1 //===-- RISCVISelLowering.cpp - RISCV DAG Lowering Implementation  --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the interfaces that RISCV uses to lower LLVM code into a
11 // selection DAG.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "RISCVISelLowering.h"
16 #include "RISCV.h"
17 #include "RISCVMachineFunctionInfo.h"
18 #include "RISCVRegisterInfo.h"
19 #include "RISCVSubtarget.h"
20 #include "RISCVTargetMachine.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/CodeGen/CallingConvLower.h"
23 #include "llvm/CodeGen/MachineFrameInfo.h"
24 #include "llvm/CodeGen/MachineFunction.h"
25 #include "llvm/CodeGen/MachineInstrBuilder.h"
26 #include "llvm/CodeGen/MachineRegisterInfo.h"
27 #include "llvm/CodeGen/SelectionDAGISel.h"
28 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
29 #include "llvm/CodeGen/ValueTypes.h"
30 #include "llvm/IR/DiagnosticInfo.h"
31 #include "llvm/IR/DiagnosticPrinter.h"
32 #include "llvm/Support/Debug.h"
33 #include "llvm/Support/ErrorHandling.h"
34 #include "llvm/Support/raw_ostream.h"
35 
36 using namespace llvm;
37 
38 #define DEBUG_TYPE "riscv-lower"
39 
40 STATISTIC(NumTailCalls, "Number of tail calls");
41 
RISCVTargetLowering(const TargetMachine & TM,const RISCVSubtarget & STI)42 RISCVTargetLowering::RISCVTargetLowering(const TargetMachine &TM,
43                                          const RISCVSubtarget &STI)
44     : TargetLowering(TM), Subtarget(STI) {
45 
46   MVT XLenVT = Subtarget.getXLenVT();
47 
48   // Set up the register classes.
49   addRegisterClass(XLenVT, &RISCV::GPRRegClass);
50 
51   if (Subtarget.hasStdExtF())
52     addRegisterClass(MVT::f32, &RISCV::FPR32RegClass);
53   if (Subtarget.hasStdExtD())
54     addRegisterClass(MVT::f64, &RISCV::FPR64RegClass);
55 
56   // Compute derived properties from the register classes.
57   computeRegisterProperties(STI.getRegisterInfo());
58 
59   setStackPointerRegisterToSaveRestore(RISCV::X2);
60 
61   for (auto N : {ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD})
62     setLoadExtAction(N, XLenVT, MVT::i1, Promote);
63 
64   // TODO: add all necessary setOperationAction calls.
65   setOperationAction(ISD::DYNAMIC_STACKALLOC, XLenVT, Expand);
66 
67   setOperationAction(ISD::BR_JT, MVT::Other, Expand);
68   setOperationAction(ISD::BR_CC, XLenVT, Expand);
69   setOperationAction(ISD::SELECT, XLenVT, Custom);
70   setOperationAction(ISD::SELECT_CC, XLenVT, Expand);
71 
72   setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
73   setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
74 
75   setOperationAction(ISD::VASTART, MVT::Other, Custom);
76   setOperationAction(ISD::VAARG, MVT::Other, Expand);
77   setOperationAction(ISD::VACOPY, MVT::Other, Expand);
78   setOperationAction(ISD::VAEND, MVT::Other, Expand);
79 
80   for (auto VT : {MVT::i1, MVT::i8, MVT::i16})
81     setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand);
82 
83   if (!Subtarget.hasStdExtM()) {
84     setOperationAction(ISD::MUL, XLenVT, Expand);
85     setOperationAction(ISD::MULHS, XLenVT, Expand);
86     setOperationAction(ISD::MULHU, XLenVT, Expand);
87     setOperationAction(ISD::SDIV, XLenVT, Expand);
88     setOperationAction(ISD::UDIV, XLenVT, Expand);
89     setOperationAction(ISD::SREM, XLenVT, Expand);
90     setOperationAction(ISD::UREM, XLenVT, Expand);
91   }
92 
93   setOperationAction(ISD::SDIVREM, XLenVT, Expand);
94   setOperationAction(ISD::UDIVREM, XLenVT, Expand);
95   setOperationAction(ISD::SMUL_LOHI, XLenVT, Expand);
96   setOperationAction(ISD::UMUL_LOHI, XLenVT, Expand);
97 
98   setOperationAction(ISD::SHL_PARTS, XLenVT, Expand);
99   setOperationAction(ISD::SRL_PARTS, XLenVT, Expand);
100   setOperationAction(ISD::SRA_PARTS, XLenVT, Expand);
101 
102   setOperationAction(ISD::ROTL, XLenVT, Expand);
103   setOperationAction(ISD::ROTR, XLenVT, Expand);
104   setOperationAction(ISD::BSWAP, XLenVT, Expand);
105   setOperationAction(ISD::CTTZ, XLenVT, Expand);
106   setOperationAction(ISD::CTLZ, XLenVT, Expand);
107   setOperationAction(ISD::CTPOP, XLenVT, Expand);
108 
109   ISD::CondCode FPCCToExtend[] = {
110       ISD::SETOGT, ISD::SETOGE, ISD::SETONE, ISD::SETO,   ISD::SETUEQ,
111       ISD::SETUGT, ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUNE,
112       ISD::SETGT,  ISD::SETGE,  ISD::SETNE};
113 
114   if (Subtarget.hasStdExtF()) {
115     setOperationAction(ISD::FMINNUM, MVT::f32, Legal);
116     setOperationAction(ISD::FMAXNUM, MVT::f32, Legal);
117     for (auto CC : FPCCToExtend)
118       setCondCodeAction(CC, MVT::f32, Expand);
119     setOperationAction(ISD::SELECT_CC, MVT::f32, Expand);
120     setOperationAction(ISD::SELECT, MVT::f32, Custom);
121     setOperationAction(ISD::BR_CC, MVT::f32, Expand);
122   }
123 
124   if (Subtarget.hasStdExtD()) {
125     setOperationAction(ISD::FMINNUM, MVT::f64, Legal);
126     setOperationAction(ISD::FMAXNUM, MVT::f64, Legal);
127     for (auto CC : FPCCToExtend)
128       setCondCodeAction(CC, MVT::f64, Expand);
129     setOperationAction(ISD::SELECT_CC, MVT::f64, Expand);
130     setOperationAction(ISD::SELECT, MVT::f64, Custom);
131     setOperationAction(ISD::BR_CC, MVT::f64, Expand);
132     setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand);
133     setTruncStoreAction(MVT::f64, MVT::f32, Expand);
134   }
135 
136   setOperationAction(ISD::GlobalAddress, XLenVT, Custom);
137   setOperationAction(ISD::BlockAddress, XLenVT, Custom);
138   setOperationAction(ISD::ConstantPool, XLenVT, Custom);
139 
140   if (Subtarget.hasStdExtA())
141     setMaxAtomicSizeInBitsSupported(Subtarget.getXLen());
142   else
143     setMaxAtomicSizeInBitsSupported(0);
144 
145   setBooleanContents(ZeroOrOneBooleanContent);
146 
147   // Function alignments (log2).
148   unsigned FunctionAlignment = Subtarget.hasStdExtC() ? 1 : 2;
149   setMinFunctionAlignment(FunctionAlignment);
150   setPrefFunctionAlignment(FunctionAlignment);
151 
152   // Effectively disable jump table generation.
153   setMinimumJumpTableEntries(INT_MAX);
154 }
155 
getSetCCResultType(const DataLayout & DL,LLVMContext &,EVT VT) const156 EVT RISCVTargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &,
157                                             EVT VT) const {
158   if (!VT.isVector())
159     return getPointerTy(DL);
160   return VT.changeVectorElementTypeToInteger();
161 }
162 
isLegalAddressingMode(const DataLayout & DL,const AddrMode & AM,Type * Ty,unsigned AS,Instruction * I) const163 bool RISCVTargetLowering::isLegalAddressingMode(const DataLayout &DL,
164                                                 const AddrMode &AM, Type *Ty,
165                                                 unsigned AS,
166                                                 Instruction *I) const {
167   // No global is ever allowed as a base.
168   if (AM.BaseGV)
169     return false;
170 
171   // Require a 12-bit signed offset.
172   if (!isInt<12>(AM.BaseOffs))
173     return false;
174 
175   switch (AM.Scale) {
176   case 0: // "r+i" or just "i", depending on HasBaseReg.
177     break;
178   case 1:
179     if (!AM.HasBaseReg) // allow "r+i".
180       break;
181     return false; // disallow "r+r" or "r+r+i".
182   default:
183     return false;
184   }
185 
186   return true;
187 }
188 
isLegalICmpImmediate(int64_t Imm) const189 bool RISCVTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
190   return isInt<12>(Imm);
191 }
192 
isLegalAddImmediate(int64_t Imm) const193 bool RISCVTargetLowering::isLegalAddImmediate(int64_t Imm) const {
194   return isInt<12>(Imm);
195 }
196 
197 // On RV32, 64-bit integers are split into their high and low parts and held
198 // in two different registers, so the trunc is free since the low register can
199 // just be used.
isTruncateFree(Type * SrcTy,Type * DstTy) const200 bool RISCVTargetLowering::isTruncateFree(Type *SrcTy, Type *DstTy) const {
201   if (Subtarget.is64Bit() || !SrcTy->isIntegerTy() || !DstTy->isIntegerTy())
202     return false;
203   unsigned SrcBits = SrcTy->getPrimitiveSizeInBits();
204   unsigned DestBits = DstTy->getPrimitiveSizeInBits();
205   return (SrcBits == 64 && DestBits == 32);
206 }
207 
isTruncateFree(EVT SrcVT,EVT DstVT) const208 bool RISCVTargetLowering::isTruncateFree(EVT SrcVT, EVT DstVT) const {
209   if (Subtarget.is64Bit() || SrcVT.isVector() || DstVT.isVector() ||
210       !SrcVT.isInteger() || !DstVT.isInteger())
211     return false;
212   unsigned SrcBits = SrcVT.getSizeInBits();
213   unsigned DestBits = DstVT.getSizeInBits();
214   return (SrcBits == 64 && DestBits == 32);
215 }
216 
isZExtFree(SDValue Val,EVT VT2) const217 bool RISCVTargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
218   // Zexts are free if they can be combined with a load.
