachineInstOpcode,
120 const TargetRegisterClass *RC,
121 unsigned Op0, bool Op0IsKill);
122 unsigned fastEmitInst_rr(unsigned MachineInstOpcode,
123 const TargetRegisterClass *RC,
124 unsigned Op0, bool Op0IsKill,
125 unsigned Op1, bool Op1IsKill);
126
127 bool fastLowerCall(CallLoweringInfo &CLI) override;
128
129 // Instruction selection routines.
130 private:
131 bool SelectLoad(const Instruction *I);
132 bool SelectStore(const Instruction *I);
133 bool SelectBranch(const Instruction *I);
134 bool SelectIndirectBr(const Instruction *I);
135 bool SelectFPExt(const Instruction *I);
136 bool SelectFPTrunc(const Instruction *I);
137 bool SelectIToFP(const Instruction *I, bool IsSigned);
138 bool SelectFPToI(const Instruction *I, bool IsSigned);
139 bool SelectBinaryIntOp(const Instruction *I, unsigned ISDOpcode);
140 bool SelectRet(const Instruction *I);
141 bool SelectTrunc(const Instruction *I);
142 bool SelectIntExt(const Instruction *I);
143
144 // Utility routines.
145 private:
146 bool isTypeLegal(Type *Ty, MVT &VT);
147 bool isLoadTypeLegal(Type *Ty, MVT &VT);
148 bool isValueAvailable(const Value *V) const;
isVSFRCRegClass(const TargetRegisterClass * RC) const149 bool isVSFRCRegClass(const TargetRegisterClass *RC) const {
150 return RC->getID() == PPC::VSFRCRegClassID;
151 }
isVSSRCRegClass(const TargetRegisterClass * RC) const152 bool isVSSRCRegClass(const TargetRegisterClass *RC) const {
153 return RC->getID() == PPC::VSSRCRegClassID;
154 }
155 bool PPCEmitCmp(const Value *Src1Value, const Value *Src2Value,
156 bool isZExt, unsigned DestReg,
157 const PPC::Predicate Pred);
158 bool PPCEmitLoad(MVT VT, unsigned &ResultReg, Address &Addr,
159 const TargetRegisterClass *RC, bool IsZExt = true,
160 unsigned FP64LoadOpc = PPC::LFD);
161 bool PPCEmitStore(MVT VT, unsigned SrcReg, Address &Addr);
162 bool PPCComputeAddress(const Value *Obj, Address &Addr);
163 void PPCSimplifyAddress(Address &Addr, bool &UseOffset,
164 unsigned &IndexReg);
165 bool PPCEmitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT,
166 unsigned DestReg, bool IsZExt);
167 unsigned PPCMaterializeFP(const ConstantFP *CFP, MVT VT);
168 unsigned PPCMaterializeGV(const GlobalValue *GV, MVT VT);
169 unsigned PPCMaterializeInt(const ConstantInt *CI, MVT VT,
170 bool UseSExt = true);
171 unsigned PPCMaterialize32BitInt(int64_t Imm,
172 const TargetRegisterClass *RC);
173 unsigned PPCMaterialize64BitInt(int64_t Imm,
174 const TargetRegisterClass *RC);
175 unsigned PPCMoveToIntReg(const Instruction *I, MVT VT,
176 unsigned SrcReg, bool IsSigned);
177 unsigned PPCMoveToFPReg(MVT VT, unsigned SrcReg, bool IsSigned);
178
179 // Call handling routines.
180 private:
181 bool processCallArgs(SmallVectorImpl<Value*> &Args,
182 SmallVectorImpl<unsigned> &ArgRegs,
183 SmallVectorImpl<MVT> &ArgVTs,
184 SmallVectorImpl<ISD::ArgFlagsTy> &ArgFlags,
185 SmallVectorImpl<unsigned> &RegArgs,
186 CallingConv::ID CC,
187 unsigned &NumBytes,
188 bool IsVarArg);
189 bool finishCall(MVT RetVT, CallLoweringInfo &CLI, unsigned &NumBytes);
190 LLVM_ATTRIBUTE_UNUSED CCAssignFn *usePPC32CCs(unsigned Flag);
191
192 private:
193 #include "PPCGenFastISel.inc"
194
195 };
196
197 } // end anonymous namespace
198
199 #include "PPCGenCallingConv.inc"
200
201 // Function whose sole purpose is to kill compiler warnings
202 // stemming from unused functions included from PPCGenCallingConv.inc.
usePPC32CCs(unsigned Flag)203 CCAssignFn *PPCFastISel::usePPC32CCs(unsigned Flag) {
204 if (Flag == 1)
205 return CC_PPC32_SVR4;
206 else if (Flag == 2)
207 return CC_PPC32_SVR4_ByVal;
208 else if (Flag == 3)
209 return CC_PPC32_SVR4_VarArg;
210 else if (Flag == 4)
211 return RetCC_PPC_Cold;
212 else
213 return RetCC_PPC;
214 }
215
getComparePred(CmpInst::Predicate Pred)216 static Optional<PPC::Predicate> getComparePred(CmpInst::Predicate Pred) {
217 switch (Pred) {
218 // These are not representable with any single compare.
219 case CmpInst::FCMP_FALSE:
220 case CmpInst::FCMP_TRUE:
221 // Major concern about the following 6 cases is NaN result. The comparison
222 // result consists of 4 bits, indicating lt, eq, gt and un (unordered),
223 // only one of which will be set. The result is generated by fcmpu
224 // instruction. However, bc instruction only inspects one of the first 3
225 // bits, so when un is set, bc instruction may jump to an undesired
226 // place.
227 //
228 // More specifically, if we expect an unordered comparison and un is set, we
229 // expect to always go to true branch; in such case UEQ, UGT and ULT still
230 // give false, which are undesired; but UNE, UGE, ULE happen to give true,
231 // since they are tested by inspecting !eq, !lt, !gt, respectively.
232 //
233 // Similarly, for ordered comparison, when un is set, we always expect the
234 // result to be false. In such case OGT, OLT and OEQ is good, since they are
235 // actually testing GT, LT, and EQ respectively, which are false. OGE, OLE
236 // and ONE are tested through !lt, !gt and !eq, and these are true.
237 case CmpInst::FCMP_UEQ:
238 case CmpInst::FCMP_UGT:
239 case CmpInst::FCMP_ULT:
240 case CmpInst::FCMP_OGE:
241 case CmpInst::FCMP_OLE:
242 case CmpInst::FCMP_ONE:
243 default:
244 return Optional<PPC::Predicate>();
245
246 case CmpInst::FCMP_OEQ:
247 case CmpInst::ICMP_EQ:
248 return PPC::PRED_EQ;
249
250 case CmpInst::FCMP_OGT:
251 case CmpInst::ICMP_UGT:
252 case CmpInst::ICMP_SGT:
253 return PPC::PRED_GT;
254
255 case CmpInst::FCMP_UGE:
256 case CmpInst::ICMP_UGE:
257 case CmpInst::ICMP_SGE:
258 return PPC::PRED_GE;
259
260 case CmpInst::FCMP_OLT:
261 case CmpInst::ICMP_ULT:
262 case CmpInst::ICMP_SLT:
263 return PPC::PRED_LT;
264
265 case CmpInst::FCMP_ULE:
266 case CmpInst::ICMP_ULE:
267 case CmpInst::ICMP_SLE:
268 return PPC::PRED_LE;
269
270 case CmpInst::FCMP_UNE:
271 case CmpInst::ICMP_NE:
272 return PPC::PRED_NE;
273
274 case CmpInst::FCMP_ORD:
275 return PPC::PRED_NU;
276
277 case CmpInst::FCMP_UNO:
278 return PPC::PRED_UN;
279 }
280 }
281
282 // Determine whether the type Ty is simple enough to be handled by
283 // fast-isel, and return its equivalent machine type in VT.
284 // FIXME: Copied directly from ARM -- factor into base class?
isTypeLegal(Type * Ty,MVT & VT)285 bool PPCFastISel::isTypeLegal(Type *Ty, MVT &VT) {
286 EVT Evt = TLI.getValueType(DL, Ty, true);
287
288 // Only handle simple types.
289 if (Evt == MVT::Other || !Evt.isSimple()) return false;
290 VT = Evt.getSimpleVT();
291
292 // Handle all legal types, i.e. a register that will directly hold this
293 // value.
294 return TLI.isTypeLegal(VT);
295 }
296
297 // Determine whether the type Ty is simple enough to be handled by
298 // fast-isel as a load target, and return its equivalent machine type in VT.
isLoadTypeLegal(Type * Ty,MVT & VT)299 bool PPCFastISel::isLoadTypeLegal(Type *Ty, MVT &VT) {
300 if (isTypeLegal(Ty, VT)) return true;
301
302 // If this is a type than can be sign or zero-extended to a basic operation
303 // go ahead and accept it now.
304 if (VT == MVT::i8 || VT == MVT::i16 || VT == MVT::i32) {
305 return true;
306 }
307
308 return false;
309 }
310
isValueAvailable(const Value * V) const311 bool PPCFastISel::isValueAvailable(const Value *V) const {
312 if (!isa<Instruction>(V))
313 return true;
314
315 const auto *I = cast<Instruction>(V);
316 return FuncInfo.MBBMap[I->getParent()] == FuncInfo.MBB;
317 }
318
319 // Given a value Obj, create an Address object Addr that represents its
320 // address. Return false if we can't handle it.
PPCComputeAddress(const Value * Obj,Address & Addr)321 bool PPCFastISel::PPCComputeAddress(const Value *Obj, Address &Addr) {
322 const User *U = nullptr;
323 unsigned Opcode = Instruction::UserOp1;
324 if (const Instruction *I = dyn_cast<Instruction>(Obj)) {
325 // Don't walk into other basic blocks unless the object is an alloca from
326 // another block, otherwise it may not have a virtual register assigned.
327 if (FuncInfo.StaticAllocaMap.count(static_cast<const AllocaInst *>(Obj)) ||
328 FuncInfo.MBBMap[I->getParent()] == FuncInfo.MBB) {
329 Opcode = I->getOpcode();
330 U = I;
331 }
332 } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(Obj)) {
333 Opcode = C->getOpcode();
334 U = C;
335 }
336
337 switch (Opcode) {
338 default:
339 break;
340 case Instruction::BitCast:
341 // Look through bitcasts.
342 return PPCComputeAddress(U->getOperand(0), Addr);
343 case Instruction::IntToPtr:
344 // Look past no-op inttoptrs.
345 if (TLI.getValueType(DL, U->getOperand(0)->getType()) ==
346 TLI.getPointerTy(DL))
347 return PPCComputeAddress(U->getOperand(0), Addr);
348 break;
349 case Instruction::PtrToInt:
350 // Look past no-op ptrtoints.
351 if (TLI.getValueType(DL, U->getType()) == TLI.getPointerTy(DL))
352 return PPCComputeAddress(U->getOperand(0), Addr);
353 break;
354 case Instruction::GetElementPtr: {
355 Address SavedAddr = Addr;
356 long TmpOffset = Addr.Offset;
357
358 // Iterate through the GEP folding the constants into offsets where
359 // we can.
360 gep_type_iterator GTI = gep_type_begin(U);
361 for (User::const_op_iterator II = U->op_begin() + 1, IE = U->op_end();
362 II != IE; ++II, ++GTI) {
363 const Value *Op = *II;
364 if (StructType *STy = GTI.getStructTypeOrNull()) {
365 const StructLayout *SL = DL.getStructLayout(STy);
366 unsigned Idx = cast<ConstantInt>(Op)->getZExtValue();
367 TmpOffset += SL->getElementOffset(Idx);
368 } else {
369 uint64_t S = DL.getTypeAllocSize(GTI.getIndexedType());
370 for (;;) {
371 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
372 // Constant-offset addressing.
373 TmpOffset += CI->getSExtValue() * S;
374 break;
375 }
376 if (canFoldAddIntoGEP(U, Op)) {
377 // A compatible add with a constant operand. Fold the constant.
378 ConstantInt *CI =
379 cast<ConstantInt>(cast<AddOperator>(Op)->getOperand(1));
380 TmpOffset += CI->getSExtValue() * S;
381 // Iterate on the other operand.
382 Op = cast<AddOperator>(Op)->getOperand(0);
383 continue;
384 }
385 // Unsupported
386 goto unsupported_gep;
387 }
388 }
389 }
390
391 // Try to grab the base operand now.
392 Addr.Offset = TmpOffset;
393 if (PPCComputeAddress(U->getOperand(0), Addr)) return true;
394
395 // We failed, restore everything and try the other options.
396 Addr = SavedAddr;
397
398 unsupported_gep:
399 break;
400 }
401 case Instruction::Alloca: {
402 const AllocaInst *AI = cast<AllocaInst>(Obj);
403 DenseMap<const AllocaInst*, int>::iterator SI =
404 FuncInfo.StaticAllocaMap.find(AI);
405 if (SI != FuncInfo.StaticAllocaMap.end()) {
406 Addr.BaseType = Address::FrameIndexBase;
407 Addr.Base.FI = SI->second;
408 return true;
409 }
410 break;
411 }
412 }
413
414 // FIXME: References to parameters fall through to the behavior
415 // below. They should be able to reference a frame index since
416 // they are stored to the stack, so we can get "ld rx, offset(r1)"
417 // instead of "addi ry, r1, offset / ld rx, 0(ry)". Obj will
418 // just contain the parameter. Try to handle this with a FI.
