1 //===-- PPCTargetTransformInfo.cpp - PPC specific TTI ---------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 
10 #include "PPCTargetTransformInfo.h"
11 #include "llvm/Analysis/TargetTransformInfo.h"
12 #include "llvm/CodeGen/BasicTTIImpl.h"
13 #include "llvm/CodeGen/CostTable.h"
14 #include "llvm/CodeGen/TargetLowering.h"
15 #include "llvm/Support/CommandLine.h"
16 #include "llvm/Support/Debug.h"
17 using namespace llvm;
18 
19 #define DEBUG_TYPE "ppctti"
20 
21 static cl::opt<bool> DisablePPCConstHoist("disable-ppc-constant-hoisting",
22 cl::desc("disable constant hoisting on PPC"), cl::init(false), cl::Hidden);
23 
24 // This is currently only used for the data prefetch pass which is only enabled
25 // for BG/Q by default.
26 static cl::opt<unsigned>
27 CacheLineSize("ppc-loop-prefetch-cache-line", cl::Hidden, cl::init(64),
28               cl::desc("The loop prefetch cache line size"));
29 
30 static cl::opt<bool>
31 EnablePPCColdCC("ppc-enable-coldcc", cl::Hidden, cl::init(false),
32                 cl::desc("Enable using coldcc calling conv for cold "
33                          "internal functions"));
34 
35 //===----------------------------------------------------------------------===//
36 //
37 // PPC cost model.
38 //
39 //===----------------------------------------------------------------------===//
40 
41 TargetTransformInfo::PopcntSupportKind
getPopcntSupport(unsigned TyWidth)42 PPCTTIImpl::getPopcntSupport(unsigned TyWidth) {
43   assert(isPowerOf2_32(TyWidth) && "Ty width must be power of 2");
44   if (ST->hasPOPCNTD() != PPCSubtarget::POPCNTD_Unavailable && TyWidth <= 64)
45     return ST->hasPOPCNTD() == PPCSubtarget::POPCNTD_Slow ?
46              TTI::PSK_SlowHardware : TTI::PSK_FastHardware;
47   return TTI::PSK_Software;
48 }
49 
getIntImmCost(const APInt & Imm,Type * Ty)50 int PPCTTIImpl::getIntImmCost(const APInt &Imm, Type *Ty) {
51   if (DisablePPCConstHoist)
52     return BaseT::getIntImmCost(Imm, Ty);
53 
54   assert(Ty->isIntegerTy());
55 
56   unsigned BitSize = Ty->getPrimitiveSizeInBits();
57   if (BitSize == 0)
58     return ~0U;
59 
60   if (Imm == 0)
61     return TTI::TCC_Free;
62 
63   if (Imm.getBitWidth() <= 64) {
64     if (isInt<16>(Imm.getSExtValue()))
65       return TTI::TCC_Basic;
66 
67     if (isInt<32>(Imm.getSExtValue())) {
68       // A constant that can be materialized using lis.
69       if ((Imm.getZExtValue() & 0xFFFF) == 0)
70         return TTI::TCC_Basic;
71 
72       return 2 * TTI::TCC_Basic;
73     }
74   }
75 
76   return 4 * TTI::TCC_Basic;
77 }
78 
getIntImmCost(Intrinsic::ID IID,unsigned Idx,const APInt & Imm,Type * Ty)79 int PPCTTIImpl::getIntImmCost(Intrinsic::ID IID, unsigned Idx, const APInt &Imm,
80                               Type *Ty) {
81   if (DisablePPCConstHoist)
82     return BaseT::getIntImmCost(IID, Idx, Imm, Ty);
83 
84   assert(Ty->isIntegerTy());
85 
86   unsigned BitSize = Ty->getPrimitiveSizeInBits();
87   if (BitSize == 0)
88     return ~0U;
89 
90   switch (IID) {
91   default:
92     return TTI::TCC_Free;
93   case Intrinsic::sadd_with_overflow:
94   case Intrinsic::uadd_with_overflow:
95   case Intrinsic::ssub_with_overflow:
96   case Intrinsic::usub_with_overflow:
97     if ((Idx == 1) && Imm.getBitWidth() <= 64 && isInt<16>(Imm.getSExtValue()))
98       return TTI::TCC_Free;
99     break;
100   case Intrinsic::experimental_stackmap:
101     if ((Idx < 2) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
102       return TTI::TCC_Free;
103     break;
104   case Intrinsic::experimental_patchpoint_void:
105   case Intrinsic::experimental_patchpoint_i64:
106     if ((Idx < 4) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
107       return TTI::TCC_Free;
108     break;
109   }
110   return PPCTTIImpl::getIntImmCost(Imm, Ty);
111 }
112 
getIntImmCost(unsigned Opcode,unsigned Idx,const APInt & Imm,Type * Ty)113 int PPCTTIImpl::getIntImmCost(unsigned Opcode, unsigned Idx, const APInt &Imm,
114                               Type *Ty) {
115   if (DisablePPCConstHoist)
116     return BaseT::getIntImmCost(Opcode, Idx, Imm, Ty);
117 
118   assert(Ty->isIntegerTy());
119 
120   unsigned BitSize = Ty->getPrimitiveSizeInBits();
121   if (BitSize == 0)
122     return ~0U;
123 
124   unsigned ImmIdx = ~0U;
125   bool ShiftedFree = false, RunFree = false, UnsignedFree = false,
126        ZeroFree = false;
127   switch (Opcode) {
128   default:
129     return TTI::TCC_Free;
130   case Instruction::GetElementPtr:
131     // Always hoist the base address of a GetElementPtr. This prevents the
132     // creation of new constants for every base constant that gets constant
133     // folded with the offset.