219   if (auto *LD = dyn_cast<LoadSDNode>(Val)) {
220     EVT MemVT = LD->getMemoryVT();
221     if ((MemVT == MVT::i8 || MemVT == MVT::i16 ||
222          (Subtarget.is64Bit() && MemVT == MVT::i32)) &&
223         (LD->getExtensionType() == ISD::NON_EXTLOAD ||
224          LD->getExtensionType() == ISD::ZEXTLOAD))
225       return true;
226   }
227 
228   return TargetLowering::isZExtFree(Val, VT2);
229 }
230 
231 // Changes the condition code and swaps operands if necessary, so the SetCC
232 // operation matches one of the comparisons supported directly in the RISC-V
233 // ISA.
normaliseSetCC(SDValue & LHS,SDValue & RHS,ISD::CondCode & CC)234 static void normaliseSetCC(SDValue &LHS, SDValue &RHS, ISD::CondCode &CC) {
235   switch (CC) {
236   default:
237     break;
238   case ISD::SETGT:
239   case ISD::SETLE:
240   case ISD::SETUGT:
241   case ISD::SETULE:
242     CC = ISD::getSetCCSwappedOperands(CC);
243     std::swap(LHS, RHS);
244     break;
245   }
246 }
247 
248 // Return the RISC-V branch opcode that matches the given DAG integer
249 // condition code. The CondCode must be one of those supported by the RISC-V
250 // ISA (see normaliseSetCC).
getBranchOpcodeForIntCondCode(ISD::CondCode CC)251 static unsigned getBranchOpcodeForIntCondCode(ISD::CondCode CC) {
252   switch (CC) {
253   default:
254     llvm_unreachable("Unsupported CondCode");
255   case ISD::SETEQ:
256     return RISCV::BEQ;
257   case ISD::SETNE:
258     return RISCV::BNE;
259   case ISD::SETLT:
260     return RISCV::BLT;
261   case ISD::SETGE:
262     return RISCV::BGE;
263   case ISD::SETULT:
264     return RISCV::BLTU;
265   case ISD::SETUGE:
266     return RISCV::BGEU;
267   }
268 }
269 
LowerOperation(SDValue Op,SelectionDAG & DAG) const270 SDValue RISCVTargetLowering::LowerOperation(SDValue Op,
271                                             SelectionDAG &DAG) const {
272   switch (Op.getOpcode()) {
273   default:
274     report_fatal_error("unimplemented operand");
275   case ISD::GlobalAddress:
276     return lowerGlobalAddress(Op, DAG);
277   case ISD::BlockAddress:
278     return lowerBlockAddress(Op, DAG);
279   case ISD::ConstantPool:
280     return lowerConstantPool(Op, DAG);
281   case ISD::SELECT:
282     return lowerSELECT(Op, DAG);
283   case ISD::VASTART:
284     return lowerVASTART(Op, DAG);
285   case ISD::FRAMEADDR:
286     return LowerFRAMEADDR(Op, DAG);
287   case ISD::RETURNADDR:
288     return LowerRETURNADDR(Op, DAG);
289   }
290 }
291 
lowerGlobalAddress(SDValue Op,SelectionDAG & DAG) const292 SDValue RISCVTargetLowering::lowerGlobalAddress(SDValue Op,
293                                                 SelectionDAG &DAG) const {
294   SDLoc DL(Op);
295   EVT Ty = Op.getValueType();
296   GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op);
297   const GlobalValue *GV = N->getGlobal();
298   int64_t Offset = N->getOffset();
299   MVT XLenVT = Subtarget.getXLenVT();
300 
301   if (isPositionIndependent() || Subtarget.is64Bit())
302     report_fatal_error("Unable to lowerGlobalAddress");
303   // In order to maximise the opportunity for common subexpression elimination,
304   // emit a separate ADD node for the global address offset instead of folding
305   // it in the global address node. Later peephole optimisations may choose to
306   // fold it back in when profitable.
307   SDValue GAHi = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_HI);
308   SDValue GALo = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_LO);
309   SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, GAHi), 0);
310   SDValue MNLo =
311     SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNHi, GALo), 0);
312   if (Offset != 0)
313     return DAG.getNode(ISD::ADD, DL, Ty, MNLo,
314                        DAG.getConstant(Offset, DL, XLenVT));
315   return MNLo;
316 }
317 
lowerBlockAddress(SDValue Op,SelectionDAG & DAG) const318 SDValue RISCVTargetLowering::lowerBlockAddress(SDValue Op,
319                                                SelectionDAG &DAG) const {
320   SDLoc DL(Op);
321   EVT Ty = Op.getValueType();
322   BlockAddressSDNode *N = cast<BlockAddressSDNode>(Op);
323   const BlockAddress *BA = N->getBlockAddress();
324   int64_t Offset = N->getOffset();
325 
326   if (isPositionIndependent() || Subtarget.is64Bit())
327     report_fatal_error("Unable to lowerBlockAddress");
328 
329   SDValue BAHi = DAG.getTargetBlockAddress(BA, Ty, Offset, RISCVII::MO_HI);
330   SDValue BALo = DAG.getTargetBlockAddress(BA, Ty, Offset, RISCVII::MO_LO);
331   SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, BAHi), 0);
332   SDValue MNLo =
333     SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNHi, BALo), 0);
334   return MNLo;
335 }
336 
lowerConstantPool(SDValue Op,SelectionDAG & DAG) const337 SDValue RISCVTargetLowering::lowerConstantPool(SDValue Op,
338                                                SelectionDAG &DAG) const {
339   SDLoc DL(Op);
340   EVT Ty = Op.getValueType();
341   ConstantPoolSDNode *N = cast<ConstantPoolSDNode>(Op);
342   const Constant *CPA = N->getConstVal();
343   int64_t Offset = N->getOffset();
344   unsigned Alignment = N->getAlignment();
345 
346   if (!isPositionIndependent()) {
347     SDValue CPAHi =
348         DAG.getTargetConstantPool(CPA, Ty, Alignment, Offset, RISCVII::MO_HI);
349     SDValue CPALo =
350         DAG.getTargetConstantPool(CPA, Ty, Alignment, Offset, RISCVII::MO_LO);
351     SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, CPAHi), 0);
352     SDValue MNLo =
353         SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNHi, CPALo), 0);
354     return MNLo;
355   } else {
356     report_fatal_error("Unable to lowerConstantPool");
357   }
358 }
359 
lowerExternalSymbol(SDValue Op,SelectionDAG & DAG) const360 SDValue RISCVTargetLowering::lowerExternalSymbol(SDValue Op,
361                                                  SelectionDAG &DAG) const {
362   SDLoc DL(Op);
363   EVT Ty = Op.getValueType();
364   ExternalSymbolSDNode *N = cast<ExternalSymbolSDNode>(Op);
365   const char *Sym = N->getSymbol();
366 
367   // TODO: should also handle gp-relative loads.
368 
369   if (isPositionIndependent() || Subtarget.is64Bit())
370     report_fatal_error("Unable to lowerExternalSymbol");
371 
372   SDValue GAHi = DAG.getTargetExternalSymbol(Sym, Ty, RISCVII::MO_HI);
373   SDValue GALo = DAG.getTargetExternalSymbol(Sym, Ty, RISCVII::MO_LO);
374   SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, GAHi), 0);
375   SDValue MNLo =
376     SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNHi, GALo), 0);
377   return MNLo;
378 }
379 
lowerSELECT(SDValue Op,SelectionDAG & DAG) const380 SDValue RISCVTargetLowering::lowerSELECT(SDValue Op, SelectionDAG &DAG) const {
381   SDValue CondV = Op.getOperand(0);
382   SDValue TrueV = Op.getOperand(1);
383   SDValue FalseV = Op.getOperand(2);
384   SDLoc DL(Op);
385   MVT XLenVT = Subtarget.getXLenVT();
386 
387   // If the result type is XLenVT and CondV is the output of a SETCC node
388   // which also operated on XLenVT inputs, then merge the SETCC node into the
389   // lowered RISCVISD::SELECT_CC to take advantage of the integer
390   // compare+branch instructions. i.e.:
391   // (select (setcc lhs, rhs, cc), truev, falsev)
392   // -> (riscvisd::select_cc lhs, rhs, cc, truev, falsev)
393   if (Op.getSimpleValueType() == XLenVT && CondV.getOpcode() == ISD::SETCC &&
394       CondV.getOperand(0).getSimpleValueType() == XLenVT) {
395     SDValue LHS = CondV.getOperand(0);
396     SDValue RHS = CondV.getOperand(1);
397     auto CC = cast<CondCodeSDNode>(CondV.getOperand(2));
398     ISD::CondCode CCVal = CC->get();
399 
400     normaliseSetCC(LHS, RHS, CCVal);
401 
402     SDValue TargetCC = DAG.getConstant(CCVal, DL, XLenVT);
403     SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue);
404     SDValue Ops[] = {LHS, RHS, TargetCC, TrueV, FalseV};
405     return DAG.getNode(RISCVISD::SELECT_CC, DL, VTs, Ops);
406   }
407 
408   // Otherwise:
409   // (select condv, truev, falsev)
410   // -> (riscvisd::select_cc condv, zero, setne, truev, falsev)
411   SDValue Zero = DAG.getConstant(0, DL, XLenVT);
412   SDValue SetNE = DAG.getConstant(ISD::SETNE, DL, XLenVT);
413 
414   SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue);
415   SDValue Ops[] = {CondV, Zero, SetNE, TrueV, FalseV};
416 
417   return DAG.getNode(RISCVISD::SELECT_CC, DL, VTs, Ops);
418 }
419 
lowerVASTART(SDValue Op,SelectionDAG & DAG) const420 SDValue RISCVTargetLowering::lowerVASTART(SDValue Op, SelectionDAG &DAG) const {
421   MachineFunction &MF = DAG.getMachineFunction();
422   RISCVMachineFunctionInfo *FuncInfo = MF.getInfo<RISCVMachineFunctionInfo>();
423 
424   SDLoc DL(Op);
425   SDValue FI = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
426                                  getPointerTy(MF.getDataLayout()));
427 
428   // vastart just stores the address of the VarArgsFrameIndex slot into the
429   // memory location argument.