419
420 // Try to get this in a register if nothing else has worked.
421 if (Addr.Base.Reg == 0)
422 Addr.Base.Reg = getRegForValue(Obj);
423
424 // Prevent assignment of base register to X0, which is inappropriate
425 // for loads and stores alike.
426 if (Addr.Base.Reg != 0)
427 MRI.setRegClass(Addr.Base.Reg, &PPC::G8RC_and_G8RC_NOX0RegClass);
428
429 return Addr.Base.Reg != 0;
430 }
431
432 // Fix up some addresses that can't be used directly. For example, if
433 // an offset won't fit in an instruction field, we may need to move it
434 // into an index register.
PPCSimplifyAddress(Address & Addr,bool & UseOffset,unsigned & IndexReg)435 void PPCFastISel::PPCSimplifyAddress(Address &Addr, bool &UseOffset,
436 unsigned &IndexReg) {
437
438 // Check whether the offset fits in the instruction field.
439 if (!isInt<16>(Addr.Offset))
440 UseOffset = false;
441
442 // If this is a stack pointer and the offset needs to be simplified then
443 // put the alloca address into a register, set the base type back to
444 // register and continue. This should almost never happen.
445 if (!UseOffset && Addr.BaseType == Address::FrameIndexBase) {
446 unsigned ResultReg = createResultReg(&PPC::G8RC_and_G8RC_NOX0RegClass);
447 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::ADDI8),
448 ResultReg).addFrameIndex(Addr.Base.FI).addImm(0);
449 Addr.Base.Reg = ResultReg;
450 Addr.BaseType = Address::RegBase;
451 }
452
453 if (!UseOffset) {
454 IntegerType *OffsetTy = Type::getInt64Ty(*Context);
455 const ConstantInt *Offset =
456 ConstantInt::getSigned(OffsetTy, (int64_t)(Addr.Offset));
457 IndexReg = PPCMaterializeInt(Offset, MVT::i64);
458 assert(IndexReg && "Unexpected error in PPCMaterializeInt!");
459 }
460 }
461
462 // Emit a load instruction if possible, returning true if we succeeded,
463 // otherwise false. See commentary below for how the register class of
464 // the load is determined.
PPCEmitLoad(MVT VT,unsigned & ResultReg,Address & Addr,const TargetRegisterClass * RC,bool IsZExt,unsigned FP64LoadOpc)465 bool PPCFastISel::PPCEmitLoad(MVT VT, unsigned &ResultReg, Address &Addr,
466 const TargetRegisterClass *RC,
467 bool IsZExt, unsigned FP64LoadOpc) {
468 unsigned Opc;
469 bool UseOffset = true;
470 bool HasSPE = PPCSubTarget->hasSPE();
471
472 // If ResultReg is given, it determines the register class of the load.
473 // Otherwise, RC is the register class to use. If the result of the
474 // load isn't anticipated in this block, both may be zero, in which
475 // case we must make a conservative guess. In particular, don't assign
476 // R0 or X0 to the result register, as the result may be used in a load,
477 // store, add-immediate, or isel that won't permit this. (Though
478 // perhaps the spill and reload of live-exit values would handle this?)
479 const TargetRegisterClass *UseRC =
480 (ResultReg ? MRI.getRegClass(ResultReg) :
481 (RC ? RC :
482 (VT == MVT::f64 ? (HasSPE ? &PPC::SPERCRegClass : &PPC::F8RCRegClass) :
483 (VT == MVT::f32 ? (HasSPE ? &PPC::SPE4RCRegClass : &PPC::F4RCRegClass) :
484 (VT == MVT::i64 ? &PPC::G8RC_and_G8RC_NOX0RegClass :
485 &PPC::GPRC_and_GPRC_NOR0RegClass)))));
486
487 bool Is32BitInt = UseRC->hasSuperClassEq(&PPC::GPRCRegClass);
488
489 switch (VT.SimpleTy) {
490 default: // e.g., vector types not handled
491 return false;
492 case MVT::i8:
493 Opc = Is32BitInt ? PPC::LBZ : PPC::LBZ8;
494 break;
495 case MVT::i16:
496 Opc = (IsZExt ? (Is32BitInt ? PPC::LHZ : PPC::LHZ8)
497 : (Is32BitInt ? PPC::LHA : PPC::LHA8));
498 break;
499 case MVT::i32:
500 Opc = (IsZExt ? (Is32BitInt ? PPC::LWZ : PPC::LWZ8)
501 : (Is32BitInt ? PPC::LWA_32 : PPC::LWA));
502 if ((Opc == PPC::LWA || Opc == PPC::LWA_32) && ((Addr.Offset & 3) != 0))
503 UseOffset = false;
504 break;
505 case MVT::i64:
506 Opc = PPC::LD;
507 assert(UseRC->hasSuperClassEq(&PPC::G8RCRegClass) &&
508 "64-bit load with 32-bit target??");
509 UseOffset = ((Addr.Offset & 3) == 0);
510 break;
511 case MVT::f32:
512 Opc = PPCSubTarget->hasSPE() ? PPC::SPELWZ : PPC::LFS;
513 break;
514 case MVT::f64:
515 Opc = FP64LoadOpc;
516 break;
517 }
518
519 // If necessary, materialize the offset into a register and use
520 // the indexed form. Also handle stack pointers with special needs.
521 unsigned IndexReg = 0;
522 PPCSimplifyAddress(Addr, UseOffset, IndexReg);
523
524 // If this is a potential VSX load with an offset of 0, a VSX indexed load can
525 // be used.
526 bool IsVSSRC = isVSSRCRegClass(UseRC);
527 bool IsVSFRC = isVSFRCRegClass(UseRC);
528 bool Is32VSXLoad = IsVSSRC && Opc == PPC::LFS;
529 bool Is64VSXLoad = IsVSFRC && Opc == PPC::LFD;
530 if ((Is32VSXLoad || Is64VSXLoad) &&
531 (Addr.BaseType != Address::FrameIndexBase) && UseOffset &&
532 (Addr.Offset == 0)) {
533 UseOffset = false;
534 }
535
536 if (ResultReg == 0)
537 ResultReg = createResultReg(UseRC);
538
539 // Note: If we still have a frame index here, we know the offset is
540 // in range, as otherwise PPCSimplifyAddress would have converted it
541 // into a RegBase.
542 if (Addr.BaseType == Address::FrameIndexBase) {
543 // VSX only provides an indexed load.
544 if (Is32VSXLoad || Is64VSXLoad) return false;
545
546 MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand(
547 MachinePointerInfo::getFixedStack(*FuncInfo.MF, Addr.Base.FI,
548 Addr.Offset),
549 MachineMemOperand::MOLoad, MFI.getObjectSize(Addr.Base.FI),
550 MFI.getObjectAlignment(Addr.Base.FI));
551
552 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg)
553 .addImm(Addr.Offset).addFrameIndex(Addr.Base.FI).addMemOperand(MMO);
554
555 // Base reg with offset in range.
556 } else if (UseOffset) {
557 // VSX only provides an indexed load.
558 if (Is32VSXLoad || Is64VSXLoad) return false;
559
560 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg)
561 .addImm(Addr.Offset).addReg(Addr.Base.Reg);
562
563 // Indexed form.
564 } else {
565 // Get the RR opcode corresponding to the RI one. FIXME: It would be
566 // preferable to use the ImmToIdxMap from PPCRegisterInfo.cpp, but it
567 // is hard to get at.
568 switch (Opc) {
569 default: llvm_unreachable("Unexpected opcode!");
570 case PPC::LBZ: Opc = PPC::LBZX; break;
571 case PPC::LBZ8: Opc = PPC::LBZX8; break;
572 case PPC::LHZ: Opc = PPC::LHZX; break;
573 case PPC::LHZ8: Opc = PPC::LHZX8; break;
574 case PPC::LHA: Opc = PPC::LHAX; break;
575 case PPC::LHA8: Opc = PPC::LHAX8; break;
576 case PPC::LWZ: Opc = PPC::LWZX; break;
577 case PPC::LWZ8: Opc = PPC::LWZX8; break;
578 case PPC::LWA: Opc = PPC::LWAX; break;
579 case PPC::LWA_32: Opc = PPC::LWAX_32; break;
580 case PPC::LD: Opc = PPC::LDX; break;
581 case PPC::LFS: Opc = IsVSSRC ? PPC::LXSSPX : PPC::LFSX; break;
582 case PPC::LFD: Opc = IsVSFRC ? PPC::LXSDX : PPC::LFDX; break;
583 case PPC::EVLDD: Opc = PPC::EVLDDX; break;
584 case PPC::SPELWZ: Opc = PPC::SPELWZX; break;
585 }
586
587 auto MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc),
588 ResultReg);
589
590 // If we have an index register defined we use it in the store inst,
591 // otherwise we use X0 as base as it makes the vector instructions to
592 // use zero in the computation of the effective address regardless the
593 // content of the register.
594 if (IndexReg)
595 MIB.addReg(Addr.Base.Reg).addReg(IndexReg);
596 else
597 MIB.addReg(PPC::ZERO8).addReg(Addr.Base.Reg);
598 }
599
600 return true;
601 }
602
603 // Attempt to fast-select a load instruction.
SelectLoad(const Instruction * I)604 bool PPCFastISel::SelectLoad(const Instruction *I) {
605 // FIXME: No atomic loads are supported.
606 if (cast<LoadInst>(I)->isAtomic())
607 return false;
608
609 // Verify we have a legal type before going any further.
610 MVT VT;
611 if (!isLoadTypeLegal(I->getType(), VT))
612 return false;
613
614 // See if we can handle this address.
615 Address Addr;
616 if (!PPCComputeAddress(I->getOperand(0), Addr))
617 return false;
618
619 // Look at the currently assigned register for this instruction
620 // to determine the required register class. This is necessary
621 // to constrain RA from using R0/X0 when this is not legal.
622 unsigned AssignedReg = FuncInfo.ValueMap[I];
623 const TargetRegisterClass *RC =
624 AssignedReg ? MRI.getRegClass(AssignedReg) : nullptr;
625
626 unsigned ResultReg = 0;
627 if (!PPCEmitLoad(VT, ResultReg, Addr, RC, true,
628 PPCSubTarget->hasSPE() ? PPC::EVLDD : PPC::LFD))
629 return false;
630 updateValueMap(I, ResultReg);
631 return true;
632 }
633
634 // Emit a store instruction to store SrcReg at Addr.
PPCEmitStore(MVT VT,unsigned SrcReg,Address & Addr)635 bool PPCFastISel::PPCEmitStore(MVT VT, unsigned SrcReg, Address &Addr) {
636 assert(SrcReg && "Nothing to store!");
637 unsigned Opc;
638 bool UseOffset = true;
639
640 const TargetRegisterClass *RC = MRI.getRegClass(SrcReg);
641 bool Is32BitInt = RC->hasSuperClassEq(&PPC::GPRCRegClass);
642
643 switch (VT.SimpleTy) {
644 default: // e.g., vector types not handled
645 return false;
646 case MVT::i8:
647 Opc = Is32BitInt ? PPC::STB : PPC::STB8;
648 break;
649 case MVT::i16:
650 Opc = Is32BitInt ? PPC::STH : PPC::STH8;
651 break;
652 case MVT::i32:
653 assert(Is32BitInt && "Not GPRC for i32??");
654 Opc = PPC::STW;
655 break;
656 case MVT::i64:
657 Opc = PPC::STD;
658 UseOffset = ((Addr.Offset & 3) == 0);
659 break;
660 case MVT::f32:
661 Opc = PPCSubTarget->hasSPE() ? PPC::SPESTW : PPC::STFS;
662 break;
663 case MVT::f64:
664 Opc = PPCSubTarget->hasSPE() ? PPC::EVSTDD : PPC::STFD;
665 break;
666 }
667
668 // If necessary, materialize the offset into a register and use
669 // the indexed form. Also handle stack pointers with special needs.
670 unsigned IndexReg = 0;
671 PPCSimplifyAddress(Addr, UseOffset, IndexReg);
672
673 // If this is a potential VSX store with an offset of 0, a VSX indexed store
674 // can be used.
675 bool IsVSSRC = isVSSRCRegClass(RC);
676 bool IsVSFRC = isVSFRCRegClass(RC);
677 bool Is32VSXStore = IsVSSRC && Opc == PPC::STFS;
678 bool Is64VSXStore = IsVSFRC && Opc == PPC::STFD;
679 if ((Is32VSXStore || Is64VSXStore) &&
680 (Addr.BaseType != Address::FrameIndexBase) && UseOffset &&
681 (Addr.Offset == 0)) {
682 UseOffset = false;
683 }
684
685 // Note: If we still have a frame index here, we know the offset is
686 // in range, as otherwise PPCSimplifyAddress would have converted it
687 // into a RegBase.
688 if (Addr.BaseType == Address::FrameIndexBase) {
689 // VSX only provides an indexed store.