134     if (Idx == 0)
135       return 2 * TTI::TCC_Basic;
136     return TTI::TCC_Free;
137   case Instruction::And:
138     RunFree = true; // (for the rotate-and-mask instructions)
139     LLVM_FALLTHROUGH;
140   case Instruction::Add:
141   case Instruction::Or:
142   case Instruction::Xor:
143     ShiftedFree = true;
144     LLVM_FALLTHROUGH;
145   case Instruction::Sub:
146   case Instruction::Mul:
147   case Instruction::Shl:
148   case Instruction::LShr:
149   case Instruction::AShr:
150     ImmIdx = 1;
151     break;
152   case Instruction::ICmp:
153     UnsignedFree = true;
154     ImmIdx = 1;
155     // Zero comparisons can use record-form instructions.
156     LLVM_FALLTHROUGH;
157   case Instruction::Select:
158     ZeroFree = true;
159     break;
160   case Instruction::PHI:
161   case Instruction::Call:
162   case Instruction::Ret:
163   case Instruction::Load:
164   case Instruction::Store:
165     break;
166   }
167 
168   if (ZeroFree && Imm == 0)
169     return TTI::TCC_Free;
170 
171   if (Idx == ImmIdx && Imm.getBitWidth() <= 64) {
172     if (isInt<16>(Imm.getSExtValue()))
173       return TTI::TCC_Free;
174 
175     if (RunFree) {
176       if (Imm.getBitWidth() <= 32 &&
177           (isShiftedMask_32(Imm.getZExtValue()) ||
178            isShiftedMask_32(~Imm.getZExtValue())))
179         return TTI::TCC_Free;
180 
181       if (ST->isPPC64() &&
182           (isShiftedMask_64(Imm.getZExtValue()) ||
183            isShiftedMask_64(~Imm.getZExtValue())))
184         return TTI::TCC_Free;
185     }
186 
187     if (UnsignedFree && isUInt<16>(Imm.getZExtValue()))
188       return TTI::TCC_Free;
189 
190     if (ShiftedFree && (Imm.getZExtValue() & 0xFFFF) == 0)
191       return TTI::TCC_Free;
192   }
193 
194   return PPCTTIImpl::getIntImmCost(Imm, Ty);
195 }
196 
getUserCost(const User * U,ArrayRef<const Value * > Operands)197 unsigned PPCTTIImpl::getUserCost(const User *U,
198                                  ArrayRef<const Value *> Operands) {
199   if (U->getType()->isVectorTy()) {
200     // Instructions that need to be split should cost more.
201     std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, U->getType());
202     return LT.first * BaseT::getUserCost(U, Operands);
203   }
204 
205   return BaseT::getUserCost(U, Operands);
206 }
207 
getUnrollingPreferences(Loop * L,ScalarEvolution & SE,TTI::UnrollingPreferences & UP)208 void PPCTTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE,
209                                          TTI::UnrollingPreferences &UP) {
210   if (ST->getDarwinDirective() == PPC::DIR_A2) {
211     // The A2 is in-order with a deep pipeline, and concatenation unrolling
212     // helps expose latency-hiding opportunities to the instruction scheduler.
213     UP.Partial = UP.Runtime = true;
214 
215     // We unroll a lot on the A2 (hundreds of instructions), and the benefits
216     // often outweigh the cost of a division to compute the trip count.
217     UP.AllowExpensiveTripCount = true;
218   }
219 
220   BaseT::getUnrollingPreferences(L, SE, UP);
221 }
222 
223 // This function returns true to allow using coldcc calling convention.