430   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
431   return DAG.getStore(Op.getOperand(0), DL, FI, Op.getOperand(1),
432                       MachinePointerInfo(SV));
433 }
434 
LowerFRAMEADDR(SDValue Op,SelectionDAG & DAG) const435 SDValue RISCVTargetLowering::LowerFRAMEADDR(SDValue Op,
436                                             SelectionDAG &DAG) const {
437   const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo();
438   MachineFunction &MF = DAG.getMachineFunction();
439   MachineFrameInfo &MFI = MF.getFrameInfo();
440   MFI.setFrameAddressIsTaken(true);
441   unsigned FrameReg = RI.getFrameRegister(MF);
442   int XLenInBytes = Subtarget.getXLen() / 8;
443 
444   EVT VT = Op.getValueType();
445   SDLoc DL(Op);
446   SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), DL, FrameReg, VT);
447   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
448   while (Depth--) {
449     int Offset = -(XLenInBytes * 2);
450     SDValue Ptr = DAG.getNode(ISD::ADD, DL, VT, FrameAddr,
451                               DAG.getIntPtrConstant(Offset, DL));
452     FrameAddr =
453         DAG.getLoad(VT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo());
454   }
455   return FrameAddr;
456 }
457 
LowerRETURNADDR(SDValue Op,SelectionDAG & DAG) const458 SDValue RISCVTargetLowering::LowerRETURNADDR(SDValue Op,
459                                              SelectionDAG &DAG) const {
460   const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo();
461   MachineFunction &MF = DAG.getMachineFunction();
462   MachineFrameInfo &MFI = MF.getFrameInfo();
463   MFI.setReturnAddressIsTaken(true);
464   MVT XLenVT = Subtarget.getXLenVT();
465   int XLenInBytes = Subtarget.getXLen() / 8;
466 
467   if (verifyReturnAddressArgumentIsConstant(Op, DAG))
468     return SDValue();
469 
470   EVT VT = Op.getValueType();
471   SDLoc DL(Op);
472   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
473   if (Depth) {
474     int Off = -XLenInBytes;
475     SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
476     SDValue Offset = DAG.getConstant(Off, DL, VT);
477     return DAG.getLoad(VT, DL, DAG.getEntryNode(),
478                        DAG.getNode(ISD::ADD, DL, VT, FrameAddr, Offset),
479                        MachinePointerInfo());
480   }
481 
482   // Return the value of the return address register, marking it an implicit
483   // live-in.
484   unsigned Reg = MF.addLiveIn(RI.getRARegister(), getRegClassFor(XLenVT));
485   return DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, XLenVT);
486 }
487 
emitSplitF64Pseudo(MachineInstr & MI,MachineBasicBlock * BB)488 static MachineBasicBlock *emitSplitF64Pseudo(MachineInstr &MI,
489                                              MachineBasicBlock *BB) {
490   assert(MI.getOpcode() == RISCV::SplitF64Pseudo && "Unexpected instruction");
491 
492   MachineFunction &MF = *BB->getParent();
493   DebugLoc DL = MI.getDebugLoc();
494   const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
495   const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo();
496   unsigned LoReg = MI.getOperand(0).getReg();
497   unsigned HiReg = MI.getOperand(1).getReg();
498   unsigned SrcReg = MI.getOperand(2).getReg();
499   const TargetRegisterClass *SrcRC = &RISCV::FPR64RegClass;
500   int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex();
501 
502   TII.storeRegToStackSlot(*BB, MI, SrcReg, MI.getOperand(2).isKill(), FI, SrcRC,
503                           RI);
504   MachineMemOperand *MMO =
505       MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(MF, FI),
506                               MachineMemOperand::MOLoad, 8, 8);
507   BuildMI(*BB, MI, DL, TII.get(RISCV::LW), LoReg)
508       .addFrameIndex(FI)
509       .addImm(0)
510       .addMemOperand(MMO);
511   BuildMI(*BB, MI, DL, TII.get(RISCV::LW), HiReg)
512       .addFrameIndex(FI)
513       .addImm(4)
514       .addMemOperand(MMO);
515   MI.eraseFromParent(); // The pseudo instruction is gone now.
516   return BB;
517 }
518 
emitBuildPairF64Pseudo(MachineInstr & MI,MachineBasicBlock * BB)519 static MachineBasicBlock *emitBuildPairF64Pseudo(MachineInstr &MI,
520                                                  MachineBasicBlock *BB) {
521   assert(MI.getOpcode() == RISCV::BuildPairF64Pseudo &&
522          "Unexpected instruction");
523 
524   MachineFunction &MF = *BB->getParent();
525   DebugLoc DL = MI.getDebugLoc();
526   const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
527   const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo();
528   unsigned DstReg = MI.getOperand(0).getReg();
529   unsigned LoReg = MI.getOperand(1).getReg();
530   unsigned HiReg = MI.getOperand(2).getReg();
531   const TargetRegisterClass *DstRC = &RISCV::FPR64RegClass;
532   int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex();
533 
534   MachineMemOperand *MMO =
535       MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(MF, FI),
536                               MachineMemOperand::MOStore, 8, 8);
537   BuildMI(*BB, MI, DL, TII.get(RISCV::SW))
538       .addReg(LoReg, getKillRegState(MI.getOperand(1).isKill()))
539       .addFrameIndex(FI)
540       .addImm(0)
541       .addMemOperand(MMO);
542   BuildMI(*BB, MI, DL, TII.get(RISCV::SW))
543       .addReg(HiReg, getKillRegState(MI.getOperand(2).isKill()))
544       .addFrameIndex(FI)
545       .addImm(4)
546       .addMemOperand(MMO);
547   TII.loadRegFromStackSlot(*BB, MI, DstReg, FI, DstRC, RI);
548   MI.eraseFromParent(); // The pseudo instruction is gone now.
549   return BB;
550 }
551 
552 MachineBasicBlock *
EmitInstrWithCustomInserter(MachineInstr & MI,MachineBasicBlock * BB) const553 RISCVTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
554                                                  MachineBasicBlock *BB) const {
555   switch (MI.getOpcode()) {
556   default:
557     llvm_unreachable("Unexpected instr type to insert");
558   case RISCV::Select_GPR_Using_CC_GPR:
559   case RISCV::Select_FPR32_Using_CC_GPR:
560   case RISCV::Select_FPR64_Using_CC_GPR:
561     break;
562   case RISCV::BuildPairF64Pseudo:
563     return emitBuildPairF64Pseudo(MI, BB);
564   case RISCV::SplitF64Pseudo:
565     return emitSplitF64Pseudo(MI, BB);
566   }
567 
568   // To "insert" a SELECT instruction, we actually have to insert the triangle
569   // control-flow pattern.  The incoming instruction knows the destination vreg
570   // to set, the condition code register to branch on, the true/false values to
571   // select between, and the condcode to use to select the appropriate branch.
572   //
573   // We produce the following control flow:
574   //     HeadMBB
575   //     |  \
576   //     |  IfFalseMBB
577   //     | /
578   //    TailMBB
579   const TargetInstrInfo &TII = *BB->getParent()->getSubtarget().getInstrInfo();
580   const BasicBlock *LLVM_BB = BB->getBasicBlock();
581   DebugLoc DL = MI.getDebugLoc();
582   MachineFunction::iterator I = ++BB->getIterator();
583 
584   MachineBasicBlock *HeadMBB = BB;
585   MachineFunction *F = BB->getParent();
586   MachineBasicBlock *TailMBB = F->CreateMachineBasicBlock(LLVM_BB);
587   MachineBasicBlock *IfFalseMBB = F->CreateMachineBasicBlock(LLVM_BB);
588 
589   F->insert(I, IfFalseMBB);
590   F->insert(I, TailMBB);
591   // Move all remaining instructions to TailMBB.
592   TailMBB->splice(TailMBB->begin(), HeadMBB,
593                   std::next(MachineBasicBlock::iterator(MI)), HeadMBB->end());
594   // Update machine-CFG edges by transferring all successors of the current
595   // block to the new block which will contain the Phi node for the select.
596   TailMBB->transferSuccessorsAndUpdatePHIs(HeadMBB);
597   // Set the successors for HeadMBB.
598   HeadMBB->addSuccessor(IfFalseMBB);
599   HeadMBB->addSuccessor(TailMBB);
600 
601   // Insert appropriate branch.
602   unsigned LHS = MI.getOperand(1).getReg();
603   unsigned RHS = MI.getOperand(2).getReg();
604   auto CC = static_cast<ISD::CondCode>(MI.getOperand(3).getImm());
605   unsigned Opcode = getBranchOpcodeForIntCondCode(CC);
606 
607   BuildMI(HeadMBB, DL, TII.get(Opcode))
608     .addReg(LHS)
609     .addReg(RHS)
610     .addMBB(TailMBB);
611 
612   // IfFalseMBB just falls through to TailMBB.