690 if (Is32VSXStore || Is64VSXStore) return false;
691
692 MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand(
693 MachinePointerInfo::getFixedStack(*FuncInfo.MF, Addr.Base.FI,
694 Addr.Offset),
695 MachineMemOperand::MOStore, MFI.getObjectSize(Addr.Base.FI),
696 MFI.getObjectAlignment(Addr.Base.FI));
697
698 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc))
699 .addReg(SrcReg)
700 .addImm(Addr.Offset)
701 .addFrameIndex(Addr.Base.FI)
702 .addMemOperand(MMO);
703
704 // Base reg with offset in range.
705 } else if (UseOffset) {
706 // VSX only provides an indexed store.
707 if (Is32VSXStore || Is64VSXStore)
708 return false;
709
710 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc))
711 .addReg(SrcReg).addImm(Addr.Offset).addReg(Addr.Base.Reg);
712
713 // Indexed form.
714 } else {
715 // Get the RR opcode corresponding to the RI one. FIXME: It would be
716 // preferable to use the ImmToIdxMap from PPCRegisterInfo.cpp, but it
717 // is hard to get at.
718 switch (Opc) {
719 default: llvm_unreachable("Unexpected opcode!");
720 case PPC::STB: Opc = PPC::STBX; break;
721 case PPC::STH : Opc = PPC::STHX; break;
722 case PPC::STW : Opc = PPC::STWX; break;
723 case PPC::STB8: Opc = PPC::STBX8; break;
724 case PPC::STH8: Opc = PPC::STHX8; break;
725 case PPC::STW8: Opc = PPC::STWX8; break;
726 case PPC::STD: Opc = PPC::STDX; break;
727 case PPC::STFS: Opc = IsVSSRC ? PPC::STXSSPX : PPC::STFSX; break;
728 case PPC::STFD: Opc = IsVSFRC ? PPC::STXSDX : PPC::STFDX; break;
729 case PPC::EVSTDD: Opc = PPC::EVSTDDX; break;
730 case PPC::SPESTW: Opc = PPC::SPESTWX; break;
731 }
732
733 auto MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc))
734 .addReg(SrcReg);
735
736 // If we have an index register defined we use it in the store inst,
737 // otherwise we use X0 as base as it makes the vector instructions to
738 // use zero in the computation of the effective address regardless the
739 // content of the register.
740 if (IndexReg)
741 MIB.addReg(Addr.Base.Reg).addReg(IndexReg);
742 else
743 MIB.addReg(PPC::ZERO8).addReg(Addr.Base.Reg);
744 }
745
746 return true;
747 }
748
749 // Attempt to fast-select a store instruction.
SelectStore(const Instruction * I)750 bool PPCFastISel::SelectStore(const Instruction *I) {
751 Value *Op0 = I->getOperand(0);
752 unsigned SrcReg = 0;
753
754 // FIXME: No atomics loads are supported.
755 if (cast<StoreInst>(I)->isAtomic())
756 return false;
757
758 // Verify we have a legal type before going any further.
759 MVT VT;
760 if (!isLoadTypeLegal(Op0->getType(), VT))
761 return false;
762
763 // Get the value to be stored into a register.
764 SrcReg = getRegForValue(Op0);
765 if (SrcReg == 0)
766 return false;
767
768 // See if we can handle this address.
769 Address Addr;
770 if (!PPCComputeAddress(I->getOperand(1), Addr))
771 return false;
772
773 if (!PPCEmitStore(VT, SrcReg, Addr))
774 return false;
775
776 return true;
777 }
778
779 // Attempt to fast-select a branch instruction.
SelectBranch(const Instruction * I)780 bool PPCFastISel::SelectBranch(const Instruction *I) {
781 const BranchInst *BI = cast<BranchInst>(I);
782 MachineBasicBlock *BrBB = FuncInfo.MBB;
783 MachineBasicBlock *TBB = FuncInfo.MBBMap[BI->getSuccessor(0)];
784 MachineBasicBlock *FBB = FuncInfo.MBBMap[BI->getSuccessor(1)];
785
786 // For now, just try the simplest case where it's fed by a compare.
787 if (const CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition())) {
788 if (isValueAvailable(CI)) {
789 Optional<PPC::Predicate> OptPPCPred = getComparePred(CI->getPredicate());
790 if (!OptPPCPred)
791 return false;
792
793 PPC::Predicate PPCPred = OptPPCPred.getValue();
794
795 // Take advantage of fall-through opportunities.
796 if (FuncInfo.MBB->isLayoutSuccessor(TBB)) {
797 std::swap(TBB, FBB);
798 PPCPred = PPC::InvertPredicate(PPCPred);
799 }
800
801 unsigned CondReg = createResultReg(&PPC::CRRCRegClass);
802
803 if (!PPCEmitCmp(CI->getOperand(0), CI->getOperand(1), CI->isUnsigned(),
804 CondReg, PPCPred))
805 return false;
806
807 BuildMI(*BrBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::BCC))
808 .addImm(PPCSubTarget->hasSPE() ? PPC::PRED_SPE : PPCPred)
809 .addReg(CondReg).addMBB(TBB);
810 finishCondBranch(BI->getParent(), TBB, FBB);
811 return true;
812 }
813 } else if (const ConstantInt *CI =
814 dyn_cast<ConstantInt>(BI->getCondition())) {
815 uint64_t Imm = CI->getZExtValue();
816 MachineBasicBlock *Target = (Imm == 0) ? FBB : TBB;
817 fastEmitBranch(Target, DbgLoc);
818 return true;
819 }
820
821 // FIXME: ARM looks for a case where the block containing the compare
822 // has been split from the block containing the branch. If this happens,
823 // there is a vreg available containing the result of the compare. I'm
824 // not sure we can do much, as we've lost the predicate information with
825 // the compare instruction -- we have a 4-bit CR but don't know which bit
826 // to test here.
827 return false;
828 }
829
830 // Attempt to emit a compare of the two source values. Signed and unsigned
831 // comparisons are supported. Return false if we can't handle it.
PPCEmitCmp(const Value * SrcValue1,const Value * SrcValue2,bool IsZExt,unsigned DestReg,const PPC::Predicate Pred)832 bool PPCFastISel::PPCEmitCmp(const Value *SrcValue1, const Value *SrcValue2,
833 bool IsZExt, unsigned DestReg,
834 const PPC::Predicate Pred) {
835 Type *Ty = SrcValue1->getType();
836 EVT SrcEVT = TLI.getValueType(DL, Ty, true);
837 if (!SrcEVT.isSimple())
838 return false;
839 MVT SrcVT = SrcEVT.getSimpleVT();
840
841 if (SrcVT == MVT::i1 && PPCSubTarget->useCRBits())
842 return false;
843
844 // See if operand 2 is an immediate encodeable in the compare.
845 // FIXME: Operands are not in canonical order at -O0, so an immediate
846 // operand in position 1 is a lost opportunity for now. We are
847 // similar to ARM in this regard.
848 long Imm = 0;
849 bool UseImm = false;
850 const bool HasSPE = PPCSubTarget->hasSPE();
851
852 // Only 16-bit integer constants can be represented in compares for
853 // PowerPC. Others will be materialized into a register.
854 if (const ConstantInt *ConstInt = dyn_cast<ConstantInt>(SrcValue2)) {
855 if (SrcVT == MVT::i64 || SrcVT == MVT::i32 || SrcVT == MVT::i16 ||
856 SrcVT == MVT::i8 || SrcVT == MVT::i1) {
857 const APInt &CIVal = ConstInt->getValue();
858 Imm = (IsZExt) ? (long)CIVal.getZExtValue() : (long)CIVal.getSExtValue();
859 if ((IsZExt && isUInt<16>(Imm)) || (!IsZExt && isInt<16>(Imm)))
860 UseImm = true;
861 }
862 }
863
864 unsigned CmpOpc;
865 bool NeedsExt = false;
866 switch (SrcVT.SimpleTy) {
867 default: return false;
868 case MVT::f32:
869 if (HasSPE) {
870 switch (Pred) {
871 default: return false;
872 case PPC::PRED_EQ:
873 CmpOpc = PPC::EFSCMPEQ;
874 break;
875 case PPC::PRED_LT:
876 CmpOpc = PPC::EFSCMPLT;
877 break;
878 case PPC::PRED_GT:
879 CmpOpc = PPC::EFSCMPGT;
880 break;
881 }
882 } else
883 CmpOpc = PPC::FCMPUS;
884 break;
885 case MVT::f64:
886 if (HasSPE) {
887 switch (Pred) {
888 default: return false;
889 case PPC::PRED_EQ:
890 CmpOpc = PPC::EFDCMPEQ;
891 break;
892 case PPC::PRED_LT:
893 CmpOpc = PPC::EFDCMPLT;
894 break;
895 case PPC::PRED_GT:
896 CmpOpc = PPC::EFDCMPGT;
897 break;
898 }
899 } else
900 CmpOpc = PPC::FCMPUD;
901 break;
902 case MVT::i1:
903 case MVT::i8:
904 case MVT::i16:
905 NeedsExt = true;
906 LLVM_FALLTHROUGH;
907 case MVT::i32:
908 if (!UseImm)
909 CmpOpc = IsZExt ? PPC::CMPLW : PPC::CMPW;
910 else
911 CmpOpc = IsZExt ? PPC::CMPLWI : PPC::CMPWI;
912 break;
913 case MVT::i64:
914 if (!UseImm)
915 CmpOpc = IsZExt ? PPC::CMPLD : PPC::CMPD;
916 else
917 CmpOpc = IsZExt ? PPC::CMPLDI : PPC::CMPDI;
918 break;
919 }
920
921 unsigned SrcReg1 = getRegForValue(SrcValue1);
922 if (SrcReg1 == 0)
923 return false;
924
925 unsigned SrcReg2 = 0;
926 if (!UseImm) {
927 SrcReg2 = getRegForValue(SrcValue2);
928 if (SrcReg2 == 0)
929 return false;
930 }
931
932 if (NeedsExt) {
933 unsigned ExtReg = createResultReg(&PPC::GPRCRegClass);
934 if (!PPCEmitIntExt(SrcVT, SrcReg1, MVT::i32, ExtReg, IsZExt))
935 return false;
936 SrcReg1 = ExtReg;
937
938 if (!UseImm) {
939 unsigned ExtReg = createResultReg(&PPC::GPRCRegClass);
940 if (!PPCEmitIntExt(SrcVT, SrcReg2, MVT::i32, ExtReg, IsZExt))
941 return false;
942 SrcReg2 = ExtReg;
943 }
944 }
945
946 if (!UseImm)
947 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(CmpOpc), DestReg)
948 .addReg(SrcReg1).addReg(SrcReg2);
949 else
950 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(CmpOpc), DestReg)
951 .addReg(SrcReg1).addImm(Imm);
952
953 return true;
954 }
955
956 // Attempt to fast-select a floating-point extend instruction.
SelectFPExt(const Instruction * I)957 bool PPCFastISel::SelectFPExt(const Instruction *I) {
958 Value *Src = I->getOperand(0);
959 EVT SrcVT = TLI.getValueType(DL, Src->getType(), true);
960 EVT DestVT = TLI.getValueType(DL, I->getType(), true);
961
962 if (SrcVT != MVT::f32 || DestVT != MVT::f64)
963 return false;
964
965 unsigned SrcReg = getRegForValue(Src);
966 if (!SrcReg)
967 return false;
968
969 // No code is generated for a FP extend.
970 updateValueMap(I, SrcReg);
971 return true;
972 }
973
974 // Attempt to fast-select a floating-point truncate instruction.
SelectFPTrunc(const Instruction * I)975 bool PPCFastISel::SelectFPTrunc(const Instruction *I) {
976 Value *Src = I->getOperand(0);
977 EVT SrcVT = TLI.getValueType(DL, Src->getType(), true);
978 EVT DestVT = TLI.getValueType(DL, I->getType(), true);
979
980 if (SrcVT != MVT::f64 || DestVT != MVT::f32)
981 return false;
982
983 unsigned SrcReg = getRegForValue(Src);
984 if (!SrcReg)
985 return false;
986
987 // Round the result to single precision.
988 unsigned DestReg;
989
990 if (PPCSubTarget->hasSPE()) {
991 DestReg = createResultReg(&PPC::SPE4RCRegClass);
992 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
993 TII.get(PPC::EFSCFD), DestReg)
994 .addReg(SrcReg);
995 } else {
996 DestReg = createResultReg(&PPC::F4RCRegClass);
997 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
998 TII.get(PPC::FRSP), DestReg)
999 .addReg(SrcReg);
1000 }
1001
1002 updateValueMap(I, DestReg);
1003 return true;
1004 }
1005
1006 // Move an i32 or i64 value in a GPR to an f64 value in an FPR.
1007 // FIXME: When direct register moves are implemented (see PowerISA 2.07),
1008 // those should be used instead of moving via a stack slot when the
1009 // subtarget permits.
1010 // FIXME: The code here is sloppy for the 4-byte case. Can use a 4-byte
1011 // stack slot and 4-byte store/load sequence. Or just sext the 4-byte
1012 // case to 8 bytes which produces tighter code but wastes stack space.