224 // Returning true results in coldcc being used for functions which are cold at
225 // all call sites when the callers of the functions are not calling any other
226 // non coldcc functions.
useColdCCForColdCall(Function & F)227 bool PPCTTIImpl::useColdCCForColdCall(Function &F) {
228   return EnablePPCColdCC;
229 }
230 
enableAggressiveInterleaving(bool LoopHasReductions)231 bool PPCTTIImpl::enableAggressiveInterleaving(bool LoopHasReductions) {
232   // On the A2, always unroll aggressively. For QPX unaligned loads, we depend
233   // on combining the loads generated for consecutive accesses, and failure to
234   // do so is particularly expensive. This makes it much more likely (compared
235   // to only using concatenation unrolling).
236   if (ST->getDarwinDirective() == PPC::DIR_A2)
237     return true;
238 
239   return LoopHasReductions;
240 }
241 
242 const PPCTTIImpl::TTI::MemCmpExpansionOptions *
enableMemCmpExpansion(bool IsZeroCmp) const243 PPCTTIImpl::enableMemCmpExpansion(bool IsZeroCmp) const {
244   static const auto Options = []() {
245     TTI::MemCmpExpansionOptions Options;
246     Options.LoadSizes.push_back(8);
247     Options.LoadSizes.push_back(4);
248     Options.LoadSizes.push_back(2);
249     Options.LoadSizes.push_back(1);
250     return Options;
251   }();
252   return &Options;
253 }
254 
enableInterleavedAccessVectorization()255 bool PPCTTIImpl::enableInterleavedAccessVectorization() {
256   return true;
257 }
258 
getNumberOfRegisters(bool Vector)259 unsigned PPCTTIImpl::getNumberOfRegisters(bool Vector) {
260   if (Vector && !ST->hasAltivec() && !ST->hasQPX())
261     return 0;
262   return ST->hasVSX() ? 64 : 32;
263 }
264 
getRegisterBitWidth(bool Vector) const265 unsigned PPCTTIImpl::getRegisterBitWidth(bool Vector) const {
266   if (Vector) {
267     if (ST->hasQPX()) return 256;
268     if (ST->hasAltivec()) return 128;
269     return 0;
270   }
271 
272   if (ST->isPPC64())
273     return 64;
274   return 32;
275 
276 }
277 
getCacheLineSize()278 unsigned PPCTTIImpl::getCacheLineSize() {
279   // Check first if the user specified a custom line size.
280   if (CacheLineSize.getNumOccurrences() > 0)
281     return CacheLineSize;
282 
283   // On P7, P8 or P9 we have a cache line size of 128.
284   unsigned Directive = ST->getDarwinDirective();
285   if (Directive == PPC::DIR_PWR7 || Directive == PPC::DIR_PWR8 ||
286       Directive == PPC::DIR_PWR9)
287     return 128;
288 
289   // On other processors return a default of 64 bytes.
290   return 64;
291 }
292 
getPrefetchDistance()293 unsigned PPCTTIImpl::getPrefetchDistance() {
294   // This seems like a reasonable default for the BG/Q (this pass is enabled, by
295   // default, only on the BG/Q).
296   return 300;
297 }
298 
getMaxInterleaveFactor(unsigned VF)299 unsigned PPCTTIImpl::getMaxInterleaveFactor(unsigned VF) {
300   unsigned Directive = ST->getDarwinDirective();
301   // The 440 has no SIMD support, but floating-point instructions
302   // have a 5-cycle latency, so unroll by 5x for latency hiding.
303   if (Directive == PPC::DIR_440)
304     return 5;
305 
306   // The A2 has no SIMD support, but floating-point instructions
307   // have a 6-cycle latency, so unroll by 6x for latency hiding.
308   if (Directive == PPC::DIR_A2)
309     return 6;
310 
311   // FIXME: For lack of any better information, do no harm...
312   if (Directive == PPC::DIR_E500mc || Directive == PPC::DIR_E5500)
313     return 1;
314 
315   // For P7 and P8, floating-point instructions have a 6-cycle latency and
316   // there are two execution units, so unroll by 12x for latency hiding.
317   // FIXME: the same for P9 as previous gen until POWER9 scheduling is ready
318   if (Directive == PPC::DIR_PWR7 || Directive == PPC::DIR_PWR8 ||
319       Directive == PPC::DIR_PWR9)
320     return 12;
321 
322   // For most things, modern systems have two execution units (and
323   // out-of-order execution).