613   IfFalseMBB->addSuccessor(TailMBB);
614 
615   // %Result = phi [ %TrueValue, HeadMBB ], [ %FalseValue, IfFalseMBB ]
616   BuildMI(*TailMBB, TailMBB->begin(), DL, TII.get(RISCV::PHI),
617           MI.getOperand(0).getReg())
618       .addReg(MI.getOperand(4).getReg())
619       .addMBB(HeadMBB)
620       .addReg(MI.getOperand(5).getReg())
621       .addMBB(IfFalseMBB);
622 
623   MI.eraseFromParent(); // The pseudo instruction is gone now.
624   return TailMBB;
625 }
626 
627 // Calling Convention Implementation.
628 // The expectations for frontend ABI lowering vary from target to target.
629 // Ideally, an LLVM frontend would be able to avoid worrying about many ABI
630 // details, but this is a longer term goal. For now, we simply try to keep the
631 // role of the frontend as simple and well-defined as possible. The rules can
632 // be summarised as:
633 // * Never split up large scalar arguments. We handle them here.
634 // * If a hardfloat calling convention is being used, and the struct may be
635 // passed in a pair of registers (fp+fp, int+fp), and both registers are
636 // available, then pass as two separate arguments. If either the GPRs or FPRs
637 // are exhausted, then pass according to the rule below.
638 // * If a struct could never be passed in registers or directly in a stack
639 // slot (as it is larger than 2*XLEN and the floating point rules don't
640 // apply), then pass it using a pointer with the byval attribute.
641 // * If a struct is less than 2*XLEN, then coerce to either a two-element
642 // word-sized array or a 2*XLEN scalar (depending on alignment).
643 // * The frontend can determine whether a struct is returned by reference or
644 // not based on its size and fields. If it will be returned by reference, the
645 // frontend must modify the prototype so a pointer with the sret annotation is
646 // passed as the first argument. This is not necessary for large scalar
647 // returns.
648 // * Struct return values and varargs should be coerced to structs containing
649 // register-size fields in the same situations they would be for fixed
650 // arguments.
651 
652 static const MCPhysReg ArgGPRs[] = {
653   RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13,
654   RISCV::X14, RISCV::X15, RISCV::X16, RISCV::X17
655 };
656 
657 // Pass a 2*XLEN argument that has been split into two XLEN values through
658 // registers or the stack as necessary.
CC_RISCVAssign2XLen(unsigned XLen,CCState & State,CCValAssign VA1,ISD::ArgFlagsTy ArgFlags1,unsigned ValNo2,MVT ValVT2,MVT LocVT2,ISD::ArgFlagsTy ArgFlags2)659 static bool CC_RISCVAssign2XLen(unsigned XLen, CCState &State, CCValAssign VA1,
660                                 ISD::ArgFlagsTy ArgFlags1, unsigned ValNo2,
661                                 MVT ValVT2, MVT LocVT2,
662                                 ISD::ArgFlagsTy ArgFlags2) {
663   unsigned XLenInBytes = XLen / 8;
664   if (unsigned Reg = State.AllocateReg(ArgGPRs)) {
665     // At least one half can be passed via register.
666     State.addLoc(CCValAssign::getReg(VA1.getValNo(), VA1.getValVT(), Reg,
667                                      VA1.getLocVT(), CCValAssign::Full));
668   } else {
669     // Both halves must be passed on the stack, with proper alignment.
670     unsigned StackAlign = std::max(XLenInBytes, ArgFlags1.getOrigAlign());
671     State.addLoc(
672         CCValAssign::getMem(VA1.getValNo(), VA1.getValVT(),
673                             State.AllocateStack(XLenInBytes, StackAlign),
674                             VA1.getLocVT(), CCValAssign::Full));
675     State.addLoc(CCValAssign::getMem(
676         ValNo2, ValVT2, State.AllocateStack(XLenInBytes, XLenInBytes), LocVT2,
677         CCValAssign::Full));
678     return false;
679   }
680 
681   if (unsigned Reg = State.AllocateReg(ArgGPRs)) {
682     // The second half can also be passed via register.
683     State.addLoc(
684         CCValAssign::getReg(ValNo2, ValVT2, Reg, LocVT2, CCValAssign::Full));
685   } else {
686     // The second half is passed via the stack, without additional alignment.
687     State.addLoc(CCValAssign::getMem(
688         ValNo2, ValVT2, State.AllocateStack(XLenInBytes, XLenInBytes), LocVT2,
689         CCValAssign::Full));
690   }
691 
692   return false;
693 }
694 
695 // Implements the RISC-V calling convention. Returns true upon failure.
CC_RISCV(const DataLayout & DL,unsigned ValNo,MVT ValVT,MVT LocVT,CCValAssign::LocInfo LocInfo,ISD::ArgFlagsTy ArgFlags,CCState & State,bool IsFixed,bool IsRet,Type * OrigTy)696 static bool CC_RISCV(const DataLayout &DL, unsigned ValNo, MVT ValVT, MVT LocVT,
697                      CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags,
698                      CCState &State, bool IsFixed, bool IsRet, Type *OrigTy) {
699   unsigned XLen = DL.getLargestLegalIntTypeSizeInBits();
700   assert(XLen == 32 || XLen == 64);
701   MVT XLenVT = XLen == 32 ? MVT::i32 : MVT::i64;
702   if (ValVT == MVT::f32) {
703     LocVT = MVT::i32;
704     LocInfo = CCValAssign::BCvt;
705   }
706 
707   // Any return value split in to more than two values can't be returned
708   // directly.
709   if (IsRet && ValNo > 1)
710     return true;
711 
712   // If this is a variadic argument, the RISC-V calling convention requires
713   // that it is assigned an 'even' or 'aligned' register if it has 8-byte
714   // alignment (RV32) or 16-byte alignment (RV64). An aligned register should
715   // be used regardless of whether the original argument was split during
716   // legalisation or not. The argument will not be passed by registers if the
717   // original type is larger than 2*XLEN, so the register alignment rule does
718   // not apply.
719   unsigned TwoXLenInBytes = (2 * XLen) / 8;
720   if (!IsFixed && ArgFlags.getOrigAlign() == TwoXLenInBytes &&
721       DL.getTypeAllocSize(OrigTy) == TwoXLenInBytes) {
722     unsigned RegIdx = State.getFirstUnallocated(ArgGPRs);
723     // Skip 'odd' register if necessary.
724     if (RegIdx != array_lengthof(ArgGPRs) && RegIdx % 2 == 1)
725       State.AllocateReg(ArgGPRs);
726   }
727 
728   SmallVectorImpl<CCValAssign> &PendingLocs = State.getPendingLocs();
729   SmallVectorImpl<ISD::ArgFlagsTy> &PendingArgFlags =
730       State.getPendingArgFlags();
731 
732   assert(PendingLocs.size() == PendingArgFlags.size() &&
733          "PendingLocs and PendingArgFlags out of sync");
734 
735   // Handle passing f64 on RV32D with a soft float ABI.
736   if (XLen == 32 && ValVT == MVT::f64) {
737     assert(!ArgFlags.isSplit() && PendingLocs.empty() &&
738            "Can't lower f64 if it is split");
739     // Depending on available argument GPRS, f64 may be passed in a pair of
740     // GPRs, split between a GPR and the stack, or passed completely on the
741     // stack. LowerCall/LowerFormalArguments/LowerReturn must recognise these
742     // cases.
743     unsigned Reg = State.AllocateReg(ArgGPRs);
744     LocVT = MVT::i32;
745     if (!Reg) {
746       unsigned StackOffset = State.AllocateStack(8, 8);
747       State.addLoc(
748           CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo));
749       return false;
750     }
751     if (!State.AllocateReg(ArgGPRs))
752       State.AllocateStack(4, 4);
753     State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
754     return false;
755   }
756 
757   // Split arguments might be passed indirectly, so keep track of the pending
758   // values.
759   if (ArgFlags.isSplit() || !PendingLocs.empty()) {
760     LocVT = XLenVT;
761     LocInfo = CCValAssign::Indirect;
762     PendingLocs.push_back(
763         CCValAssign::getPending(ValNo, ValVT, LocVT, LocInfo));
764     PendingArgFlags.push_back(ArgFlags);
765     if (!ArgFlags.isSplitEnd()) {
766       return false;
767     }
768   }
769 
770   // If the split argument only had two elements, it should be passed directly
771   // in registers or on the stack.
772   if (ArgFlags.isSplitEnd() && PendingLocs.size() <= 2) {
773     assert(PendingLocs.size() == 2 && "Unexpected PendingLocs.size()");
774     // Apply the normal calling convention rules to the first half of the
775     // split argument.
776     CCValAssign VA = PendingLocs[0];
777     ISD::ArgFlagsTy AF = PendingArgFlags[0];
778     PendingLocs.clear();
779     PendingArgFlags.clear();
780     return CC_RISCVAssign2XLen(XLen, State, VA, AF, ValNo, ValVT, LocVT,
781                                ArgFlags);
782   }
783 
784   // Allocate to a register if possible, or else a stack slot.
785   unsigned Reg = State.AllocateReg(ArgGPRs);
786   unsigned StackOffset = Reg ? 0 : State.AllocateStack(XLen / 8, XLen / 8);
787 
788   // If we reach this point and PendingLocs is non-empty, we must be at the
789   // end of a split argument that must be passed indirectly.