PPCMoveToFPReg(MVT SrcVT,unsigned SrcReg,bool IsSigned)1013 unsigned PPCFastISel::PPCMoveToFPReg(MVT SrcVT, unsigned SrcReg,
1014 bool IsSigned) {
1015
1016 // If necessary, extend 32-bit int to 64-bit.
1017 if (SrcVT == MVT::i32) {
1018 unsigned TmpReg = createResultReg(&PPC::G8RCRegClass);
1019 if (!PPCEmitIntExt(MVT::i32, SrcReg, MVT::i64, TmpReg, !IsSigned))
1020 return 0;
1021 SrcReg = TmpReg;
1022 }
1023
1024 // Get a stack slot 8 bytes wide, aligned on an 8-byte boundary.
1025 Address Addr;
1026 Addr.BaseType = Address::FrameIndexBase;
1027 Addr.Base.FI = MFI.CreateStackObject(8, 8, false);
1028
1029 // Store the value from the GPR.
1030 if (!PPCEmitStore(MVT::i64, SrcReg, Addr))
1031 return 0;
1032
1033 // Load the integer value into an FPR. The kind of load used depends
1034 // on a number of conditions.
1035 unsigned LoadOpc = PPC::LFD;
1036
1037 if (SrcVT == MVT::i32) {
1038 if (!IsSigned) {
1039 LoadOpc = PPC::LFIWZX;
1040 Addr.Offset = (PPCSubTarget->isLittleEndian()) ? 0 : 4;
1041 } else if (PPCSubTarget->hasLFIWAX()) {
1042 LoadOpc = PPC::LFIWAX;
1043 Addr.Offset = (PPCSubTarget->isLittleEndian()) ? 0 : 4;
1044 }
1045 }
1046
1047 const TargetRegisterClass *RC = &PPC::F8RCRegClass;
1048 unsigned ResultReg = 0;
1049 if (!PPCEmitLoad(MVT::f64, ResultReg, Addr, RC, !IsSigned, LoadOpc))
1050 return 0;
1051
1052 return ResultReg;
1053 }
1054
1055 // Attempt to fast-select an integer-to-floating-point conversion.
1056 // FIXME: Once fast-isel has better support for VSX, conversions using
1057 // direct moves should be implemented.
SelectIToFP(const Instruction * I,bool IsSigned)1058 bool PPCFastISel::SelectIToFP(const Instruction *I, bool IsSigned) {
1059 MVT DstVT;
1060 Type *DstTy = I->getType();
1061 if (!isTypeLegal(DstTy, DstVT))
1062 return false;
1063
1064 if (DstVT != MVT::f32 && DstVT != MVT::f64)
1065 return false;
1066
1067 Value *Src = I->getOperand(0);
1068 EVT SrcEVT = TLI.getValueType(DL, Src->getType(), true);
1069 if (!SrcEVT.isSimple())
1070 return false;
1071
1072 MVT SrcVT = SrcEVT.getSimpleVT();
1073
1074 if (SrcVT != MVT::i8 && SrcVT != MVT::i16 &&
1075 SrcVT != MVT::i32 && SrcVT != MVT::i64)
1076 return false;
1077
1078 unsigned SrcReg = getRegForValue(Src);
1079 if (SrcReg == 0)
1080 return false;
1081
1082 // Shortcut for SPE. Doesn't need to store/load, since it's all in the GPRs
1083 if (PPCSubTarget->hasSPE()) {
1084 unsigned Opc;
1085 if (DstVT == MVT::f32)
1086 Opc = IsSigned ? PPC::EFSCFSI : PPC::EFSCFUI;
1087 else
1088 Opc = IsSigned ? PPC::EFDCFSI : PPC::EFDCFUI;
1089
1090 unsigned DestReg = createResultReg(&PPC::SPERCRegClass);
1091 // Generate the convert.
1092 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg)
1093 .addReg(SrcReg);
1094 updateValueMap(I, DestReg);
1095 return true;
1096 }
1097
1098 // We can only lower an unsigned convert if we have the newer
1099 // floating-point conversion operations.
1100 if (!IsSigned && !PPCSubTarget->hasFPCVT())
1101 return false;
1102
1103 // FIXME: For now we require the newer floating-point conversion operations
1104 // (which are present only on P7 and A2 server models) when converting
1105 // to single-precision float. Otherwise we have to generate a lot of
1106 // fiddly code to avoid double rounding. If necessary, the fiddly code
1107 // can be found in PPCTargetLowering::LowerINT_TO_FP().
1108 if (DstVT == MVT::f32 && !PPCSubTarget->hasFPCVT())
1109 return false;
1110
1111 // Extend the input if necessary.
1112 if (SrcVT == MVT::i8 || SrcVT == MVT::i16) {
1113 unsigned TmpReg = createResultReg(&PPC::G8RCRegClass);
1114 if (!PPCEmitIntExt(SrcVT, SrcReg, MVT::i64, TmpReg, !IsSigned))
1115 return false;
1116 SrcVT = MVT::i64;
1117 SrcReg = TmpReg;
1118 }
1119
1120 // Move the integer value to an FPR.
1121 unsigned FPReg = PPCMoveToFPReg(SrcVT, SrcReg, IsSigned);
1122 if (FPReg == 0)
1123 return false;
1124
1125 // Determine the opcode for the conversion.
1126 const TargetRegisterClass *RC = &PPC::F8RCRegClass;
1127 unsigned DestReg = createResultReg(RC);
1128 unsigned Opc;
1129
1130 if (DstVT == MVT::f32)
1131 Opc = IsSigned ? PPC::FCFIDS : PPC::FCFIDUS;
1132 else
1133 Opc = IsSigned ? PPC::FCFID : PPC::FCFIDU;
1134
1135 // Generate the convert.
1136 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg)
1137 .addReg(FPReg);
1138
1139 updateValueMap(I, DestReg);
1140 return true;
1141 }
1142
1143 // Move the floating-point value in SrcReg into an integer destination
1144 // register, and return the register (or zero if we can't handle it).
1145 // FIXME: When direct register moves are implemented (see PowerISA 2.07),
1146 // those should be used instead of moving via a stack slot when the
1147 // subtarget permits.
PPCMoveToIntReg(const Instruction * I,MVT VT,unsigned SrcReg,bool IsSigned)1148 unsigned PPCFastISel::PPCMoveToIntReg(const Instruction *I, MVT VT,
1149 unsigned SrcReg, bool IsSigned) {
1150 // Get a stack slot 8 bytes wide, aligned on an 8-byte boundary.
1151 // Note that if have STFIWX available, we could use a 4-byte stack
1152 // slot for i32, but this being fast-isel we'll just go with the
1153 // easiest code gen possible.
1154 Address Addr;
1155 Addr.BaseType = Address::FrameIndexBase;
1156 Addr.Base.FI = MFI.CreateStackObject(8, 8, false);
1157
1158 // Store the value from the FPR.
1159 if (!PPCEmitStore(MVT::f64, SrcReg, Addr))
1160 return 0;
1161
1162 // Reload it into a GPR. If we want an i32 on big endian, modify the
1163 // address to have a 4-byte offset so we load from the right place.
1164 if (VT == MVT::i32)
1165 Addr.Offset = (PPCSubTarget->isLittleEndian()) ? 0 : 4;
1166
1167 // Look at the currently assigned register for this instruction
1168 // to determine the required register class.
1169 unsigned AssignedReg = FuncInfo.ValueMap[I];
1170 const TargetRegisterClass *RC =
1171 AssignedReg ? MRI.getRegClass(AssignedReg) : nullptr;
1172
1173 unsigned ResultReg = 0;
1174 if (!PPCEmitLoad(VT, ResultReg, Addr, RC, !IsSigned))
1175 return 0;
1176
1177 return ResultReg;
1178 }
1179
1180 // Attempt to fast-select a floating-point-to-integer conversion.
1181 // FIXME: Once fast-isel has better support for VSX, conversions using
1182 // direct moves should be implemented.
SelectFPToI(const Instruction * I,bool IsSigned)1183 bool PPCFastISel::SelectFPToI(const Instruction *I, bool IsSigned) {
1184 MVT DstVT, SrcVT;
1185 Type *DstTy = I->getType();
1186 if (!isTypeLegal(DstTy, DstVT))
1187 return false;
1188
1189 if (DstVT != MVT::i32 && DstVT != MVT::i64)
1190 return false;
1191
1192 // If we don't have FCTIDUZ, or SPE, and we need it, punt to SelectionDAG.
1193 if (DstVT == MVT::i64 && !IsSigned &&
1194 !PPCSubTarget->hasFPCVT() && !PPCSubTarget->hasSPE())
1195 return false;
1196
1197 Value *Src = I->getOperand(0);
1198 Type *SrcTy = Src->getType();
1199 if (!isTypeLegal(SrcTy, SrcVT))
1200 return false;
1201
1202 if (SrcVT != MVT::f32 && SrcVT != MVT::f64)
1203 return false;
1204
1205 unsigned SrcReg = getRegForValue(Src);
1206 if (SrcReg == 0)
1207 return false;
1208
1209 // Convert f32 to f64 if necessary. This is just a meaningless copy
1210 // to get the register class right.
1211 const TargetRegisterClass *InRC = MRI.getRegClass(SrcReg);
1212 if (InRC == &PPC::F4RCRegClass) {
1213 unsigned TmpReg = createResultReg(&PPC::F8RCRegClass);
1214 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1215 TII.get(TargetOpcode::COPY), TmpReg)
1216 .addReg(SrcReg);
1217 SrcReg = TmpReg;
1218 }
1219
1220 // Determine the opcode for the conversion, which takes place
1221 // entirely within FPRs.
1222 unsigned DestReg;
1223 unsigned Opc;
1224
1225 if (PPCSubTarget->hasSPE()) {
1226 DestReg = createResultReg(&PPC::GPRCRegClass);
1227 if (IsSigned)
1228 Opc = InRC == &PPC::SPE4RCRegClass ? PPC::EFSCTSIZ : PPC::EFDCTSIZ;
1229 else
1230 Opc = InRC == &PPC::SPE4RCRegClass ? PPC::EFSCTUIZ : PPC::EFDCTUIZ;
1231 } else {
1232 DestReg = createResultReg(&PPC::F8RCRegClass);
1233 if (DstVT == MVT::i32)
1234 if (IsSigned)
1235 Opc = PPC::FCTIWZ;
1236 else
1237 Opc = PPCSubTarget->hasFPCVT() ? PPC::FCTIWUZ : PPC::FCTIDZ;
1238 else
1239 Opc = IsSigned ? PPC::FCTIDZ : PPC::FCTIDUZ;
1240 }
1241
1242 // Generate the convert.
1243 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg)
1244 .addReg(SrcReg);
1245
1246 // Now move the integer value from a float register to an integer register.
1247 unsigned IntReg = PPCSubTarget->hasSPE() ? DestReg :
1248 PPCMoveToIntReg(I, DstVT, DestReg, IsSigned);
1249
1250 if (IntReg == 0)
1251 return false;
1252
1253 updateValueMap(I, IntReg);
1254 return true;
1255 }
1256
1257 // Attempt to fast-select a binary integer operation that isn't already
1258 // handled automatically.
SelectBinaryIntOp(const Instruction * I,unsigned ISDOpcode)1259 bool PPCFastISel::SelectBinaryIntOp(const Instruction *I, unsigned ISDOpcode) {
1260 EVT DestVT = TLI.getValueType(DL, I->getType(), true);
1261
1262 // We can get here in the case when we have a binary operation on a non-legal
1263 // type and the target independent selector doesn't know how to handle it.
1264 if (DestVT != MVT::i16 && DestVT != MVT::i8)
1265 return false;
1266
1267 // Look at the currently assigned register for this instruction
1268 // to determine the required register class. If there is no register,
1269 // make a conservative choice (don't assign R0).
1270 unsigned AssignedReg = FuncInfo.ValueMap[I];
1271 const TargetRegisterClass *RC =
1272 (AssignedReg ? MRI.getRegClass(AssignedReg) :
1273 &PPC::GPRC_and_GPRC_NOR0RegClass);
1274 bool IsGPRC = RC->hasSuperClassEq(&PPC::GPRCRegClass);
1275
1276 unsigned Opc;
1277 switch (ISDOpcode) {
1278 default: return false;
1279 case ISD::ADD:
1280 Opc = IsGPRC ? PPC::ADD4 : PPC::ADD8;
1281 break;
1282 case ISD::OR:
1283 Opc = IsGPRC ? PPC::OR : PPC::OR8;
1284 break;
1285 case ISD::SUB:
1286 Opc = IsGPRC ? PPC::SUBF : PPC::SUBF8;
1287 break;
1288 }
1289
1290 unsigned ResultReg = createResultReg(RC ? RC : &PPC::G8RCRegClass);
1291 unsigned SrcReg1 = getRegForValue(I->getOperand(0));
1292 if (SrcReg1 == 0) return false;
1293
1294 // Handle case of small immediate operand.