324   return 2;
325 }
326 
getArithmeticInstrCost(unsigned Opcode,Type * Ty,TTI::OperandValueKind Op1Info,TTI::OperandValueKind Op2Info,TTI::OperandValueProperties Opd1PropInfo,TTI::OperandValueProperties Opd2PropInfo,ArrayRef<const Value * > Args)327 int PPCTTIImpl::getArithmeticInstrCost(
328     unsigned Opcode, Type *Ty, TTI::OperandValueKind Op1Info,
329     TTI::OperandValueKind Op2Info, TTI::OperandValueProperties Opd1PropInfo,
330     TTI::OperandValueProperties Opd2PropInfo, ArrayRef<const Value *> Args) {
331   assert(TLI->InstructionOpcodeToISD(Opcode) && "Invalid opcode");
332 
333   // Fallback to the default implementation.
334   return BaseT::getArithmeticInstrCost(Opcode, Ty, Op1Info, Op2Info,
335                                        Opd1PropInfo, Opd2PropInfo);
336 }
337 
getShuffleCost(TTI::ShuffleKind Kind,Type * Tp,int Index,Type * SubTp)338 int PPCTTIImpl::getShuffleCost(TTI::ShuffleKind Kind, Type *Tp, int Index,
339                                Type *SubTp) {
340   // Legalize the type.
341   std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Tp);
342 
343   // PPC, for both Altivec/VSX and QPX, support cheap arbitrary permutations
344   // (at least in the sense that there need only be one non-loop-invariant
345   // instruction). We need one such shuffle instruction for each actual
346   // register (this is not true for arbitrary shuffles, but is true for the
347   // structured types of shuffles covered by TTI::ShuffleKind).
348   return LT.first;
349 }
350 
getCastInstrCost(unsigned Opcode,Type * Dst,Type * Src,const Instruction * I)351 int PPCTTIImpl::getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src,
352                                  const Instruction *I) {
353   assert(TLI->InstructionOpcodeToISD(Opcode) && "Invalid opcode");
354 
355   return BaseT::getCastInstrCost(Opcode, Dst, Src);
356 }
357 
getCmpSelInstrCost(unsigned Opcode,Type * ValTy,Type * CondTy,const Instruction * I)358 int PPCTTIImpl::getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy,
359                                    const Instruction *I) {
360   return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, I);
361 }
362 
getVectorInstrCost(unsigned Opcode,Type * Val,unsigned Index)363 int PPCTTIImpl::getVectorInstrCost(unsigned Opcode, Type *Val, unsigned Index) {
364   assert(Val->isVectorTy() && "This must be a vector type");
365 
366   int ISD = TLI->InstructionOpcodeToISD(Opcode);
367   assert(ISD && "Invalid opcode");
368 
369   if (ST->hasVSX() && Val->getScalarType()->isDoubleTy()) {
370     // Double-precision scalars are already located in index #0.
371     if (Index == 0)
372       return 0;
373 
374     return BaseT::getVectorInstrCost(Opcode, Val, Index);
375   } else if (ST->hasQPX() && Val->getScalarType()->isFloatingPointTy()) {
376     // Floating point scalars are already located in index #0.
377     if (Index == 0)
378       return 0;
379 
380     return BaseT::getVectorInstrCost(Opcode, Val, Index);
381   }
382 
383   // Estimated cost of a load-hit-store delay.  This was obtained
384   // experimentally as a minimum needed to prevent unprofitable
385   // vectorization for the paq8p benchmark.  It may need to be
386   // raised further if other unprofitable cases remain.
387   unsigned LHSPenalty = 2;
388   if (ISD == ISD::INSERT_VECTOR_ELT)
389     LHSPenalty += 7;
390 
391   // Vector element insert/extract with Altivec is very expensive,
392   // because they require store and reload with the attendant
393   // processor stall for load-hit-store.  Until VSX is available,
394   // these need to be estimated as very costly.
395   if (ISD == ISD::EXTRACT_VECTOR_ELT ||
396       ISD == ISD::INSERT_VECTOR_ELT)
397     return LHSPenalty + BaseT::getVectorInstrCost(Opcode, Val, Index);
398 
399   return BaseT::getVectorInstrCost(Opcode, Val, Index);
400 }
401 
getMemoryOpCost(unsigned Opcode,Type * Src,unsigned Alignment,unsigned AddressSpace,const Instruction * I)402 int PPCTTIImpl::getMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment,
403                                 unsigned AddressSpace, const Instruction *I) {
404   // Legalize the type.