790   if (!PendingLocs.empty()) {
791     assert(ArgFlags.isSplitEnd() && "Expected ArgFlags.isSplitEnd()");
792     assert(PendingLocs.size() > 2 && "Unexpected PendingLocs.size()");
793 
794     for (auto &It : PendingLocs) {
795       if (Reg)
796         It.convertToReg(Reg);
797       else
798         It.convertToMem(StackOffset);
799       State.addLoc(It);
800     }
801     PendingLocs.clear();
802     PendingArgFlags.clear();
803     return false;
804   }
805 
806   assert(LocVT == XLenVT && "Expected an XLenVT at this stage");
807 
808   if (Reg) {
809     State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
810   } else {
811     State.addLoc(
812         CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo));
813   }
814   return false;
815 }
816 
analyzeInputArgs(MachineFunction & MF,CCState & CCInfo,const SmallVectorImpl<ISD::InputArg> & Ins,bool IsRet) const817 void RISCVTargetLowering::analyzeInputArgs(
818     MachineFunction &MF, CCState &CCInfo,
819     const SmallVectorImpl<ISD::InputArg> &Ins, bool IsRet) const {
820   unsigned NumArgs = Ins.size();
821   FunctionType *FType = MF.getFunction().getFunctionType();
822 
823   for (unsigned i = 0; i != NumArgs; ++i) {
824     MVT ArgVT = Ins[i].VT;
825     ISD::ArgFlagsTy ArgFlags = Ins[i].Flags;
826 
827     Type *ArgTy = nullptr;
828     if (IsRet)
829       ArgTy = FType->getReturnType();
830     else if (Ins[i].isOrigArg())
831       ArgTy = FType->getParamType(Ins[i].getOrigArgIndex());
832 
833     if (CC_RISCV(MF.getDataLayout(), i, ArgVT, ArgVT, CCValAssign::Full,
834                  ArgFlags, CCInfo, /*IsRet=*/true, IsRet, ArgTy)) {
835       LLVM_DEBUG(dbgs() << "InputArg #" << i << " has unhandled type "
836                         << EVT(ArgVT).getEVTString() << '\n');
837       llvm_unreachable(nullptr);
838     }
839   }
840 }
841 
analyzeOutputArgs(MachineFunction & MF,CCState & CCInfo,const SmallVectorImpl<ISD::OutputArg> & Outs,bool IsRet,CallLoweringInfo * CLI) const842 void RISCVTargetLowering::analyzeOutputArgs(
843     MachineFunction &MF, CCState &CCInfo,
844     const SmallVectorImpl<ISD::OutputArg> &Outs, bool IsRet,
845     CallLoweringInfo *CLI) const {
846   unsigned NumArgs = Outs.size();
847 
848   for (unsigned i = 0; i != NumArgs; i++) {
849     MVT ArgVT = Outs[i].VT;
850     ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
851     Type *OrigTy = CLI ? CLI->getArgs()[Outs[i].OrigArgIndex].Ty : nullptr;
852 
853     if (CC_RISCV(MF.getDataLayout(), i, ArgVT, ArgVT, CCValAssign::Full,
854                  ArgFlags, CCInfo, Outs[i].IsFixed, IsRet, OrigTy)) {
855       LLVM_DEBUG(dbgs() << "OutputArg #" << i << " has unhandled type "
856                         << EVT(ArgVT).getEVTString() << "\n");
857       llvm_unreachable(nullptr);
858     }
859   }
860 }
861 
862 // The caller is responsible for loading the full value if the argument is
863 // passed with CCValAssign::Indirect.
unpackFromRegLoc(SelectionDAG & DAG,SDValue Chain,const CCValAssign & VA,const SDLoc & DL)864 static SDValue unpackFromRegLoc(SelectionDAG &DAG, SDValue Chain,
865                                 const CCValAssign &VA, const SDLoc &DL) {
866   MachineFunction &MF = DAG.getMachineFunction();
867   MachineRegisterInfo &RegInfo = MF.getRegInfo();
868   EVT LocVT = VA.getLocVT();
869   EVT ValVT = VA.getValVT();
870   SDValue Val;
871 
872   unsigned VReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass);
873   RegInfo.addLiveIn(VA.getLocReg(), VReg);
874   Val = DAG.getCopyFromReg(Chain, DL, VReg, LocVT);
875 
876   switch (VA.getLocInfo()) {
877   default:
878     llvm_unreachable("Unexpected CCValAssign::LocInfo");
879   case CCValAssign::Full:
880   case CCValAssign::Indirect:
881     break;
882   case CCValAssign::BCvt:
883     Val = DAG.getNode(ISD::BITCAST, DL, ValVT, Val);
884     break;
885   }
886   return Val;
887 }
888 
889 // The caller is responsible for loading the full value if the argument is
890 // passed with CCValAssign::Indirect.
unpackFromMemLoc(SelectionDAG & DAG,SDValue Chain,const CCValAssign & VA,const SDLoc & DL)891 static SDValue unpackFromMemLoc(SelectionDAG &DAG, SDValue Chain,
892                                 const CCValAssign &VA, const SDLoc &DL) {
893   MachineFunction &MF = DAG.getMachineFunction();
894   MachineFrameInfo &MFI = MF.getFrameInfo();
895   EVT LocVT = VA.getLocVT();
896   EVT ValVT = VA.getValVT();
897   EVT PtrVT = MVT::getIntegerVT(DAG.getDataLayout().getPointerSizeInBits(0));
898   int FI = MFI.CreateFixedObject(ValVT.getSizeInBits() / 8,
899                                  VA.getLocMemOffset(), /*Immutable=*/true);
900   SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
901   SDValue Val;
902 
903   ISD::LoadExtType ExtType;
904   switch (VA.getLocInfo()) {
905   default:
906     llvm_unreachable("Unexpected CCValAssign::LocInfo");
907   case CCValAssign::Full:
908   case CCValAssign::Indirect:
909     ExtType = ISD::NON_EXTLOAD;
910     break;
911   }
912   Val = DAG.getExtLoad(
913       ExtType, DL, LocVT, Chain, FIN,
914       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), ValVT);
915   return Val;
916 }
917 
unpackF64OnRV32DSoftABI(SelectionDAG & DAG,SDValue Chain,const CCValAssign & VA,const SDLoc & DL)918 static SDValue unpackF64OnRV32DSoftABI(SelectionDAG &DAG, SDValue Chain,
919                                        const CCValAssign &VA, const SDLoc &DL) {
920   assert(VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64 &&
921          "Unexpected VA");
922   MachineFunction &MF = DAG.getMachineFunction();
923   MachineFrameInfo &MFI = MF.getFrameInfo();
924   MachineRegisterInfo &RegInfo = MF.getRegInfo();
925 
926   if (VA.isMemLoc()) {
927     // f64 is passed on the stack.
928     int FI = MFI.CreateFixedObject(8, VA.getLocMemOffset(), /*Immutable=*/true);
929     SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
930     return DAG.getLoad(MVT::f64, DL, Chain, FIN,
931                        MachinePointerInfo::getFixedStack(MF, FI));
932   }
933 
934   assert(VA.isRegLoc() && "Expected register VA assignment");
935 
936   unsigned LoVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass);
937   RegInfo.addLiveIn(VA.getLocReg(), LoVReg);
938   SDValue Lo = DAG.getCopyFromReg(Chain, DL, LoVReg, MVT::i32);
939   SDValue Hi;
940   if (VA.getLocReg() == RISCV::X17) {
941     // Second half of f64 is passed on the stack.
942     int FI = MFI.CreateFixedObject(4, 0, /*Immutable=*/true);
943     SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
944     Hi = DAG.getLoad(MVT::i32, DL, Chain, FIN,
945                      MachinePointerInfo::getFixedStack(MF, FI));
946   } else {
947     // Second half of f64 is passed in another GPR.
948     unsigned HiVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass);
949     RegInfo.addLiveIn(VA.getLocReg() + 1, HiVReg);
950     Hi = DAG.getCopyFromReg(Chain, DL, HiVReg, MVT::i32);
951   }
952   return DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, Lo, Hi);
953 }
954 
955 // Transform physical registers into virtual registers.
LowerFormalArguments(SDValue Chain,CallingConv::ID CallConv,bool IsVarArg,const SmallVectorImpl<ISD::InputArg> & Ins,const SDLoc & DL,SelectionDAG & DAG,SmallVectorImpl<SDValue> & InVals) const956 SDValue RISCVTargetLowering::LowerFormalArguments(
957     SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
958     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
959     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
960 
961   switch (CallConv) {
962   default:
963     report_fatal_error("Unsupported calling convention");
964   case CallingConv::C:
965   case CallingConv::Fast:
966     break;
967   }
968 
969   MachineFunction &MF = DAG.getMachineFunction();
970 
971   const Function &Func = MF.getFunction();
972   if (Func.hasFnAttribute("interrupt")) {
973     if (!Func.arg_empty())
974       report_fatal_error(
975         "Functions with the interrupt attribute cannot have arguments!");
976 
977     StringRef Kind =
978       MF.getFunction().getFnAttribute("interrupt").getValueAsString();
979 
980     if (!(Kind == "user" || Kind == "supervisor" || Kind == "machine"))
981       report_fatal_error(
982         "Function interrupt attribute argument not supported!");
983   }
984 
985   EVT PtrVT = getPointerTy(DAG.getDataLayout());
986   MVT XLenVT = Subtarget.getXLenVT();
987   unsigned XLenInBytes = Subtarget.getXLen() / 8;
988   // Used with vargs to acumulate store chains.
989   std::vector<SDValue> OutChains;
990 
991   // Assign locations to all of the incoming arguments.