1295 if (const ConstantInt *ConstInt = dyn_cast<ConstantInt>(I->getOperand(1))) {
1296 const APInt &CIVal = ConstInt->getValue();
1297 int Imm = (int)CIVal.getSExtValue();
1298 bool UseImm = true;
1299 if (isInt<16>(Imm)) {
1300 switch (Opc) {
1301 default:
1302 llvm_unreachable("Missing case!");
1303 case PPC::ADD4:
1304 Opc = PPC::ADDI;
1305 MRI.setRegClass(SrcReg1, &PPC::GPRC_and_GPRC_NOR0RegClass);
1306 break;
1307 case PPC::ADD8:
1308 Opc = PPC::ADDI8;
1309 MRI.setRegClass(SrcReg1, &PPC::G8RC_and_G8RC_NOX0RegClass);
1310 break;
1311 case PPC::OR:
1312 Opc = PPC::ORI;
1313 break;
1314 case PPC::OR8:
1315 Opc = PPC::ORI8;
1316 break;
1317 case PPC::SUBF:
1318 if (Imm == -32768)
1319 UseImm = false;
1320 else {
1321 Opc = PPC::ADDI;
1322 MRI.setRegClass(SrcReg1, &PPC::GPRC_and_GPRC_NOR0RegClass);
1323 Imm = -Imm;
1324 }
1325 break;
1326 case PPC::SUBF8:
1327 if (Imm == -32768)
1328 UseImm = false;
1329 else {
1330 Opc = PPC::ADDI8;
1331 MRI.setRegClass(SrcReg1, &PPC::G8RC_and_G8RC_NOX0RegClass);
1332 Imm = -Imm;
1333 }
1334 break;
1335 }
1336
1337 if (UseImm) {
1338 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc),
1339 ResultReg)
1340 .addReg(SrcReg1)
1341 .addImm(Imm);
1342 updateValueMap(I, ResultReg);
1343 return true;
1344 }
1345 }
1346 }
1347
1348 // Reg-reg case.
1349 unsigned SrcReg2 = getRegForValue(I->getOperand(1));
1350 if (SrcReg2 == 0) return false;
1351
1352 // Reverse operands for subtract-from.
1353 if (ISDOpcode == ISD::SUB)
1354 std::swap(SrcReg1, SrcReg2);
1355
1356 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg)
1357 .addReg(SrcReg1).addReg(SrcReg2);
1358 updateValueMap(I, ResultReg);
1359 return true;
1360 }
1361
1362 // Handle arguments to a call that we're attempting to fast-select.
1363 // Return false if the arguments are too complex for us at the moment.
processCallArgs(SmallVectorImpl<Value * > & Args,SmallVectorImpl<unsigned> & ArgRegs,SmallVectorImpl<MVT> & ArgVTs,SmallVectorImpl<ISD::ArgFlagsTy> & ArgFlags,SmallVectorImpl<unsigned> & RegArgs,CallingConv::ID CC,unsigned & NumBytes,bool IsVarArg)1364 bool PPCFastISel::processCallArgs(SmallVectorImpl<Value*> &Args,
1365 SmallVectorImpl<unsigned> &ArgRegs,
1366 SmallVectorImpl<MVT> &ArgVTs,
1367 SmallVectorImpl<ISD::ArgFlagsTy> &ArgFlags,
1368 SmallVectorImpl<unsigned> &RegArgs,
1369 CallingConv::ID CC,
1370 unsigned &NumBytes,
1371 bool IsVarArg) {
1372 SmallVector<CCValAssign, 16> ArgLocs;
1373 CCState CCInfo(CC, IsVarArg, *FuncInfo.MF, ArgLocs, *Context);
1374
1375 // Reserve space for the linkage area on the stack.
1376 unsigned LinkageSize = PPCSubTarget->getFrameLowering()->getLinkageSize();
1377 CCInfo.AllocateStack(LinkageSize, 8);
1378
1379 CCInfo.AnalyzeCallOperands(ArgVTs, ArgFlags, CC_PPC64_ELF_FIS);
1380
1381 // Bail out if we can't handle any of the arguments.
1382 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
1383 CCValAssign &VA = ArgLocs[I];
1384 MVT ArgVT = ArgVTs[VA.getValNo()];
1385
1386 // Skip vector arguments for now, as well as long double and
1387 // uint128_t, and anything that isn't passed in a register.
1388 if (ArgVT.isVector() || ArgVT.getSizeInBits() > 64 || ArgVT == MVT::i1 ||
1389 !VA.isRegLoc() || VA.needsCustom())
1390 return false;
1391
1392 // Skip bit-converted arguments for now.
1393 if (VA.getLocInfo() == CCValAssign::BCvt)
1394 return false;
1395 }
1396
1397 // Get a count of how many bytes are to be pushed onto the stack.
1398 NumBytes = CCInfo.getNextStackOffset();
1399
1400 // The prolog code of the callee may store up to 8 GPR argument registers to
1401 // the stack, allowing va_start to index over them in memory if its varargs.
1402 // Because we cannot tell if this is needed on the caller side, we have to
1403 // conservatively assume that it is needed. As such, make sure we have at
1404 // least enough stack space for the caller to store the 8 GPRs.
1405 // FIXME: On ELFv2, it may be unnecessary to allocate the parameter area.
1406 NumBytes = std::max(NumBytes, LinkageSize + 64);
1407
1408 // Issue CALLSEQ_START.
1409 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1410 TII.get(TII.getCallFrameSetupOpcode()))
1411 .addImm(NumBytes).addImm(0);
1412
1413 // Prepare to assign register arguments. Every argument uses up a
1414 // GPR protocol register even if it's passed in a floating-point
1415 // register (unless we're using the fast calling convention).
1416 unsigned NextGPR = PPC::X3;
1417 unsigned NextFPR = PPC::F1;
1418
1419 // Process arguments.
1420 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
1421 CCValAssign &VA = ArgLocs[I];
1422 unsigned Arg = ArgRegs[VA.getValNo()];
1423 MVT ArgVT = ArgVTs[VA.getValNo()];
1424
1425 // Handle argument promotion and bitcasts.
1426 switch (VA.getLocInfo()) {
1427 default:
1428 llvm_unreachable("Unknown loc info!");
1429 case CCValAssign::Full:
1430 break;
1431 case CCValAssign::SExt: {
1432 MVT DestVT = VA.getLocVT();
1433 const TargetRegisterClass *RC =
1434 (DestVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
1435 unsigned TmpReg = createResultReg(RC);
1436 if (!PPCEmitIntExt(ArgVT, Arg, DestVT, TmpReg, /*IsZExt*/false))
1437 llvm_unreachable("Failed to emit a sext!");
1438 ArgVT = DestVT;
1439 Arg = TmpReg;
1440 break;
1441 }
1442 case CCValAssign::AExt:
1443 case CCValAssign::ZExt: {
1444 MVT DestVT = VA.getLocVT();
1445 const TargetRegisterClass *RC =
1446 (DestVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
1447 unsigned TmpReg = createResultReg(RC);
1448 if (!PPCEmitIntExt(ArgVT, Arg, DestVT, TmpReg, /*IsZExt*/true))
1449 llvm_unreachable("Failed to emit a zext!");
1450 ArgVT = DestVT;
1451 Arg = TmpReg;
1452 break;
1453 }
1454 case CCValAssign::BCvt: {
1455 // FIXME: Not yet handled.
1456 llvm_unreachable("Should have bailed before getting here!");
1457 break;
1458 }
1459 }
1460
1461 // Copy this argument to the appropriate register.
1462 unsigned ArgReg;
1463 if (ArgVT == MVT::f32 || ArgVT == MVT::f64) {
1464 ArgReg = NextFPR++;
1465 if (CC != CallingConv::Fast)
1466 ++NextGPR;
1467 } else
1468 ArgReg = NextGPR++;
1469
1470 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1471 TII.get(TargetOpcode::COPY), ArgReg).addReg(Arg);
1472 RegArgs.push_back(ArgReg);
1473 }
1474
1475 return true;
1476 }
1477
1478 // For a call that we've determined we can fast-select, finish the
1479 // call sequence and generate a copy to obtain the return value (if any).
finishCall(MVT RetVT,CallLoweringInfo & CLI,unsigned & NumBytes)1480 bool PPCFastISel::finishCall(MVT RetVT, CallLoweringInfo &CLI, unsigned &NumBytes) {
1481 CallingConv::ID CC = CLI.CallConv;
1482
1483 // Issue CallSEQ_END.
1484 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1485 TII.get(TII.getCallFrameDestroyOpcode()))
1486 .addImm(NumBytes).addImm(0);
1487
1488 // Next, generate a copy to obtain the return value.
1489 // FIXME: No multi-register return values yet, though I don't foresee
1490 // any real difficulties there.
1491 if (RetVT != MVT::isVoid) {
1492 SmallVector<CCValAssign, 16> RVLocs;
1493 CCState CCInfo(CC, false, *FuncInfo.MF, RVLocs, *Context);
1494 CCInfo.AnalyzeCallResult(RetVT, RetCC_PPC64_ELF_FIS);
1495 CCValAssign &VA = RVLocs[0];
1496 assert(RVLocs.size() == 1 && "No support for multi-reg return values!");
1497 assert(VA.isRegLoc() && "Can only return in registers!");
1498
1499 MVT DestVT = VA.getValVT();
1500 MVT CopyVT = DestVT;
1501
1502 // Ints smaller than a register still arrive in a full 64-bit
1503 // register, so make sure we recognize this.
1504 if (RetVT == MVT::i8 || RetVT == MVT::i16 || RetVT == MVT::i32)
1505 CopyVT = MVT::i64;
1506
1507 unsigned SourcePhysReg = VA.getLocReg();
1508 unsigned ResultReg = 0;
1509
1510 if (RetVT == CopyVT) {
1511 const TargetRegisterClass *CpyRC = TLI.getRegClassFor(CopyVT);
1512 ResultReg = createResultReg(CpyRC);
1513
1514 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1515 TII.get(TargetOpcode::COPY), ResultReg)
1516 .addReg(SourcePhysReg);
1517
1518 // If necessary, round the floating result to single precision.
1519 } else if (CopyVT == MVT::f64) {
1520 ResultReg = createResultReg(TLI.getRegClassFor(RetVT));
1521 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::FRSP),
1522 ResultReg).addReg(SourcePhysReg);
1523
1524 // If only the low half of a general register is needed, generate
1525 // a GPRC copy instead of a G8RC copy. (EXTRACT_SUBREG can't be
1526 // used along the fast-isel path (not lowered), and downstream logic
1527 // also doesn't like a direct subreg copy on a physical reg.)
1528 } else if (RetVT == MVT::i8 || RetVT == MVT::i16 || RetVT == MVT::i32) {
1529 ResultReg = createResultReg(&PPC::GPRCRegClass);
1530 // Convert physical register from G8RC to GPRC.
1531 SourcePhysReg -= PPC::X0 - PPC::R0;
1532 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1533 TII.get(TargetOpcode::COPY), ResultReg)
1534 .addReg(SourcePhysReg);
1535 }
1536
1537 assert(ResultReg && "ResultReg unset!");
1538 CLI.InRegs.push_back(SourcePhysReg);
1539 CLI.ResultReg = ResultReg;
1540 CLI.NumResultRegs = 1;
1541 }
1542
1543 return true;
1544 }
1545
fastLowerCall(CallLoweringInfo & CLI)1546 bool PPCFastISel::fastLowerCall(CallLoweringInfo &CLI) {
1547 CallingConv::ID CC = CLI.CallConv;
1548 bool IsTailCall = CLI.IsTailCall;
1549 bool IsVarArg = CLI.IsVarArg;
1550 const Value *Callee = CLI.Callee;
1551 const MCSymbol *Symbol = CLI.Symbol;
1552
1553 if (!Callee && !Symbol)
1554 return false;
1555
1556 // Allow SelectionDAG isel to handle tail calls.
1557 if (IsTailCall)
1558 return false;
1559
1560 // Let SDISel handle vararg functions.
1561 if (IsVarArg)
1562 return false;
1563
1564 // Handle simple calls for now, with legal return types and
1565 // those that can be extended.
1566 Type *RetTy = CLI.RetTy;
1567 MVT RetVT;
1568 if (RetTy->isVoidTy())
1569 RetVT = MVT::isVoid;
1570 else if (!isTypeLegal(RetTy, RetVT) && RetVT != MVT::i16 &&
1571 RetVT != MVT::i8)
1572 return false;
1573 else if (RetVT == MVT::i1 && PPCSubTarget->useCRBits())
1574 // We can't handle boolean returns when CR bits are in use.
1575 return false;
1576
1577 // FIXME: No multi-register return values yet.
1578 if (RetVT != MVT::isVoid && RetVT != MVT::i8 && RetVT != MVT::i16 &&
1579 RetVT != MVT::i32 && RetVT != MVT::i64 && RetVT != MVT::f32 &&
1580 RetVT != MVT::f64) {
1581 SmallVector<CCValAssign, 16> RVLocs;
1582 CCState CCInfo(CC, IsVarArg, *FuncInfo.MF, RVLocs, *Context);
1583 CCInfo.AnalyzeCallResult(RetVT, RetCC_PPC64_ELF_FIS);
1584 if (RVLocs.size() > 1)
1585 return false;
1586 }
1587
1588 // Bail early if more than 8 arguments, as we only currently
1589 // handle arguments passed in registers.
1590 unsigned NumArgs = CLI.OutVals.size();
1591 if (NumArgs > 8)
1592 return false;
1593
1594 // Set up the argument vectors.