405   std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Src);
406   assert((Opcode == Instruction::Load || Opcode == Instruction::Store) &&
407          "Invalid Opcode");
408 
409   int Cost = BaseT::getMemoryOpCost(Opcode, Src, Alignment, AddressSpace);
410 
411   bool IsAltivecType = ST->hasAltivec() &&
412                        (LT.second == MVT::v16i8 || LT.second == MVT::v8i16 ||
413                         LT.second == MVT::v4i32 || LT.second == MVT::v4f32);
414   bool IsVSXType = ST->hasVSX() &&
415                    (LT.second == MVT::v2f64 || LT.second == MVT::v2i64);
416   bool IsQPXType = ST->hasQPX() &&
417                    (LT.second == MVT::v4f64 || LT.second == MVT::v4f32);
418 
419   // VSX has 32b/64b load instructions. Legalization can handle loading of
420   // 32b/64b to VSR correctly and cheaply. But BaseT::getMemoryOpCost and
421   // PPCTargetLowering can't compute the cost appropriately. So here we
422   // explicitly check this case.
423   unsigned MemBytes = Src->getPrimitiveSizeInBits();
424   if (Opcode == Instruction::Load && ST->hasVSX() && IsAltivecType &&
425       (MemBytes == 64 || (ST->hasP8Vector() && MemBytes == 32)))
426     return 1;
427 
428   // Aligned loads and stores are easy.
429   unsigned SrcBytes = LT.second.getStoreSize();
430   if (!SrcBytes || !Alignment || Alignment >= SrcBytes)
431     return Cost;
432 
433   // If we can use the permutation-based load sequence, then this is also
434   // relatively cheap (not counting loop-invariant instructions): one load plus
435   // one permute (the last load in a series has extra cost, but we're
436   // neglecting that here). Note that on the P7, we could do unaligned loads
437   // for Altivec types using the VSX instructions, but that's more expensive
438   // than using the permutation-based load sequence. On the P8, that's no
439   // longer true.
440   if (Opcode == Instruction::Load &&
441       ((!ST->hasP8Vector() && IsAltivecType) || IsQPXType) &&
442       Alignment >= LT.second.getScalarType().getStoreSize())
443     return Cost + LT.first; // Add the cost of the permutations.
444 
445   // For VSX, we can do unaligned loads and stores on Altivec/VSX types. On the
446   // P7, unaligned vector loads are more expensive than the permutation-based
447   // load sequence, so that might be used instead, but regardless, the net cost
448   // is about the same (not counting loop-invariant instructions).
449   if (IsVSXType || (ST->hasVSX() && IsAltivecType))
450     return Cost;
451 
452   // Newer PPC supports unaligned memory access.
453   if (TLI->allowsMisalignedMemoryAccesses(LT.second, 0))
454     return Cost;
455 
456   // PPC in general does not support unaligned loads and stores. They'll need
457   // to be decomposed based on the alignment factor.
458 
459   // Add the cost of each scalar load or store.
460   Cost += LT.first*(SrcBytes/Alignment-1);
461 
462   // For a vector type, there is also scalarization overhead (only for
463   // stores, loads are expanded using the vector-load + permutation sequence,
464   // which is much less expensive).
465   if (Src->isVectorTy() && Opcode == Instruction::Store)
466     for (int i = 0, e = Src->getVectorNumElements(); i < e; ++i)
467       Cost += getVectorInstrCost(Instruction::ExtractElement, Src, i);
468 
469   return Cost;
470 }
471 
getInterleavedMemoryOpCost(unsigned Opcode,Type * VecTy,unsigned Factor,ArrayRef<unsigned> Indices,unsigned Alignment,unsigned AddressSpace)472 int PPCTTIImpl::getInterleavedMemoryOpCost(unsigned Opcode, Type *VecTy,
473                                            unsigned Factor,
474                                            ArrayRef<unsigned> Indices,
475                                            unsigned Alignment,
476                                            unsigned AddressSpace) {
477   assert(isa<VectorType>(VecTy) &&
478          "Expect a vector type for interleaved memory op");
479 
480   // Legalize the type.
481   std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, VecTy);
482 
483   // Firstly, the cost of load/store operation.
484   int Cost = getMemoryOpCost(Opcode, VecTy, Alignment, AddressSpace);
485 
486   // PPC, for both Altivec/VSX and QPX, support cheap arbitrary permutations
487   // (at least in the sense that there need only be one non-loop-invariant
488   // instruction). For each result vector, we need one shuffle per incoming
489   // vector (except that the first shuffle can take two incoming vectors
490   // because it does not need to take itself).
491   Cost += Factor*(LT.first-1);
492 
493   return Cost;
494 }
495 
496