992   SmallVector<CCValAssign, 16> ArgLocs;
993   CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
994   analyzeInputArgs(MF, CCInfo, Ins, /*IsRet=*/false);
995 
996   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
997     CCValAssign &VA = ArgLocs[i];
998     assert(VA.getLocVT() == XLenVT && "Unhandled argument type");
999     SDValue ArgValue;
1000     // Passing f64 on RV32D with a soft float ABI must be handled as a special
1001     // case.
1002     if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64)
1003       ArgValue = unpackF64OnRV32DSoftABI(DAG, Chain, VA, DL);
1004     else if (VA.isRegLoc())
1005       ArgValue = unpackFromRegLoc(DAG, Chain, VA, DL);
1006     else
1007       ArgValue = unpackFromMemLoc(DAG, Chain, VA, DL);
1008 
1009     if (VA.getLocInfo() == CCValAssign::Indirect) {
1010       // If the original argument was split and passed by reference (e.g. i128
1011       // on RV32), we need to load all parts of it here (using the same
1012       // address).
1013       InVals.push_back(DAG.getLoad(VA.getValVT(), DL, Chain, ArgValue,
1014                                    MachinePointerInfo()));
1015       unsigned ArgIndex = Ins[i].OrigArgIndex;
1016       assert(Ins[i].PartOffset == 0);
1017       while (i + 1 != e && Ins[i + 1].OrigArgIndex == ArgIndex) {
1018         CCValAssign &PartVA = ArgLocs[i + 1];
1019         unsigned PartOffset = Ins[i + 1].PartOffset;
1020         SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, ArgValue,
1021                                       DAG.getIntPtrConstant(PartOffset, DL));
1022         InVals.push_back(DAG.getLoad(PartVA.getValVT(), DL, Chain, Address,
1023                                      MachinePointerInfo()));
1024         ++i;
1025       }
1026       continue;
1027     }
1028     InVals.push_back(ArgValue);
1029   }
1030 
1031   if (IsVarArg) {
1032     ArrayRef<MCPhysReg> ArgRegs = makeArrayRef(ArgGPRs);
1033     unsigned Idx = CCInfo.getFirstUnallocated(ArgRegs);
1034     const TargetRegisterClass *RC = &RISCV::GPRRegClass;
1035     MachineFrameInfo &MFI = MF.getFrameInfo();
1036     MachineRegisterInfo &RegInfo = MF.getRegInfo();
1037     RISCVMachineFunctionInfo *RVFI = MF.getInfo<RISCVMachineFunctionInfo>();
1038 
1039     // Offset of the first variable argument from stack pointer, and size of
1040     // the vararg save area. For now, the varargs save area is either zero or
1041     // large enough to hold a0-a7.
1042     int VaArgOffset, VarArgsSaveSize;
1043 
1044     // If all registers are allocated, then all varargs must be passed on the
1045     // stack and we don't need to save any argregs.
1046     if (ArgRegs.size() == Idx) {
1047       VaArgOffset = CCInfo.getNextStackOffset();
1048       VarArgsSaveSize = 0;
1049     } else {
1050       VarArgsSaveSize = XLenInBytes * (ArgRegs.size() - Idx);
1051       VaArgOffset = -VarArgsSaveSize;
1052     }
1053 
1054     // Record the frame index of the first variable argument
1055     // which is a value necessary to VASTART.
1056     int FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true);
1057     RVFI->setVarArgsFrameIndex(FI);
1058 
1059     // If saving an odd number of registers then create an extra stack slot to
1060     // ensure that the frame pointer is 2*XLEN-aligned, which in turn ensures
1061     // offsets to even-numbered registered remain 2*XLEN-aligned.
1062     if (Idx % 2) {
1063       FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset - (int)XLenInBytes,
1064                                  true);
1065       VarArgsSaveSize += XLenInBytes;
1066     }
1067 
1068     // Copy the integer registers that may have been used for passing varargs
1069     // to the vararg save area.
1070     for (unsigned I = Idx; I < ArgRegs.size();
1071          ++I, VaArgOffset += XLenInBytes) {
1072       const unsigned Reg = RegInfo.createVirtualRegister(RC);
1073       RegInfo.addLiveIn(ArgRegs[I], Reg);
1074       SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, XLenVT);
1075       FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true);
1076       SDValue PtrOff = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
1077       SDValue Store = DAG.getStore(Chain, DL, ArgValue, PtrOff,
1078                                    MachinePointerInfo::getFixedStack(MF, FI));
1079       cast<StoreSDNode>(Store.getNode())
1080           ->getMemOperand()
1081           ->setValue((Value *)nullptr);
1082       OutChains.push_back(Store);
1083     }
1084     RVFI->setVarArgsSaveSize(VarArgsSaveSize);
1085   }
1086 
1087   // All stores are grouped in one node to allow the matching between
1088   // the size of Ins and InVals. This only happens for vararg functions.
1089   if (!OutChains.empty()) {
1090     OutChains.push_back(Chain);
1091     Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, OutChains);
1092   }
1093 
1094   return Chain;
1095 }
1096 
1097 /// IsEligibleForTailCallOptimization - Check whether the call is eligible
1098 /// for tail call optimization.
1099 /// Note: This is modelled after ARM's IsEligibleForTailCallOptimization.
IsEligibleForTailCallOptimization(CCState & CCInfo,CallLoweringInfo & CLI,MachineFunction & MF,const SmallVector<CCValAssign,16> & ArgLocs) const1100 bool RISCVTargetLowering::IsEligibleForTailCallOptimization(
1101   CCState &CCInfo, CallLoweringInfo &CLI, MachineFunction &MF,
1102   const SmallVector<CCValAssign, 16> &ArgLocs) const {
1103 
1104   auto &Callee = CLI.Callee;
1105   auto CalleeCC = CLI.CallConv;
1106   auto IsVarArg = CLI.IsVarArg;
1107   auto &Outs = CLI.Outs;
1108   auto &Caller = MF.getFunction();
1109   auto CallerCC = Caller.getCallingConv();
1110 
1111   // Do not tail call opt functions with "disable-tail-calls" attribute.
1112   if (Caller.getFnAttribute("disable-tail-calls").getValueAsString() == "true")
1113     return false;
1114 
1115   // Exception-handling functions need a special set of instructions to
1116   // indicate a return to the hardware. Tail-calling another function would
1117   // probably break this.
1118   // TODO: The "interrupt" attribute isn't currently defined by RISC-V. This
1119   // should be expanded as new function attributes are introduced.
1120   if (Caller.hasFnAttribute("interrupt"))
1121     return false;
1122 
1123   // Do not tail call opt functions with varargs.
1124   if (IsVarArg)
1125     return false;
1126 
1127   // Do not tail call opt if the stack is used to pass parameters.
1128   if (CCInfo.getNextStackOffset() != 0)
1129     return false;
1130 
1131   // Do not tail call opt if any parameters need to be passed indirectly.
1132   // Since long doubles (fp128) and i128 are larger than 2*XLEN, they are
1133   // passed indirectly. So the address of the value will be passed in a
1134   // register, or if not available, then the address is put on the stack. In
1135   // order to pass indirectly, space on the stack often needs to be allocated
1136   // in order to store the value. In this case the CCInfo.getNextStackOffset()
1137   // != 0 check is not enough and we need to check if any CCValAssign ArgsLocs
1138   // are passed CCValAssign::Indirect.
1139   for (auto &VA : ArgLocs)
1140     if (VA.getLocInfo() == CCValAssign::Indirect)
1141       return false;
1142 
1143   // Do not tail call opt if either caller or callee uses struct return
1144   // semantics.
1145   auto IsCallerStructRet = Caller.hasStructRetAttr();
1146   auto IsCalleeStructRet = Outs.empty() ? false : Outs[0].Flags.isSRet();
1147   if (IsCallerStructRet || IsCalleeStructRet)
1148     return false;
1149 
1150   // Externally-defined functions with weak linkage should not be
1151   // tail-called. The behaviour of branch instructions in this situation (as
1152   // used for tail calls) is implementation-defined, so we cannot rely on the
1153   // linker replacing the tail call with a return.
1154   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1155     const GlobalValue *GV = G->getGlobal();
1156     if (GV->hasExternalWeakLinkage())
1157       return false;
1158   }
1159 
1160   // The callee has to preserve all registers the caller needs to preserve.
1161   const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo();
1162   const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC);
1163   if (CalleeCC != CallerCC) {
1164     const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC);
1165     if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved))
1166       return false;
1167   }
1168 
1169   // Byval parameters hand the function a pointer directly into the stack area
1170   // we want to reuse during a tail call. Working around this *is* possible
1171   // but less efficient and uglier in LowerCall.
1172   for (auto &Arg : Outs)
1173     if (Arg.Flags.isByVal())
1174       return false;
1175 
1176   return true;
1177 }
1178 
1179 // Lower a call to a callseq_start + CALL + callseq_end chain, and add input
1180 // and output parameter nodes.
LowerCall(CallLoweringInfo & CLI,SmallVectorImpl<SDValue> & InVals) const1181 SDValue RISCVTargetLowering::LowerCall(CallLoweringInfo &CLI,
1182                                        SmallVectorImpl<SDValue> &InVals) const {
1183   SelectionDAG &DAG = CLI.DAG;
1184   SDLoc &DL = CLI.DL;
1185   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
1186   SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
1187   SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
1188   SDValue Chain = CLI.Chain;
1189   SDValue Callee = CLI.Callee;
1190   bool &IsTailCall = CLI.IsTailCall;
1191   CallingConv::ID CallConv = CLI.CallConv;
1192   bool IsVarArg = CLI.IsVarArg;
1193   EVT PtrVT = getPointerTy(DAG.getDataLayout());
1194   MVT XLenVT = Subtarget.getXLenVT();
1195 
1196   MachineFunction &MF = DAG.getMachineFunction();
1197 
1198   // Analyze the operands of the call, assigning locations to each operand.