1595 SmallVector<Value*, 8> Args;
1596 SmallVector<unsigned, 8> ArgRegs;
1597 SmallVector<MVT, 8> ArgVTs;
1598 SmallVector<ISD::ArgFlagsTy, 8> ArgFlags;
1599
1600 Args.reserve(NumArgs);
1601 ArgRegs.reserve(NumArgs);
1602 ArgVTs.reserve(NumArgs);
1603 ArgFlags.reserve(NumArgs);
1604
1605 for (unsigned i = 0, ie = NumArgs; i != ie; ++i) {
1606 // Only handle easy calls for now. It would be reasonably easy
1607 // to handle <= 8-byte structures passed ByVal in registers, but we
1608 // have to ensure they are right-justified in the register.
1609 ISD::ArgFlagsTy Flags = CLI.OutFlags[i];
1610 if (Flags.isInReg() || Flags.isSRet() || Flags.isNest() || Flags.isByVal())
1611 return false;
1612
1613 Value *ArgValue = CLI.OutVals[i];
1614 Type *ArgTy = ArgValue->getType();
1615 MVT ArgVT;
1616 if (!isTypeLegal(ArgTy, ArgVT) && ArgVT != MVT::i16 && ArgVT != MVT::i8)
1617 return false;
1618
1619 if (ArgVT.isVector())
1620 return false;
1621
1622 unsigned Arg = getRegForValue(ArgValue);
1623 if (Arg == 0)
1624 return false;
1625
1626 Args.push_back(ArgValue);
1627 ArgRegs.push_back(Arg);
1628 ArgVTs.push_back(ArgVT);
1629 ArgFlags.push_back(Flags);
1630 }
1631
1632 // Process the arguments.
1633 SmallVector<unsigned, 8> RegArgs;
1634 unsigned NumBytes;
1635
1636 if (!processCallArgs(Args, ArgRegs, ArgVTs, ArgFlags,
1637 RegArgs, CC, NumBytes, IsVarArg))
1638 return false;
1639
1640 MachineInstrBuilder MIB;
1641 // FIXME: No handling for function pointers yet. This requires
1642 // implementing the function descriptor (OPD) setup.
1643 const GlobalValue *GV = dyn_cast<GlobalValue>(Callee);
1644 if (!GV) {
1645 // patchpoints are a special case; they always dispatch to a pointer value.
1646 // However, we don't actually want to generate the indirect call sequence
1647 // here (that will be generated, as necessary, during asm printing), and
1648 // the call we generate here will be erased by FastISel::selectPatchpoint,
1649 // so don't try very hard...
1650 if (CLI.IsPatchPoint)
1651 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::NOP));
1652 else
1653 return false;
1654 } else {
1655 // Build direct call with NOP for TOC restore.
1656 // FIXME: We can and should optimize away the NOP for local calls.
1657 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1658 TII.get(PPC::BL8_NOP));
1659 // Add callee.
1660 MIB.addGlobalAddress(GV);
1661 }
1662
1663 // Add implicit physical register uses to the call.
1664 for (unsigned II = 0, IE = RegArgs.size(); II != IE; ++II)
1665 MIB.addReg(RegArgs[II], RegState::Implicit);
1666
1667 // Direct calls, in both the ELF V1 and V2 ABIs, need the TOC register live
1668 // into the call.
1669 PPCFuncInfo->setUsesTOCBasePtr();
1670 MIB.addReg(PPC::X2, RegState::Implicit);
1671
1672 // Add a register mask with the call-preserved registers. Proper
1673 // defs for return values will be added by setPhysRegsDeadExcept().
1674 MIB.addRegMask(TRI.getCallPreservedMask(*FuncInfo.MF, CC));
1675
1676 CLI.Call = MIB;
1677
1678 // Finish off the call including any return values.
1679 return finishCall(RetVT, CLI, NumBytes);
1680 }
1681
1682 // Attempt to fast-select a return instruction.
SelectRet(const Instruction * I)1683 bool PPCFastISel::SelectRet(const Instruction *I) {
1684
1685 if (!FuncInfo.CanLowerReturn)
1686 return false;
1687
1688 if (TLI.supportSplitCSR(FuncInfo.MF))
1689 return false;
1690
1691 const ReturnInst *Ret = cast<ReturnInst>(I);
1692 const Function &F = *I->getParent()->getParent();
1693
1694 // Build a list of return value registers.
1695 SmallVector<unsigned, 4> RetRegs;
1696 CallingConv::ID CC = F.getCallingConv();
1697
1698 if (Ret->getNumOperands() > 0) {
1699 SmallVector<ISD::OutputArg, 4> Outs;
1700 GetReturnInfo(CC, F.getReturnType(), F.getAttributes(), Outs, TLI, DL);
1701
1702 // Analyze operands of the call, assigning locations to each operand.
1703 SmallVector<CCValAssign, 16> ValLocs;
1704 CCState CCInfo(CC, F.isVarArg(), *FuncInfo.MF, ValLocs, *Context);
1705 CCInfo.AnalyzeReturn(Outs, RetCC_PPC64_ELF_FIS);
1706 const Value *RV = Ret->getOperand(0);
1707
1708 // FIXME: Only one output register for now.
1709 if (ValLocs.size() > 1)
1710 return false;
1711
1712 // Special case for returning a constant integer of any size - materialize
1713 // the constant as an i64 and copy it to the return register.
1714 if (const ConstantInt *CI = dyn_cast<ConstantInt>(RV)) {
1715 CCValAssign &VA = ValLocs[0];
1716
1717 unsigned RetReg = VA.getLocReg();
1718 // We still need to worry about properly extending the sign. For example,
1719 // we could have only a single bit or a constant that needs zero
1720 // extension rather than sign extension. Make sure we pass the return
1721 // value extension property to integer materialization.
1722 unsigned SrcReg =
1723 PPCMaterializeInt(CI, MVT::i64, VA.getLocInfo() != CCValAssign::ZExt);
1724
1725 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1726 TII.get(TargetOpcode::COPY), RetReg).addReg(SrcReg);
1727
1728 RetRegs.push_back(RetReg);
1729
1730 } else {
1731 unsigned Reg = getRegForValue(RV);
1732
1733 if (Reg == 0)
1734 return false;
1735
1736 // Copy the result values into the output registers.
1737 for (unsigned i = 0; i < ValLocs.size(); ++i) {
1738
1739 CCValAssign &VA = ValLocs[i];
1740 assert(VA.isRegLoc() && "Can only return in registers!");
1741 RetRegs.push_back(VA.getLocReg());
1742 unsigned SrcReg = Reg + VA.getValNo();
1743
1744 EVT RVEVT = TLI.getValueType(DL, RV->getType());
1745 if (!RVEVT.isSimple())
1746 return false;
1747 MVT RVVT = RVEVT.getSimpleVT();
1748 MVT DestVT = VA.getLocVT();
1749
1750 if (RVVT != DestVT && RVVT != MVT::i8 &&
1751 RVVT != MVT::i16 && RVVT != MVT::i32)
1752 return false;
1753
1754 if (RVVT != DestVT) {
1755 switch (VA.getLocInfo()) {
1756 default:
1757 llvm_unreachable("Unknown loc info!");
1758 case CCValAssign::Full:
1759 llvm_unreachable("Full value assign but types don't match?");
1760 case CCValAssign::AExt:
1761 case CCValAssign::ZExt: {
1762 const TargetRegisterClass *RC =
1763 (DestVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
1764 unsigned TmpReg = createResultReg(RC);
1765 if (!PPCEmitIntExt(RVVT, SrcReg, DestVT, TmpReg, true))
1766 return false;
1767 SrcReg = TmpReg;
1768 break;
1769 }
1770 case CCValAssign::SExt: {
1771 const TargetRegisterClass *RC =
1772 (DestVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
1773 unsigned TmpReg = createResultReg(RC);
1774 if (!PPCEmitIntExt(RVVT, SrcReg, DestVT, TmpReg, false))
1775 return false;
1776 SrcReg = TmpReg;
1777 break;
1778 }
1779 }
1780 }
1781
1782 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1783 TII.get(TargetOpcode::COPY), RetRegs[i])
1784 .addReg(SrcReg);
1785 }
1786 }
1787 }
1788
1789 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1790 TII.get(PPC::BLR8));
1791
1792 for (unsigned i = 0, e = RetRegs.size(); i != e; ++i)
1793 MIB.addReg(RetRegs[i], RegState::Implicit);
1794
1795 return true;
1796 }
1797
1798 // Attempt to emit an integer extend of SrcReg into DestReg. Both
1799 // signed and zero extensions are supported. Return false if we
1800 // can't handle it.
PPCEmitIntExt(MVT SrcVT,unsigned SrcReg,MVT DestVT,unsigned DestReg,bool IsZExt)1801 bool PPCFastISel::PPCEmitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT,
1802 unsigned DestReg, bool IsZExt) {
1803 if (DestVT != MVT::i32 && DestVT != MVT::i64)
1804 return false;
1805 if (SrcVT != MVT::i8 && SrcVT != MVT::i16 && SrcVT != MVT::i32)
1806 return false;
1807
1808 // Signed extensions use EXTSB, EXTSH, EXTSW.
1809 if (!IsZExt) {
1810 unsigned Opc;
1811 if (SrcVT == MVT::i8)
1812 Opc = (DestVT == MVT::i32) ? PPC::EXTSB : PPC::EXTSB8_32_64;
1813 else if (SrcVT == MVT::i16)
1814 Opc = (DestVT == MVT::i32) ? PPC::EXTSH : PPC::EXTSH8_32_64;
1815 else {
1816 assert(DestVT == MVT::i64 && "Signed extend from i32 to i32??");
1817 Opc = PPC::EXTSW_32_64;
1818 }
1819 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg)
1820 .addReg(SrcReg);
1821
1822 // Unsigned 32-bit extensions use RLWINM.
1823 } else if (DestVT == MVT::i32) {
1824 unsigned MB;
1825 if (SrcVT == MVT::i8)
1826 MB = 24;
1827 else {
1828 assert(SrcVT == MVT::i16 && "Unsigned extend from i32 to i32??");
1829 MB = 16;
1830 }
1831 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::RLWINM),
1832 DestReg)
1833 .addReg(SrcReg).addImm(/*SH=*/0).addImm(MB).addImm(/*ME=*/31);
1834
1835 // Unsigned 64-bit extensions use RLDICL (with a 32-bit source).
1836 } else {
1837 unsigned MB;
1838 if (SrcVT == MVT::i8)
1839 MB = 56;
1840 else if (SrcVT == MVT::i16)
1841 MB = 48;
1842 else
1843 MB = 32;
1844 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1845 TII.get(PPC::RLDICL_32_64), DestReg)
1846 .addReg(SrcReg).addImm(/*SH=*/0).addImm(MB);
1847 }
1848
1849 return true;
1850 }
1851
1852 // Attempt to fast-select an indirect branch instruction.
SelectIndirectBr(const Instruction * I)1853 bool PPCFastISel::SelectIndirectBr(const Instruction *I) {
1854 unsigned AddrReg = getRegForValue(I->getOperand(0));
1855 if (AddrReg == 0)
1856 return false;
1857
1858 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::MTCTR8))
1859 .addReg(AddrReg);
1860 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::BCTR8));
1861
1862 const IndirectBrInst *IB = cast<IndirectBrInst>(I);
1863 for (const BasicBlock *SuccBB : IB->successors())
1864 FuncInfo.MBB->addSuccessor(FuncInfo.MBBMap[SuccBB]);
1865
1866 return true;
1867 }
1868
1869 // Attempt to fast-select an integer truncate instruction.
SelectTrunc(const Instruction * I)1870 bool PPCFastISel::SelectTrunc(const Instruction *I) {
1871 Value *Src = I->getOperand(0);
1872 EVT SrcVT = TLI.getValueType(DL, Src->getType(), true);
1873 EVT DestVT = TLI.getValueType(DL, I->getType(), true);
1874
1875 if (SrcVT != MVT::i64 && SrcVT != MVT::i32 && SrcVT != MVT::i16)
1876 return false;
1877
1878 if (DestVT != MVT::i32 && DestVT != MVT::i16 && DestVT != MVT::i8)
1879 return false;
1880
1881 unsigned SrcReg = getRegForValue(Src);
1882 if (!SrcReg)
1883 return false;
1884
1885 // The only interesting case is when we need to switch register classes.
1886 if (SrcVT == MVT::i64) {
1887 unsigned ResultReg = createResultReg(&PPC::GPRCRegClass);
1888 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1889 TII.get(TargetOpcode::COPY),
1890 ResultReg).addReg(SrcReg, 0, PPC::sub_32);
1891 SrcReg = ResultReg;
1892 }
1893
1894 updateValueMap(I, SrcReg);
1895 return true;
1896 }
1897
1898 // Attempt to fast-select an integer extend instruction.