1199   SmallVector<CCValAssign, 16> ArgLocs;
1200   CCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
1201   analyzeOutputArgs(MF, ArgCCInfo, Outs, /*IsRet=*/false, &CLI);
1202 
1203   // Check if it's really possible to do a tail call.
1204   if (IsTailCall)
1205     IsTailCall = IsEligibleForTailCallOptimization(ArgCCInfo, CLI, MF,
1206                                                    ArgLocs);
1207 
1208   if (IsTailCall)
1209     ++NumTailCalls;
1210   else if (CLI.CS && CLI.CS.isMustTailCall())
1211     report_fatal_error("failed to perform tail call elimination on a call "
1212                        "site marked musttail");
1213 
1214   // Get a count of how many bytes are to be pushed on the stack.
1215   unsigned NumBytes = ArgCCInfo.getNextStackOffset();
1216 
1217   // Create local copies for byval args
1218   SmallVector<SDValue, 8> ByValArgs;
1219   for (unsigned i = 0, e = Outs.size(); i != e; ++i) {
1220     ISD::ArgFlagsTy Flags = Outs[i].Flags;
1221     if (!Flags.isByVal())
1222       continue;
1223 
1224     SDValue Arg = OutVals[i];
1225     unsigned Size = Flags.getByValSize();
1226     unsigned Align = Flags.getByValAlign();
1227 
1228     int FI = MF.getFrameInfo().CreateStackObject(Size, Align, /*isSS=*/false);
1229     SDValue FIPtr = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
1230     SDValue SizeNode = DAG.getConstant(Size, DL, XLenVT);
1231 
1232     Chain = DAG.getMemcpy(Chain, DL, FIPtr, Arg, SizeNode, Align,
1233                           /*IsVolatile=*/false,
1234                           /*AlwaysInline=*/false,
1235                           IsTailCall, MachinePointerInfo(),
1236                           MachinePointerInfo());
1237     ByValArgs.push_back(FIPtr);
1238   }
1239 
1240   if (!IsTailCall)
1241     Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, CLI.DL);
1242 
1243   // Copy argument values to their designated locations.
1244   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
1245   SmallVector<SDValue, 8> MemOpChains;
1246   SDValue StackPtr;
1247   for (unsigned i = 0, j = 0, e = ArgLocs.size(); i != e; ++i) {
1248     CCValAssign &VA = ArgLocs[i];
1249     SDValue ArgValue = OutVals[i];
1250     ISD::ArgFlagsTy Flags = Outs[i].Flags;
1251 
1252     // Handle passing f64 on RV32D with a soft float ABI as a special case.
1253     bool IsF64OnRV32DSoftABI =
1254         VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64;
1255     if (IsF64OnRV32DSoftABI && VA.isRegLoc()) {
1256       SDValue SplitF64 = DAG.getNode(
1257           RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32), ArgValue);
1258       SDValue Lo = SplitF64.getValue(0);
1259       SDValue Hi = SplitF64.getValue(1);
1260 
1261       unsigned RegLo = VA.getLocReg();
1262       RegsToPass.push_back(std::make_pair(RegLo, Lo));
1263 
1264       if (RegLo == RISCV::X17) {
1265         // Second half of f64 is passed on the stack.
1266         // Work out the address of the stack slot.
1267         if (!StackPtr.getNode())
1268           StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT);
1269         // Emit the store.
1270         MemOpChains.push_back(
1271             DAG.getStore(Chain, DL, Hi, StackPtr, MachinePointerInfo()));
1272       } else {
1273         // Second half of f64 is passed in another GPR.
1274         unsigned RegHigh = RegLo + 1;
1275         RegsToPass.push_back(std::make_pair(RegHigh, Hi));
1276       }
1277       continue;
1278     }
1279 
1280     // IsF64OnRV32DSoftABI && VA.isMemLoc() is handled below in the same way
1281     // as any other MemLoc.
1282 
1283     // Promote the value if needed.
1284     // For now, only handle fully promoted and indirect arguments.
1285     switch (VA.getLocInfo()) {
1286     case CCValAssign::Full:
1287       break;
1288     case CCValAssign::BCvt:
1289       ArgValue = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), ArgValue);
1290       break;
1291     case CCValAssign::Indirect: {
1292       // Store the argument in a stack slot and pass its address.
1293       SDValue SpillSlot = DAG.CreateStackTemporary(Outs[i].ArgVT);
1294       int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
1295       MemOpChains.push_back(
1296           DAG.getStore(Chain, DL, ArgValue, SpillSlot,
1297                        MachinePointerInfo::getFixedStack(MF, FI)));
1298       // If the original argument was split (e.g. i128), we need
1299       // to store all parts of it here (and pass just one address).
1300       unsigned ArgIndex = Outs[i].OrigArgIndex;
1301       assert(Outs[i].PartOffset == 0);
1302       while (i + 1 != e && Outs[i + 1].OrigArgIndex == ArgIndex) {
1303         SDValue PartValue = OutVals[i + 1];
1304         unsigned PartOffset = Outs[i + 1].PartOffset;
1305         SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, SpillSlot,
1306                                       DAG.getIntPtrConstant(PartOffset, DL));
1307         MemOpChains.push_back(
1308             DAG.getStore(Chain, DL, PartValue, Address,
1309                          MachinePointerInfo::getFixedStack(MF, FI)));
1310         ++i;
1311       }
1312       ArgValue = SpillSlot;
1313       break;
1314     }
1315     default:
1316       llvm_unreachable("Unknown loc info!");
1317     }
1318 
1319     // Use local copy if it is a byval arg.
1320     if (Flags.isByVal())
1321       ArgValue = ByValArgs[j++];
1322 
1323     if (VA.isRegLoc()) {
1324       // Queue up the argument copies and emit them at the end.
1325       RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue));
1326     } else {
1327       assert(VA.isMemLoc() && "Argument not register or memory");
1328       assert(!IsTailCall && "Tail call not allowed if stack is used "
1329                             "for passing parameters");
1330 
1331       // Work out the address of the stack slot.
1332       if (!StackPtr.getNode())
1333         StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT);
1334       SDValue Address =
1335           DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr,
1336                       DAG.getIntPtrConstant(VA.getLocMemOffset(), DL));
1337 
1338       // Emit the store.
1339       MemOpChains.push_back(
1340           DAG.getStore(Chain, DL, ArgValue, Address, MachinePointerInfo()));
1341     }
1342   }
1343 
1344   // Join the stores, which are independent of one another.
1345   if (!MemOpChains.empty())
1346     Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains);
1347 
1348   SDValue Glue;
1349 
1350   // Build a sequence of copy-to-reg nodes, chained and glued together.
1351   for (auto &Reg : RegsToPass) {
1352     Chain = DAG.getCopyToReg(Chain, DL, Reg.first, Reg.second, Glue);
1353     Glue = Chain.getValue(1);
1354   }
1355 
1356   // If the callee is a GlobalAddress/ExternalSymbol node, turn it into a
1357   // TargetGlobalAddress/TargetExternalSymbol node so that legalize won't
1358   // split it and then direct call can be matched by PseudoCALL.
1359   if (GlobalAddressSDNode *S = dyn_cast<GlobalAddressSDNode>(Callee)) {
1360     Callee = DAG.getTargetGlobalAddress(S->getGlobal(), DL, PtrVT, 0, 0);
1361   } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
1362     Callee = DAG.getTargetExternalSymbol(S->getSymbol(), PtrVT, 0);
1363   }
1364 
1365   // The first call operand is the chain and the second is the target address.
1366   SmallVector<SDValue, 8> Ops;
1367   Ops.push_back(Chain);
1368   Ops.push_back(Callee);
1369 
1370   // Add argument registers to the end of the list so that they are
1371   // known live into the call.
1372   for (auto &Reg : RegsToPass)
1373     Ops.push_back(DAG.getRegister(Reg.first, Reg.second.getValueType()));
1374 
1375   if (!IsTailCall) {
1376     // Add a register mask operand representing the call-preserved registers.
1377     const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
1378     const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv);
1379     assert(Mask && "Missing call preserved mask for calling convention");
1380     Ops.push_back(DAG.getRegisterMask(Mask));
1381   }
1382 
1383   // Glue the call to the argument copies, if any.
1384   if (Glue.getNode())
1385     Ops.push_back(Glue);
1386 
1387   // Emit the call.
1388   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
1389 
1390   if (IsTailCall) {
1391     MF.getFrameInfo().setHasTailCall();
1392     return DAG.getNode(RISCVISD::TAIL, DL, NodeTys, Ops);
1393   }
1394 
1395   Chain = DAG.getNode(RISCVISD::CALL, DL, NodeTys, Ops);
1396   Glue = Chain.getValue(1);
1397 
1398   // Mark the end of the call, which is glued to the call itself.
1399   Chain = DAG.getCALLSEQ_END(Chain,
1400                              DAG.getConstant(NumBytes, DL, PtrVT, true),
1401                              DAG.getConstant(0, DL, PtrVT, true),
1402                              Glue, DL);
1403   Glue = Chain.getValue(1);
1404 
1405   // Assign locations to each value returned by this call.
1406   SmallVector<CCValAssign, 16> RVLocs;
1407   CCState RetCCInfo(CallConv, IsVarArg, MF, RVLocs, *DAG.getContext());
1408   analyzeInputArgs(MF, RetCCInfo, Ins, /*IsRet=*/true);
1409 
1410   // Copy all of the result registers out of their specified physreg.