SelectIntExt(const Instruction * I)1899 bool PPCFastISel::SelectIntExt(const Instruction *I) {
1900 Type *DestTy = I->getType();
1901 Value *Src = I->getOperand(0);
1902 Type *SrcTy = Src->getType();
1903
1904 bool IsZExt = isa<ZExtInst>(I);
1905 unsigned SrcReg = getRegForValue(Src);
1906 if (!SrcReg) return false;
1907
1908 EVT SrcEVT, DestEVT;
1909 SrcEVT = TLI.getValueType(DL, SrcTy, true);
1910 DestEVT = TLI.getValueType(DL, DestTy, true);
1911 if (!SrcEVT.isSimple())
1912 return false;
1913 if (!DestEVT.isSimple())
1914 return false;
1915
1916 MVT SrcVT = SrcEVT.getSimpleVT();
1917 MVT DestVT = DestEVT.getSimpleVT();
1918
1919 // If we know the register class needed for the result of this
1920 // instruction, use it. Otherwise pick the register class of the
1921 // correct size that does not contain X0/R0, since we don't know
1922 // whether downstream uses permit that assignment.
1923 unsigned AssignedReg = FuncInfo.ValueMap[I];
1924 const TargetRegisterClass *RC =
1925 (AssignedReg ? MRI.getRegClass(AssignedReg) :
1926 (DestVT == MVT::i64 ? &PPC::G8RC_and_G8RC_NOX0RegClass :
1927 &PPC::GPRC_and_GPRC_NOR0RegClass));
1928 unsigned ResultReg = createResultReg(RC);
1929
1930 if (!PPCEmitIntExt(SrcVT, SrcReg, DestVT, ResultReg, IsZExt))
1931 return false;
1932
1933 updateValueMap(I, ResultReg);
1934 return true;
1935 }
1936
1937 // Attempt to fast-select an instruction that wasn't handled by
1938 // the table-generated machinery.
fastSelectInstruction(const Instruction * I)1939 bool PPCFastISel::fastSelectInstruction(const Instruction *I) {
1940
1941 switch (I->getOpcode()) {
1942 case Instruction::Load:
1943 return SelectLoad(I);
1944 case Instruction::Store:
1945 return SelectStore(I);
1946 case Instruction::Br:
1947 return SelectBranch(I);
1948 case Instruction::IndirectBr:
1949 return SelectIndirectBr(I);
1950 case Instruction::FPExt:
1951 return SelectFPExt(I);
1952 case Instruction::FPTrunc:
1953 return SelectFPTrunc(I);
1954 case Instruction::SIToFP:
1955 return SelectIToFP(I, /*IsSigned*/ true);
1956 case Instruction::UIToFP:
1957 return SelectIToFP(I, /*IsSigned*/ false);
1958 case Instruction::FPToSI:
1959 return SelectFPToI(I, /*IsSigned*/ true);
1960 case Instruction::FPToUI:
1961 return SelectFPToI(I, /*IsSigned*/ false);
1962 case Instruction::Add:
1963 return SelectBinaryIntOp(I, ISD::ADD);
1964 case Instruction::Or:
1965 return SelectBinaryIntOp(I, ISD::OR);
1966 case Instruction::Sub:
1967 return SelectBinaryIntOp(I, ISD::SUB);
1968 case Instruction::Call:
1969 return selectCall(I);
1970 case Instruction::Ret:
1971 return SelectRet(I);
1972 case Instruction::Trunc:
1973 return SelectTrunc(I);
1974 case Instruction::ZExt:
1975 case Instruction::SExt:
1976 return SelectIntExt(I);
1977 // Here add other flavors of Instruction::XXX that automated
1978 // cases don't catch. For example, switches are terminators
1979 // that aren't yet handled.
1980 default:
1981 break;
1982 }
1983 return false;
1984 }
1985
1986 // Materialize a floating-point constant into a register, and return
1987 // the register number (or zero if we failed to handle it).
PPCMaterializeFP(const ConstantFP * CFP,MVT VT)1988 unsigned PPCFastISel::PPCMaterializeFP(const ConstantFP *CFP, MVT VT) {
1989 // No plans to handle long double here.
1990 if (VT != MVT::f32 && VT != MVT::f64)
1991 return 0;
1992
1993 // All FP constants are loaded from the constant pool.
1994 unsigned Align = DL.getPrefTypeAlignment(CFP->getType());
1995 assert(Align > 0 && "Unexpectedly missing alignment information!");
1996 unsigned Idx = MCP.getConstantPoolIndex(cast<Constant>(CFP), Align);
1997 const bool HasSPE = PPCSubTarget->hasSPE();
1998 const TargetRegisterClass *RC;
1999 if (HasSPE)
2000 RC = ((VT == MVT::f32) ? &PPC::SPE4RCRegClass : &PPC::SPERCRegClass);
2001 else
2002 RC = ((VT == MVT::f32) ? &PPC::F4RCRegClass : &PPC::F8RCRegClass);
2003
2004 unsigned DestReg = createResultReg(RC);
2005 CodeModel::Model CModel = TM.getCodeModel();
2006
2007 MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand(
2008 MachinePointerInfo::getConstantPool(*FuncInfo.MF),
2009 MachineMemOperand::MOLoad, (VT == MVT::f32) ? 4 : 8, Align);
2010
2011 unsigned Opc;
2012
2013 if (HasSPE)
2014 Opc = ((VT == MVT::f32) ? PPC::SPELWZ : PPC::EVLDD);
2015 else
2016 Opc = ((VT == MVT::f32) ? PPC::LFS : PPC::LFD);
2017
2018 unsigned TmpReg = createResultReg(&PPC::G8RC_and_G8RC_NOX0RegClass);
2019
2020 PPCFuncInfo->setUsesTOCBasePtr();
2021 // For small code model, generate a LF[SD](0, LDtocCPT(Idx, X2)).
2022 if (CModel == CodeModel::Small) {
2023 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::LDtocCPT),
2024 TmpReg)
2025 .addConstantPoolIndex(Idx).addReg(PPC::X2);
2026 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg)
2027 .addImm(0).addReg(TmpReg).addMemOperand(MMO);
2028 } else {
2029 // Otherwise we generate LF[SD](Idx[lo], ADDIStocHA(X2, Idx)).
2030 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::ADDIStocHA),
2031 TmpReg).addReg(PPC::X2).addConstantPoolIndex(Idx);
2032 // But for large code model, we must generate a LDtocL followed
2033 // by the LF[SD].
2034 if (CModel == CodeModel::Large) {
2035 unsigned TmpReg2 = createResultReg(&PPC::G8RC_and_G8RC_NOX0RegClass);
2036 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::LDtocL),
2037 TmpReg2).addConstantPoolIndex(Idx).addReg(TmpReg);
2038 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg)
2039 .addImm(0)
2040 .addReg(TmpReg2);
2041 } else
2042 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg)
2043 .addConstantPoolIndex(Idx, 0, PPCII::MO_TOC_LO)
2044 .addReg(TmpReg)
2045 .addMemOperand(MMO);
2046 }
2047
2048 return DestReg;
2049 }
2050
2051 // Materialize the address of a global value into a register, and return
2052 // the register number (or zero if we failed to handle it).
PPCMaterializeGV(const GlobalValue * GV,MVT VT)2053 unsigned PPCFastISel::PPCMaterializeGV(const GlobalValue *GV, MVT VT) {
2054 assert(VT == MVT::i64 && "Non-address!");
2055 const TargetRegisterClass *RC = &PPC::G8RC_and_G8RC_NOX0RegClass;
2056 unsigned DestReg = createResultReg(RC);
2057
2058 // Global values may be plain old object addresses, TLS object
2059 // addresses, constant pool entries, or jump tables. How we generate
2060 // code for these may depend on small, medium, or large code model.
2061 CodeModel::Model CModel = TM.getCodeModel();
2062
2063 // FIXME: Jump tables are not yet required because fast-isel doesn't
2064 // handle switches; if that changes, we need them as well. For now,
2065 // what follows assumes everything's a generic (or TLS) global address.
2066
2067 // FIXME: We don't yet handle the complexity of TLS.
2068 if (GV->isThreadLocal())
2069 return 0;
2070
2071 PPCFuncInfo->setUsesTOCBasePtr();
2072 // For small code model, generate a simple TOC load.
2073 if (CModel == CodeModel::Small)
2074 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::LDtoc),
2075 DestReg)
2076 .addGlobalAddress(GV)
2077 .addReg(PPC::X2);
2078 else {
2079 // If the address is an externally defined symbol, a symbol with common
2080 // or externally available linkage, a non-local function address, or a
2081 // jump table address (not yet needed), or if we are generating code
2082 // for large code model, we generate:
2083 // LDtocL(GV, ADDIStocHA(%x2, GV))
2084 // Otherwise we generate:
2085 // ADDItocL(ADDIStocHA(%x2, GV), GV)
2086 // Either way, start with the ADDIStocHA:
2087 unsigned HighPartReg = createResultReg(RC);
2088 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::ADDIStocHA),
2089 HighPartReg).addReg(PPC::X2).addGlobalAddress(GV);
2090
2091 unsigned char GVFlags = PPCSubTarget->classifyGlobalReference(GV);
2092 if (GVFlags & PPCII::MO_NLP_FLAG) {
2093 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::LDtocL),
2094 DestReg).addGlobalAddress(GV).addReg(HighPartReg);
2095 } else {
2096 // Otherwise generate the ADDItocL.
2097 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::ADDItocL),
2098 DestReg).addReg(HighPartReg).addGlobalAddress(GV);
2099 }
2100 }
2101
2102 return DestReg;
2103 }
2104
2105 // Materialize a 32-bit integer constant into a register, and return
2106 // the register number (or zero if we failed to handle it).
PPCMaterialize32BitInt(int64_t Imm,const TargetRegisterClass * RC)2107 unsigned PPCFastISel::PPCMaterialize32BitInt(int64_t Imm,
2108 const TargetRegisterClass *RC) {
2109 unsigned Lo = Imm & 0xFFFF;
2110 unsigned Hi = (Imm >> 16) & 0xFFFF;
2111
2112 unsigned ResultReg = createResultReg(RC);
2113 bool IsGPRC = RC->hasSuperClassEq(&PPC::GPRCRegClass);
2114
2115 if (isInt<16>(Imm))
2116 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2117 TII.get(IsGPRC ? PPC::LI : PPC::LI8), ResultReg)
2118 .addImm(Imm);
2119 else if (Lo) {
2120 // Both Lo and Hi have nonzero bits.
2121 unsigned TmpReg = createResultReg(RC);
2122 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2123 TII.get(IsGPRC ? PPC::LIS : PPC::LIS8), TmpReg)
2124 .addImm(Hi);
2125 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2126 TII.get(IsGPRC ? PPC::ORI : PPC::ORI8), ResultReg)
2127 .addReg(TmpReg).addImm(Lo);
2128 } else
2129 // Just Hi bits.
2130 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2131 TII.get(IsGPRC ? PPC::LIS : PPC::LIS8), ResultReg)
2132 .addImm(Hi);
2133
2134 return ResultReg;
2135 }
2136
2137 // Materialize a 64-bit integer constant into a register, and return
2138 // the register number (or zero if we failed to handle it).
PPCMaterialize64BitInt(int64_t Imm,const TargetRegisterClass * RC)2139 unsigned PPCFastISel::PPCMaterialize64BitInt(int64_t Imm,
2140 const TargetRegisterClass *RC) {
2141 unsigned Remainder = 0;
2142 unsigned Shift = 0;
2143
2144 // If the value doesn't fit in 32 bits, see if we can shift it
2145 // so that it fits in 32 bits.
2146 if (!isInt<32>(Imm)) {
2147 Shift = countTrailingZeros<uint64_t>(Imm);
2148 int64_t ImmSh = static_cast<uint64_t>(Imm) >> Shift;
2149
2150 if (isInt<32>(ImmSh))
2151 Imm = ImmSh;
2152 else {
2153 Remainder = Imm;
2154 Shift = 32;
2155 Imm >>= 32;
2156 }
2157 }
2158
2159 // Handle the high-order 32 bits (if shifted) or the whole 32 bits
2160 // (if not shifted).
2161 unsigned TmpReg1 = PPCMaterialize32BitInt(Imm, RC);
2162 if (!Shift)
2163 return TmpReg1;
2164
2165 // If upper 32 bits were not zero, we've built them and need to shift
2166 // them into place.
2167 unsigned TmpReg2;
2168 if (Imm) {
2169 TmpReg2 = createResultReg(RC);
2170 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::RLDICR),
2171 TmpReg2).addReg(TmpReg1).addImm(Shift).addImm(63 - Shift);
2172 } else
2173 TmpReg2 = TmpReg1;
2174
2175 unsigned TmpReg3, Hi, Lo;
2176 if ((Hi = (Remainder >> 16) & 0xFFFF)) {
2177 TmpReg3 = createResultReg(RC);
2178 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::ORIS8),
2179 TmpReg3).addReg(TmpReg2).addImm(Hi);
2180 } else
2181 TmpReg3 = TmpReg2;
2182
2183 if ((Lo = Remainder & 0xFFFF)) {
2184 unsigned ResultReg = createResultReg(RC);
2185 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::ORI8),
2186 ResultReg).addReg(TmpReg3).addImm(Lo);
2187 return ResultReg;
2188 }
2189
2190 return TmpReg3;
2191 }
2192
2193 // Materialize an integer constant into a register, and return
2194 // the register number (or zero if we failed to handle it).