1411   for (auto &VA : RVLocs) {
1412     // Copy the value out
1413     SDValue RetValue =
1414         DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), VA.getLocVT(), Glue);
1415     // Glue the RetValue to the end of the call sequence
1416     Chain = RetValue.getValue(1);
1417     Glue = RetValue.getValue(2);
1418     if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) {
1419       assert(VA.getLocReg() == ArgGPRs[0] && "Unexpected reg assignment");
1420       SDValue RetValue2 =
1421           DAG.getCopyFromReg(Chain, DL, ArgGPRs[1], MVT::i32, Glue);
1422       Chain = RetValue2.getValue(1);
1423       Glue = RetValue2.getValue(2);
1424       RetValue = DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, RetValue,
1425                              RetValue2);
1426     }
1427 
1428     switch (VA.getLocInfo()) {
1429     default:
1430       llvm_unreachable("Unknown loc info!");
1431     case CCValAssign::Full:
1432       break;
1433     case CCValAssign::BCvt:
1434       RetValue = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), RetValue);
1435       break;
1436     }
1437 
1438     InVals.push_back(RetValue);
1439   }
1440 
1441   return Chain;
1442 }
1443 
CanLowerReturn(CallingConv::ID CallConv,MachineFunction & MF,bool IsVarArg,const SmallVectorImpl<ISD::OutputArg> & Outs,LLVMContext & Context) const1444 bool RISCVTargetLowering::CanLowerReturn(
1445     CallingConv::ID CallConv, MachineFunction &MF, bool IsVarArg,
1446     const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context) const {
1447   SmallVector<CCValAssign, 16> RVLocs;
1448   CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context);
1449   for (unsigned i = 0, e = Outs.size(); i != e; ++i) {
1450     MVT VT = Outs[i].VT;
1451     ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
1452     if (CC_RISCV(MF.getDataLayout(), i, VT, VT, CCValAssign::Full, ArgFlags,
1453                  CCInfo, /*IsFixed=*/true, /*IsRet=*/true, nullptr))
1454       return false;
1455   }
1456   return true;
1457 }
1458 
packIntoRegLoc(SelectionDAG & DAG,SDValue Val,const CCValAssign & VA,const SDLoc & DL)1459 static SDValue packIntoRegLoc(SelectionDAG &DAG, SDValue Val,
1460                               const CCValAssign &VA, const SDLoc &DL) {
1461   EVT LocVT = VA.getLocVT();
1462 
1463   switch (VA.getLocInfo()) {
1464   default:
1465     llvm_unreachable("Unexpected CCValAssign::LocInfo");
1466   case CCValAssign::Full:
1467     break;
1468   case CCValAssign::BCvt:
1469     Val = DAG.getNode(ISD::BITCAST, DL, LocVT, Val);
1470     break;
1471   }
1472   return Val;
1473 }
1474 
1475 SDValue
LowerReturn(SDValue Chain,CallingConv::ID CallConv,bool IsVarArg,const SmallVectorImpl<ISD::OutputArg> & Outs,const SmallVectorImpl<SDValue> & OutVals,const SDLoc & DL,SelectionDAG & DAG) const1476 RISCVTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
1477                                  bool IsVarArg,
1478                                  const SmallVectorImpl<ISD::OutputArg> &Outs,
1479                                  const SmallVectorImpl<SDValue> &OutVals,
1480                                  const SDLoc &DL, SelectionDAG &DAG) const {
1481   // Stores the assignment of the return value to a location.
1482   SmallVector<CCValAssign, 16> RVLocs;
1483 
1484   // Info about the registers and stack slot.
1485   CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs,
1486                  *DAG.getContext());
1487 
1488   analyzeOutputArgs(DAG.getMachineFunction(), CCInfo, Outs, /*IsRet=*/true,
1489                     nullptr);
1490 
1491   SDValue Glue;
1492   SmallVector<SDValue, 4> RetOps(1, Chain);
1493 
1494   // Copy the result values into the output registers.
1495   for (unsigned i = 0, e = RVLocs.size(); i < e; ++i) {
1496     SDValue Val = OutVals[i];
1497     CCValAssign &VA = RVLocs[i];
1498     assert(VA.isRegLoc() && "Can only return in registers!");
1499 
1500     if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) {
1501       // Handle returning f64 on RV32D with a soft float ABI.
1502       assert(VA.isRegLoc() && "Expected return via registers");
1503       SDValue SplitF64 = DAG.getNode(RISCVISD::SplitF64, DL,
1504                                      DAG.getVTList(MVT::i32, MVT::i32), Val);
1505       SDValue Lo = SplitF64.getValue(0);
1506       SDValue Hi = SplitF64.getValue(1);
1507       unsigned RegLo = VA.getLocReg();
1508       unsigned RegHi = RegLo + 1;
1509       Chain = DAG.getCopyToReg(Chain, DL, RegLo, Lo, Glue);
1510       Glue = Chain.getValue(1);
1511       RetOps.push_back(DAG.getRegister(RegLo, MVT::i32));
1512       Chain = DAG.getCopyToReg(Chain, DL, RegHi, Hi, Glue);
1513       Glue = Chain.getValue(1);
1514       RetOps.push_back(DAG.getRegister(RegHi, MVT::i32));
1515     } else {
1516       // Handle a 'normal' return.
1517       Val = packIntoRegLoc(DAG, Val, VA, DL);
1518       Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Val, Glue);
1519 
1520       // Guarantee that all emitted copies are stuck together.
1521       Glue = Chain.getValue(1);
1522       RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
1523     }
1524   }
1525 
1526   RetOps[0] = Chain; // Update chain.
1527 
1528   // Add the glue node if we have it.
1529   if (Glue.getNode()) {
1530     RetOps.push_back(Glue);
1531   }
1532 
1533   // Interrupt service routines use different return instructions.
1534   const Function &Func = DAG.getMachineFunction().getFunction();
1535   if (Func.hasFnAttribute("interrupt")) {
1536     if (!Func.getReturnType()->isVoidTy())
1537       report_fatal_error(
1538           "Functions with the interrupt attribute must have void return type!");
1539 
1540     MachineFunction &MF = DAG.getMachineFunction();
1541     StringRef Kind =
1542       MF.getFunction().getFnAttribute("interrupt").getValueAsString();
1543 
1544     unsigned RetOpc;
1545     if (Kind == "user")
1546       RetOpc = RISCVISD::URET_FLAG;
1547     else if (Kind == "supervisor")
1548       RetOpc = RISCVISD::SRET_FLAG;
1549     else
1550       RetOpc = RISCVISD::MRET_FLAG;
1551 
1552     return DAG.getNode(RetOpc, DL, MVT::Other, RetOps);
1553   }
1554 
1555   return DAG.getNode(RISCVISD::RET_FLAG, DL, MVT::Other, RetOps);
1556 }
1557 
getTargetNodeName(unsigned Opcode) const1558 const char *RISCVTargetLowering::getTargetNodeName(unsigned Opcode) const {
1559   switch ((RISCVISD::NodeType)Opcode) {
1560   case RISCVISD::FIRST_NUMBER:
1561     break;
1562   case RISCVISD::RET_FLAG:
1563     return "RISCVISD::RET_FLAG";
1564   case RISCVISD::URET_FLAG:
1565     return "RISCVISD::URET_FLAG";
1566   case RISCVISD::SRET_FLAG:
1567     return "RISCVISD::SRET_FLAG";
1568   case RISCVISD::MRET_FLAG:
1569     return "RISCVISD::MRET_FLAG";
1570   case RISCVISD::CALL:
1571     return "RISCVISD::CALL";
1572   case RISCVISD::SELECT_CC:
1573     return "RISCVISD::SELECT_CC";
1574   case RISCVISD::BuildPairF64:
1575     return "RISCVISD::BuildPairF64";
1576   case RISCVISD::SplitF64:
1577     return "RISCVISD::SplitF64";
1578   case RISCVISD::TAIL:
1579     return "RISCVISD::TAIL";
1580   }
1581   return nullptr;
1582 }
1583 
1584 std::pair<unsigned, const TargetRegisterClass *>
getRegForInlineAsmConstraint(const TargetRegisterInfo * TRI,StringRef Constraint,MVT VT) const1585 RISCVTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
1586                                                   StringRef Constraint,
1587                                                   MVT VT) const {
1588   // First, see if this is a constraint that directly corresponds to a
1589   // RISCV register class.
1590   if (Constraint.size() == 1) {
1591     switch (Constraint[0]) {
1592     case 'r':
1593       return std::make_pair(0U, &RISCV::GPRRegClass);
1594     default:
1595       break;
1596     }
1597   }
1598 
1599   return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
1600 }
1601 
emitLeadingFence(IRBuilder<> & Builder,Instruction * Inst,AtomicOrdering Ord) const1602 Instruction *RISCVTargetLowering::emitLeadingFence(IRBuilder<> &Builder,
1603                                                    Instruction *Inst,
1604                                                    AtomicOrdering Ord) const {
1605   if (isa<LoadInst>(Inst) && Ord == AtomicOrdering::SequentiallyConsistent)
1606     return Builder.CreateFence(Ord);
1607   if (isa<StoreInst>(Inst) && isReleaseOrStronger(Ord))
1608     return Builder.CreateFence(AtomicOrdering::Release);
1609   return nullptr;
1610 }
1611 
emitTrailingFence(IRBuilder<> & Builder,Instruction * Inst,AtomicOrdering Ord) const1612 Instruction *RISCVTargetLowering::emitTrailingFence(IRBuilder<> &Builder,
1613                                                     Instruction *Inst,
1614                                                     AtomicOrdering Ord) const {
1615   if (isa<LoadInst>(Inst) && isAcquireOrStronger(Ord))
1616     return Builder.CreateFence(AtomicOrdering::Acquire);
1617   return nullptr;
1618 }
1619