PPCMaterializeInt(const ConstantInt * CI,MVT VT,bool UseSExt)2195 unsigned PPCFastISel::PPCMaterializeInt(const ConstantInt *CI, MVT VT,
2196 bool UseSExt) {
2197 // If we're using CR bit registers for i1 values, handle that as a special
2198 // case first.
2199 if (VT == MVT::i1 && PPCSubTarget->useCRBits()) {
2200 unsigned ImmReg = createResultReg(&PPC::CRBITRCRegClass);
2201 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2202 TII.get(CI->isZero() ? PPC::CRUNSET : PPC::CRSET), ImmReg);
2203 return ImmReg;
2204 }
2205
2206 if (VT != MVT::i64 && VT != MVT::i32 && VT != MVT::i16 && VT != MVT::i8 &&
2207 VT != MVT::i1)
2208 return 0;
2209
2210 const TargetRegisterClass *RC =
2211 ((VT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass);
2212 int64_t Imm = UseSExt ? CI->getSExtValue() : CI->getZExtValue();
2213
2214 // If the constant is in range, use a load-immediate.
2215 // Since LI will sign extend the constant we need to make sure that for
2216 // our zeroext constants that the sign extended constant fits into 16-bits -
2217 // a range of 0..0x7fff.
2218 if (isInt<16>(Imm)) {
2219 unsigned Opc = (VT == MVT::i64) ? PPC::LI8 : PPC::LI;
2220 unsigned ImmReg = createResultReg(RC);
2221 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ImmReg)
2222 .addImm(Imm);
2223 return ImmReg;
2224 }
2225
2226 // Construct the constant piecewise.
2227 if (VT == MVT::i64)
2228 return PPCMaterialize64BitInt(Imm, RC);
2229 else if (VT == MVT::i32)
2230 return PPCMaterialize32BitInt(Imm, RC);
2231
2232 return 0;
2233 }
2234
2235 // Materialize a constant into a register, and return the register
2236 // number (or zero if we failed to handle it).
fastMaterializeConstant(const Constant * C)2237 unsigned PPCFastISel::fastMaterializeConstant(const Constant *C) {
2238 EVT CEVT = TLI.getValueType(DL, C->getType(), true);
2239
2240 // Only handle simple types.
2241 if (!CEVT.isSimple()) return 0;
2242 MVT VT = CEVT.getSimpleVT();
2243
2244 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
2245 return PPCMaterializeFP(CFP, VT);
2246 else if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
2247 return PPCMaterializeGV(GV, VT);
2248 else if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
2249 // Note that the code in FunctionLoweringInfo::ComputePHILiveOutRegInfo
2250 // assumes that constant PHI operands will be zero extended, and failure to
2251 // match that assumption will cause problems if we sign extend here but
2252 // some user of a PHI is in a block for which we fall back to full SDAG
2253 // instruction selection.
2254 return PPCMaterializeInt(CI, VT, false);
2255
2256 return 0;
2257 }
2258
2259 // Materialize the address created by an alloca into a register, and
2260 // return the register number (or zero if we failed to handle it).
fastMaterializeAlloca(const AllocaInst * AI)2261 unsigned PPCFastISel::fastMaterializeAlloca(const AllocaInst *AI) {
2262 // Don't handle dynamic allocas.
2263 if (!FuncInfo.StaticAllocaMap.count(AI)) return 0;
2264
2265 MVT VT;
2266 if (!isLoadTypeLegal(AI->getType(), VT)) return 0;
2267
2268 DenseMap<const AllocaInst*, int>::iterator SI =
2269 FuncInfo.StaticAllocaMap.find(AI);
2270
2271 if (SI != FuncInfo.StaticAllocaMap.end()) {
2272 unsigned ResultReg = createResultReg(&PPC::G8RC_and_G8RC_NOX0RegClass);
2273 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::ADDI8),
2274 ResultReg).addFrameIndex(SI->second).addImm(0);
2275 return ResultReg;
2276 }
2277
2278 return 0;
2279 }
2280
2281 // Fold loads into extends when possible.
2282 // FIXME: We can have multiple redundant extend/trunc instructions
2283 // following a load. The folding only picks up one. Extend this
2284 // to check subsequent instructions for the same pattern and remove
2285 // them. Thus ResultReg should be the def reg for the last redundant
2286 // instruction in a chain, and all intervening instructions can be
2287 // removed from parent. Change test/CodeGen/PowerPC/fast-isel-fold.ll
2288 // to add ELF64-NOT: rldicl to the appropriate tests when this works.
tryToFoldLoadIntoMI(MachineInstr * MI,unsigned OpNo,const LoadInst * LI)2289 bool PPCFastISel::tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo,
2290 const LoadInst *LI) {
2291 // Verify we have a legal type before going any further.
2292 MVT VT;
2293 if (!isLoadTypeLegal(LI->getType(), VT))
2294 return false;
2295
2296 // Combine load followed by zero- or sign-extend.
2297 bool IsZExt = false;
2298 switch(MI->getOpcode()) {
2299 default:
2300 return false;
2301
2302 case PPC::RLDICL:
2303 case PPC::RLDICL_32_64: {
2304 IsZExt = true;
2305 unsigned MB = MI->getOperand(3).getImm();
2306 if ((VT == MVT::i8 && MB <= 56) ||
2307 (VT == MVT::i16 && MB <= 48) ||
2308 (VT == MVT::i32 && MB <= 32))
2309 break;
2310 return false;
2311 }
2312
2313 case PPC::RLWINM:
2314 case PPC::RLWINM8: {
2315 IsZExt = true;
2316 unsigned MB = MI->getOperand(3).getImm();
2317 if ((VT == MVT::i8 && MB <= 24) ||
2318 (VT == MVT::i16 && MB <= 16))
2319 break;
2320 return false;
2321 }
2322
2323 case PPC::EXTSB:
2324 case PPC::EXTSB8:
2325 case PPC::EXTSB8_32_64:
2326 /* There is no sign-extending load-byte instruction. */
2327 return false;
2328
2329 case PPC::EXTSH:
2330 case PPC::EXTSH8:
2331 case PPC::EXTSH8_32_64: {
2332 if (VT != MVT::i16 && VT != MVT::i8)
2333 return false;
2334 break;
2335 }
2336
2337 case PPC::EXTSW:
2338 case PPC::EXTSW_32:
2339 case PPC::EXTSW_32_64: {
2340 if (VT != MVT::i32 && VT != MVT::i16 && VT != MVT::i8)
2341 return false;
2342 break;
2343 }
2344 }
2345
2346 // See if we can handle this address.
2347 Address Addr;
2348 if (!PPCComputeAddress(LI->getOperand(0), Addr))
2349 return false;
2350
2351 unsigned ResultReg = MI->getOperand(0).getReg();
2352
2353 if (!PPCEmitLoad(VT, ResultReg, Addr, nullptr, IsZExt,
2354 PPCSubTarget->hasSPE() ? PPC::EVLDD : PPC::LFD))
2355 return false;
2356
2357 MI->eraseFromParent();
2358 return true;
2359 }
2360
2361 // Attempt to lower call arguments in a faster way than done by
2362 // the selection DAG code.
fastLowerArguments()2363 bool PPCFastISel::fastLowerArguments() {
2364 // Defer to normal argument lowering for now. It's reasonably
2365 // efficient. Consider doing something like ARM to handle the
2366 // case where all args fit in registers, no varargs, no float
2367 // or vector args.
2368 return false;
2369 }
2370
2371 // Handle materializing integer constants into a register. This is not
2372 // automatically generated for PowerPC, so must be explicitly created here.
fastEmit_i(MVT Ty,MVT VT,unsigned Opc,uint64_t Imm)2373 unsigned PPCFastISel::fastEmit_i(MVT Ty, MVT VT, unsigned Opc, uint64_t Imm) {
2374
2375 if (Opc != ISD::Constant)
2376 return 0;
2377
2378 // If we're using CR bit registers for i1 values, handle that as a special
2379 // case first.
2380 if (VT == MVT::i1 && PPCSubTarget->useCRBits()) {
2381 unsigned ImmReg = createResultReg(&PPC::CRBITRCRegClass);
2382 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2383 TII.get(Imm == 0 ? PPC::CRUNSET : PPC::CRSET), ImmReg);
2384 return ImmReg;
2385 }
2386
2387 if (VT != MVT::i64 && VT != MVT::i32 && VT != MVT::i16 && VT != MVT::i8 &&
2388 VT != MVT::i1)
2389 return 0;
2390
2391 const TargetRegisterClass *RC = ((VT == MVT::i64) ? &PPC::G8RCRegClass :
2392 &PPC::GPRCRegClass);
2393 if (VT == MVT::i64)
2394 return PPCMaterialize64BitInt(Imm, RC);
2395 else
2396 return PPCMaterialize32BitInt(Imm, RC);
2397 }
2398
2399 // Override for ADDI and ADDI8 to set the correct register class
2400 // on RHS operand 0. The automatic infrastructure naively assumes
2401 // GPRC for i32 and G8RC for i64; the concept of "no R0" is lost
2402 // for these cases. At the moment, none of the other automatically
2403 // generated RI instructions require special treatment. However, once
2404 // SelectSelect is implemented, "isel" requires similar handling.
2405 //
2406 // Also be conservative about the output register class. Avoid
2407 // assigning R0 or X0 to the output register for GPRC and G8RC
2408 // register classes, as any such result could be used in ADDI, etc.,
2409 // where those regs have another meaning.
fastEmitInst_ri(unsigned MachineInstOpcode,const TargetRegisterClass * RC,unsigned Op0,bool Op0IsKill,uint64_t Imm)2410 unsigned PPCFastISel::fastEmitInst_ri(unsigned MachineInstOpcode,
2411 const TargetRegisterClass *RC,
2412 unsigned Op0, bool Op0IsKill,
2413 uint64_t Imm) {
2414 if (MachineInstOpcode == PPC::ADDI)
2415 MRI.setRegClass(Op0, &PPC::GPRC_and_GPRC_NOR0RegClass);
2416 else if (MachineInstOpcode == PPC::ADDI8)
2417 MRI.setRegClass(Op0, &PPC::G8RC_and_G8RC_NOX0RegClass);
2418
2419 const TargetRegisterClass *UseRC =
2420 (RC == &PPC::GPRCRegClass ? &PPC::GPRC_and_GPRC_NOR0RegClass :
2421 (RC == &PPC::G8RCRegClass ? &PPC::G8RC_and_G8RC_NOX0RegClass : RC));
2422
2423 return FastISel::fastEmitInst_ri(MachineInstOpcode, UseRC,
2424 Op0, Op0IsKill, Imm);
2425 }
2426
2427 // Override for instructions with one register operand to avoid use of
2428 // R0/X0. The automatic infrastructure isn't aware of the context so
2429 // we must be conservative.
fastEmitInst_r(unsigned MachineInstOpcode,const TargetRegisterClass * RC,unsigned Op0,bool Op0IsKill)2430 unsigned PPCFastISel::fastEmitInst_r(unsigned MachineInstOpcode,
2431 const TargetRegisterClass* RC,
2432 unsigned Op0, bool Op0IsKill) {
2433 const TargetRegisterClass *UseRC =
2434 (RC == &PPC::GPRCRegClass ? &PPC::GPRC_and_GPRC_NOR0RegClass :
2435 (RC == &PPC::G8RCRegClass ? &PPC::G8RC_and_G8RC_NOX0RegClass : RC));
2436
2437 return FastISel::fastEmitInst_r(MachineInstOpcode, UseRC, Op0, Op0IsKill);
2438 }
2439
2440 // Override for instructions with two register operands to avoid use
2441 // of R0/X0. The automatic infrastructure isn't aware of the context
2442 // so we must be conservative.
fastEmitInst_rr(unsigned MachineInstOpcode,const TargetRegisterClass * RC,unsigned Op0,bool Op0IsKill,unsigned Op1,bool Op1IsKill)2443 unsigned PPCFastISel::fastEmitInst_rr(unsigned MachineInstOpcode,
2444 const TargetRegisterClass* RC,
2445 unsigned Op0, bool Op0IsKill,
2446 unsigned Op1, bool Op1IsKill) {
2447 const TargetRegisterClass *UseRC =
2448 (RC == &PPC::GPRCRegClass ? &PPC::GPRC_and_GPRC_NOR0RegClass :
2449 (RC == &PPC::G8RCRegClass ? &PPC::G8RC_and_G8RC_NOX0RegClass : RC));
2450
2451 return FastISel::fastEmitInst_rr(MachineInstOpcode, UseRC, Op0, Op0IsKill,
2452 Op1, Op1IsKill);
2453 }
2454
2455 namespace llvm {
2456 // Create the fast instruction selector for PowerPC64 ELF.
createFastISel(FunctionLoweringInfo & FuncInfo,const TargetLibraryInfo * LibInfo)2457 FastISel *PPC::createFastISel(FunctionLoweringInfo &FuncInfo,
2458 const TargetLibraryInfo *LibInfo) {
2459 // Only available on 64-bit ELF for now.
2460 const PPCSubtarget &Subtarget = FuncInfo.MF->getSubtarget<PPCSubtarget>();
2461 if (Subtarget.isPPC64() && Subtarget.isSVR4ABI())
2462 return new PPCFastISel(FuncInfo, LibInfo);
2463 return nullptr;
2464 }
2465 }
2466